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ON THE POINT-DISTINGUISHING
CHROMATIC INDEX OF K.,

BY

N. ZAGAGLIA SALVI (*)

SUMMARY - Let Xo(G) be the point-distinguishing chromatic index

of a graph G.

We determine some properties of a point-distinguishing X" -coloring
of Kn,n' In particular we determine the valuegof n for which Kn,n has
a point-distinguishing 7{0 -coloring with a vertex whose incident
lines are colored with the same color and in such cases we calculate

Xf’ (K ). In the other cases we determine a characterization of a point-
n,n :

distinguishing {o -coloring of Kn,n
1. INTRODUCTION

The point-distinguishing (p. d.) chromatic index of a graph G = (V,E),
denoted %},(G), is the minimum number of colors assignable to E so

that no two distinct points are incident with th& same color set of

lines.

(¥) This research was supported by the Ministero della Pubblica Istruzione
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In [1] tight bounds on this chromatic index are obtained for K
n

,n.
In fact it is proved that
+ £ < +
rlogzn’l 1 1.°(Kn,n) < rlogzt;\ 2 1)
; . . . k-2 k={ .
This relation implies that, for 2 £ n g2 it is X, (I(rl n)=k
=4

or k+1.

- In [1] the problem of determining Xo (Kn-n) exactly for arbitrary n

bl
is posed. ~

We prove that a point-distinguishing X-coloring of Kn - corresponds to
bl

a matrix of order n with elements belonging to L = 1, 2, ,X} s
that determines a partition of the Zx distinct subsets of L on three
particular collections of sets.

We give an algorithm to determine a p.d. coloring of K . knowing
b

2

such a coloring of K .
n,n

We say that in a p.d. coloring of G a vertex is monochromatic if all

the lines incident with it have the same color.

A p.d. coloring with a monochromatic vertex is called a p.d. monocoloring.
We prove that in aFJ.’X, -coloring of Kn,n only one vertex can be mono-
chromatic, with only one exception.

Moreover we determine when Kn a0 has a Pd X o ~monocoloring and in this

’

case we calculate o (K ). In the other cases we give a characteri-
n,n

zation of abd. Ao -coloring of Kn,n'

Denote by J the all one matrix of order n.
n

2. Denote by V =iv1, Vs ...,vn} and W = {v1', vz', ...,vn'}_ the classes

of vertices of K .
n,n

Consider a p.d. coloring f of the edges of Kn N

with X colors , where
b
L ={1, 2, ,X} is the set of colors.
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CHROMATIC INDEX OF Ky n

CIf aij € L is the color of the edge vivj, , the matrix of brder n

A=)a,,| repr ts h a coloring.

[ 1J] epresents suc coloring

The i-th row of A determines the color set of the edges incident with vy
while the j—th column corresponds to the color set of the edges incident
with v,,.

J

Since £ is a p.d. coloring , it follows that two distinct lines of A
‘never determine the same color set.

If 1 is a line of A, we delote by {13 the set of colors contained in A
and by {1} the complementary set of {15 with respect to L, that is

fiy=1- {1} .

We say that a set H belongs to A if a line 1 of A such that H = {1} exists.

Finally we say that 1 corresponds to {1} .

PROPOSITION 2.1 - A p.d. X -coloring of K a exists iff there exists a
n, ' :
matrix of order n with elements belonging to {1, 2, ,l} such that distinct

lines correspond to distinct sets.
The proof follows from the preceding considerations.g

PROPOSITION 2.2 - A p.d. I-coloring of Kn o implies a partition of

] 5
distinct subsets of L =31, 2, ,l} on three collections @ 5 (R’
and (3 of order n, n,2-9n respectively, such that if H € €, then

H and all its subsets belong to € or to (3' N

Proof. Let A be the matrix that represents a X -coloring of Kn,n'
Denote by @ ,(R and ,3 the collections of distinct subsets of
colors respectively contained in the columns, rows. of A and not belonging
to A.

Then, if H e€ , H and all its subsets belong to €  or to '3’ N

On the contrary, we have that, der‘xoted by ¢ a column of A, there exists a
subset S of {;} that coincides with {r} 4 where r is a row of A.

