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I. Prologue

As with most of the other topics in Combinatorial Theory, research on
the Four Color Problem historically developed outside the mainstream of
classical mathematics. This is not to say that the problem was ignored
by serious mathematicians. On the contrary, the solution presented here
relies heavily on the monumental contributions of such giants as Cayley,
Birkhoff and Lebesgue. These few men were daring enough to divert their
attention from their more conventional pursuits to a problem whose allure
outweighed its questionable social reputation. However, it is quite true
that, more than any other major modern mathematical development,
this subject is particularly indebted to the invaluable insights of talented
amateurs. Its very existence springs from this source. Unlike the Riemann
Zeta Conjecture, the Poincaré Conjecture, Fermat’s Last Theorem, or the
Weil Conjectures, the Four Color Conjecture does not bare the name
of its originator, solely because the conjecturer is a man of no other
mathematical achievement. This gives the problem a false aura of antiquity
like Trisecting an Angle or Squaring the Circle. As it fits into no great
man’s global program for mathematics and its applications are few and
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disperse, the persistent interest in this problem is a measure of its inherent
charm.

The dilettante connection has been both a blessing and a predicament
for the Four Color Problem. On the one hand the amateurs’freedom from
traditional methodological constraints enabled them to be particularly ad-
venturous in their use of novel devices. Unfortunately the unfamiliarity of
the techniques along with the unprofessionalism of the investigators oc-
casionally lead to unsound conclusions. The machinery employed was sui
generis, ad hoc and bootstrapped. The notation and terminology were
a hodge-podge of miscommunication. The types of arguments presented
were so unusual that appropriate levels of scrutiny had not yet been devel-
oped. How could one be sure all the relevant cases had been considered?
How much detail is required before sufficient rigor is attained. Inaccurate
published “proofs” besmirched the entire escutcheon of the emerging dis-
cipline of Graph Theory. Bright young mathematicians seeking to build
careers in the academic establishment were warded off this problem by
conservative mentors not for its difficulty (for a dozen more difficult con-
jectures have been proven in as many years by aspiring neophytes) but
primarily for its tarnished image.

Against this background, the announced solution by Kenneth Appel
and Wolfgang Haken, employing a computer calculation beyond man’s
capability to survey, caused less celebration than grumbling, generated
less new research than bogus philosophical essays and contributed to
Chromatic Graph Theory less praise than disrepute. A book on this
subject by Thomas Saaty and Paul Kainen! published just after the
announcement of the proof was careful to claim only that “it appears
that the problem has been solved” despite the fact this very book itself
presents the mathematical portion of the work of Appel and Haken.
There is a continual circulation of rumors that errors have been found
in the “solution” and an equally unfounded spate of rumors to the effect
that somebody somewhere has performed a totally independent check of
the Appel and Haken work. The general impression in the mathematical
community is that the Four Color Problem is dead — though nobody
knows whether four colors are sufficient to color all planar maps. This is
not the way mathematics should be.

Even if the Appel and Haken solution is perfectly correct in all the
claims that it makes, it is painfully obvious that it is not an adequate
solution to the problem. For one thing it fails to ezplain why four is the
final answer. In mathematics a decent proof is at least an explanation of
why the result is true. Appel and Haken leave us with the understanding
that all maps can be colored in four colors because the smallest map

1 The Four Color Problem : Assaults and Conquest, McGraw-Hill, 1977.
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that would require five colors must contain some configuration from a
certain long and complicated list, each of which possibilities leads to an
independent and different contradiction. It is hard to imagine a proof
technique that is more unsatisfactory.

It thus behooves the community of Combinatorialists to publish a
comprehensive account of a proof of this theorem which can be considered
and discussed knowledgeably by all mathematicians and which will enable
others to figure what, after all, it is that goes on in map coloring.

A reporter from the New York Times visiting the Institute for Advanced
Study when it was newly opened asked Hermann Weyl for an example of
the type of advanced study performed in the mathematics department. To
illustrate the non-calculational nature of mathematics and to avoid a long
and unsuccessful description his own research, Weyl explained the Four
Color Problem to the reporter. “I think I see,” said the latter, “Red, blue,
green and yellow.”

Most today would not offer the Four Color Problem as an example of
the elegance of mathematics. It is towards the rehabilitation of this small
gem that we offer our contribution.

II. A quick trip through the elementary results

Where did the Four Color Conjecture come from? The chain of events
which brought it to the attention of mathematicians is that one Francis
Guthrie (1831-1899) asked the question of his brother Frederick who
brought it to his teacher Augustus De Morgan who discussed it in a
letter to Sir William Rowan Hamilton dated October 23, 1852. Arthur
Cayley brought it before the London Mathematical Society in 18782
and it soon became of interest to the British mathematical community.
Francis Guthrie became a professor of mathematics at the South African
University in Cape Town where he presumably found other coloring
problems.

It is possible that cartographers actually deduced this result empirically
a long time prior to this date. The interest in the problem in the 1850’s
can then be seen as a sociological phenomenon. The argument goes
that before the British school of De Morgan, Hamilton and Cayley no
mathematician would consider this type of question to be within his
purview of expertise. Euclidean Geometry, Algebra, Number Theory and
Analysis comprised all of mathematics. Any problem not approachable by
these means was suspect. Graph Theory was in an extended infancy. The

2 ¢f. May, K.O., The Origin of the Four-Color Conjecture, 56, Isis, 346, 1965 and Ore,
Oysten The Four-Color Problem, Academic Press, 1967 at xi.



D.I.LA. COHEN AND V.S. MILLER

lonesome examples of Euler’s solution of the Kénigsberg Bridge Problem
and the definition of the Euler characteristic failed to excite interest in
graphical questions as appropriate for mathematicians.

With the development of logical, discrete and applied mathematics,
what had heretofore been classical rules-of-thumb from other disciplines,
could now be fitted with appropriate mathematical proofs. Hence the
question of the possibility of proof of the Four Color Theorem became
Mathematics for the first time. By 1840 A.F. Mobius was challenging his
students to prove that K is not planar. This they could not do.® The
great weakness in the presumption that the fact that four colors suffice
was known to antiquity, is that ancient map-makers did not color their
maps by the rules of the problem. There was a reformation of cartography
during the 18th century before which maps were often adorned with
monsters, lions and swash lines; and neighboring geo-political regions were
not generally colored differently. If the Four Color Conjecture was known
at all before its articulation by Guthrie it couldn’t have been too much
earlier.

From 1870 to 1940 progress was made on the conjecture along several
divergent lines. The results we summarize below are only those which
contributed towards the recent proofs. It may yet turn out to be the case
that better solutions can be found by developing some of the old lines of
reasoning not included here.

Our presentation is not strictly chronological and the terminology and
statements of the theorems have been retroactively modernized.

By a map we shall mean a finite planar graph embedded on the surface
of the sphere. The regions defined by the minimal circuits we shall call
countries or faces. The graph partitions the entire surface of the sphere into
finitely many simply connected countries each of which is to be assigned
a color pursuant to the requirement that no two countries that share a
common boundary edge can be labeled with the same color. If such a
labeling is done using n or fewer colors it is called a legal n-coloring.

For simplicity we shall assume that the graphs that induce the maps
are connected,* that no vertex in the graph has degree 1 or 2,5 that no
one country shares a border edge with itself,® that all countries have at
least three neighbors (have three or more bounding edges),” and that no
two countries have more than one edge in common.?

3 Barnette, David, Map Coloring, Polyhedra, and the Four-Color Problem, Dolciani
Mathematical Expositions No. 8, M.A.A., 1983.

* Although a simple argument shows that the four-color conjecture has the same truth
status for either the connected or the non-connected versions.

5 Also a removable stipulation.

6 This requirement is crucial.

7 Removable.

8 Again removable.
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The four-color conjecture then states that every such map is four-

colorable. That four colors are required by some maps can be demonstrated
by the example of Fig. 1.

Fig. 1

Definition. — A map is called regular if it is formed by a connected
planar graph as described above all of whose vertices have degree 3.

THEOREM (Alfred Bray Kempe & William E. Story).® — If the Four
Color Conjecture is true for all regular maps, then it is true for all maps.

Proof. — If in any map the countries around some vertex were to come
together as in Fig. 2, then the map could be made “harder” to color by
readjusting the boundaries slightly so as to make more countries border
on each other while creating vertices of degree three and decreasing the

degree of the target vertex to three. One way of doing this is illustrated
in Fig. 3.

b c b c
a d a /1

e l f e | f
Fig. 2 Fig. 3

The rest of the map remains the same. We have only made an adjust-
ment in one small neighborhood. In the first map b did not border on e or
f, but it does in the modified version. The same with ¢ and f.

® Kempe was an English barrister who thought that he had solved the problem and
had sent it to be published, which it was in “On the Geographical Problem of the
Four-Colors,” 2, Amer. J. Math., 193, 1879. Story was the referee to whom the paper
was sent. He realized that there were some gaps in the argument which he felt he
could remedy. His paper appears as “Note on Mr. Kempe’s Paper on the Geographical
Problem of the Four-Colors,” 2, Amer. J. Math., 201, 1879.
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We say that the resulting map is “harder” to color because any legal
four-coloring of the altered map can be pulled back to give a legal four-
coloring of the original map while not all the possible four-colorings of the
original map necessarily induce legal four-colorings of the adjusted map.

In such a way we can, vertex by vertex, change an arbitrary map into
one where each vertex has degree three. Any legal four-coloring of the
map that results form all of this adjustment will correspond to a legal
four-coloring of the original map.

If we had a theorem that said that all regular maps could be four-
colored this theorem could be applied to the altered map and hence would
should show that the original map was four-colorable. []

We shall make use of two observations which were known before the
four-color conjecture was articulated.

THEOREM (Euler, 1752). — In any map the number of vertices V,
minus the number of edges E, plus the number of faces F equals 2 :

V—E+F=2, 0
THEOREM. — In a regular map 3V = 2E; therefore
F-E/3=2=F-V/2. [

If the four-color conjecture is false then there are some maps that
require more than four colors to color them. Let us place these non-four-
colorable maps into classes depending on the number of countries they have
(counting the whole surface of the sphere). One of these classes contains
the maps with the fewest number of countries. Let us call this the critical
class; let us call the common number of countries in each of these maps
the critical number; and let us call each of these maps a critical map. By
definition, any map with fewer than the critical number of countries is
four-colorable.

