Publ. I.R.M.A. Strasbourg, 1988, 341/S-16 Actes 16^e Séminaire Lotharingien, p. 133-145

ON THE POINT-DISTINGUISHING CHROMATIC INDEX OF $K_{n,n}$

BY

N. ZAGAGLIA SALVI (*)

SUMMARY - Let $\chi_{o}(G)$ be the point-distinguishing chromatic index of a graph G.

We determine some properties of a point-distinguishing χ_o -coloring of K_{n,n}. In particular we determine the values of n for which K_{n,n} has a point-distinguishing χ_o -coloring with a vertex whose incident lines are colored with the same color and in such cases we calculate

 $\chi_{o}(K_{n,n})$. In the other cases we determine a characterization of a pointdistinguishing χ_{o} -coloring of $K_{n,n}$.

1. INTRODUCTION

The point-distinguishing (p. d.) chromatic index of a graph G = (V, E), denoted $\mathcal{J}_{\mathcal{C}}(G)$, is the minimum number of colors assignable to E so that no two distinct points are incident with the same color set of lines.

(*) This research was supported by the Ministero della Pubblica Istruzione

In [1] tight bounds on this chromatic index are obtained for $K_{n,n}$. In fact it is proved that

 $\lceil \log_2 n \rceil + 1 \leq \chi_o(K_{n,n}) \leq \lceil \log_2 n \rceil + 2$ (1)This relation implies that, for $2^{k-2} \le n \le 2^{k-1}$, it is $\chi_{b}(K_{n,n}) = k$ or k+1. In $\begin{bmatrix} 1 \end{bmatrix}$ the problem of determining $\chi_{o}(K_{n,n})$ exactly for arbitrary n is posed. We prove that a point-distinguishing χ -coloring of K corresponds to a matrix of order n with elements belonging to $L = \{1, 2, ..., \chi\}$, that determines a partition of the 2^{χ} distinct subsets of L on three particular collections of sets. We give an algorithm to determine a p.d. coloring of $K_{2n,2n}$, knowing such a coloring of K We say that in a p.d. coloring of G a vertex is monochromatic if all the lines incident with it have the same color. A p.d. coloring with a monochromatic vertex is called a p.d. monocoloring. We prove that in a pd. χ_{o} -coloring of K only one vertex can be monochromatic, with only one exception. Moreover we determine when $K_{n,n}$ has a pd. χ_o -monocoloring and in this case we calculate $\chi_{\mathfrak{o}} \stackrel{(K}{\underset{n,n}{}}).$ In the other cases we give a characterization of apd. Zo -coloring of Kn,n. Denote by J the all one matrix of order n.

2. Denote by $V = \{v_1, v_2, \dots, v_n\}$ and $W = \{v_1', v_2', \dots, v_n'\}$ the classes of vertices of $K_{n,n}$. Consider a p.d. coloring f of the edges of $K_{n,n}$ with χ colors, where $L = \{1, 2, \dots, \chi\}$ is the set of colors.

134

If $a_{ij} \in L$ is the color of the edge $v_i v_j$, the matrix of order n $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ represents such a coloring. The i-th row of A determines the color set of the edges incident with v_i , while the j-th column corresponds to the color set of the edges incident with v_j . Since f is a p.d. coloring, it follows that two distinct lines of A never determine the same color set. If 1 is a line of A, we delote by $\{1\}$ the set of colors contained in A and by $\{\overline{1}\}$ the complementary set of $\{1\}$ with respect to L, that is $\{\overline{1}\} = L - \{1\}$. We say that a set H belongs to A if a line 1 of A such that $H = \{1\}$ exists. Finally we say that 1 corresponds to $\{1\}$.

PROPOSITION 2.1 - A p.d. χ -coloring of K exists iff there exists a matrix of order n with elements belonging to $\{1, 2, ..., \chi\}$ such that distinct lines correspond to distinct sets.

