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A COMBINATORIAL MODEL FOR HAHN POLYNOMIALS

BY

JACQUES LABELLE AND YEONG NAN YEH

R6sum6. - Nous decrivons des modeles combinatoires pour les polynomes de Hahn,
Krawtchouk, Jacobi, Meixner, Laguerre et Charlier, et demontrons de fa^on combinatoire les
formules limite reliant ses families de polynomes orthogonaux.

Abstract. - We describe combinatorial models for Hahn, Krawtchouk, Jacobi, Meixner,
Laguerre and Charlier polynomials , and prove combinatorially the limit fonnulas involving these
families of orthogonal polynomials.

Introduction

Hahn polynomials were first studied in great details by S. Karlin and J.L.
McGregor [12] and used in their analysis of birth and death processes. They also
play an important role, along with other families of orthogonal polynomials, in
representation theory ([1], [13], [20], [25]).

As pointed out by D. Foata [6], there is a combinatorial model for Hahn
polynomials which contains the combinatorics of the other families appearing
below them in R. Askey's chart ([2] , [16]) of hypergeometric orthogonal
polynomials. All of these models are consistent with the arrows (limit formulas)
between them. We would like to describe these facts. Chapter I will describe the

models (first the configurations and then their weights) and chapter II the limit
formulas. Roughly speaking the models are described by the following diagram
where A-)-> B means an injective map from A to A+B and (^) a

permutation :
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Hahn

Chapter!. The models

Given a 2-species T (also called bi-species or species on two sorts of points
(see [11], [14], [15] or [26]); i. e. for every pair (A, B) of disjoint finite sets, T[A, B] is
some set of combinatorial configurations) we define the associated 1 -species T by :

T [S] ={(A, B, t) I AuB = S, AnB = ()> and t e T[A, B]}.

We now introduce several 2-species:

(Charlier configurations) C[A, B] = S[A] x {Ig}
where S[A] is the set of permutations of A;
(Laguerre configurations)

(Meixner configurations)

(Krawtchouk configurations)

(Jacobi configurations)

(Hahn configurations)

L[A, B] = {f : A-^ A+B I f is injective};
M[A, B] = L[A, B] x S[B] ;
K[A, B] = S[A] x S[B] ;
P[A, B] = L[A, B]x L[B, A];
Q[A, B] = L[A, B] x S[A] x L[B, A] x S[B]

= M[A, B] x M[B, A] = P[A, B] x K[A, B]

Note that if (f, a, g, T) is a Hahn configuration on (A, B) then (0, 13) (resp. f,
(f, T), (a, T), (f, g)) is a Charlier (resp. Laguerre, Meixner, Krawtchouk, Jacobi)
configuration on (A, B).

Let C, L, M, K, P and 0 be the associated species. We will make
these into weighted species with weights in the ring <Q[a, p, a'1, p, c, x]
(where a, p, a, p, c are the various parameters of the orthogonal families) by giving
every configuration a weight (or valuation) in that ring. The nth-polynomial (or some
renormalization of it) will be the total weights of the corresponding configurations on
any finite set S with |S| = n (S will usually be [n] = {1, 2,..., n}). For a weighted set
X, |X[ denotes the total weight of its elements.
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§1. CHARLIER polynomials , Cn(a)(x) , are defined by either:

(1. 1) SCW(«)^ ..t0-^)x
n sn

n ^'nT

d.2) c'>., Fn[-n_x:4]° 2 (£)(s)k(-x)k
where (a)m, m > 0, denotes the rising factorial, i. e. (a)m+i=(a)m-(a+m)'(a)o = 1-
and rFg will denote the generalized hypergeometric series

j-a^a2-..., ar -] ̂  (ai)m (a2)m-(ar)mxm
r-sLb^b^... bs'"J ^(bi)^(b^... (b, )^m!

Given (cr, 13) e C[A, B], we set
(1.3) W-) (CT, Ig) = (- x)cyc (CT) (a'1)IAI where a has eye (a) cycles .

Proposition 1 We have 1C [n] I = Cn(a)(x).
Proof. The formula follows easily from either (1. 1) or (1. 2).

