ON THE POINT-DISTINGUISHING CHROMATIC INDEX OF $K_{n, n}$

BY

N. ZAGAGLIA SALVI (*)

SUMMARY - Let $\chi_{0}(G)$ be the point-distinguishing chromatic index of a graph G.

We determine some properties of a point-distinguishing χ_{0}-coloring of $K_{n, n}$. In particular we determine the values of n for which $K_{n, n}$ has a point-distinguishing $\quad X_{0}$-coloring with a vertex whose incident lines are colored with the same color and in such cases we calculate $X_{0}\left(K_{n, n}\right)$. In the other cases we determine a characterization of a pointdistinguishing $\quad \chi_{0}$-coloring of $K_{n, n}$.

1. INTRODUCTION

The point-distinguishing (p. d.) chromatic index of a graph $G=(V, E)$, denoted $\chi_{0}(G)$, is the minimum number of colors assignable to E so that no two distinct points are incident with the same color set of 1ines.
(*) This research was supported by the Ministero della Pubblica Istruzione

N. ZAGAGLIA SALVI

In [1] tight bounds on this chromatic index are obtained for $K_{n, n}$. In fact it is proved that

$$
\begin{equation*}
\left\lceil\log _{2} n\right\rceil+1 \leqslant \chi_{0}\left(K_{n, n}\right) \leqslant\left\lceil\log _{2} n\right\rceil+2 \tag{1}
\end{equation*}
$$

This relation implies that, for $2^{k-2} \leqslant n \leqslant 2^{k-1}$, it is $X_{0}\left(k_{n, n}\right)=k$ or $k+1$.

In $[1]$ the problem of determining $\chi_{0}\left(K_{n, n}\right)$ exactly for arbitrary n is posed.

We prove that a point-distinguishing χ-coloring of $k_{n, n}$ corresponds to a matrix of order n with elements belonging to $L=\{1,2, \ldots, \chi\}$, that determines a partition of the 2^{χ} distinct subsets of L on three particular collections of sets.
We give an algorithm to determine a p.d. coloring of $K_{2 n, 2 n}$, knowing such a coloring of $K_{n, n}$.
We say that in a p.d. coloring of G a vertex is monochromatic if all the lines incident with it have the same color.

A p.d. coloring with a monochromatic vertex is called a p.d. monocoloring. We prove that in apd. χ_{0}-coloring of $K_{n, n}$ only one vertex can be monochromatic, with only one exception.

Moreover we determine when $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$ has a pd. χ_{0}-monocoloring and in this case we calculate $\chi_{0}\left(K_{n, n}\right)$. In the other cases we give a characterization of ap.d. χ_{0}-coloring of $K_{n, n}$. Denote by J_{n} the all one matrix of order n.
2. Denote by $v=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $w=\left\{v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, \ldots, v_{n}^{\prime}\right\}$ the classes of vertices of $K_{n, n}$.
Consider a p.d. coloring f of the edges of $k_{n, n}$ with X colors, where $L=\{1,2, \ldots, \chi\}$ is the set of colors.

If $a_{i j} \in L$ is the color of the edge $v_{i} v_{j}$, the matrix of order n
$A=\left[a_{i j}\right]$ represents such a coloring.
The i-th row of A determines the color set of the edges incident with v_{i},
while the j-th column corresponds to the color set of the edges incident
with $\mathrm{v}_{\mathrm{j}}{ }^{\mathrm{r}}$.
Since f is a p.d. coloring, it follows that two distinct lines of A never determine the same color set.
If 1 is a line of A, we delote by $\{1\}$ the set of colors contained in A and by $\{\overline{1}\}$ the complementary set of $\{1\}$ with respect to L, that is $\{\overline{1}\}=\mathrm{L}-\{1\}$.
We say that a set H belongs to A if a line 1 of A such that $H=\{1\}$ exists.
Finally we say that 1 corresponds to $\{1\}$.

PROPOSITION 2.1-Ap.d. X-coloring of $K_{n, n}$ exists iff there exists a matrix of order n with elements belonging to $\{1,2, \ldots, \chi\}$ such that distinct 1ines correspond to distinct sets.