It is traditional in this problem to call the graph edges that bound
countries “sides.” Similarly we call a country with three neighbors a
triangle, one with four neighbors a square, one with five neighbors a
pentagon etc.

THEOREM (Kempe & Percy John Heawood).!'® —  All critical maps
contain some countries with five or fewer sides.

10 Kempe’s false “proof” remained in the literature unchallenged for eleven years until
Heawood pointed out the flaw in “Map Color Theorems,” 24, Quart. J. Math. Ozford,
ser. 332, 18go. What we present here is what Heawood could salvage from Kempe’s
work.

10
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Proof. — Let f; be the number of faces in the map with exactly ¢ sides.
Since all faces have three or more sides

F=fit+fa+fs+---

Since each edge belongs to exactly two faces we also have

2E =3fs +4fs +5fs +6f5 + -
Therefore 2=F—FE/3

= (1—-2—)f3+(1—§)f4+(1—§)f5+---

=203

i>3

Since the left side of the equation is positive the right side must be too.
However, the only positive terms on the right side are the first three.
Therefore, f3, f4 and fs cannot all be zero. 0

Definition. — Any configuration of countries (i.e. a part of a map) that
can be shown never to exist in any critical map is called reducible.

THEOREM (Kempe). — No critical map can contain a 3-sided country
or a 4-sided country, i.e. the triangle and the square are reducible.

Proof. — If the triangle ABC (cf. Fig.4) is part of a critical map remove
the edge BC and amalgamate the two countries. The map now has fewer
countries than a critical map and can therefore be four-colored. Replacing
the edge BC returns the original map but it is now improperly 4-colored
because the two countries on either side of BC have the same color. This
can be remedied by recoloring the country ABC with a color different
from any of its 3 neighbors. This gives us a four-coloring of the original
map contradicting the hypothesis that it was critical.

C C C
PR red green red
= =
A A B A B
blue blue
Fig. 4

11
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D G: D C D| red |C D| red |C

=blue| red |green =>blue| red |green = blue|yellow |green

A B A B A| red |B Al red |B
Fig. 5

If we have a square ABC' D, we do the same by removing sides AB and
CD amalgamating three countries, coloring the resulting map, replacing
the edges and recoloring the center (cf. Fig. 5).

A problem may arise when we try to amalgamate the three countries.
It could be that the top country and the bottom country bordered on
each other somewhere else in the map. The amalgamation would then
create a country that borders on itself, which is illegal. If the top country
and the botton country did share an edge then the right country and
the left country couldn’t. We could then amalgamate the three horizontal
countries and the argument goes through as before. []

This last challenge that had to be answered for the amalgamation ar-
gument to be made complete is a component of the insecurity mathemati-
cians have with such proofs. How are we to know when all such difficulties
have been considered ?

Definition. — Any configuration which must exist in all critical maps
is called unavoidable.

THEOREM (Kempe). — The pentagon is unavoidable.

Proof. — If f3, fs and fs5 are not all zero but f3 = f4 = 0, then fs £ 0.
In fact we know that (1 — 5/6)fs is at least two. Therefore f5 is greater
than or equal to 12 in any critical map. []

If we could show that the pentagon is also reducible, this would provide
a contradiction which would prove the non-existence of critical maps and
hence prove the whole conjecture. This direct short proof of the theorem
has not yet been discovered.

Let us define the dual graph of a map to be the dual graph to its graph
of borders (cf. Fig. 6).

THEOREM (Hassler Whitney)!'. —  The dual graph of every regular
map 18 a triangulation i.e. every face in the dual has three sides.

1 Whitney, H., A Theorem on Graphs, 32, Ann. Math., 378, 1931

12



ON THE FOUR COLOR PROBLEM

Sigealy

map map & dual graph dual graph
Fig. 6

Proof. — If G is the dual graph of a map M, then every vertex of G
corresponds to a face of M, and every face of G to a vertex of M. As the
vertices of M all have degree three so the faces of G have three sides. 0

In the dual graph coloring the vertices corresponds to coloring of the
faces in M.

THEOREM (Paul Wernicke & Henri Lebesgue).!? —  Every critical
graph must either contain the configuration of two neighboring pentagons,

5 : 5 below, or the configuration of a neighboring pentagon and hezagon,
5:6 below.

© @

Fig. 7

12 This fact was first published in Wernicke, P., Uber den Kartographischen Vierfar-
bensatz, 58, Math. Ann., 413, 1904. The method of proof we follow is due to Lebesgue,
H., Quelques conséquences simples de la formule d’Euler, 9, J. de Math. Ser. 19, 27,
1940

13
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_gb/ r//
A7 "™
Fig. 8

Proof. — Let us consider the dual graph G of some critical map M. Let
us assign to each triangular face f the weight w(f) = (1/a)+(1/b)+(1/c)—
(1/2), where a, b and c are the degrees of the vertices of f (¢f. Fig. 8).

Let us consider the sum of all the weights of all the faces in the dual
graph. Each vertex of degree n will be counted n times (once for each face it

is part of) and each time with the weight 1/n. Therefore, the contribution
of each vertex to the total is 1.

Other than the contribution of the vertices, each face contributes an
amount of —1/2. Therefore,

Zw( f) = number of vertices of G — (number of faces of G)/2
?l /= number of faces of M — (number of vertices of M )/2
=F—(V/2)=2.

In particular, 3, sw(f) > 0. Thus G must contain some faces of positive
weight, but ((1/a) +(1/6) + (1/c) — (1/2)) is not often positive when a, b
and c are greater than or equal to 5, as is necessary in the dual of a critical
map. In fact there are only seven possibilities for faces of positive weight.

Degrees of vertices in G Weight of face in G

5,5,5 1
5,5,6 0667
5,5,7 .0429
5,5,8 025
5,5,9 0111
5,6,6 .0333
5,6,7 .0095

The face 6,6,6 has weight 0 and all others have negative weight. For the
total weight of all faces to be positive, some (actually many) of the faces
of G must be on this list.

Every face on this list contains either 5,5 or 5,6 which means M must
contain one of these configurations. []

14
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Definition. — A set of configurations such that every critical map must
contain some configurations from the set is called an unavoidable set.

The last theorem proved that 5 : 5 and 5 : 6 formed an unavoidable
set. Lebesgue’s proof actually provides a larger unavoidable set, i.e. the
set 5—6-5,56-5-6,5-5—-7,5—-5—-8,5—5-9,5-6-6,5—-6—7
1s an unavoidable set of configurations.

If we can ever show that all the configurations in some unavoidable
set are reducible we would then have the contradiction which proves the
theorem. Every critical map would have to contain some configuration
from the set but no critical maps could contain any of those configurations,
therefore, no critical maps could exist.

The method used to show that the triangle and the square are reducible
fails to show that the pentagon, or 5 : 5 or 5 : 6 are reducible. A better
method for demonstrating reducibility and perhaps a different unavoidable
set are required to reach the desired contradiction.

Some unavoidable sets had actually been found earlier, such as

THEOREM (Ph. Franklin).!® — Every critical map contains a pentagon
touching at least two faces which are each pentagons or hezagons. ||

The advantage of the method of Lebesgue is that it can be used to pro-
duce unavoidable sets of greater cardinality and with larger configurations,
and surprisingly this is just what will be needed.

If we look at one of the last configurations in Lebesgue’s unavoidable
set, the 5 — 6 — 6, we may ask what country borders on both 6’s in the
triangulation of the dual graph shown in Fig. 9.

AP A\ A Fasl
5\5I/:c 5\(15 ): 5\<ls ) 5\'; J
Fig. 9 Fig. 10a Fig. 10b Fig. 10c

The total weight of the two triangles in Fig. 9 is
1

+1 1
5 6

it
Z

1 12
6 6

L 2
5 =

T z 15

1 1
6 2 4
In order for the total contribution to the weight-sum of this pair of faces
to be positive, £ must be 5, 6 or 7.

If a certain critical map only met the unavoidable set of seven configu-
rations at the configuration 5 — 6 — 6 then it must actually contain one of

the graphs represented in Fig. 10a, b and c.

13 Franklin, Ph., The Four Color Problem, 44, Amer. J. Math., 225, 1922.

15
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So we have the new unavoidable set

5:5—-5 5:6—-(5)—6 5:6-7
5:5-5 5:6—(6)—6
5:5—-7 5:6—(7)—6
5:5-—8

5:5-9

The notation above indicates the following. The first number is the
number of sides on the base country. This is followed by a colon. The
neighbors of this base country are written after the colon, in (clockwise,
though it doesn’t matter) order. If the size of any country is unknown a
variable must be used in its place. Countries in the second neighborhood of
the base country are indicated by being inserted, in parentheses, between
the two first-order neighbors they border. Unknown countries not needed
for further specification are ususally omitted. This means that instead of
writing §:5 -5 — z — z — = we could write only 5: 5 — 5.

This is a very useful notation. By correct choice of a base country
we can denote some configurations five countries thick. For example,
the graph represented in Fig. 11 can be denoted by the formula 5 :
7T—(5)—6—-(6)—6—(7)—5—(6)—z — (5).

z/m\ﬁ/x\x/m\s/"\x
NSNS

AN
Fig. 11
This notation is not unique.
6 =5:6—-(6)—5
[ =5:5-6-6
N7 =6:6-5-5

By repeatedly using the same method that we illustrated above on the
example 5 : 6 — 6, the addition of another vertex of the triangulation
and the substitution of all of its possibilities, we can produce indefinitely
larger unavoidable sets (more configurations) with indefinitely larger
configurations (more countries in each). In growing these we may employ
considerable discretion in our choice of where to extend each configuration.
We could seek to incorporate certain structures and we could avoid certain
structures. The reasons for doing so will be made clear below.

16
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III. Introduction to discharging

From Euler’s formula and Lebesgue’s formula we see that in a critical
map there is a war between the positive influence of the pentagons and
the negative influence of the larger (more sided) countries.