Then the element common to ¢ and r belongs to i’c} N {c} ; a contra-

diction.ﬂ
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REMARK 2.3 - The property given in Prop. 2.2 concerning & holds
also for (R,

Proof. Let Ré(R be. Then R and all its subsets belong to R or to
In fact if a subset {r}of R belongs to @ » then R is a subset of{rjand

it is contained in GL) a contradiction. U

The condition given in Proposition 2.2 is not sufficient for the exi-

stence of a p.d. l - coloring of Kn 5
n
b

For example, let k=5 be and L = {1,2,3,4,5} 5

We can consider the collections of subsets of I (cf= {2345, 234, 235,
245, 345, 23, 45, 24, 35} , O ={12345, 1345, 1245, 1235, 1234, 25,
134, 34, 125} and 3 ={ ¢ , 1, 2, 3, 4, 5, 12, 13, 14, 15, 145, 123,
135, 142} .

For every H < i?[o?], I—{—e &C@J or to ? together with all its subsets.

However there does not exist a matrix whose lines correspond to the sets

of & and R s

THEOREM 2.4 - If A represents a p.d. X-coloring of K, then the matrix
n,n

b
of order 2n

A A

A (}LH)JH (2)

t .d. +1)-colori f K .
represents a p ( x )-coloring o 2n,2n
Proof. We denote type a) the rows r, and columns c, of (2) for 1 £ i <n

i i
and type b) for n+1 £ i £ 2n.
So two distinct lines of type a) determine the same distinct color sets of

the corresponding lines of A.
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CHROMATIC INDEX OF Ku,n

A similar situation is for the lines of type b) since they determine

the same color set of lines of A with the addition of the new color ;{4’4 -
Finally, a line of type a) and a line of type b) determine two distinct
color sets because the ( % +1)-color does not belong to both the

lines.D

For example the matrix

22121
34434
A1 = 11331
22444
123414
represents a 4-coloring of KS,S' The families considered in Prop. 2.2

are B ={123, 124, 134, 234, 14} , 01 ={12, 34, 13, 24, 1234}

. )
and ' ={¢, 1, 2, 3, 4, 23}.

We remark that the matrix formed by the first q rows and q columns

3 < q £5, determines a p.d. 4-coloring of Kq g
’

Moreover in

— -

>

S
SN, W =N =W
DR = 5NN N - N
WS WD = WS WS -
AW LUNDSDSWLWWN
I N S~ O SN
MU ULU WU =N =WwN
[ BNV, BV, BV, BV I R RO SN
VU LUV WS WS —
L UL DSDWWN
[V, BNV, BV, U, 0 Y S-S SN

{

the matrix formed with the first 5+q rows and columns, 1 £q <5,

re t .d. 5-colori f K :
represents a p coloring o i S
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: k-2 k-1
3. PROPOSITION 3.1 - If a matrix A of order n, 2 < n <2 » represents
a k-coloring of Kn o’ then at most only one line of A is monochromatic.
’
Proof. Suppose A contains two monochromatic lines. Then they are parallel,
for example like two rows.
Then all the columns contain two fixed colours. Apart from these two colors
they determine sets with k-2 colors.
k-2
Then at most they can be 2 .
. k-2 .. U

Since n > 2 » we have a contradiction.

k-2
The value n= 2 1s excluded. For example for k=4 we have ;{P(Kd &)= 4

b

and the matrix

1111
23 2%
A=l52133
2434

gives a p.d. 4-coloring of K4 4 with two monochromatic lines.
’

- . k-1 k-1
COROLLARY 3.2 - Let k > 3 be a positive integer. For 2 -[}%]<’n L2 s
h K = k+1.
we have Xlo( n,n)

Proof. If it were aé(K n) = k, in the matrix that represents a k-coloring
n,
k
of K the lines would be 2n > 2 - k.
n,n

By Proposition 3.1, in a k-coloring of K at least k-1 monochromatic
’

sets and the empty set ¢) are excluded from the lines of A.

. . k —
Then there is the relation 2n £ 2 - k; a contradiction. U

. k-2 k-1
THEOREM 3.3 - If the matrix A of order n, 2 < ng2 , represents a
W k-1
k-coloring of K, then, for [2:] <ng? , A can not contain a
s . 3

monochromatic line.
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CHROMATIC INDEX OF Ky,

Proof. Suppose A contains a monochromatic line, for example a row.
Then the complement of the color set of every column can not obviously
be contained in a row and neither in a column, because all the columns
contain the fixed color.

Hence the color sets are at least 3n. So we have 2k3 3n. [}

k
B i = 2
THEOREM 3.4 - Let k 2 3 be a positive integer and n =[5 ] We have that

..Xo (Kﬁ,ﬁ) = k and Kﬁ’ﬁ has a p.d. k-monocoloring.
Proof. Let L = {1, 2 ...,k} be. Determine three collections & , (R_,
and 3 of subsets of L of orders n,n and n+i, where 3n+i= 2k and i=1
or i=2 respectively for even or odd k, such that, for every H € % 3
H and all its subsets belong t<.) ’\:I' .