The proof follows from the preceding considerations.[]

PROPOSITION 2.2 - A p.d. χ -coloring of K implies a partition of distinct subsets of L = {1, 2, ..., χ } on three collections \mathcal{C} , \mathcal{R} and \Im of order n, n, 2²-2n respectively, such that if $H \in \mathcal{C}$, then \widetilde{H} and all its subsets belong to \mathcal{C} or to \Im .

Proof. Let A be the matrix that represents a χ -coloring of K_{n,n}. Denote by \mathcal{C}, \mathcal{R} and \mathcal{F} the collections of distinct subsets of colors respectively contained in the columns, rows of A and not belonging to A.

Then, if $H \in \mathcal{C}$, \overline{H} and all its subsets belong to \mathcal{C} or to \mathcal{F} . On the contrary, we have that, denoted by c a column of A, there exists a subset S of $\{\overline{c}\}$ that coincides with $\{r\}$, where r is a row of A. Then the element common to c and r belongs to $\{c\} \land \{\overline{c}\}$; a contradiction.[]

REMARK 2.3 - The property given in Prop. 2.2 concerning $\mathscr E$ holds also for $\mathscr R$.

Proof. Let $R \notin \mathbb{R}$ be. Then \overline{R} and all its subsets belong to \mathbb{R} or to \mathcal{F} . In fact if a subset $\{r\}$ of \overline{R} belongs to \mathcal{C} , then R is a subset of $\{r\}$ and it is contained in \mathfrak{R}_{\bullet} , a contradiction. [

THEOREM 2.4 - If A represents a p.d. χ -coloring of K , then the matrix of order 2n

 $\begin{bmatrix} A & A \\ A & (\chi+1)J_n \end{bmatrix}$ (2)

represents a p.d. (χ +1)-coloring of K_{2n,2n}.

Proof. We denote type a) the rows r_i and columns c_i of (2) for $1 \le i \le n$ and type b) for $n+1 \le i \le 2n$.

So two distinct lines of type a) determine the same distinct color sets of the corresponding lines of A.

A similar situation is for the lines of type b) since they determine the same color set of lines of A with the addition of the new color χ +1. Finally, a line of type a) and a line of type b) determine two distinct color sets because the (χ +1)-color does not belong to both the lines.[]

For example the matrix

$$\mathbf{A}_{1} = \begin{bmatrix} 2 & 2 & 1 & 2 & 1 \\ 3 & 4 & 4 & 3 & 4 \\ 1 & 1 & 3 & 3 & 1 \\ 2 & 2 & 4 & 4 & 4 \\ 1 & 2 & 3 & 4 & 4 \end{bmatrix}$$

represents a 4-coloring of $K_{5,5}$. The families considered in Prop. 2.2 are $C = \{123, 124, 134, 234, 14\}$, $\Re = \{12, 34, 13, 24, 1234\}$ and $\Im = \{\emptyset, 1, 2, 3, 4, 23\}$.

We remark that the matrix formed by the first q rows and q columns $3 \le q \le 5$, determines a p.d. 4-coloring of K q,q. Moreover in

$$A_{2} = \begin{bmatrix} A_{1} & A_{1} \\ A_{1} & 5J_{5} \end{bmatrix} = \begin{bmatrix} 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 1 \\ 3 & 4 & 4 & 3 & 4 & 3 & 4 & 4 & 3 & 4 \\ 1 & 1 & 3 & 3 & 1 & 1 & 1 & 3 & 3 & 1 \\ 2 & 2 & 4 & 4 & 4 & 2 & 2 & 4 & 4 & 4 \\ 1 & 2 & 3 & 4 & 4 & 1 & 2 & 3 & 4 & 4 \\ 2 & 2 & 1 & 2 & 1 & 5 & 5 & 5 & 5 & 5 \\ 3 & 4 & 4 & 3 & 4 & 5 & 5 & 5 & 5 & 5 \\ 1 & 1 & 3 & 3 & 1 & 5 & 5 & 5 & 5 & 5 \\ 1 & 1 & 3 & 3 & 1 & 5 & 5 & 5 & 5 & 5 \\ 1 & 2 & 3 & 4 & 4 & 5 & 5 & 5 & 5 & 5 \\ 1 & 2 & 3 & 4 & 4 & 5 & 5 & 5 & 5 & 5 \\ \end{bmatrix}$$

the matrix formed with the first 5+q rows and columns, 1 \leq q \leq 5, represents a p.d. 5-coloring of K_{5+q.5+q}.