The proof follows from the preceding considerations. []

PROPOSITION 2.2 - A p.d. χ-coloring of $k_{n, n}$ implies a partition of distinct subsets of $L=\{1,2, \ldots, \chi\}$ on three collections \mathcal{C}, R and \mathcal{F} of order $n, n, 2^{\mathcal{X}}-2^{n}$ respectively, such that if $H \in \mathscr{C}$, then $\overrightarrow{\mathrm{H}}$ and all its subsets belong to \mathcal{E} or to \mathcal{F}.

Proof. Let A be the matrix that represents a χ-coloring of $K_{n, n}$. Denote by \mathcal{Q}, \mathbb{R} and \mathcal{F} the collections of distinct subsets of colors respectively contained in the columns, rows of A and not belonging to A.
Then, if $\mathrm{H} \in \mathscr{C}, \overline{\mathrm{H}}$ and all its subsets belong to \mathscr{C} or to \mathcal{F}. On the contrary, we have that, denoted by c a column of A, there exists a subset S of $\{\bar{c}\}$ that coincides with $\{r\}$, where r is a row of A. Then the element common to c and r belongs to $\{c\} \cap\{\bar{c}\}$; a contradiction.[]

N. ZAGAGLIA SALVI

REMARK 2.3 - The property given in Prop. 2.2 concerning \mathcal{E} holds also for R.

Proof. Let $R \in \mathbb{R}$ be. Then \bar{R} and all its subsets belong to Q or tr \mathcal{F}. In fact if a subset $\{r\}$ of \bar{R} belongs to \mathcal{Q}, then R is a subset of $\{\bar{r}\}$ and it is contained in R, a contradiction. \square

The condition given in Proposition 2.2 is not sufficient for the existence of a p.d. χ - coloring of $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$.

For example, let $k=5$ be and $L=\{1,2,3,4,5\}$.
We can consider the collections of subsets of $L \quad \mathcal{G}=\{2345,234,235$, $245,345,23,45,24,35\}, Q=\{12345,1345,1245,1235,1234,25$, $134,34,125\}$ and $\mathcal{F}=\{\phi, 1,2,3,4,5,12,13,14,15,145,123$, 135, 142$\}$.
For every $H \in \mathcal{C}[R], \bar{H} \in C[R]$ or to \neq together with all its subsets. However there does not exist a matrix whose lines correspond to the sets of \mathcal{G} and \mathbb{R}.

THEOREM 2.4 - If A represents a p.d. χ-coloring of $k_{n, n}$, then the matrix of order 2 n

$$
\begin{align*}
& {\left[\begin{array}{ll}
A & A \\
A & (\chi+1) J_{n}
\end{array}\right]} \tag{2}\\
& \text { represents a p.d. }(\chi+1) \text {-coloring of } K_{2 n, 2 n} .
\end{align*}
$$

Proof. We denote type a) the rows r_{i} and columns c_{i} of (2) for $1 \leqslant i \leqslant n$ and type b) for $n+1 \leq i \leq 2 n$ So two distinct lines of type a) determine the same distinct color sets of the corresponding lines of A .

CHROMATIC INDEX OF $K_{n, n}$

A similar situation is for the lines of type b) since they determine the same color set of lines of A with the addition of the new color $\chi+1$. Finally, a line of type a) and a line of type b) determine two distinct color sets because the $(x+1)$-color does not belong to both the lines.

For example the matrix

$$
A_{1}=\left[\begin{array}{lllll}
2 & 2 & 1 & 2 & 1 \\
3 & 4 & 4 & 3 & 4 \\
1 & 1 & 3 & 3 & 1 \\
2 & 2 & 4 & 4 & 4 \\
1 & 2 & 3 & 4 & 4
\end{array}\right]
$$

represents a 4 -coloring of $\mathrm{K}_{5,5}$. The families considered in Prop. 2.2 are $\mathcal{Q}=\{123,124,134,234,14\}, \mathcal{Q}=\{12,34,13,24,1234\}$
and $\quad \mathcal{Y}=\{\emptyset, 1,2,3,4,23\}$.
We remark that the matrix formed by the first q rows and q columns
$3 \leq \mathrm{q} \leq 5$, determines a p.d. 4-coloring of $\mathrm{K}_{\mathrm{q}, \mathrm{q}}$.
Moreover in