In the last section we indicated that unavoidable sets were made of
exhaustive lists of configurations of positive weight. In exercising this
argument we must be very careful that the negative effect of one large
country isn’t balanced off by a collection of different partially positive
faces. In the figure below we have positive total weight even though it is
comprised of overlapping negative regions. For example, the weight of the
configuration 5 : 6 — 7 — 7 is negative,

5
5\ 3 R
7\7|/6 tot = 7310°

while the weight of the configuration 5 : 6 — 7—7 — 6, which can be wiewed
as two of them overlapping, is positive.

6
|5 3,2,4 3_8
7\7/6 5 6 7 2 210

In order to keep straight which negative influence is counted against
which positive influence methods were developed for spreading the nega-
tive effect of the majors (countries with more than six neighbors) to negate
the positive effects of the pentagons. These redistributions are called dis-
charging. The name comes from the analogous allocations of potential
energy in electric circuit diagrams.

Let us rewrite Euler’s formula as follows.

12= (6 —1i)f:.

i>5

And let us assign a charge of (6 — ¢) to every i-gon. The sum of the
charges is 12 but the only positive charge comes from the pentagons. A
discharging method is a redistribution of the negative charge of the majors
to the pentagons.

The most important set of such methods is due to Heinrich Heesch
(1969)'* who generalized the work of Franklin (1922, 1938) and C.E. Winn

14 Heesch, H., Untersuchungen zum Vierfarbenproblem, Bibliog. Institut, AG, Mann-
heim, 196g.

17
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(1937, 1940). Heesch’s aim was to show how to grow unavoidable sets
in which each configuration had properties considered favorable for the
possibility of proving reducibility. Discharging is a method of showing
that a particular set is unavoidable.

Let us give a discharging proof that {5:5,5 : 6} is an unavoidable set.

Proof. — Assuming that a map has neither a 5 : 5 nor a 5 : 6 all the
neighbors of every pentagon are major. Every 7-gon can have at most three
pentagon neighbors without those pentagons themselves being neighbors.
The 7-gon has a charge of —1, distribute —1/3 of this to each of the
pentagon neighbors it does have. Similarly the 8-gon has a charge of —2
and at most 4 pentagon neighbors. Discharge —1/2 from this charge to
each of its pentagon neighbors. Discharge the other majors similarly.

Every pentagon is surrounded by majors. From each of its five neighbors
1t gets a charge of at most —1/3. Therefore the most its charge can be
after discharging is 1 — (5/3), which is negative. Discharging thus leaves
the total charge in the map constant, but results in all countries becoming

negative. This is impossible. Therefore, there are no critical maps that
avoid both 5: 5 and 5:6. []

One of the complexities which renders the Appel and Haken proof
mysterious comes from its complicated discharging method. They use
more than one stage of discharging with the charges traveling in circuitous
directions.

Basically, there is no algorithm known at the moment which can
input a set of configurations and decide whether the presented list is
or isn’t an unavoidable set. For each set we consider we must somehow
produce a discharging method which works for it. The Heesch-Appel
Haken approach is to stick to one particular discharging method and then
to keep modifying the unavoidable set. That is, until we produce one in
which all the configurations are reducible. If we have a configuration that
is in the unavoidable set, yet which is not reducible by our methodology (a
methodology we have not yet presented) we may replace it as above, with
another set of configurations which still can be proven to be unavoidable
by the discharging argument. If some of these new configurations cannot
be shown to be reducible we reiterate. We stop only when we have arrived
at an unavoidable set all of whose configurations are reducible. If we
carefully follow the reasoning about how a particular set of configurations
was produced, tracing through the generating tree, keeping in mind the
well defined discharging procedure underlying the process, we may be
convinced that the resultant set of configurations is unavoidable and
reducible. Q.E.D.

18
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The difficulty with attacking the Four-Color Problem by this approach
is that this constant growing of the unavoidable set may never terminate
(either because the conjecture is false or because it somehow cannot be
proven this way) or it may terminate theoretically but in some fantasti-
cally large number of steps, a number far beyond human capabilities to
understand. We have not yet begun investigating the method of proving
reducibility for large configurations. We shall see that the complexity of
this method grows doubly exponentially with the size of the configura-
tions. Still, in the words of Saaty and Kainen, it “appears” that this has
been done.

IV. The classical method of reducibility

In this section, as before, we have paraphrased and restated older results
to conform to the definitions and terminology which will be productive for
us later.

The amalgamation method invented by Kempe to prove reducibility of
the triangle and square has a limited range of applicability. The erroneous
attempt at proof published by Kempe contained another idea which
when coupled with a brilliant insight of George David Birkhoff'® (and
later developed by Franklin and Winn) became a powerful method for
determining reducibility. This method we shall call the classical method
of reducibility as it was (essentially) universally adopted by all researchers
and was the basis for the first two solutions to the Four Color Problem,
those of Appel and Haken!® and of Frank Allaire.!”

After describing this method in our own terminology we will demon-
strate the advantages of the improved method which we have designed
that is presented in the next section.

The invention of Birkhoff begins by considering a map on a sphere as
having an equator or a ring of countries such that each country in the ring
neighbors exactly two other countries in the ring. This ring will divide the
map into two hemispheres (figuratively, not geometrically). Let us call the

15 Birkhoff, G. D., The reducibility of maps, 35, Amer. J. Math., 115, 1913.

16 Appel, K.I. and Haken, W., The existence of unavoidable sets of geographically good
configurations, 20, Ill. J. Math., 218, 1976; Every planar map is four colorable, Part I :
discharging, 21, Ill. J. Math., 429, 1977 and with Koch, J., Part II : reducibility, id.
at 491. For the purposes of this paper we shall assume that these works are substantially
correct.

17 Allaire, F. and Swart, E.R., A systematic Approach to the determination of reducible
configurations in the Four-Color conjecture, 25, J. Comb. Th. Ser. B, 339, 1978,
and Allaire, F., Another Proof of the four color theorem, Part I, Proc. Seventh
Manitoba Conf. on Numerical Math. and Computing, 1977 at 3. And also personal
communication. We shall credit this work also as a solution.
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ring R and call the configuration of countries on one side M and on the
other side M'. (¢f. Fig. 12).

Speaking heuristicly, the influence which the particular details of the
coloring of configuration M exerts on the colorability of M’ is felt through
the ring R. If we may somehow find a different configuration N which
exerts the same influence on R but which has fewer countries than M we
can “unplug” M and replace it with N creating a new smaller map with
the same colorability properties. If M + R + M’ is not 4-colorable then
neither will be N + R+ M' and so M + R+ M' can be seen not to have
been a critical map since it had more countries than necessary. This will
then show the reducibility of M. We will now be very specific about what
this all means.

THEOREM (Whitney).!® — Let R be a ring of n countries. Consider
two 4-colorings of R isomorphic if one can be transformed into the other
by a relabeling of the names of the colors. There are ezactly

Ml

Fig. 12

3"l 424 (-1)"3
8

non-isomorphic 4-colorings of R.

2n—1 —1)
The number of non-isomorphic 3-colorings of R is —+(—)

3

Proof. — Let us discuss the posibility of coloring a path of n labeled
vertices with A colors.

(%1 (%) (%1 VUn
(] ® @ ——————— ¢ s o0 0.

The first vertex can be colored in A ways. The next in all but one, i.e.
(A —1) ways. The third also in (A — 1) ways, etc... In total the number of
total colorings (not worrying about isomorphic colorings) is A(A — 1)"71.

Now let f(n,)) be the number of ways of coloring (again ignoring
isomophisms) the cycle of n labeled vertices in A\ colors. If we consider a

18 Whitney, H., A logical expansion in mathematics, 38, Bull. Amer. Math. Soc., 572,
1932.
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coloring of the path above that has color(v;) # color(v, ) we can connect
them by an edge and obtain a colored n-cycle. If we have a colored path
such that color(v;) = color(v,) we can identify these two vertices and
produce a colored (n — 1)-cycle. This process produces a bijection between
all colored n- and (n — 1)-cycles and all colored paths. Therefore,

AMA=1)""1 = f(n,A) + f(n —1,).
Reiterating this observation we get
MA =D = —f(n = 1,0) - f(n —2,)),
FMA =10 = f(n = 2,3) = f(n - 3,),
XA —1) = £(2,0) — f(1, ),
= f(2,A) - 0.
Adding these gives
f, ) =AA =" —(A=1)""2 4. (A= 1)]
A [A=D+yra -
1+(A—1)
=A-1)"+(-1)*(A=1).

Now we must consider now much duplication we have if we are to count
only non-isomorphic colorings. Let us concentrate on the case A\ = 4. If
n is odd each coloring uses 3 or 4 colors : if 4, it is counted 4! times;
if 3, it is counted (§)3! = 24 times. Therefore, for n odd the number
of non-isomorphic colorings is f(n,4)/24. If n is even, the special coloring
121212...12 is counted (;)2! = 12 times, so the number of non-isomorphic
colorings is [f(n,4)/24 + 1/2]. The number of non-isomorphic 4-colorings
of all n-cycles is then

3" 4+ (-1)2 i 14 (=1)" 3" 1424 (-1)"3
24 4 . 8 '

The case for 3-colorings is similar. []

We will find it very useful to refer to this table of values given by ring
size (number of countries). The ring of n countries is referred to as the
n-ring (cf. Table 1).

Let us denote the set of 4-colorings of the n-ring by C,. When we
depict them we will always start numbering the colors with 1,2. .. and then
employing the lowest unused digit for each new color to appear clockwise
around the ring.

For example C4 = {1212,1213,1232,1234} or geometrically, as shown
in Fig. 13.
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Ring Size  No. of Colorings Ring Size No. of Colorings

3 1 11 7,381
4 4 12 22,144
5 10 13 66,430
6 31 14 199,291
7 91 15 597,871
8 274 16 1,793,614
9 820 17 5,380,840
10 2,461
Table 1
Fig. 13

Let us number these colorings lexicographically Cy = 1212, C; = 1213,
Cs = 1232, C4y = 1234. Then Cs is

C, =12123 Ces = 12314
C; =12132 Cr = 12323
Cs; =12134 Cs = 12324
Cy = 12312 Cy = 12342
Cs = 12313 Cio = 12343

Any given specific configuration M is bounded by some determinable ring
of countries R. For example 5 : 5 lives inside a 6-ring and 5 : 6 inside a
7-ring (see Fig. 14). The Lebesgue configuration 5 : 5 — 5 also lives inside
a 6-ring (cf. Fig. 15).