3. PROPOSITION 3.1 - If a matrix A of order n, $2^{k-2} < n < 2^{k-1}$, represents a k-coloring of K n.n, then at most only one line of A is monochromatic.

Proof. Suppose A contains two monochromatic lines. Then they are parallel, for example like two rows.

Then all the columns contain two fixed colours. Apart from these two colors they determine sets with k-2 colors. Then at most they can be 2^{k-2} .

Since $n > 2^{k-2}$, we have a contradiction. 0

The value n= 2^{k-2} is excluded. For example for k=4 we have $\chi_{o}(K_{4,4}) = 4$ and the matrix

A	=	Γ1	1	1	1	٦
		2	2	2	2	
		2	2	3	3	
		2	4	3	4	
		-				

gives a p.d. 4-coloring of $K_{4.4}$ with two monochromatic lines.

COROLLARY 3.2 - Let $k \ge 3$ be a positive integer. For $2^{k-1} - \left[\frac{\kappa}{2}\right] < n < 2^{k-1}$, we have $\chi_{i}^{k} \binom{(K_{n-1})}{k} = k+1$.

Proof. If it were $\mathcal{R}_{n,n}^{(K)} = k$, in the matrix that represents a k-coloring of $K_{n,n}$ the lines would be $2n > 2^k - k$. By Proposition 3.1, in a k-coloring of $K_{n,n}$ at least k-1 monochromatic sets and the empty set ϕ are excluded from the lines of A. Then there is the relation $2n \leq 2^k - k$; a contradiction. []

THEOREM 3.3 - If the matrix A of order n, $2^{k-2} \leq n \leq 2^{k-1}$, represents a k-coloring of K n,n, then, for $\left[\frac{2^k}{3}\right] \leq n \leq 2^{k-1}$, A can not contain a monochromatic line.

Proof. Suppose A contains a monochromatic line, for example a row. Then the complement of the color set of every column can not obviously be contained in a row and neither in a column, because all the columns contain the fixed color.

Hence the color sets are at least 3n. So we have $2^k \ge 3n$.

THEOREM 3.4 - Let $k \ge 3$ be a positive integer and $\overline{n} = \left[\frac{2^k}{3}\right]$. We have that $\chi_o(K_{\overline{n},\overline{n}}) = k$ and $K_{\overline{n},\overline{n}}$ has a p.d. k-monocoloring.

Proof. Let L = {1, 2, ...,k} be. Determine three collections \mathcal{C} , \mathcal{R} and \Im of subsets of L of orders $\overline{n}, \overline{n}$ and $\overline{n}+i$, where $3\overline{n}+i=2^k$ and i=1or i=2 respectively for even or odd k, such that, for every H \in \mathbb{C} , $\overline{\mathtt{H}}$ and all its subsets belong to \mathcal{F} . Consider as elements of f all the non-empty subsets of $L - \{1\} =$ $\{2, 3, \ldots, k\}$ of increasing order 1, 2, $\ldots, \frac{k-1}{2}$ for odd k and 1, 2, ..., $\frac{k-2}{2}$ for even k with the addition of some arbitrary sets of order $\frac{k+1}{2}$ or $\frac{k}{2}$ respectively, so that the total number is \overline{n} . This is possible because the subsets of L - $\{1\}$, of order $\neq 0$, k-1, are 2^{k-1} - 2 and it is $\overline{n} \leq 2^{k-1}$ - 2. The elements of \mathfrak{E} are the complements of these sets of \mathfrak{F} with respect to L. We add to \Im the empty set for i=1, the empty set and its complement for i=2. The elements of ${\mathfrak R}\,$ are the remaining sets; we note that ${\mathfrak R}\,$ contains the monochromatic set {1}. So, by construction, if ${\tt H}\in {\mathfrak C}$, $\overline{{\tt H}}$ and all its subsets belong to ${\mathfrak F}$. Hence, if $C \in \mathcal{C}$ and $R \in \mathbb{R}$, it is $C \land R \neq \emptyset$. Let $\mathscr{C} = \{C_1, C_2, \ldots, C_{\overline{n}}\}$ be and $\mathscr{R} = \{R_1, R_2, \ldots, R_{\overline{n}}\}$. Now we construct a matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ of order \overline{n} whose lines correspond to the sets of C and R .