Consider as elements of '3' all the non-empty subsets of L - {1} =

{2, By @iy k} of increasing order 1, 2, ..., E;—‘- fo"bodd k and

k-2 P i3 ;
15 24 ses 5 —2' for even k with the addition of some arbitrary sets
k+1 k . -
of order > or E) respectively, so that the total number is n.
This is possible because the subsets of L - 5L1} , of order 7‘ 0, k-1, are
k-1 s s k-1
2 - 2and it is n g2 - 2.

The elements of @ are the complements of these sets of (} with
respect to L.

We add to '3’ the empty set for i=1, the empty set and its complement
for i=2.

The elements of 6?, are the remaining sets; we note that (R, contains the
monochromatic set {1} .

So, by construction, if H 6% , H and all its subsets belong to (3' .

Hence, if Ct'(e and R € QU , it is CAR # 0.

Let ¥ =ic1, B s cﬁ} be and R ={R1, R, Rﬁ}

Now we construct a matrix A = I:a. ] of order m whose lines corrcspond
1]

to the sets of % and (R, .
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We can select aij as an element of Ri N C. so that the i-th row
J

( j-th column ) exactly corresponds to Ri (c.), 1« i,j < n.

g . >
In fact, denoted Ri = {Xi,ag ) )55} » 8 £ k, by construction ((,
contains s sets H1, HZ’ v 5 13 Hs’ among the first k, such that XE
belongs to Ht’ 1<t <s.
When Cj = Ht’ we write aij= X(: - In this way every row r, contains all
the colors of Ri.

: : k . ;
Moreover, by construction GL contains at least [E-] sets and their

complements.

So, denoted Cj = i g,( ,gl, ,gf\r} » vV <k, O\, contains v sets
D5 D,y ...,D such that Suenu y 1 ¢u g
When C, = Ht’ an element of C,, for example g 1 coincides with Xt
J J
and we can suppose D1 = Ri.
In this case the element aij =25te Ri N Cj is already determined.
For gu # b/t or when Cj f Ht » in correspondence to the rows Ri = DW
we write a,, = s
ij u
So in every column cj, 1 £j < n,thére are all the colors contained in Cj.
Every other undetermined element ai. € R, AC. can be arbitrarily taked.
J 1 J
As the lines of this matrix correspond to the sets of @ and O:l),

and these sets are distinct by construction, Iy Prop. 2.1 the theorem

follows. U

k
.o 5 -~ [2
COROLLARY 3.5 - Let k 2 3 be a positive integer and n =[5 ] For every t,

k-2 = 3
2 <t £nm, %(K ) = k and K has a p.d. k-monocoloring.
YU, t t,t

Proof. It suffices take the first t sets of @ and 6{ considered in

Theorem 3.4 and construct the matrix A whose lines correspond to these

sets. The construction of A is the same as that followed in Theorem 3.4. ﬂ
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4. Throughout this section we denote L = {1, 2y wess k} and suppose k> 3.

PROPOSITION 4.1 - Let & ={c1, c,,

...,CnS be, . and {3"
Pqs " k
three families of subsets of L, wh ith (R, and f} of orders n, 2 - 2n

k
2y, k-1 . i = .
and [_5]‘“ {2 , such that if H & (6 , then H and all its subsets

belong to % or to ,} .

v
Then ,.U G I = k.
L=¢g

k-2 k-
Proof. As n > 2 and the sets on k-2 elements are 2 2, we have

n m
uvec, l) k-1 . We prove that it can not be | Vec, | = k-1
sy L7 =1 1 -

In fact, suppose that an element, for example 1, does not belong to .U c. .
= - (=0 b
Then, if H ¢ "¢ , H contains 1; hence H belongs to 'j‘ .

So the order of r} is greater than n and we obtain the impossible

relation 2k=2n+|~:” > 3n>2k. D

PROPOSITION 4.2 — Let (6 ” @, and ’} be three families of
k

distinct subsets of L, of orders n, n, 2 -2n respectively, where
k
" k-1 . » - =
‘_—23-J( n <2 , such that if H & (6 , then H and all its subsets belong

to (6 or to {3” .

Then every element of L belongs to at least two distinct sets of (6 .

Proof. By Prop. 4.1 every element of L belongs to at least one sct of %
Suppose that the element 1 belongs to only one set, for example Cl°
Then, if H € and H # C1, H contains 1; so H belongs to '3" .