Given a configuration M inside an n-ring R some of the 4-colorings in
(' extend inward to become consistent colorings of M 4+ R and some do
not. For example consider the double pentagon inside a six ring and the
two ring colorings C' = 121213 and C = 121232 (¢f. Fig 16). Then C; can
extend inside. Pentagon a borders countries colored 1, 2 and 3 so it must
receive color 4. Thus pentagon b borders countries colored 1, 2 and 4 so
it must receive color 3. On the other hand C, does not extend inside the
ring. Both pentagons border countries colored 1, 2 and 3 so both must
receive color 4. But since they border each other this is impossible.
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T2 mw &8

Definition. — The set of 4-colorings of the ring R which extend inward
to the configuration M is called the scheme of M, written S(M).

Ezample. — Consider the square. Of the four colorings of C,, three

extend to the square and one (Cy = 1234) does not.

S(square) = {C4,C>,C3}.

Ezample. — The configuration 5 : 4 (pentagon-square) lives inside a
5-ring. Six of the 10 colorings in Cs extend to the 5 : 4 when imbedded in
the ring as shown in Fig. 17.

S(5:4)= {Cz,C3,Cs,C7,Cg,Clo}.

If a configuration M sits inside a ring R in a critical map and if we call
the other side of R, M’, then no 4-coloring of R can both extend to M
successfully and extend to M’ successfully since they could then be tied
together to produce a four-coloring of the whole critical map. This means
that the scheme of M’ must be disjoint from the scheme of M :

S(M)YNnS(M'") = 0.
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Fig. 17

For example if the 5 : 4 were a part (called M) of a critical map the scheme
of its complement (M') would have to satisfy

S(5 3 4’) 6 {Cl,C4,Cs,Cs}.

(Of course, we already know that the configuration 5 : 4 is reducible
because it contains a known reducible configuration, namely the square,
but the general idea holds for all configurations.) As a consequence of this
we have a new method for showing that a configuration is reducible.

THEOREM (Birkhoff). — If S(M) = C, then M is reducible.

Proof. — Let us assume that M sits inside some critical map M + R+
M'. Since the scheme of the complement must be disjoint from the scheme
of the configuration itself we can conclude S(M') = 0, i.e. no four coloring
of the ring R extends to M'. But in this case R+ M’ is already impossible
to 4-color and M is not needed. Let us construct a new map by taking one
country of R and amalgamating all of M into it. The new map is smaller
than the one we started with but it cannot be four-colored. Therefore the
original map was not critical and, therefore, M is reducible. []

Another way to use schemes to show that some configuration M is
reducible is to find a smaller configuration N which lives inside the same
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size ring and which has a scheme which is a subset of that of M. If M
belonged to a critical map M + R+ M’ and there eixts an N such that

ring size of (N) = ring size of (M)
and  number of countries of (V) = number of countries of (M)

and S(N) C S(M).

then when we remove M and replace it with N we have the smaller map
N + R + M' which is also not four-colorable since S(N)NnS(M'") = .
We will consider this method further shortly. First we must introduce the
idea from Kempe’s original paper which Birkhoff used in conjunction with
ring-coloring. We rephrase this as follows :

THEOREM (Kempe & Birkhoff). — Not every subset of colorings of
Cn can be the scheme of some configuration.

Proof. — Consider a configuration inscribed in a 4-ring which has
coloring Cy = 1234 in its scheme. Let us consider colors 1 and 3 the red
colors and colors 2 and 4 the blue colors. Let us fix our attention on one
particular extension of Cy to M.

Without knowing anything about the structure of M we can conclude
that there is either a sequence of neighboring red countries through M
stretching from the ring country colored 1 to the ring country colored 3 or
else there is a sequence of neighboring blue countries through M stretching
from the ring country colored 2 to the ring country colored 4 (cf. Fig. 18).

! 2

52 4
& 85
&

Fig. 18

The reason for this is that if we consider all the red countries attached
(through red neighbors) to 1 this component either reaches to the ring
country colored 3 or else it is cut off by a string of blues going all around
it from 2 to 4 (c¢f. Fig. 19). Clearly both diagonals cannot coexist in the
same colored figure.

Let us consider the case in which there exist a red chain from 1 to 3.
Here we can reverse all the blue colors below the chain, that is, in the
half containing the 4, reverse meaning to change 2’s into 4’s and 4’s into

either or

!

L,
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2’s. This will not disturb the blue colors above the red chain and the ring
country colored 2 will stay 2 (cf. Fig. 20).

What we obtain is a perfect 4-coloring of the configuration and ring in
which the ring is colored 1232. Therefore if Cy; € S(M) and some coloring
of R+ M has the above red chain then also C3 € S(M). On the other hand
if there is a blue chain from ring country 2 to ring country 4 then we can
reverse 1’s and 3’s below this chain to obtain a new coloring (cf. Fig. 21 ).

i@; @}\

Fig. 21
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If this situation obtains then we can see that the ring coloring 1214
(which is isomorphic to 1213 = C3) can extend into the ring in a legal
four-color fashion. Therefore if Cy € S (M) and some coloring of R + M
has the blue chain described above then we also know that C, € S (M).

Since C4 € S(M) implies that there are some extensions of Cy to M
and since each of these extensions must contain either a red or a blue chain
we can conclude that

Cs € S(M) = [C; € S(M) or C3 € S(M))

regardless of any properties of M. In particular the set {C1,C4} which is
a subset of C4 cannot be the scheme of any existing configuration. []

When put in this fashion we have a whole slew of conditions which must
be satisfied by the schemes of existing configurations each in the form of an
implication called Kempe implication. These red or blue chains are called
Kempe-chains. It is not necessary to group the colors as 1 & 3 vs. 2 & 4.
The two other pairings which give us similar implication consequences are

1&2vs.3&4 and 1&4vs.2& 3.
For example, the 8-ring shown below can exhibit any of these three
structures (¢f. Fig. 22).

Fig. 22

The codifying of these implications was not done by Kempe but was
named for him by Birkhoff since the fundamental idea of reversing two
colors in one isolated component of a map to produce a new legal four-
coloring comes from Kempe’s published false proof. The full set of Kempe
implications for the 4-ring can be stated as follows.

Let S be the scheme of some configuration :

CieS=CyorC3€ S8
CeS=>CiorCyeS
C3eS=>CiorCye S
CieS=>CrorC3€ 8
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This analysis of the 4-ring is essentially the work of Paul Wernicke.!?

It 1s important to realize that these implications must be satisfied no
matter what configuration M sits inside the ring. In particular, these impli-
cations must be satisfied by the scheme of the complementary hemisphere
of any configuration in a critical map.

Let us use this requirement to provide another proof of the fact that
the square is reducible.

Proof. — Suppose there is a critical map which contains a four sided
country. We can decompose this map into

Square + 4—ring + Square’.

Since the colors Cy, C> and Cj all extend to the Square the scheme of the
complement of the square, Square’, must satisfy

S(Square’) C C4 — S(Square) = {Cy4}.

Since S(Square’) cannot be Cj alone, as we know from the Kempe-
implications, it must be empty. But this would mean that the square is
reducible by the theorem before last. []

The Kempe-implications for the 4-ring are simple; not so the analogous

set of implication for larger rings. For example consider the six-ring : C§
has 31 colorings

Cy, = 121212 Cy = 121324 Ci7 = 123143 Cos = 123412
Cy = 121213 Cho = 121342 Cis = 123212 Cae = 123413
Cs = 121232 C11 = 121343 Cis = 123213 Cay7r = 123414
Cy = 121234 Ci2 = 123123 Cao = 123214 Cas = 123423
Cs = 121312 Ci3 = 123124 Co1 = 123232 Cag = 123424
Cs = 121313 Ci4 = 123132 Cap = 123234 Cso = 123432
C7 = 121314 Ci15 = 123134 Cas = 123242 Csy = 123434
Cs = 121323 Ci6 = 123142 Caq = 123243

Let us consider a situation in which Cy extends to a configuration
inside the ring. Considering colors 1 & 2, red and colors 3 & 4 blue we have
two only alternatives, just as with the situation in 4-rings (cf. Fig. 23).
Therefore Cyy = Cig9 or Ci3. We have dropped the repetitive symbol
“E S”'

Now suppose that we call colors 1 & 3 red and colors 2 & 4 blue. There
are then five possible distinct internal Kempe-chain structures (cf. Fig. 24).

Let us consider the second of these in detail. We can reverse the 1 &
3 component below the 2 & 4 line without changing any other country’s

19 1d. 1904.
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& &

Fig. 23

=37

N

&

Fig. 24

either

color. That will produce Fig. 25 a. Alternately we could leave the bottom
1 & 3 component as in the original coloring but reverse the 2 & 4 chain
itself. This would produce the legal coloring shown in Fig. 25b. As a third
possibility we can simultaneously perform both reversals. This too will
produce a legal four-coloring as in Fig.25 c.

Fig. 25a Fig. 25b Fig. 25¢
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In summary we can then say that if coloring Cy extends to the inside
configuration in a way that has the Kempe-chain structure shown in the
second case of the five above then all three new colorings must be included
in the scheme of the configuration.

The fact that there are five possible internal structures for Kempe-chain
gives us this full implication.

Czo = [Cl and Cz and Clg] or [Cg and C4 and sz]
or [C4 and Cll and 027] or [Clg and 025 and 027]
or [022 and C25 and 030].

If we consider the pairing of colors 1 & 4 vs. 2 & 3 we see that Chy
cannot yield any internal chains applicable to reversing. Of the three
Kempe analyses of this ring coloring we can say that the first was like
the 4-ring, the second had the most complexity a 6-ring can have while
the third was immutable like a 2-ring.