$$
A_{2}=\left[\begin{array}{lllllllllll}
A_{1} & A_{1} \\
A_{1} & 5 J_{5} \\
& 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 1 \\
3 & 4 & 4 & 3 & 4 & 3 & 4 & 4 & 3 & 4 \\
1 & 1 & 3 & 3 & 1 & 1 & 1 & 3 & 3 & 1 \\
2 & 2 & 4 & 4 & 4 & 2 & 2 & 4 & 4 & 4 \\
1 & 2 & 3 & 4 & 4 & 1 & 2 & 3 & 4 & 4 \\
2 & 2 & 1 & 2 & 1 & 5 & 5 & 5 & 5 & 5 \\
3 & 4 & 4 & 3 & 4 & 5 & 5 & 5 & 5 & 5 \\
1 & 1 & 3 & 3 & 1 & 5 & 5 & 5 & 5 & 5 \\
2 & 2 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 5 \\
1 & 2 & 3 & 4 & 4 & 5 & 5 & 5 & 5 & 5
\end{array}\right]
$$

the matrix formed with the first $5+q$ rows and columns, $1 \leqslant q \leqslant 5$, represents a p.d. 5 -coloring of $\mathrm{K}_{5+\mathrm{q}, 5+\mathrm{q}}$.

N. ZAGAGLIA SALVI

3. PROPOSITION 3.1- If a matrix A of order $n, 2^{k-2}<n \leqslant 2^{k-1}$, represents a k-coloring of $K_{n, n}$, then at most only one line of A is monochromatic.

Proof. Suppose A contains two monochromatic lines. Then they are parallel, for example like two rows.

Then all the columns contain two fixed colours. Apart from these two colors they determine sets with $k-2$ colors.
Then at most they can be $2^{\mathrm{k}-2}$.
Since $\mathrm{n}>2^{\mathrm{k}-2}$, we have a contradiction. 0

The value $n=2^{k-2}$ is excluded. For example for $k=4$ we have $\chi_{0}\left(K_{4,4}\right)=4$ and the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
2 & 2 & 3 & 3 \\
2 & 4 & 3 & 4
\end{array}\right]
$$

gives a p.d. 4-coloring of $K_{4,4}$ with two monochromatic lines.

COROLLARY 3.2 - Let $k \geqslant 3$ be a positive integer. For $2^{k-1}-\left[\frac{k}{2}\right]<n \leqslant 2^{k-1}$, we have $\quad \chi_{0}\left(\mathrm{~K}_{\mathrm{n}, \mathrm{n}}\right)=\mathrm{k}+1$.

Proof. If it were $\chi_{0}\left(\mathrm{~K}_{\mathrm{n}, \mathrm{n}}\right)=\mathrm{k}$, in the matrix that represents a k-coloring of $K_{n, n}$ the lines would be $2 n>2^{k}-k$.
By Proposition 3.1, in a k-coloring of $K_{n, n}$ at least $k-1$ monochromatic sets and the empty set ϕ are excluded from the lines of A.
Then there is the relation $2 \mathrm{n} \leqslant 2^{\mathrm{k}}-\mathrm{k}$; a contradiction. \square

THEOREM 3.3 - If the matrix A of order $n, 2^{k-2} \leqslant n \leqslant 2^{k-1}$, represents a k-coloring of $K_{n, n}$, then, for $\left[\frac{2^{k}}{3}\right]<n \leq 2^{k-1}$, A can not contain a monochromatic line.

Proof. Suppose A contains a monochromatic line, for example a row. Then the complement of the color set of every column can not obviously be contained in a row and neither in a column, because all the columns contain the fixed color.
Hence the color sets are at least $3 n$. So we have $2^{k} \geqslant 3 n$. \square

THEOREM 3.4 - Let $k \geqslant 3$ be a positive integer and $\bar{n}=\left[\frac{2^{k}}{3}\right]$. We have that $\chi_{0}^{\left(K_{\bar{n}, \bar{n}}\right)}=k$ and $K_{\bar{n}, \bar{n}}$ has a p.d. k-monocoloring.

Proof. Let $L=\{1,2, \ldots, k\}$ be. Determine three collections \mathcal{E}, \mathcal{Q} and \mathcal{F} of subsets of L of orders \bar{n}, \bar{n} and $\bar{n}+i$, where $3 \bar{n}+i=2^{k}$ and $i=1$ or $i=2$ respectively for even or odd k, such that, for every $H \in \mathbb{E}$, \vec{H} and all its subsets belong to \mathcal{F}. Consider as elements of \mathcal{F} all the non-empty subsets of $L-\{1\}=$ $\{2,3, \ldots, k\}$ of increasing order $1,2, \ldots, \frac{k-1}{2}$ fot odd k and $1,2, \ldots, \frac{k-2}{2}$ for even k with the addition of some arbitrary sets of order $\frac{k+1}{2}$ or $\frac{k}{2}$ respectively, so that the total number is \bar{n}. This is possible because the subsets of $L-\{1\}$, of order $\neq 0, k-1$, are $2^{k-1}-2$ and it is $\bar{n} \leq 2^{k-1}-2$. The elements of are the complements of these sets of \mathcal{F} with respect to L .