We can select a_{ij} as an element of $R_i \wedge C_j$ so that the i-th row (j-th column) exactly corresponds to R (C) , 1 \leq i,j \leq n. In fact, denoted $R_i = \{ \chi_1, \chi_2, \dots, \chi_S \}$, $s \leq k$, by construction \mathcal{C} contains s sets H_1 , H_2 , ..., H_s , among the first k, such that χ_t belongs to H_t , $1 \leq t \leq s$. When $C_j = H_t$, we write $a_{ij} = \chi_t$. In this way every row r_i contains all the colors of R;. Moreover, by construction \Re contains at least $\left[\frac{k}{2}\right]$ sets and their complements. So, denoted $C_i = \{ \delta_1, \delta_2, \dots, \delta_{v} \}, v \leq k, \mathcal{A}$ contains v sets D_1, D_2, \dots, D_v such that $\delta_u \in D_u$, $1 \le u \le v$. When $C_j = H_t$, an element of C_j , for example δ_1 , coincides with δ_t and we can suppose $D_1 = R_1$. In this case the element $a_{ij} = \chi_t \in R_i \cap C_j$ is already determined. For $\delta_u \neq \chi_t$ or when $C_j \neq H_t$, in correspondence to the rows $R_i = D_u$ we write $a_{ij} = S_{ij}$. So in every column c_j , $1 \leq j \leq n$, there are all the colors contained in C. Every other undetermined element $a_{ij} \in \underset{i j}{\mathbb{R}} \land C_{j}$ can be arbitrarily taked. As the lines of this matrix correspond to the sets of $~~ {\ensuremath{\mathscr{C}}}$ and R and these sets are distinct by construction, by Prop. 2.1 the theorem follows.

COROLLARY 3.5 - Let $k \ge 3$ be a positive integer and $\overline{n} = \left[\frac{2^k}{3}\right]$. For every t, $2^{k-2} \le t \le \overline{n}$, $\gamma_G(K_{t,t}) = k$ and $K_{t,t}$ has a p.d. k-monocoloring.

Proof. It suffices take the first t sets of \mathscr{C} and \mathscr{R} considered in Theorem 3.4 and construct the matrix A whose lines correspond to these sets. The construction of A is the same as that followed in Theorem 3.4.

4. Throughout this section we denote $L = \{1, 2, ..., k\}$ and suppose k > 3. PROPOSITION 4.1 - Let $\mathcal{C} = \{C_1, C_2, ..., C_n\}$ be, \mathcal{R} and \mathcal{F} three families of subsets of L, whith \mathcal{R} and \mathcal{F} of orders n, $2^k - 2n$ and $\left[\frac{2^k}{3}\right] \le 2^{k-1}$, such that if $H \in \mathcal{C}$, then \overline{H} and all its subsets belong to \mathcal{C} or to \mathcal{F} . Then $\left| \bigcup_{i=1}^{\infty} C_i \right| = k$.