The thirty-one colorings of the 6-ring fall into three classes: Class 1
(maximal alternating) = the three Kempe analyses are like Cyy above,
Class 2 = all three Kempe analyses reduce to 4-ring-like situations (such
as in C7 in Fig. 26) or Class 3 = the special coloring C; alone.

)
N

Fig. 26

Coloring C; is special because if we interchange the colors 3 & 4
throughout the interior we do no produce any change in the ring coloring
itself. A 1 & 3 Kempe analysis is identical to a 1 & 4 Kempe analysis.

Let us examine the Kempe implications for the maximal alternating
colorings in more detail. If we have some coloring C, which has the Kempe
implication .

C: = ...or[Cpand Cyand C;]or ...
then when we look at the Kempe implication for C}, we will find

Cp, = ...or[C; and Cg and C;] or ...
and part of the Kempe implication for Cy will be

Cq = ...or[Cyand Cpand C;jor...
and, similarly, part of the Kempe implication for C, will be
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Cr = ...or[C; and Cp and Cjj or ...

The reason for this is that all four of these ring colorings correspond

to the same red vs. blue Kempe chain structure in the six-ring shown in
Fig. 27.

Fig. 27

A maximal alternating 6-ring red vs. blue Kempe structure can be
colored in four ways: the two red sections could be coherent or one could
be reversed and the two blue sections could be coherent or one could be
reversed (if there are three red sections and one blue then the three reds
could be coherent or reversed in four ways).

Let us say then that what we are coloring is not the ring but the Kempe
chain structure within the ring.

Definition. — We shall say that the set of ways of coloring the chain
structure within the ring is a block.

A simple list of the blocks will then provide all the maximal alternating
Kempe implications. For any maximal alternating coloring, ring-countries
one, three and five get one pair of colors (this can happen in four ways
since ring-country one must get color 1 and three either agrees or has the
other and five either agrees or has the other) and ring-countries two, four
and six can be colored with the other pair in four ways too. This means
that there will be 16 maximal alternating four-coloring of the 6-ring. Each
coloring will be in five blocks (the five Kempe chain patterns). Each block
will have four colors (the possible colorings of the chains of the block).

Now,

(no. of blocks)(no. colorings in a block)

= (no. max. alt. colorings)(no. of blocks each is in).

Therefore, for the 6-ring, the number of blocks is equal to (16)(5)/(4) =
20. The twenty blocks for the 6-ring are listed below, where the notation
T :abcdis to be read “block number z is composed of colorings C,, Cj,

Oy Blg®
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111256 2:1218 20 3:13611
4:131821 5:152130 6:24510
7:242022 8:26 2231 9:341011
10:3 4 21 22 11:3101825 12:4 112027
13:56 25 27 14:5102530 15:6 112731
16:1011 3031 17:18 202527 18:18 21 27 31
19:20 22 25 30 20:21 22 30 31

This list then contains all the information in the more complicated
Kempe implications. This formulation of the Kempe implications is due
to Cohen.?? At the moment this is simply a notation, the true power of
defining the blocks will be seen below. The first complete analysis of the
Kempe implications of the 6-ring was not done by Birkhoff but by Arthur
Bernhart?! who developed a substantially different compact schematic
representation.

When the Kempe chain analysis makes the 6-ring reduce to a 4-ring-
like situation we also see a pattern analogous to blocks in the 4-ring. If we
have the Kempe implication

C, = C, or C,

then there will be a unique other ring coloring C,, with the property that
it has the Kempe implication

Cy = Cy or C;.
Furthermore, we shall then expect to find both
Cy=>CrorCy and Gy = 10y BT Clysy

as Kempe implications.

The reason for this is that given C, if we have a red chain we can
reverse to Cy while a blue chain reverses to C, while if we made both
reverses (even though we could not have both chains) we would produce
Cw. This new C,, then, can red or blue reverse back into the same things
that C; does. We shall denote the relationship these four colorings have
to one another by writing z | w =y | 2.

How many of these relationships should we expect to find in the 6-ring ?
We can turn a 6-ring into a virtual 4-ring by ignoring any two of the six
inner-ring-country-borders. We can choose the 2 out of 6 in 15 ways. Once
we have the grouping of the ring-countries there is only one way they can

20 Cohen, D. I. A., Small Rings in Critical Maps, Ph.D. Thesis Harvard Univ., 197s.
21 Bernhart, A.F., Six-Rings in Minimal Five-Color Maps, 69, Amer. J. Math., 391,
1947.
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be colored and one way they can be reversed. Therefore there are exactly

15 4-ring-type equations in the Kempe implications of the 6-ring. They

o 2|126=7]19 3|20=8]23 4]|28=9]|24
5|/156=7]14 6|19=7]|8 10/13=9]16
11[12=8]17 18|24=19|23 20|12=1319
2116=14]23 22(17=15|24 25|17=16]26
27128=26]29 30|12 =1428 31/13=15|29

This table along with the previous one summarizes all the information
in the many Kempe implications for the 6-ring. We are now ready to
duplicate, by our more modern approach, something which Birkhoff did
in 1913.

THEOREM (Birkhoff). — The diamond shaped configuration of four
pentagons (shown in Fig. 28) is reducible.

'. 7T
&) =2

Fig. 28
Proof. — The scheme of this configuration can be calculated to be
{C3,C3,Cs,Cs, Cho, C11, Chy, Cis, Cig, Cis, Cro, Cao, Caa, Css, C30,Cs1}.

If the diamond is part of a critical map what is the scheme of the
configuration on the other side of the 6-ring?

S(diamond’) C C¢ — S(diamond)
= {C1,C4, C5,Cr, 0y, Chz, Ci13,Ci7, Ca1, Cas, Caq, Cas, Car, Cag, Cao ).

From our table of blocks we see that coloring Cs is a member of blocks
L, 5, 6, 13 and 14. None of those blocks, however, are totally contained in
the list of colorings above. This means that C5 cannot be in the scheme
of diamond’ for reasons of Kempe chain analysis.

We now note that a Kempe implication for C7 says 7 | 14 = 5 | 15. This
means that if coloring 7 is in the scheme then so is coloring 5 or coloring
15. Coloring 15 is not on the list of possibilities because it extends to
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the diamond, and coloring 5, while on the list of possibilities, has been
eliminated from scheme of diamond’ by Kempe considerations of its own.

Next we recall 6 | 9 = 7 | 8. Since we now know that we cannot have
7 or 8, 9 becomes impossible too. Recalling 10 | 13 = 9 | 16 eliminating 9
means 13 is also out.
Now 20 | 12 =13 | 19 so 12 is out. Since 12|11 =8 |17, 17 is out.
Since 17 |22 =15 24, 24 is out.  Since 18 | 24 = 19 | 23, 23 is out.
Since 4 | 28 = 9| 24, 4 is out. Since 21 | 16 = 14 | 23, 21 is out.
Since 25 | 17 = 16 | 26, 26 is out.  Since 27 | 28 = 26 | 29,

both 27 and 28 are out.

This leaves only 1, without enough for any block, therefore 1 is out.
Therefore S(diamond') = (). From which we conclude that the diamond is

reducible. []

When a configuration is determined to be reducible by showing that
no subset of the colorings left for its complement can satisfy any Kempe-
implication we call this D-reducible. This terminology is due to Heesch
though the concept dates from Birkhoff.

There is another possibility. We may begin with a configuration M, and
assuming that it is part of a critical map M + R + M', we calculate

S(M') C C, — S(M).

Now we eliminate colorings out of C,, — S(M) by reason of Kempe-chain
implications until we find its maximal Kempe-consistent subset, that is
the set of colorings left which among themselves satisfy their Kempe
implications. Let us call this the Max-Kempe of M'. If this Max-Kempe is
0 we are finished as above, but even if Max-Kempe doesn’t vanish entirely
it may be so small that we can find a real life configuration N, having the
same ring-size as M but with fewer countries, whose scheme is disjoint
from Max-Kempe M'. This would imply that if M’ existed then we could
produce a smaller uncolorable map N + R + M'. Such an N is called a
reducer.

The Kempe-implications are important here to reduce the possible size
of S(M'") which if it were larger might intersect S(V) for too many N’s.

Notice that S(V) does not have to be contained in S(M) as we required
previously. It is possible that S(IV) is larger than S(M) but still is disjoint
from Max-Kempe.

A configuration for which there exists such a reducer is called by Heesch
C-Reducible.

Actually Birkhoff’s original proof of the reducibility of the diamond
did not follow our methodology but showed rather that the diamond is C-
reducible. It is valuable for us to examine Birkhoff’s approach both because
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it shows how the Kempe implications grew out of the amalgamation
argument and because C-reducibility (and reducers) are indispensible to
our project.

Proof. — Let us begin by assuming to the contrary that 5 : 5—5—5 does
exist in some critical map, M. Let us look carefully at the configuration
and its bounding ring of six countries as shown in Fig. 29.

é\

Fig. 29

Let us leave the rest of the map M alone and modify this section as
follows. Amalgamate the four pentagons, country ry and country rs. Let us
call the map that is then produced A. The map A has four fewer countries
than M and so it must be four-colorable. Color it. Now if we replace the
old borders that used to exist in map M and erase the colors left over on
the pentagons, we find that the six ring countries have been colored in one
of only six possible ways. Each coloring must assign color 1 to r; and r3
but to none of the other r’s. The only colorings that do this are 121232,
121234, 121323, 121324, 121342 and 121343. If all of these colorings of
the 6-ring could be extended to colorings of the diamond the from four-
coloring A we could produce a four-coloring of M, which would contradict
the existence of M.

As we can see from the picture below all of these 6-ring colorings do
extend except the first, 121232. This is because pentagons a and b must be
colored 3 and 4 since they both border a 1 and a 2. This, however, means
that the top pentagon has neighbors of four different colors (¢f. Fig. 30).

