
Publ. I. R. M. A. Strasbourg, 1987, 341/S-16
Actes 16 Seminaire Lotharingien, p. 63-72

OBTAINING GENERATING FUNCTIONS FROM

ORDERED-PARTITION RECURRENCE FORMULAS

BY

DANIEL I. A. COHEN AND VICTOR S. MILLER

RESUME. - En resolvant deux problemes d'enumeration en theorie chromatique
des graphes, on a decouvert que les formules de recurrence obtenues devaient se sommer
sur des ensembles de partitions ordonnees. Utilisant une somme infinie, ces formules
fournissent des fonctions generatrices, puis des expressions closes. Cette technique
troyve son illustration dans Ie comptage du nombre de fa(;ons de placer des diagonales
disjomtes dans un polygone et aussidans Ie probleme de comptage des coloriages
disjoints d'un cycle. Les suites de nombres obtenues ne sont pas sansrappelerd'autres
suites deja etudiees par Carlitz et Motzkin.

ABSTRACT- In solving two enumeration problems in chromatic graph theory it
was discovered that the natural recurrence formulas which developed included summing
over ordered-partitions. Using an infinite sum these formulas can be turned into
generating functions that lead to closed form expressions. This technique is illustrated
on the problem of counting how many ways a set of some non-intersecting diagonals
can, be Placed in an n-gon and on the problem of counting non .crossing colorings of a
cycle. These sequences are reminiscent of some work of Carlitz and Motzkin.

1. Non-Intersectlng Diagonals. - In the investigation of certain
structures in one proof of the Four Color Theorem [3] the following
question arises : In how many ways can arbitrarily many non-intersecting
diagonals be placed in a labeled n-gon? We wish to allow also sets of
diagonals which do not triangulate a labeled n-gon in contradistinction to
the famous problem of Euler solved by the Catalan numbers.

Let An be the number of such diagonalizations. A^ and Ag are shown
in diagram 1. Note that we include the diagonalization using no diagonals.
We also start with As = 1.

We will find it useful to define another sequence. Let 5n_2 be the
number of ways of diagonalizing the labeled n-gon with non-intersecting
diagonals in which no diagonal goes through vertex 1. In a large n-gon
we may imagine a diagonal drawn from vertex 2 to vertex n forming an
(n - l)-gon. This (n - l)-gon can be properly diagonalized in An-i ways.
When extended back to the n-gon we can include the diagonal 2n or not.
So

Bn-2 = 2A^_i for n ^ 4.

63



D.I.A. COHEN AND V.S. MILLER

5 variants of \/ / 5 variants of

Diagram 1

So
Bn_2 = 2A^_i for n > 4.

Obviously Bi = 1 should be treated separately, but B^
B4 = 22.

= 2, Bs = 6,

2. The Recurrence Formula. - Let us consider the set of vertices
connected to 1 by the diagonals in some diagonalization. Let these vertices
be2<ai < ... < am <n. Exactly (m + 1) regions are formed by these
diagonals. The first region in the ai-gon with vertices l, 2,..., ai. The
second is the (cii - 03 + 2)-gon with vertices 1, ai, ai + 1,... , 03, and so
forth, until the last region, which is an (n - a^ + 2)-gon. The number of
ways these regions can be filled in with non-intersection diagonals (none
of which goes through vertex 1) is B^^B^^B^^-. -Bn_^. The
diagonalizations of An we are trying to enumerate fit into disjoint classes
determined by which diagonals go through vertex 1.

In fact we may write

" 
= ^^-^"1-2-80 2-01 . . . Bn-a^

summed over all sequences 2<ai <a^ < ... <am < n. The subscripts
form every possible set of partitions of n-2. Using this and the fact that
An = (l/2)Bn-i we may write

^-i= ^ B^B^. -. B^.
a. i+---+am=n-2

The summation extends over every ordering of each partition. For example

^^4 = 5s + 5iB2 + 52J?i + -BiBiBi.

The second term on the right counts the further diagonalisations of (a)
(referring to diagram 2) while the third term counts the extensions of (b).
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3 3

(a) (b)
Diagram 2

formula applies is n = 3. We must still initialize the B's with B^ = 1,
Bz = 2, Bs = 6.

3. The Generating Function. - Define /(a;) = B^x + B^x2 +
Bsx3 +... Clearly, the coefficient of xP in ̂ ^^ /(^)z is the sum of all
Ba^Baz . . . Ba^ where the subscripts add up to p, i. e. (l/2)5p+i. Hence

i=l

Therefore,

which gives

^f(xY=B, x+-B,x2+-B, x3+...

- ^x + ^Bsx2 +-B^x3+..
={f-x)/(2x}.

(l-W-x)=2xf,

/=-j+j±jv /^2-6a-+l.