Proof. As $n > 2^{k-2}$ and the sets on k-2 elements are 2^{k-2} , we have $\begin{vmatrix} \overset{n}{\bigcup} C_i \\ \vdots = 1 \end{vmatrix} > k-1$. We prove that it can not be $\begin{vmatrix} \overset{n}{\bigcup} C_i \\ \vdots = 1 \end{vmatrix} = k-1$. In fact, suppose that an element, for example 1, does not belong to $\bigcup_{i=1}^{m} C_i$. Then, if $H \in \mathcal{C}$, \overline{H} contains 1; hence \overline{H} belongs to \mathcal{F} . So the order of \mathcal{F} is greater than n and we obtain the impossible relation $2^k = 2n + |\mathcal{F}| > 3n > 2^k$.

PROPOSITION 4.2 - Let \mathcal{C} , \mathcal{R} and \mathcal{F} be three families of distinct subsets of L, of orders n, n, 2^k -2n respectively, where $\left[\frac{2^k}{3}\right] \leq n \leq 2^{k-1}$, such that if $H \in \mathcal{C}$, then \overline{H} and all its subsets belong to \mathcal{C} or to $\overline{\mathcal{F}}$. Then every element of L belongs to at least two distinct sets of \mathcal{C} .

Proof. By Prop. 4.1 every element of L belongs to at least one set of \mathscr{C} Suppose that the element 1 belongs to only one set, for example C_1 . Then, if $H \in \mathscr{C}$ and $H \neq C_1$, \overline{H} contains 1; so \overline{H} belongs to \mathcal{F} . There are two cases:

1) $\overline{c}_1 \notin \{c_2, \ldots, c_n\}$. Then \exists contains at least the n-1 sets \overline{c}_i , $2 \leq i \leq n$, and the empty set ϕ .

So $(\mathcal{H}_{\mathcal{J}})$ n and we have the impossible relation $2^{k} = 2n + |\mathcal{F}| > 3n > 2^{k}$. (4)2) $\overline{c}_1 \in \{c_2, ..., c_n\}$. Let $C_2 = \overline{C}_1$ be. If n is odd, there is a set $R \in \mathcal{R}$ such that $\overline{R} \in \mathcal{F}$. So \mathcal{F} contains the n-2 sets \overline{C}_i , $3 \leq i \leq n$, \emptyset and \overline{R} ; then $|\mathcal{F}| > n$ and (4) holds again. Let n be even. Remark that $\overline{\phi} \notin \mathcal{C}$. So, if $\overline{\phi} \in \mathcal{F}$, \mathcal{F} contains the n-2 sets \overline{C}_i , 3 $\leq i \leq n$, Ø and $\overline{\emptyset}$ and we have the preceding situation. If $\overline{\phi} \notin \mathcal{F}$, then $\overline{\phi} \in \mathcal{R}$. So there exists a set $\mathbb{R} \in \mathcal{R}$, such that $\overline{R} \in \mathcal{F}$ and again $|\mathcal{F}| \ge n$. [] PROPOSITION 4.3 - Let \mathcal{C} , \mathcal{R} and \mathcal{F} be three families of distinct subsets of L, of orders n, n, 2^{k} -2n respectively and $\left[\frac{2^{k}}{3}\right] < n \le 2^{k-1}$, such that, if $H \in \mathcal{C}$, then \overline{H} and all its subsets belong to C or to 7 Then there exists a family of k sets of $\,\,{\mathbb C}\,$ that has a transversal. with a transversal. Let $\begin{bmatrix} a_1, a_2, \dots, a_r \end{bmatrix}$ be a transversal. It can not be r \leq k-2 . In fact, in this case, all the other sets of Cwould have elements belonging to $\{a_1, a_2, \ldots, a_r\}$, so their number n-r satisfies the relation n-r $\langle 2^r \langle 2^{k-2} \rangle$. But this is impossible because $n > \left[\frac{2}{2}\right]$ and $r \leq k-2$. Moreover it cannot be r=k-1. In fact, let $H_1, H_2, \ldots, H_{k-1}$ be the sets with the transversal $\begin{bmatrix} a_1, a_2, \dots, a_{k-1} \end{bmatrix}$ and $D_1, D_2, \dots, D_{n-k+1}$ the remaining sets. Then the elements of D_i, $1 \le i \le n-k+1$, belong to L' = $\left\{a_1, a_2, \dots, a_{k-1}\right\}$. Let a_k be the color that does not belong to L'.