There are two cases:

1) 51 ¢ {Cz’ e, cn} .

Then ’3' contains at least the n-1 sets Ci’ 2 ¢i ¢ n, and the empty set ¢ g
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So ‘,\ﬂ'lz n and we have the impossible relation

2k=2n+]’}‘|33n72k. (4)

c efc, ... .
2) C’ e{ 9 ’Cn_"]
Let 02 = E' be. If n is odd, there is a set R €J¢ such that Eé?r .

so F contains the n-2 sets Ei’ 3<i<n, § and E; then I?l > n
and (4) holds again.
Let n be even. Remark that 54‘% . So, if g € '5( 5 /} contains

the n-2 sets Ei’ 3£id¢n, ¢ and ¢ and we have the preceding situation.

If ¢¢ (} , then pe R . So there exists a set R ¢ R , such that

ﬁé’} and again '(3’,7, n. D

PROPOSITION 4.3 - Let (6 , R and ’}I— be three families of

o : k .
distinct subsets of L, of orders n, n, 2 -2n respectively and

k
2 : k-1 . = R
[3 ]( n {2 , such that) if H ¢ ((f ) then H and all its subsets belong to

(Cort:o'y' .

Then there exists a family of k sets of G that has a transversal.

Proof. Let r be the maximum number of sets of <6 with a transversal.
Scch
Let [a »y @, «..,a ] be)a transversal.
1 2 r
It can not be r < k-2 . In fact/ in this case jall the other sets of %
would have elements belonging to ia1, az, ...,arﬁ » So their number
k-

r . x . §
n-r satisfies the relation n-r ¢ 2 < 2 . But this is impossible
k

because n> [%J and r § k-2,
Moreover it cannot be r=k-1.

In fact, let H1, HZ’ 558 5 Hk—1 be the sets with the transversal

[a1, Ay eees ak_1] and DI’ D2, ""Dn—kH the remaining sets.

Then the elements of Di’ 1 <14 n-k+t, belong to L' ={,ai’32"”’ak—13'

Let a be the color that does not belong to L'.
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By Prop. 4.2, there exist at least two sets, for example H1 and Hz, that
contain a, apart from a and a, respectively.

Moreover there exists a set D,, j QU,n—kH], that contains a1 or a2.
J

Mkt

On the contrary, it holds lu Di|= k-3 ; but this is impossible because
L .

; k-
the number of sets Di’ n-k+1, is greater than 2 3.

Suppose that D, contains a1.
J

Then, the sets H1, HZ’ v 203 H_k—1’ Dj have the transversal [ak,az,...,ak_i,a’]

and r=k. D

The preceding considerations about the elements of (g hold also for
the elements of @\, .

In fact we have the following

Corollary 4.4 - Let (6 " 61 = iR“ RZ’ ceey Rn} and '3' three

families of distinct subsets of L, of orders m, n, 2 - 2n respectively,

k
2 k-1 ) A — .
where [—3—] L'n L2 , such that if H € € , then H and all its subsets
belong to € or to '3
Then the following statements hold:
n
o JUR|=x
=y 1
2) every element of L belongs to at least two distinct sets of R ,

3) there exists a family of k sets of 6‘{, that has a transversal.

The proof follows immediately from Remark 2.3 and Prop. 4..1, 4.2 and

4.3. (]

k
2 k-1 : .
THEOREM 4.5 — A p.d. k-coloring of Kn o’ for [—3-_] <{mng2 exists iff

there exists a partition of the subsets of L on three families of distinct
. k :
sets ¢ M and ,3“ , of orders n, n, 2 - 2n, such that , if H < %

then H and all its subsets belong to G or to (3'
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Proof. The condition is necessary by Prop. 2.2.

We prove that it is also sufficient.

Let @ ={c1, c, ...,cn} be and R ={R1, L ...,an ’

We construct a matrix A =[aijJ of order n whose lines correspond to the

sets of L@ and (R, S

By Prop. 4.3 (Corollary 4.4) (ﬁ ((P\J) contains a family of k sets

with a transversal.

Then, denoted Ri = { K,.Hl’"ie“} » S &k, % contains s .sets H‘ 5 Hz,...,
<t ¢ s.

Hs such that deé Ht’ 1 €t ¢ s

Moreover, denoted Cj = {Ki 5.2- T EE SV} s v £k, 6}, contains v sets

D, D, ...,D such that S_éD,iéu{v.

1 2 v w u

The procedure for the constr.uction of A is the same as that followed in

Theorem 3.5; in this case, by Theorem 3.3 A does not contain a monochromatic

line. U
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