We shall see in the next section that we must use the "-" sign in front
of the square root. The functional equation also provides us with the
additional recurrence formula

Bn = Bn-i + (Bi5^_i + B^Bn-2 +... + B»_i5i),

which is reminiscent of the formula for Catalan Numbers.

4. The Non-Recurslve Expression. - First write

(l+(^-6, ))I/2=l+^^(-l)-i(2^2)^(^-6^.
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Noting that the coefficient of xn~k in {x - 6)fc is (^^)(-6)2fc-n we see
that for n > 3 the coefficient of a;" in f(x} is then

n>fc>2

\ \ f2k-2\f k
2nk\k-l J\7Z-k^ (-l)n+^^(^z)(, 'j3 2fc-n

^ (_1^.:
}2fe (2fc-2)!

'n>fe./2' ^ 6" (^-l)'(2fc-n)'(n-&)!'

From this we can calculate

Bs = 90, Be = 394, ST = 1086, Bg = 8558,

A@ = 45, A? = 197, As = 903, Ag = 4279.

The sequence Bn is listed in [5] as counting "lattice paths with diagonal
steps of, of type I."

5. The Relevance to Graph Coloring. - Let us consider a graph
whose outer perimeter is an n-gon. If we consider any edge of the graph
whose vereices do not lie on the outer cycle we can form two new graphs,
one by deleting this edge and another by contracting it. A celebrated
method of Birkhoff [1] shows how this deletion and contraction can be
used to relate the number of ways of A-coloring one graph to the ways of
A-coloring two simple graphs. In the approach to the four Color Theorem.
in [3] we decompose all graphs in this way while preserving the outer cycle.
Thus, every graph can be represented as a linear combination of the forms
enumerated above.

6. Non-Crossing Colorings of a Cycle. - In our work on the Four
Color Problem [3], the following problem also arises : in how many ways
can the n vertices of a labeled cycle be partitioned into arbitrarily many
sets such that :

(i) no adjacent pair of vertices is in the same set, and
(ii) the sets do not cross; by which we mean that if a and b are in

one set and c and d are in another, then the diagonals ab and cd do not
intersect.

We will call a partition which satisfies (i) and (li) a non-crossing coloring
because of the analogy to restrictions on adjacent vertices. This time let
An be the number of non-crossing colorings for the n-cycle ^1^2 ... Vn
(diagrams 3, 4, and 5).

Notice that; the adjective "labeled" when applied to the cycle means
that we shall consider the last two examples in diagram 4 (where A^ = 3)
to be distinct.
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As =1 A4 =3

5

diagram 3
2.

As =6

^ and five variants of )

diagram 5

diagram 4
2-

5

The sequence continues : AQ = 15, AT = 36, As = 91, AQ == 232,
Aio = 603,.. . We note that the sequence An is not contained in [5]. We
can convert these diagrams into sequences of numbers as follows :

(1) Label every vertex which is in a part by itself with the number 0.
(2) Starting at v-i and proceeding in order, label all the vertices in each

new partition part with the next lowest unused integer. That is, the first
unlabeled vertex (maybe Vi) will be labeled 1, and so will all of the other
vertices in its partition set. The next unlabeled veertex (maybe ui) must
be labeled 2, and so will of the others in its set, and so on, until all vertices
are numbered. We then convert the non-crossing colorings into sequences
by writing down the labels for v^ through Vn, in order.

These sequences have the following properties. They are sequences of n
terms of nombers 0 through m (for some m < n) in which :

(i) every non-zero number appears more than once;
(ii) the first occurrence of i is before the first occurrence of j ifi < j;
(iii) if i and j are non-zero numbers, i < j, then no two j's have an i

between them;
(iv) the sequences cannot begin and end with a 1.

Every n-sequence obeying these four conditions corresponds to a non-
crossing coloring. For example, the following sequences are acceptable :

0010202010340431; 1012023450054030.
The sequence 01012021 corresponds to diagram 6.

In order to calculate the A's we will make use of another sequence of
integers Bi, B2, Bs,... where Bn is the number of sequences satisfying

-3
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^ -J/^

{Vl} {v2, V^, Vs} {Vs}
{u5, u?} {ve} ^

^T-^/6
diagram 6

condHions (i), (ii), and (iii) above, but not necessarily (iv). That means
the B's count sequences which can begin and end with Is.

{0}
{00}
{000, 101}
{0000, 0101, 1001, 1010}
{00000, 00101, 01001, 01010, 10001, 10010, 10100, 10101, 12021}

5i=l
^2 = 1
Ba =2
?4 =4
5s =9
Bg = 21.

7. The Recurrence Formula for B. - If the sequence of type-B
starts with a 0 it can continue in Bn-\ ways. On the other hand'if 1 is
the first term there must be some other 1's as well. Let there be p more of
them If the 5-sequence does not end with a 1 there are p gaps between
the 1's. Let them be of lengths mi, m2, m3,... , mp. Then

gaps + 1's = n; ^m, =n- p-

The gap of size m, ^ can be filled in B^, ways. This is the advantage of
using B's instead of A's. The number of ways a B-line can start with a 1
but not end with a 1 is :

^ . s
p>2 mi+m2+---+mp=n-p

m, >l

mi -L-'m2 .. Br

Contrast this with the formula in Section 2.