Let us suppose then, that the coloring that M inherits from A is 121232.
Everything in M is legally four-colored except the four pentagons. Let us
look through the colored diamond’ for a 1 & 3 chain from r; to r3. If
such a chain exists then we can reverse colors 2 and 4 in the component
of the picture that contains r,. This would then induce on the partially
colored M the 6-ring coloring 141232. But this, we see below, extends to
the diamond as well, providing a four-coloring of the whole map. Therefore
M could not be critical. Similarly, if there existed a 1 & 3 chain from r
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Fig. 30

to 75 we could reverse 2 and 4 in the component containing r¢. The ring
would then be colored 121234 which we saw above extends to the diamond.
If 7y is not connected to r3 or rs by 1 & 3 chains we can reverse colors 1
and 3 in the r; or r3 component and leave the rest of the ring alone. This
would induce the ring coloring 321232 which we see below also extends to
the diamond (c¢f. Fig. 31).

B
CEy

Fig. 31

This covers all possible cases and so the diamond is reducible. []

In the terminology of all the researchers since Birkhoff this amalgama-
tion formation that limits the cases to be examined by Kempe chains is
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also called a reducer. The particular reducer used above can be depicted
by the diagram below where the dotted line means “is amalgamated with”
and the solid lines mean “is incident to.” (c¢f. Fig. 32). We will cover some
general theory of reducers later.

2
YA r3
“ \‘ "
5
Fig. 32

It may not at first be obvious how our earlier proof is similar to
Birkhoft’s proof. The analogy is this. In the first proof we showed that
the scheme of diamond’ (the complement of the diamond) is so small that
it does not contain any Kempe-consistent subset. The second (though
chronologically prior) proof depended on showing that the scheme of
diamond' was so small that it did not contain a Kempe-consistent subset
including the coloring 121232. Once this coloring was Kempe-eliminated
from the scheme the scheme no longer had any intersection with the scheme
of the reducer. This meant that we had found an N that could replace the
diamond in the critical map and leave it uncolorable. This means that
Birkhoft’s proof is like our second paradigm, the C-reducibility model.

C-reducibility is easier to prove than D-reducibility even when D-
reducibility is true. That is, if it is easy to put one’s hand on the correct
reducer. But if one could easily put one’s hand on the correct reducer,
why not put one’s hand on the critical map itself?

The general classical strategy of C-reducibility is this. Start with a
configuration M that is bounded by an n-ring R. Check the schemes of
all known reducers for the n-ring. This includes those, such as the one
above, that involve amalgamating countries from the ring itself, and those
that are simply other configurations that live inside the same size ring. If
the scheme of M contains the scheme of any reducer then we can replace
M by N in the critical map and so M is reducible. If the scheme of M
completely misses the scheme of N then N + R + M is not four-colorable
and the theorem has been disproved. If the scheme of N is mostly contained
in the scheme of M then check to see if what is left of the scheme of N
meets what is left of the ring coloring set in any collection of colorings big
enough to be Kempe-consistent.

37



D.I.LA. COHEN AND V.S. MILLER

In the above proof, the scheme of diamond’ met the scheme of the
reducer in only one coloring and none of the Kempe chain consequences
of that coloring could be satisfied by S(diamond'). In this particular
case this fact followed from the stronger result that no subset of Cg —
S(diamond) could be Kempe-consistent. But there are numerous examples
of configurations that are C-reducible but not D-reducible. For example,
using practically the same method Franklin?? showed that 6 : 5 — 5 — 5 is
reducible and Winn?? showed that 7 : 5 —5—5— 5 is reducible. The latter

configuration sits in an 8-ring as we see in Fig. 33.

/\/\\/'
\/l/l/

Fig. 33

If we were to write out all the Kempe implications for the 8-ring the
calculation would be enormous. It is much easier to locate the correct
reducer and then the investigate the Kempe implications for the few
colorings of the reducer not contained in the scheme of M = 7: 5—5—5—5.
To do this we do not even have to know the entire scheme of the
configuration M. All we have to do is to check the extendability to M
of the few colorings in the scheme of the reducer.

Despite this diminution the task is gargantuan. Work essentially
stopped after all the D- and C-reducible configurations inside rings of
size < 10 had been discovered until Heesch introduced the possibility of
computation by machine. With considerable experience in the frustrat-
ing effort to determine reducible configurations Heesch described certain
characteristics a configuration might possess which he claimed made it a
likely candidate for D- or C-reducibility. This was not a theorem but the -
pragmatic evidence supported his belief.

Heesch proposed the following project. Start with an unavoidable set.
Test each configuration by computer for D- or C-reducibility. If any of
them are not reducible replace them in the set by supersets (determined
by discharging) which possess as best as possible the properties most

22 Franklin, P., The Four Color Problem, 44, Amer. J. Math., 225, 1922.

23 Winn, C. E., On Certain Reductions in the Four Color Problem 16 J. Math. Phys.,
159, 1938.
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conducive for reducibility. Now go back to the step of testing each new
configuration in the unavoidable set. Repeating this process may produce
an unavoidable set of reducible configurations.

The properties Heesch recommended be avoided are these : a configu-
ration in which one country borders four ring countries, a configuration
in which a cut-point country (one whose removal would disconnect the
configuration into disjoint parts) which borders three ring countries, and
a configuration with a pentagon that borders on only one other configura-
tion country which itself is a pentagon that also borders on only one other
configuration country (called a hanging 5 — 5). These three unfavorable
cases are illustrated in Fig. 34.

vy

Nl \ Fig. 34

Haken added to these caveats the stipulation that no configuration
should sit in a ring of more than four countries more than itself in size.
No such things had been found to C-reduce. And this is for a good reason.
Whitney and Tutte?* and more completely Stromquist?® showed how
to find Kempe-consistent subsets for the scheme of the complement of
such configurations based on uniting copies of the hypothetical Kempe
consistent critical complement of the pentagon.

Appel and Haken announced in 1976 that the Heesch plan was realized.
Using a modified version of discharging they grew their tree until it had
1936 terminal configurations (the number has since been reduced to 1482)
most of which were of such a size that they required 13- and 14-ring
boundaries.

Let us now mention briefly on what basis the claims were made that
any proof of the Four Color Theorem must be essentially beyond the
scope of human surveillance and that the decisions of a computer program
must be accepted on faith or at best checked experimentally by other
computer programs. (We give no references for this claim because it is so
ill-considered as to be beneath citation). A computer is (when operating

24 Whitney, H. and W. T. Tutte, Kempe Chains and the Four Color Problem, 2, Utilitas
Math., 241, 1g972.

2% Stromquist, W., Ph.D. Thesis Harvard Univ., 1975.
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perfectly) only a Turing machine and a human can duplicate any of
its operations, why then should the Appel and Haken proof be beyond
surveillance? Simply because the number of steps required to check the
calculation and the size of the bookkeeping space needed are astronomical.
This is a quantitative matter not a qualitative distinction.

If one were to design, from scratch, a machine to check rapidly whether
sets of one hundred thousand elements (the usual size of schemes of
configurations inside 14-rings) do or do not contain certain subsets we
would re-build the current version of the binary digital computer. These
machines can compare bit strings of enormous length in parallel operations
at virtually the speed of light. They determine whether one set of ones in
a bit string is a subset of another set of ones in another bit string while
the same task would take a man hours.

In the Appel and Haken works the number of these comparisons alone
ran into the billions. Man, as we know and love him, is not only incapable
of duplicating this calculation, he cannot even meaningfully watch it pass
before him on a TV screen, since displaying this calculation would slow
down the time to greatly exceed the longevity of Methuselah.

Of course, all claims that the calculation could never be shortened, and
that new and very different proofs could never be found, are just plain silly
and could not be made by competent mathematicians. What we present
in the following sections is just such a modification in the method for de-
termining reducibility which renders a huge but surveillable solution along
the Birkhoff-Heesch lines. What is more, is that this method was formu-
lated before Appel and Haken made their announcement. Considerable
algebraic machinery will be introduced which should rekindle hope for the
existence of a short understandable mathematical proof.

V. Block count consistency

Let us return to a consideration of the 4-ring, this time by the diagram
shown in Fig. 35.

Let us recall that we are presuming that there is some configuration
inside the ring to which the ring coloring is being extended. Every
extension of a 4-ring coloring flips into a different extension of a 4-ring
coloring. Which coloring it flips into depends on which colored chain was
found inside the configuration. If coloring = with a blue chain flips to
coloring y then coloring y with a blue chain will flip back to coloring .

It is also true that not every extension of ring coloring = when extended
to the inside must have a blue chain. Some extensions of 2 may have blue
chains and some extensions may have red chains. The red chain extension
flips into some other coloring. The number of extensions of coloring 1 with
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1212 | 1234 = 1214 | 1232
Fig. 35

a 1 & 3 chain all flip into extensions of coloring 3 with a 1 & 3 chain. All
the extensions of coloring 1 with a two four chain flip into extensions of
coloring 2 with a 2 & 4 chain. All the extensions of coloring 2 with a 1 &
3 chain flip into extensions of coloring 4 with a 1 & 3 chain.

Definition. — Considering the extensions of colorings of a given ring
R onto the configuration M inside the ring let us denote the number of
extensions of coloring C; by the symbol z;.

THEOREM (Birkhoff and Lewis,?® the others?” and Cohen?®). — For
any configuration inside a 4-ring

1+ T4 = 22 + 3.
Proof. — Let B; be the number of extensions of coloring 1 with a 1

& 3 chain. Let B, be the number of extensions of coloring 1 with a 2 &
4 chain. Let B3 be the number of extensions of coloring 4 with a 1 & 3

26 Birkhoff, G. D. and Lewis, D., Chromatic Polynomials, 60, Trans. Amer. Math.
Soc., 355, 1946.

27 As described below.

28 Ibid., 1975.
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chain. Let B4 be the number of extensions of coloring 4 with a 2 & 4 chain.
Then

z1 = By + By; Ty = By 4 Bjs;
T3 = By + By 4 = B3 4 By.
Therefore, Ty + 24 =By + By + B3 + By = 5 + z3. []

Ezample. — Let us consider the double square 4 : 4 (¢f. Fig. 36).

:
@ @

Ty =2 To9 = T3 = Ty =1

B; =0 By =0 B; = B3 =1

B2=2 B4=0 Bg—l B4=0
Fig. 36

Let us notice that in this one equation we have summarized all of the
information encoded in the four Kempe-implications. If C} is in the scheme
of M then z; # 0 which means then that z, + z3 # 0 which means that
either Cy or C3 must extend to M. Similarly the implications for C,,
C3 and Cy are also superceded by this one equation. This is a powerful
equation.

