Publ. I.R.M.A. Strasbourg, 1988, 341/S-16 Actes 16^e Séminaire Lotharingien, p. 147-149

THE TUTTE-GROUP OF A MATROID

BY

WALTER WENZEL

With the intent to construct an algebraic theory of matroids A. Dress introduced the concept of the Tutte-group. In particular this group enables an algebraic approach to those matroids which are not representable over any field. Let M denote a matroid defined on the finite set E of rank n with rank func-

tion ρ , and let H denote the set of its hyperplanes.

Definition of the Tutte-group:

Let \mathbb{F}_{M} denote the free abelian group generated by the symbols ε and $\mathbb{X}_{H,a}$ for $H \in \mathbb{H}$, $a \in E \setminus H$, and let \mathbb{K}_{M} denote the subgroup generated by ε^{2} and all elements of the form

$$\epsilon \cdot X_{H_{1},a_{2}} \cdot X_{H_{1},a_{3}}^{-1} \cdot X_{H_{2},a_{3}} \cdot X_{H_{2},a_{1}}^{-1} \cdot X_{H_{3},a_{1}} \cdot X_{H_{3},a_{2}}^{-1}$$

with $H_1, H_2, H_3 \in H$, $L := H_1 \cap H_2 \cap H_3 = H_1 \cap H_j$ for $i \neq j$, $\rho(L) = n-2$ and $a_i \in H_i \setminus L$ for $i \in \{1, 2, 3\}$.

Then the $\underline{\text{Tutte-group}}\ \mathbb{I\!I}_{M}$ of M is defined by

$$\mathbb{I}_{M} := \mathbb{I}_{M} / \mathbb{K}_{M} .$$

Let T denote the image of X and ε_{M} the image of ε in T respectively. H,a Proposition 1:

- i) Assume M is representable over a field K with hyperplane functions $f_H : E \to K$. Then a well-defined homomorphism $\psi : \mathbb{T}_M \to K^*$ is given by $\psi(\varepsilon_M) := -1; \ \psi(\mathbb{T}_{H,a}) := f_H(a)$ for $H \in \mathbb{H}, a \in E \setminus \mathbb{H}$.
- ii) Assume M is binary.

W. WENZEL

If K is a field and there exists a homomorphism $\psi: \mathbb{T}_{M} \to K^{*}$ with $\psi(\varepsilon_{M}) = -1$, then M is representable over K, and a system of hyperplane functions $(f_{H})_{H \in H}$ is given by

 $f_{H}(a) := \begin{cases} 0 & \text{for } a \in H \\ \psi(T_{H,a}) & \text{for } a \notin H. \end{cases}$

Definition of the truncated Tutte-group:

Let $\mathbb{H}_{\underline{M}}^{}$ denote the subgroup of $\mathbb{T}_{\underline{M}}^{}$ generated by all elements of the form

$${}^{\varepsilon_{M} \circ T_{H_{1},a} \circ T_{H_{1},b} \circ T_{H_{2},b} \circ T_{H_{2},a}}$$

with $H_1, H_2 \in H$, $\rho(H_1 \cap H_2) = n-2$, $a, b \in E \setminus (H_1 \cup H_2)$, $\rho((H_1 \cap H_2) \cup \{a, b\}) = n$. Then $\overline{\mathbb{T}}_M := \mathbb{T}_M / \mathbb{H}_M$

is called the truncated Tutte-group of M. For $T \in T_M$ let \overline{T} denote its image in \overline{T}_M . <u>Remarks:</u> i) If M is binary, then $T_M = \overline{T}_M$.

ii) Let M denote the projective plane over the field \mathbb{F}_3 . Then also $\mathbb{T}_M = \overline{\mathbb{T}}_M$ Proposition 2:

Assume $\psi: \mathbb{T}_{M} \to \mathbb{F}_{3}^{*}$ is a homomorphism satisfying $\psi(\epsilon_{M}) = -1$. Then the following two statements are equivalent:

i) M is representable over \mathbb{F}_3 and a system of hyperplane functions is given by

$$f_{H}(a) := \begin{cases} 0 & \text{for } a \in H \\ \psi(T_{H,a}) & \text{for } a \notin H \end{cases}$$

ii) ψ induces a homomorphism $\overline{\psi}: \overline{\mathbb{T}}_{M} \to \mathbb{F}_{3}^{*}$, i.e. $\mathbb{H}_{M} \subseteq \ker \psi$.

By applying Tutte's homotopy theory one proves

Proposition 3:

Let z denote the number of connected components of M and put r = #(E) - z + #(H). Then

$$\overline{\mathbb{T}}_{M} \cong \langle \overline{\varepsilon_{M}} \rangle \times \mathbb{Z}^{r} .$$

Furthermore the following four statements are equivalent.

i)
$$\overline{\epsilon_{M}} \notin \overline{\mathbb{T}}_{M}^{2} := \{\overline{T}^{2} \mid T \in \mathbb{T}_{M}^{3}\},\$$

iii) $\overline{\epsilon_{M}} \neq 1,$
iy) The Fapo-Matrid is a second

iv) The Fano-Matroid, its dual, $U_{2,5}$ and $U_{3,5}$ are no minors of M.

THE TUTTE-GROUP OF A MATROID

Here $U_{k,m}$ denotes the uniform matroid of rank k with m elements; this means every subset containing k elements is a base.

Corollary:

If M is binary, then

$$\mathbb{T}_{M} \cong \langle \varepsilon_{M} \rangle \times \mathbb{Z}^{r} \cong \begin{cases} (\mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}^{r} & \text{if the Fano-Matroid and its} \\ & \text{dual are no minors of } M \\ \mathbb{Z}^{r} & \text{else }. \end{cases}$$

In general the structure of the non-truncated Tutte-group may be more complicated. In particular there exist infinitely many minimal matroids M with $\epsilon_{M} \in \mathbb{T}_{M}^{2} \setminus \{1\}$ and also infinitely many minimal matroids M satisfying $\epsilon_{M} = 1$.

Literature:

- [1] A. DRESS: Über einige Definitionen und Sätze, die als Grundlage beim Aufbau einer arithmetischen Theorie von Matroiden gebraucht werden können, Manuskript, Bielefeld 1982
- [2] A. DRESS; W. WENZEL: On certain algebraic invariants of matroids, preprint, Bielefeld 1987
- [3] W.T. TUTTE: Lectures on matroids, National Bureau of Standards Journal of research (1965), S. 1-47
- [4] D.J.A. WELSH: Matroid Theory, Academic Press (1976)
- [5] W. WENZEL: Über die Struktur der Tutte-Gruppe von Matroiden, Dissertation, Bielefeld 1986

Walter WENZEL, Fachbereich Mathematik, Universität Bielefeld, D-Bielefeld.