If the 5-sequence starts and ends with a 1, then the sizes of the gaps
add to n-p-1. Ifp = 1, then there are only the two 1's on the ends and
the inside can be filled in B»_2 ways. Altogether there are

s-. +E
p>2

E
mi+m2+---+mp=n-p-l

m, >l

-Bmi-Bma .. Br
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sequences with 1's on the ends. The recurrence equation is :

Bn=Bn^+ ^ ]^[B^+Bn^+ ^ ]^[ B^. .
Sm;=n-p Sm, =n-p-l

For example

Bg = BS + (BiBs + 52^2 + B^B^ + B^B^B^} + B^ + {B^B^ + B^B^).

8. The Generating Function for B. - Let us define the generating
function y = ^^>i B^'.r-?. The coefficient of xn in the expression xpyp
is Ssm, =n-pn-B"z. and similar^ the coefficients of xn in xp+lyP is

Ssm, =n-p-in-^m.. Therefore the recurrence formula converts to the
following functional equation :

y-x =xy+^ xpyp +x2y+^ xp+lyp.
P^2 p>2

The left-hand adjustment (-a;) is due to the lack of terms of degree 1 on
the right-hand side.

We can now calculate :

xly1 , 2 , a-3y2 
/, , ^ a;2y2y-x=xy+ -: + x2y + -^- = (1+rc) ( a;y+

1-xy
so that

(1)
or

Thus

which implies

1-xy

1+a- _ 1 ^
y - x xy

y - x =xy Jrxy".

\-xy}'

i-x±^/{i-xy -^x2
y= ^

2xy+x-l= -^/l - (2 + 3x)x

=_i+y-^_l^'-2
^227-IJ^--1 {2+3xYx3.

The coefficients of xn on the right-hand side is :

-l-(2j-2y ^ . 'i3-^-
,
2^AJ-iA"1^3"

n>j>_n/2
or
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(2)
in

B-I=^. ^.
n>j>n/2

4. fy-.2V ;
j3}\j-lj\n-j

This should be contrasted with the generalized ballot number of Carlitz [2].

9. The Motzkin Connection. - This sequence of B's 1, 1, 2, 4, 9,
21, 51, ... has already been analyzed by Theodore Motzkin in [2] wherein
the claim is made that this sequence counts "the number Cn of divisions
of n points in a circle into sets of I points without crossing... for ;= 1 or
2 we have y -1 = xy+ x2zj2 {sic) and the sequence c» begins 1, 2, 4, 9,
21, 51,... " . " - - / --. ----.. -o^. ^, .,.,

If we interpret I = 1 to mean an isolated vertex and /= 2 to mean
two vertices connected by a chord, then Cn counts the partitions of the
n vertices into some collection of non-intersecting diagonals (not even
meeting at a common vertex), where not every vertex need be part of
a chord. For n = 4, we have 04 =9 = ^5. (diagram 7)

Notice that we must allow a pair of consecutive vertices to be in an l-set
together. To demonstrate that we have the correct interpretation for Cn we
observe that 05 counts the patterns pictured in diagram 8 (cs = 21 = Be)
Notice that the vertices on the cycles are assumed to be differentiated
(labeled).

and five of

and five of

and five of

and five of



OBTAINING GENERATING FUNCTIONS

Interestingly, Motzkin's question is different from ours, yet similar. He
also works with non-crossing sets and labeled cycles, yet his sequence of
c s corresponds to our non-cyclic linear form, type B, not type A. Our
vertices can be used for more than one diagona,!, his cannot. Of course,
there must be a bijection between the objects that Cn counts, and the
objects that Bn+i counts.

10. The Recurrence Formula Redux. - Let us turn our attention
now to the A's. In determining the recurrence formula for the B's we
enumerated the A's en passant :

An=B^+^ ^ HB.,
p>2 Sm, =n-p

From the recurrence formula we see that

(3) An=Bn- Bn_i + Bn^ - Bn^ + .. . ±BI

We could derive this formula directly by inclusion-exclusion. From this we
derive

An + An_i = Bn, for n ^ 3

which we could again argue combinatorially. All Bn sequences are either
An sequences or else (if they end in 1) when we remove the final term they
are An_i sequences. Let / be the generating function for the A's :

/ = ^ Ajx} =x2 +x3 +3x4 +6x5 +...
^2

If we proceed to note that

f +xf =y-x =x2 +2x3 +^x* +Qx5 +...

and therefore not that f +xf -x satisfies equation (1), we eventually find
that

f=i-12-w^-^l-(2+3x)x
which is no better than using (2) and (3).
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