§2. LAGUERRE polynomials , Ln(a)(x), are defined by either:

(2. 1) S L(a)(x)tn = (1-t)-1-aexp(-xt(1-t)-1)
n^O n

(2.2) n!Ly(x). (a<l)^F, [,:,;x]. Z^) (.. 1*j), (-x),
i+j=n

Given f e L[A, B], we set

(2.3) W2(f) = (1 +a)cyc 0 (- x)IBI where eye (f) is the number of cycles (in A)
of the injective map f and |B| is also the number of "chains" of f.

Lemma 1 We have | L[A, B] | = (1+ a+|B|)[ ̂  | (- x)IAI.
Proof. This is a now classical combinatorial temma (see [9] lemma (2. 1); [6] lemma
(3. 1); [8] lemma 3) which we will use again and again. See also [17] for a short
proof using 2-species.

Proposition 2 We have \L [n] | = n! L n(a)(x).

§3. JACOBI polynomials, P^"'P)(x) are defined by either:

-n, n+oc+p+1 ^ 1-x
2'1 L oc+1 ' ~2~

(3. 2) n!P(;'p)(x) = ^_(?) (-1. j), (^1^ ()^)i(x^y

(a, p).. (a+1)n(3, 1) p^l3^) = ^

l+j=n
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Given (f, g) e P[A, B], we set

(3. 3) w3(>. g). (..1)c>":f(p<1)c>'<:9(^l)IAI(^. )IB
Proposition 3 We have ]P[n]| = n! . Pn(a. P)(x).
Proof. See [8] or [19].

§4. MEIXNER polynomials , mp (x; p, c), are defined by either

^! - ^A\x /-i-h\-x-P(4. 1) ^ m^(x;p, c) ̂ . = (1-^)A (1-t)-

(4.2) m^(x;p, c) = (p)^ 2l:i['n'px;1-c-1]
*l), (-x),(S (n)(P^), (-X). (C-1-1)J

i+j = n

Given (f, T) e M[A, B], we set
(4.3) W4 (f, T) = pcyc (f) (- x)cvc (^) (c-1-i )IBI

Proposition 4 We have | M [n] | = m? (x; p, c).
Proof. Seep].

Remark. Note that we can obtain another combinatorial model, ~M , for Meixner

polynomials by taking : M[A, B] = S[A] x S[B] and W4 (a, T) = (- x)CYC (CT) (x+p)CYC
(T) (c'1)IAI ; this follows from (4. 1) which gives :

^n(x; P, c) = ^ (n)(-x), (x+P)j(c-1)i .
i+j= n

§5. KRAWTCHOUK polynomials , Kn(x; p, N) ,0<n<N , are defined by:

(5.1) K^(X;p, N) = 2Fl['nNX;p] where 0<P<1
(5. 2) (-1)n(-N), K, (x;p, N)= S (?)(-^, (N-"-1), (^)i

i+j= n

But in [23] one tinds (1+ qt)x (1 - pt)N-x, where p+q=1, as a generating function for
Krawtchouk polynomials. More precisely we have:

(5. 3) S (-N)n pn Kn(x; p, N) tn/n! = (1 + qt)x (1 - pt)N-x
n>0

This shows that for (a, i) e K[A, B] by setting :

(5.4) W5 (a,T.) = (-x)cyc(°) (x - N)cyc(T) (-q/p) |A|
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we obtain a model, K , for Krawtchouk polynomials. More precisely:

Proposition 5 We have | /< [n] | = (-N)n Kn(x; p, N).

Given (CT, T) e K[A, B], if we rather set :

(5. 5) W5 (CT, T) = (N-|A|-1 B| + 1)cyc (a) (- x)cyc (T) (1/p)l B I

Then using (5. 2), we get a second model, K , for Krawtchouk polynomials.
More precisely:

Proposition 6 We have | 7< [n] | = (- 1)n (- N)n Kn (x; p, N).

Remark. By writing

(1+qt)x(1-pt)N-x 1 1
-N

h. t(1+qt)-1J ^1-Pt

F. Bergeron (in [3]) defined the first combinatorial model for Krawtchouk
polynomials as "assemblies of blue and red octopuses".