The proof that we have given above of this equation is due to the
treatment by Cohen. The characteristic of that approach is that the z’s
are not seen as the basic units to be discussed but are themselves the sum
of blocks analogous to those introduced in the discussion of the 6-ring.
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Certain sets of z’s, when added together, equal the grand total of all the
blocks.

We have prepared this transformation by previously showing how
to avoid using the Kempe implications in their raw extensive disjunc-
tive/conjunctive form by concentrating on block structures.

As was indicated above the correct attribution of this discovery must
include the work of Birkhoff and Lewis on chromatic polynomials. They
realized that the Kempe implications were much too cumbersome to work
with. They, however, did not identify the block structures. They com-
pletely abandoned the unavoidable set search in favor of investigating more
global properties of map coloring (even in more than four colors). They
saw that what was necessary was to ask the quintessential combinatorial
question. It is not just important to know whether a given configuration
can be colored but also to know in how many ways.

It is this consideration that extracts this problem from the wilds of
propositional calculus and embeds it firmly in algebraic structures wherein
it can be approached by previously developed mathematical tools.

This idea is inherent in the papers of Birkhoff from 1912 onward.
It is nearly expressed in the cited reference (at 416 and at 432), but
the authors do not incorporate this equation into a body of machinery
that can completely replace the analysis of Kempe implications. It has
been said that the replacement of Kempe implications by equations
involving extension numbers was considered and rejected by Lewis and
then considered and rejected by Arthur Bernhart.?® In his extensive
analysis of the 6-ring [1947] and his reduction of the Bernhart diamond
5:6 — 5 — 6 [1948] he does not mention equations at all. He did mention
the possibility of using equations for analysis of higher rings at the
International Congress of Mathematicians in 1950.

Dick Wick Hall and Lewis®* gave a set of chromatic polynomial formulas
for the 6-ring which can, with a little extra work, be specialized to some
equations. The Ph.D. theses of Robert Wyman Rector®! and Frank R.
Bernhart3? include some equations for the 7-ring and indicate how to find
more equations for larger rings. It seems that the early 1970’s were a
time of great action on this problem, especially as far as thinking about
extension numbers and equations relating them. This research was done
independently and in semi-isolation (Stromquist was in touch with both
the Harvard and Kansas groups).

29 This was told to us by his son Frank Bernhart.

30 Hall, D. W. and Lewis, D., Coloring Six Rings, 64, Trans. Amer. Math. Soc., 184,
1948.

31 Rector, R.W., Fundamental Linear Relations for the Seven-ring, Ph.D. Thesis, 1973.
32 Bernhart, F.R. in Topics in Graph Theory Related to the Five Color Conjecture,
Ph.D. Thesis, Kansas State. Univ., 1974.
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However, we must note one thing about these other researchers. They
all failed to develop a method of equations that could be used to completely
replace Kempe analysis. Their equations did carry with them much of the
information that was in the Kempe-chain implications but they did not
capture all of it. Their investigations had therefore to be a mixture of
equation analysis and then Kempe analysis to kill the last unattached
colorings in the scheme of the complement. They could not prove that
their equations carried the full information of the Kempe chains because
they did not begin by attaching extension numbers to the block numbers
themselves.

It is a primary advance of the work of Cohen that he introduced the
block-count numbers, the B’s. The Cohen equations do not only relate
z’s, but z’s and B’s. Instead of simply equating sets of z’s, by using the
B’s it is possible to prove that all of the information in the Kempe chain
implications can be incorporated into a system of equations of the form

t=B+B+---+ B;
r=B+B+---+B;

.....................

We shall prove this presently.

We have seen that the 4-ring admits only two possible Kempe chain
structures: a chain from ring country 1 to ring country 3 or else a chain
from ring country 2 to ring country 4. We have also seen that the 6-ring
can sometimes look like a 4-ring or else (in its maximal alternating form)
it allows five different internal chain structures. It is interesting to note
that the 5-ring cannot look like a 6-ring in this respect but only like a
4-ring (or an immutable 2-ring).

The 7-ring also has at most 5 possible structures for internal chaining.

But the 8-ring has more (cf. Fig. 37).
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There are 14 possible ways we can find 1,3-chains (c¢f. Fig. 38) versus
2,4-chains inside the ring in Fig. 37.
It is easy to see that the 2n and the (2n + 1)-ring admit the same

possible structures since only with rings of even size can we have a strict
alternation around the ring between the feet of the chains.

D
QAL

Fig. 38

Definition. — A pattern of coloring an n-ring where all the odd
numbered countries are colored (1 or ) while all the even numbered
countries are colored (2 or y) will be called an alternating coloring.

Note that if a coloring is alternating with respect to 1 & z versus 2 & Y
then it is not alternating with respect to the other Kempe analyses. Some
colorings are not alternating with respect to any chains. One simple case
of this is colorings in which 1 neighbors 3 and 4 somewhere around the
ring.

Obviously the 2n-ring admits 47~ such alternating colorings since of
the odd numbered countries the first gets a 1 and the rest a (1 or z)in
2"~1 ways, while of the even numbered countries the first gets a 2 and the
rest get (2 or y) in the same number of ways.
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1 2
< n) different struc-
1\

THEOREM (F.R. Bernhart). — There are -
n

tures possible for the Kempe chains in any alternating coloring of a 2n-
TiNg.

Proof. — The Catalan sequence is well known to count the number of
ways 2n points on a circle can be connected with n non-intersecting arcs.
If we consider the arcs to be the borders of the Kempe-chains we se they
count all such structures. See, for example, Fig. 39.

Fig. 39

As we have seen a Kempe-chain need not be a simple sequence of
neighboring countries but might have several feet on the ring (i.e. the
connected component of those two colors might include more than one
of the ring countries). Even so there are always the same numbers of
reversals possible with a given alternating coloring and a given Kempe
chain structure, whether the chains are simple arcs or a complicated
patterns of nested many legged regions. This is because the Kempe chain
boundary lines dissect the pie into the same number of regions no matter
how they are drawn.

Using the same analogy to the arcs above we can show

THEOREM (Whitney and Tutte). — Any alternating coloring in a 2n-
ring has (counting isolated countries as reversible chains) (n 4+ 1) chains
and 2"~ colorings in the equivalence class under Kempe inversion.

Bernhart attributes some of his results to unpublished work by his
father, A. F. Bernhart. This last theorem was probably known to Birkhoff
and Lewis.

Definition. — Let us call an equivalence class of colorings of a configu-
ration M and its bounding ring R a block if they can be flipped into each
other by reversing the Kempe chains.

Although we have defined blocks on the colorings of the ring and the
configuration together we can restrict our attention to the ring coloring
alone. A set of ring colorings then belong to the same block if the same
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NN NG
B

one inner Kempe chain structure will allow us to flip among them. Fig. 40
shows a block in a 7-ring.

Note again that the (2n + 1)-rings must be treated like 2n-rings by
pairing two consecutive countries (in any of (2n+1) ways). The concept of
blocks is analogous to the chromodendron of Whitney and Tutte. However,
the latter was never related to problems of enumeration.

As a result of the last two theorems we have

a
a
Q

Fig. 40

THEOREM (new).

on1 (212)
(a) There are ezactly ——n_}_—?—

(2n +1)2n-1 (2:)

n+1

Proof. — This result follows the same way we calculated the number

of blocks for the 6-ring. The number of blocks is equal to the number
of alternating colorings for the ring, times the number of Kempe chain
structures per coloring, divided by the number of colorings per block, i.e.

w2 (a7) (7)o (). 1

blocks for the 2n-ring, and,

(b) There are exactly

blocks for the (2n + 1)-ring.

2n—1 n+1

Remember that every alternating coloring in a 2n-ring belongs to exactly

( 1 ) (271) blocks, and each of its extensions reflects one of these

n+1 n
blocks.

Let us define the function f(n) as follows

i | 2T
f(2n)=——2 <”)

2n
n—1
2 (2n+1)<n)
n+1 '’ '

f@Cn+1)= =1
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Definition. — Given a configuration M in a ring R. Let C; be any
coloring of R. Let the blocks that C; belongs to be By, B, ..., B(ny. Let
the numbers b;(M) be the number of extensions of C; on R which extend
to M and belong to block B,;. Clearly

2i = by (M) + by(M) + - + by (M),

If Cy and Cy are two alternating colorings belonging to block B, then
the number of extensions of C; which belong to By is the same as the
number of extensions of Cy which belong to By. Therefore there is only
one block count variable b; for each block B; common to all of its associated
colorings.

Therefore there are exactly f(n) block count variables and all extension
numbers of alternating colorings can be written as sums of these.

bz(M) = bi for all M.

Definition. — The block-count equations for the alternating colorings
from the 2n-ring are the 4”~! equations of the form

xi:bjl +bjz+"'

in which each b reflects the number of extensions of each block applicable
to Cj. There are f(n) terms in the right hand side of each equation.

Ezample. — The 4 four-colorings of the 4-ring include 4?71 = 4
alternating colorings C, C,, C3, Cy4. There are

sy =220y

blocks each with 22~ = 2 colorings in them.
By ={C1,C3}; By ={C1,C3}; B;= {C2,C4}; B; ={Cs,Cy}.
The block count equations are
1 =by+by; z2=bi+by; z3=by+bs; a4=0bs+b,.
From this we can deduce the equation
T1 + T4 = T3 + T2,
but little else.
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Whenever a coloring is reduced, through some Kempe analysis to a 4-
ring we leave the one equation alone, we do not add block count variables.