We add to \mathcal{F} the empty set for $i=1$, the empty set and its complement for $i=2$.
The elements of Q are the remaining sets; we note that Q contains the monochromatic set $\{1\}$.
So, by construction, if $H \in \mathscr{Q}, \bar{H}$ and all its subsets belong to \mathcal{F}. Hence, if $c \in \mathscr{C}$ and $R \in Q$, it is $c \cap R \neq \emptyset$.
Let $\mathcal{G}=\left\{c_{1}, c_{2}, \ldots, c_{\bar{n}}\right\}$ be and $R=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$.
Now we construct a matrix $A=[a ; i j$ of order \bar{n} whose lines corruspond to the sets of $\dot{\varphi}$ and Q.

N. ZAGAGLIA SALVI

We can select $a_{i j}$ as an element of $R_{i} \cap C_{j}$ so that the $i-t h$ row
(j-th column) exactly corresponds to $R_{i}\left(C_{j}\right), 1 \leq i, j \leq n$.
In fact, denoted $R_{i}=\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{s}\right\}, s \leqslant k$, by construction \mathscr{C}^{j} contains sets $H_{1}, H_{2}, \ldots, H_{s}$, among the first k, such that γ_{t} belongs to $H_{t}, 1 \leqslant t \leqslant s$.
When $C_{j}=H_{t}$, we write $a_{i j}=\gamma_{t}$. In this way every row r_{i} contains all the colors of R_{i}.
Moreover, by construction \mathbb{R} contains at least $\left[\frac{k}{2}\right]$ sets and their complements.
So, denoted $C_{j}=\left\{\delta_{1}, \delta_{2}, \cdots, \delta_{v}\right\}, v \leqslant k$, $\}$ contains v sets $D_{1}, D_{2}, \ldots, D_{v}$ such that $\delta_{u} \in D_{u}, 1 \leqslant u \leqslant v$.
When $C_{j}=H_{t}$, an element of c_{j}, for example δ_{1}, coincides with γ_{t} and we can suppose $D_{1}=R_{i}$.
In this case the element $a_{i j}=\gamma_{t} \in R_{i} \cap C_{j}$ is already determined. For $\delta_{u} \neq \gamma_{t}$ or when $c_{j} \neq H_{t}$, in correspondence to the rows $R_{i}=D_{u}$ we write $a_{i j}=\delta_{u}$.
So in every column $c_{j}, 1 \leqslant j \leqslant n$, there are all the colors contained in C_{j}. Every other undetermined element $a_{i j} \in R_{i} \cap C_{j}$ can be arbitrarily faked. As the lines of this matrix correspond to the sets of $\&$ and Ω and these sets are distinct by construction, li Prop. 2.1 the theorem follows.[]

COROLLARY 3.5 - Let $k \geqslant 3$ be a positive integer and $\bar{n}=\left[\frac{2^{k}}{3}\right]$. For every t, $2^{k-2} \leqslant t \leqslant \bar{n}, \chi_{G}\left(K_{t, t}\right)=k$ and $K_{t, t}$ has a p.d. k-monocoloring.

Proof. It suffices take the first t sets of Q and Ω considered in Theorem 3.4 and construct the matrix A whose lines correspond to these sets. The construction of A is the same as that followed in Theorem 3.4.