Remark There is another model (a 2-species), for N! Kn(x; p, N), where this time n
and N are not mere parameters but rather "numbers of points" in the
configuration. Let K be the 2-species defined by :

K[A, B] =((S, (7)| S^A, aeS[A+B] and o(S)=s}

^(S, o)= (-x)cy'c(T1(^)lsl where ̂ = ̂ |s'ff2 = CT|A. B-S

Proposition 7 We have |K[A, B] | = N! Kn(x; p, N) if |A|=n, | B| = N-n.
Proof. This follows immediately from the formula (see fig.2):

N!Kn(x;p, N) = ^ ( n) (N-k)! (-x)J^)k .
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§6. HAHN polynomiats , Qn(x; a, (3, N) , 0<n<N , are defined by :

(6. 1) Qn(X;a, p, N) = ^F,3'2

-n, n+cx+p +1, -x

cx+1, -N
; 1

We also have the following expression ([10 page 390 and [6] page 1550)

(6. 2) (a+1)^(-N)Qn(x;a, p, N)

= I (';)(^+1^), (P^^), (x-N)^-x)^(-l)J
1+j=n

Given (f, o, g, T) e Q[A, B], we set

(6.3) wg(f, a, g, T)=(a+1)CYC (f )(P+1)cyc (9)(x-N)Cyc (cr)(-x)Cyc (T)(. I)IB|

Proposition 8 We have |0[n]| = (a+1)n (-N)n Qn(x; a, p, N)
Remark. There is another combinatorial model, for (a+1)n N! Qp(x; a, p, N) this time,
based on the formula :

(a. 1)^N!Qn(x;^p, N) = S (") (N-I)! («. 1. i)^(a+p+n+1)^-x)^.
i+j=n

Let Q be the two species defined by (see fig.3):

Q[A, B] = {(T, f, CTI , 02, T) | Tc A, fe L[A-T, T], a^. a^e S[T], T e S[A+B-T]}
.

cycori - - ... . cyc(T-
Wg(T, f. ^, ^, T) = (o+1)cycl(-x)''/''"1(o<+p. |A|. 1)"/'"'2

Proposition 9 We have | Q[A, B] | = (a+1)p N! Qn(x; a, p, N) where |A| = n and
|B| = N - n.

Chapter II. The limits.

We would like to prove combinatorially the following limit formulas:

Theorem I We have

(^-p)/
(Q. -P.) (a+1)^ Jim Qn(Nx;ot, p, N) = n! P^"^(1-2x)

(Q.-M.) (|3)^ ̂ i^Qn(x; P-1, YN, N) = m^(x; P, c) where Y = c-1-1
(Q. -K. ) Hm Qn(x;pt, qt:, N) = K^(x;p, N) where p+q=1 .

(P.. L, ̂ -^-2-f) . ^
{M-C) ̂ . w^'f'^ . cww
(M. -L.) lim m^ (^;p, c)=n! L^ '(x)
(K-c-)NI^Kn^;S'N) = cnW-
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Remark. These are all proved using the following technique. We consider a model for
the left hand side (before taking the limit); when we do take the limit, most
configurations are killed (i. e. their weight tends to zero), the only surviving
configurations (with their limiting weights) form precisely our model for the right hand
side. This method, due to D. Foata, was tirst used in [7] to prove (M. -L.)
combinatorially. In other words these limits correspond to the seven arrows (above
Hermite) in Figure 1. These arrows are obvious forgetful epimorphisms for which in
the inverse image above any given configuration everything is killed except
precisely one (degenerate) configuration with the right limiting weight.

Proof of fQ. -P. t. We will prove

N^(^)"(-N)n(a+1)"Q"(N)<;"-p-N) n!P(^p)(1-2x)

which is equivalent to (Q. -P. ) since lim^ _, " (-N)n (-N)-n = 1. By Prop. 8, Hahn
configurations form a model for (a+1)n (-N)n Qn(Nx; a, P, N); we put an additional
multiplicative weight of -1/N on each of the n points of the configuration, i. e. the
weight of the Hahn configuration (f, o, g, x} e Q[A, B] is now :