By Prop. 4.2, there exist at least two sets, for example H_1 and H_2 , that contain a_k apart from a_1 and a_2 respectively. Moreover there exists a set D_j , $j \in [1, n-k+1]$, that contains a_1 or a_2 . On the contrary, it holds $|\bigcup_{i=1}^{W-k+1} D_i| = k-3$; but this is impossible because the number of sets D_i , n-k+1, is greater than 2^{k-3} . Suppose that D_j contains a_1 .

Then, the sets H_1 , H_2 , ..., H_{k-1} , D_j have the transversal $\begin{bmatrix} a_k, a_2, \dots, a_{k-1}, a_1 \end{bmatrix}$ and r=k. $\begin{bmatrix} 1 \end{bmatrix}$

The preceding considerations about the elements of $\,\mathscr{C}\,$ hold also for the elements of $\,\mathcal{R}\,$. In fact we have the following

Corollary 4.4 - Let \mathcal{C} , $\mathcal{R} = \{R_1, R_2, \dots, R_n\}$ and \mathcal{F} three families of distinct subsets of L, of orders n, n, 2^k - 2n respectively, where $\left[\frac{2^k}{3}\right] < n \leq 2^{k-1}$, such that if $H \in \mathcal{C}$, then \overline{H} and all its subsets belong to \mathcal{C} or to \mathcal{F} .

Then the following statements hold:

1) $\left| \bigcup_{i=1}^{n} R_{i} \right| = k$,

2) every element of L belongs to at least two distinct sets of ${\mathcal R}$,

3) there exists a family of k sets of $\mathfrak R$ that has a transversal.

The proof follows immediately from Remark 2.3 and Prop. 4.1, 4.2 and 4.3.

THEOREM 4.5 - A p.d. k-coloring of $K_{n,n}$, for $\left[\frac{2}{3}\right] < n \le 2^{k-1}$ exists iff there exists a partition of the subsets of L on three families of distinct sets C, R and F, of orders n, n, 2^k - 2n, such that , if $H \in C$ then \overline{H} and all its subsets belong to C or to F.

Proof. The condition is necessary by Prop. 2.2. We prove that it is also sufficient. Let $\mathscr{C} = \{C_1, C_2, \dots, C_n\}$ be and $\mathscr{R} = \{R_1, R_2, \dots, R_n\}$. We construct a matrix $A = [a_{ij}]$ of order n whose lines correspond to the sets of \mathscr{C} and \mathscr{R} . By Prop. 4.3 (Corollary 4.4) \mathscr{C} (\mathscr{R}) contains a family of k sets with a transversal. Then, denoted $R_i = \{\chi_1, \chi_2, \dots, \chi_5\}$, $s \leq k$, \mathscr{C} contains s sets H_1 , H_2 ,..., H_s such that $\chi_{ij} \in H_t$, $1 \leq t \leq s$. Moreover, denoted $C_j = \{\zeta_1, \zeta_2, \dots, \zeta_V\}$, $v \leq k$, \mathscr{R} contains v sets D_1, D_2, \dots, D_V such that $\delta_{ij} \in D_u$, $1 \leq u \leq v$. The procedure for the construction of A is the same as that followed in Theorem 3.5; in this case, by Theorem 3.3 A does not contain a monochromatic line. []

REFERENCES

[1] F. Harary and M. Plantholt, The point-distinguishing chromatic index, Graphs and Applications (Proc.), A Wiley-Interscience Publication (1985), 147-162.

[2] F. Harary, Graph Theory, Addison-Wesley, Reading (1969)

[3] D. Welsh, Matroid Theory, Academic Press, London (1976)

N. ZAGAGLIA SALVI, Dipartimento di Matematica, Politecnico di Milano, I-Milano.