CHROMATIC INDEX OF $K_{n, n}$

4. Throughout this section we denote $L=\{1,2, \ldots, k\}$ and suppose $k>3$.

PROPOSITION 4.1 Let $\varphi=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be, \mathbb{Q} and \bar{y} three families of subsets of L, whith \mathcal{R} and \mathcal{F} of orders $n, 2^{k}-2 n$ and $\left[\frac{2}{3}\right]<n \leqslant 2^{k-1}$, such that if $H \in \mathscr{C}$, then \bar{H} and all its subsets belong to \mathscr{C} or to \mathcal{F}

Then $\left|\underset{i=1}{\sim} C_{i}\right|=k$.
Proof. As $n>2^{k-2}$ and the sets on $k-2$ elements are 2^{k-2}, we have
$\left|\bigcup_{i=1}^{n} C_{i}\right| \geqslant k-1$. We prove that it can not be $\left|\bigcup_{i=1}^{n} C_{i}\right|=k-1$.
In fact, suppose that an element, for example 1 , does not belong, to $\bigcup_{i=1}^{n} C_{i}$. Then, if $H \in \mathscr{C}, \vec{H}$ contains 1 ; hence \vec{H} belongs to \mathcal{F}. So the order of \mathcal{F} is greater than n and we obtain the impossible relation $2^{k}=2 n+|7|>3 n>2^{k} . \square$

PROPOSITION 4.2 - Let ℓ, Q and \mathcal{F} be three families of distinct subsets of L, of orders $n, n, 2^{k}-2 n$ respectively, where $\left[\frac{2^{k}}{3}\right]<n \leq 2^{k-1}$, such that if $H \in \mathscr{C}$, then \bar{H} and all its subsets belong to \mathscr{C} or to \mathcal{F}
Then every element of L belongs to at least two distinct sets of ϱ_{ρ}.

Proof. By Prop. 4.1 every element of L belongs to at least one set of \mathcal{Q}
Suppose that the element 1 belongs to only one set, for example C_{1}. Then, if $H \in \mathscr{C}$ and $H \neq C_{1}, \vec{H}$ contains 1 ; so \bar{H} belongs to $\stackrel{y}{f}$.

There are two cases:

1) $\overline{\mathrm{c}}_{1} \notin\left\{\mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}\right\}$.

Then \mathcal{f} contains at least the $n-1$ sets $\bar{C}_{i}, 2 \leqslant i \leqslant n$, and the empty set ϕ.

N. ZAGAGLIA SALVI

So $|\mathcal{F}| \geqslant n$ and we have the impossible relation

$$
\begin{equation*}
2^{k}=2 n+|7| \geqslant 3 n>2^{k} \tag{4}
\end{equation*}
$$

2) $\overline{\mathrm{C}}_{1} \in\left\{\mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}}\right\}$.

Let $C_{2}=\bar{C}_{1}$ be. If n is odd, there is a set $R \in \Omega \quad$ such that $\bar{R} \in \mathcal{F}$.
So \mathcal{F} contains the $n-2$ sets $\bar{c}_{i}, 3 \leqslant i \leqslant n, \emptyset$ and \bar{R}; then $|\mathcal{F}| \geqslant n$ and (4) holds again.
Let n be even. Remark that $\bar{\emptyset} \neq \mathcal{Q}$. So, if $\bar{\emptyset} \in \mathcal{F}$, \mathcal{F} contains the $n-2$ sets $\bar{C}_{i}, 3 \leqslant i \leqslant n, \emptyset$ and $\bar{\emptyset}$ and we have the preceding situation. If $\bar{\emptyset} \notin \mathcal{F}$, then $\bar{\emptyset} \in \mathbb{R}$. So there exists a set $R \in \mathcal{R}$, such that $\vec{R} \in \mathcal{F}$ and again $|\mathcal{F}| \geqslant$ n. []

PROPOSITION 4.3 - Let ℓ, Q and \mathcal{F} be three families of distinct subsets of L, of orders $n, n, 2^{k}-2 n$ respectively and $\left[\frac{2^{k}}{3}\right]<n \leqslant 2^{k-1}$, such that, if $H \in 母$, then \bar{H} and all its subset: helong to \mathcal{E} or to \mathcal{F}
Then there exists a family of k sets of \mathscr{C}
that has a transversal.

Proof. Let r be the maximum number of sets of \mathscr{C} with a transversal. Let $\left[a_{1}, a_{2}, \ldots, a_{r}\right] \quad \begin{gathered}\text { sech } \\ \text { bela transversal. }\end{gathered}$
It can not be $\mathbf{r} \leqslant k-2$. In fact, in this case, all the other sets of \mathscr{G} would have elements belonging to $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$, so their number $\mathrm{n}-\mathrm{r}$ satisfies the relation $\mathrm{n}-\mathrm{r}<2^{\mathrm{r}} \leqslant 2^{\mathrm{k}-2}$. But this is impossible because $n>\left[\frac{2^{k}}{3}\right] \quad$ and $r \leqslant k-2$.
Moreover it cannot be $r=k-1$.
In fact, let $H_{1}, H_{2}, \ldots, H_{k-1}$ be the sets with the transversal $\left[a_{1}, a_{2}, \ldots, a_{k-1}\right]$ and $D_{1}, D_{2}, \ldots, D_{n-k+1}$ the remaining sets. Then the elements of $D_{i}, 1 \leqslant i \leqslant n-k+1$, belong to $L^{\prime}=\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$. Let a_{k} be the color that does not belong to L^{\prime}.