(oc.1)^r(P. 1)^9(Nx. N)^ff(-Nx)^T(. 1)IBI(^)IAl(-^)IBI
When N -^°°, this configuration dies unless eye (a) = | A| and cyc(T)= | B | (i. e.
o = IA, T = IB) in which case (f- 0- 9. ̂  = (f> 1 A., 9- 1B) is, rea"y ̂ ,Jac^;
configuration. Moreover the value of the limit is (a+1)cyc(f )(p+1)cyc(9) (1-x)IAI (-x)IBI
which is precisely W3(f, g) (with x replaced by (1-2x)).
Proof of Q. -M. Again we use lim^ ^ <" (-N)n (-N)-n =1. By Prop. 8, Hahn
configurations form a model for (p)n (-N)n Qn(x; P-1^7N, N) if we set wg(f. CT, g, T) =
pcyc (f )(yN+i)Cyc (g) (x-N)Cyc (o) ̂  eye (T) (. I)IB| Again if we put an additional
multiplicative weight of -1/N on each of the n points and let N -> °°, the only
surviving Hahn configurations are those with g = IB and CT = 1A> Le- Meixner
configurations of weight W4(f, T) = pcyc(f) (-x)cyc(T)ylBI. These add up to mp(x; p, c)
by Prop. 4.
Proof of Q. -K. By Prop. 8, setting a = pt and P = (1-p)t = qt, we have a
combinatorial model for : (pt+1)n (-N)n Qn(x; pt, qt, N). Put an additional
multiplicative weight of (pt)-1 on each of the n points. The weight of the Hahn
configuration (f, a, g, T) e Q[A, B] is now :

(p>.D^r w^f^^^y^^ (^)IA i (-^)i a i.
When t ^°°, the only surviving configurations are those with cyc(f) = |A| and cyc(g)
= |B|, i.e. of the form (1^, CT, 1 g, ̂  with limiting weight

(-x)c>'CCT(-N. X)^CT(-4)IAI
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These are Krawtchouk configurations . Since tim,^ (pt+1)n (pt)-n = 1, we have
limt^ (-N)n Qn(x; pt, qt, N) = (-N)n Kn(x; p, N) by prop. 5.
Prppf pf (P. -L. ) By Prop. 3, Jacobi configurations with weight

w3(A-B, f, g) = (a+1)c^f(p+1)cyc9(l. ^)lA|^-x^B|
(cx. +P)

form a model for n-2iy
p^ ^ p-

n. 22<^
rn r-^-j

We have limp^W3(A, B, f, g) = 0 unless eye g = |B|, i. e. g = IB, in which case
limp-^ooW3 (A, B, f, 1g) = (a+1)Cyc (f) (. x)IB| which is the weight W2(f) of this
Laguerre configuration.

PrpQf of (M. -C. ) We will prove limp_^ p-n Mn(x; p, a/p) = Cn(a)(x)
which, since limp^^ (p)^ p-n = 1, is equivalent to (M. -C. ). If we put an additional
multiplicative weight of 1/p on each points of the Meixner configurations on [n]; the
weight of (A, B, f, T) becomes p-n W4(A, B, f, x) = p-n pcyc (f )(-x)Cyc (T) (p/a-i)IB|
When p-^°° this tends to zero unless eye (f)+ |B| = n (i. e. f = 1^ and Te S[B])
and (A, B, 1^, T) is reallly a Charlier configuration (B, T) of weight

(-x)cyc (T )(i/a)IB| , ̂ ^ p. n ̂ ^ g^ ̂ ^ ̂  - Q. E.D

Using the same technique, (M. -L. ) is proved in [7] and (K. -C. ) is proved in [3]
(with a different model (see remark below Prop. 6) for Krawtchouk polynomials). We
can also prove combinatorially :

Jjm ^-np(a'P^(x'^'~ c< ^n (x) =n ^=^
Conclusion

^(^)n
v-2~

At the gF.) level in Askey's chart there is also the Meixner-Pollaczek
polynomials, pnx(x;(p) , for which several combinatorial models are described in [18]
and used to prove limit formulas relating them to Laguerre and Hermite

polynomials.
J-PC

.

(a)
f I = Lv:lim p^

f->0

(1+cx.)(1-cosip)-x

2sinip n'W

n ! lim An/2 PA
A->~ n

xA""-Acos<p
sinip = H, (x).

These limit formulas are proved using a different technique which also works (in [17])
to give a combinatorial proof of the so called "Italian limit formula":

.
n _,,,.. ^. (P2/21

2nr
p-><>n["pto. p-"Ln (^-^-"nW
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