By Prop. 4.2, there exist at least two sets, for example H_{1} and H_{2}, that contain a_{k} apart from a_{1} and a_{2} respectively.
Moreover there exists a set $D_{j}, j \in[1, n-k+1]$, that contains a_{1} or a_{2}.
On the contrary, it holds $\left|\bigcup_{i=1}^{n-k+1} D_{i}\right|=k-3$; but this is impossible because the number of sets $D_{i}, n-k+1$, is greater than 2^{k-3}.
Suppose that D_{j} contains a_{1}.
Then, the sets $H_{i}, H_{2}, \ldots, H_{k-1}, D_{j}$ have the transversal $\left[a_{k}, a_{2}, \ldots, a_{k-1}, a_{1}\right]$ and $r=k . \square$

The preceding considerations about the elements of $\dot{\mathscr{C}}$ hold also for the elements of Q.

In fact we have the following

Corollary 4.4 - Let $\varphi, Q \in\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}_{k}$ and \mathcal{F} three. . families of distinct subsets of L, of orders $n, n, 2^{k}-2 n$ respectively, where $\left[\frac{2^{k}}{3}\right]<n \leqslant 2^{k-1}$, such that if $H \in \mathbb{C}$, then \bar{H} and all its subsets belong to e or to ff.
Then the following statements hold:

1) $\quad\left|\bigcup_{i=1}^{n} R_{i}\right|=k$,
2) every element of L belongs to at least two distinct sets of \mathbb{R},
3) there exists a family of k sets of ℓ that has a transversal.

The proof follows immediately from Remark 2.3 and Prop. 4.1, 4.2 and 4.3. \square

THEOREM 4.5 - A p.d. k-coloring of $K_{n, n}$, for $\left[\frac{2^{k}}{3}\right]<n \leqslant 2^{k-1}$ exists iff there exists a partition of the subsets of L on three families of distinct sets i ℓ, and \mathcal{F}, of orders $n, n, 2^{k}-2 n$, such that, if $H \in 母$, then $\overline{\mathrm{H}}$ and all its subsets belong to \mathscr{C} ar to " \mathcal{F}.

N. ZAGAGLIA SALVI

Proof. The condition is necessary by Prop. 2.2.
We prove that it is also sufficient.
Let $\mathscr{C}=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be and $Q=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$.
We construct a matrix $A=\left[a_{i j}\right]$ of order n whose lines correspond to the sets of \mathscr{Q} and R.
By Prop. 4.3 (Corollary 4.4) $\ell(\Omega)$ contains a family of k sets with a transversal.
Then, denoted $R_{i}=\left\{\gamma_{1}, \gamma_{2}, \cdots_{i} \gamma_{s}\right\}, s \leq k, Q$ contains s sets H_{1}, H_{2}, \ldots, H_{s} such that $\gamma_{t} \in H_{t}, 1 \leqslant t \leqslant s$.
Moreover, denoted $C_{j}=\left\{\delta_{1} \delta_{2} \ldots \delta_{v}\right\}, v \leqslant k, Q \quad$ contains v sets $D_{1}, D_{2}, \ldots, D_{v}$ such that $\delta_{u} \in D_{u}, 1 \leqslant u \leqslant v$.
The procedure for the construction of A is the same as that followed in Theorem 3.5; in this case, by Theorem 3.3 A does not contain a monochromatic line. \square

CHROMATIC INDEX OF $K_{n, n}$

REFERENCES

[1] F. Harary and M. Plantholt, The point-distinguishing chromatic index, Graphs and App1ications (Proc.), A Wiley-Interscience Publication (1985), 147-162.
[2] F. Harary, Graph Theory, Addison-Wesley, Reading (1969)
[3] D. Welsh, Matroid Theory, Academic Press, London (1976)

N. Zagaglia Salvi, Dipartimento di Matematica, Politecnico di Milano, I-Milano.