Ezample. — The 31 four-colorings of the 6-ring include 42 = 16
alternating colorings : '

There are 231 (g) = 20 blocks, each with 2°~1 = 4 colorings in them.
We have listed the blocks for the 6-ring above. The 6-ring block-count
equations are

T1 = by + by + by + by + bs T18 = by + by + b1y + by7 + byg
T3 = by + by + bg + b7 + bg T20 = by + b7 + byg + by + byg
T3 = b3 + by + by + byg + by T21 = by + bs + b1g + byg + by
T4 = bg + by + bg + by + by T22 = by + bg + b1o + brg + by
T5 = b1 + b5 + b + by3 + by T25 = b1y + b1z + bya + by7 + by
T = by + bz + bs + by + bys T27 = b1z + b1z + bys + by7 + by

x10 = bs + bg + b1y + b1y + by T30 = bs + bya + big + b1y + bog
x11 = b3 + by + byg + b5 + by z31 = bg + by5 + b1s + big + byg

The 15 other colorings of the 6-ring all reduce to 4-ring structures under
Kempe analysis as do the alternating colorings when we consider different
pairs of colors.

The number of block count equations which come from 4-ring structures
in the 6-ring is :

15 (one from each alternating coloring except 121212)
+ 45 (3 from each non-alternating coloring)

divided by 4 (we have counted each equation 4 times)
= 15,

They are
To + Tye =T7 +T19  Ti0 + T13 = Tg + T1g ZT22 + 17 = T15 + To4
T3+ To9 =g + T2z T11 + T2 = g + 217 Z25 + T17 = T16 + To6
T4+ Tog =29+ T1a  Tig + Tog = Tyg + Toz  Tor + Tog = Z26 + T29
Ts +T1s =27+ T1a X0+ Tiz = Ty3 + Ty Tzg + Tip = T14 + T28
Te + x5 =7 + 23 T21 + T16 = T14 + T2z T31 + T3 = Ty + Tog

Cohen [1975] describes the complete system of block-count equations for
the 6- and 7-ring. The 7-ring has 91 color variables z;, 140 block variables
bi, 91 equations of the form

z=b+b+---+
and 35 equations of the form

rT+rT=2x+zx.

49



D.I.A. COHEN AND V.S. MILLER

THEOREM (Cohen).

1) The block count equations have a solution in non-negative integers
corresponding to every ezisting configuration M + R.

2) Given any solution to these equations in non-negative integers the
eztendable colorings (those C; for which z; = 0) form a set satisfying all
Kempe implications.

3) There exist sets of colorings C;, which are consistent with all
Kempe-implications but which cannot lead to a4 solution of the block-count
equations in which all corresponding =’s are non-zero.

To prove the third point an example is given®® of a Kempe-consistent
set of colorings of the 7-ring which when approached by equations can only
have solutions in which some z’s must be 0 even though the corresponding
C’s are assumed to extend. In other words :

All Block-count consistent sets are Kempe consistent but not all
Kempe-consistent sets are Block-count consistent. We paraphrase this by
saying block-count consistency dominates Kempe-consistency. Using z’s
alone it is not possible to prove this theorem. This is why the indepen-
dent discovery of the z’s and the invention of the b’s by Cohen is vitally
important.

The other authors who have set about to find sets of z’s with equal
sum (similar to the 4-ring equation) have in essence found sets of x’s such
that their total represents all the blocks once each.

Definition. — Let us define B = > bi summed over all ;.
Let us call a set of 2’s ezhaustive if their sum totals B.

For example for the 6-ring we have

T1+ 23+ 24 +To5 = by + by + -+ + by
and

T1 + 210 + 22 + 227 = B.

Therefore
T3 + T4 + T2s = X109 + Tog + To7.

One important point to be said for block-count consistency is that it dom-
inates Kempe-consistency. The set of equations that we get by equating
all exhaustive sets does not.

THEOREM (Donald Coppersmith).3* — The block varigbles b; cannot
be recovered from equating ezhaustive sets of x’s, i.e. block-count consis-
tency dominates the set of equations formed from ezhaustive sets alone.

33 Thesis at 156.
34 Personal communication, 197g.
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To use block-count consistency as a method for demonstrating re-
ducibility we proceed as follows.

1) Beginning with the configuration M in the ring R calculate S (M).

2) In the general block-count equations for the n-ring set z; = 0 if
Ci € S(M). What we are going to study are the z’s representing the
scheme of the possible complement, M’, in a critical map.

3) Find all solutions to the block-count equations. If there is only the
trivial solution, all z = 0, then M is D-reducible.

4) If there is a non-trivial solution but it is so small that a reducer N
can be found such that what is left for S(M') is disjoint S(N), then M is
C-reducible.

All that is required here is linear algebra to solve systems of homoge-
neous linear equations in non-negative integers. This is a very standard
process and does not require ad hoc computer programming since there
exist many standard packages. However the calculation is still lengthy. It
is surveyable but just so.

One philosophical advantage is that once a computer has determined
that a configuration is, say, D-reducible it can then print out a mathemat-
ical proof of this fact which can be checked by anyone. The steps of this
proof are of the following types

Equation 1234 now reads
0 = z7 + 215, therefore z7 = 215 = 0.
Equation 3783 now reads

T4 = T4 + Ty, therefore z9; =0,

and so on.

At this stage it would be possible for the computer to print out a
mathematical proof of the fact that the system of equations left for the
complement is degenerate. Children could then check this proof simple
step by simple step. However, even this much exertion is unnecessary.

THEOREM (Nering).?®* —  Given a system of homogenecous linear
equations that has no solution in non-negative integers except the trivial
one there ezists a set of constants k; such that iof the i1-th equation is
multiplied by k; and the equations added together the result will be one
equation saying that the total of all the variables is 0.

This result is exactly what we need since it reduces the playing around
with the equations to one step. Once we start with our system of equations
and reduce them to one total equaling 0 we can conclude that each x

35 Personal communication based on notes for a forthcoming book, 1981.
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individually is 0 (they are all non-negative since they count something).
The fact that the coefficients come to us from a computer program is
irrelevant to the proof. As far as mathematical validity is concerned we
may have just guessed to add the equations up in this fashion. The
computer is totally invisible to the process.

Let us illustrate this method of Block-count reducibility on the Birkhoff
diamond. We saw above that the scheme of the diamond includes the
following colorings :

2,3, 6, 8, 10, 11, 14, 15, 16, 18, 19, 20, 22, 25, 30, 31.
All of the corresponding z-numbers must be 0 when we count the exten-
sions of these colorings to diamond’. If the sum of five block numbers is 0
then all five block numbers are 0. The &’s that must be 0 are :
1,2,3, ..., up to 20.
These are all the blocks that are. When these are zeroed out the system
of block-count equations becomes :

T1 =24 =T5 = 2Tg1 = x27 = 0.

This eliminates all colorings except
7,9,12, 13, 17, 23, 24, 26, 28, 29.

The 4-ring equations quickly kill this list. The scheme of the complement
of the diamond is seen to be empty. Rather than discuss in detail the
algorithms used for testing Block-count consistency and the complexity of
these algorithms and the quantity of their output, we will instead describe
an even further improvement, the superior technique called V-Reducibility.

This new method is orders of magnitude faster and much easier to
understand since it does not require Kempe-chain analysis. The purpose
for the previous discussion is to place the method of V-reducibility in

perspective and to compare it to the classical method and block-count
consistency.
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VI. Reduction without Kemp Chains : V-Reducibility

What is presented in this section is the joint work of authors. It
developed from certains ideas that occured to Miller [1979] when he
undertook to implement the method of Block count consistency described
above to produce a shorter (surveyable) proof that the unavoidable set
of Appel and Haken is indeed reducible. Our investigation leads us to
the discovery that Kemp analysis is not essential in proofs of reducibility.
We can even hope to eliminate the tedious case by case calculation which
characterizes the proofs of Appel-Haken and Allaire. We shall even be able
to shed some light on the ultimate question : Why are four colors enough ?

The first public presentation of this work was by Cohen at the NATO
conference on Higher Combinatorics, in Berlin 1976, although the full
consequences of block count consistency were not then realized.

Definition. — Given a configuration M in an n-ring R let the color
vector V(M) be defined as

{815 D95 654 5 D)

ranging over all extension numbers for the n-ring.

We have seen that not all vectors of non-negative integers can be the
color vector of some real configuration M because the z’s must satisfy some
equations arising from Kempe-chain type arguments. Unfortunately these
equations do not provide a necessary and sufficient condition. A vector
may satisfy all the equations and still not be realizable as the color vector
of a configuration. (Consider for example the fact that the complement for
the pentagon can be described by a vector satifying all Kempe-implications
but since, if the four color conjecture is true, there are no critical maps so
no such complement exists.)

The Kempe implications so far have been our only use of the property
of planarity of the graphs in question, we will now show how we can use
planarity in a more profitable way.

Birkhoff [1934, p. 90] made the following observation. Let us start with a
dual graph of a configuration M in a ring R which we are vertex coloring
and let this graph contain the edge AB. We now form two new graphs
from M, the deletion graph M, which contains all vertices and edges of G
except the edge AB, and the contraction graph M, in which the vertices
A and B are identified and all edges which used to lead to either vertex
now lead to the concatenated vertex.

Every coloring of R which extends to M colors A and B differently.
Every coloring of R which extends to M, colors A and B the same. If we
consider any specific coloring of R, the number of ways it extends to M
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M Md Mc
Fig. 41

plus the number of ways it extends to M, is equal to the number of ways it
extends to My. We may write this as the law of Deletion and Contraction.

THEOREM [essentially due to Birkhoff].
V(M) =V(Mqa) - V(M.).

Notice that if M is planar then so are M; and M.. The process of
Deletion and Contraction has the possibility of isolating a component of
the configuration and producing a disconnected graph. If we are careful
we can arrange it so that the only components to be isolated are singleton
vertices, floating inside the configuration. Any isolated vertex can be
colored in 4 ways no matter what extension of the ring coloring is being
considered.

THEOREM. — Let M be a dual graph in a ring R and M* be the same
but with an additional isolated vertez, then

V(M*) = 4V(M).

The use of Deletion and Contraction by Birkhoff and later Birkhoff and
Lewis was for the purpose of writing all graphs in term of complete graphs.
We will use it in the opposite direction, i.e. to disassemble graphs instead
of construct them. Birkhoff and Lewis were not interested in maintaining
planarity — we are. An even more important distinction between our two
treatments is that we demand that the outer ring be preserved intact.

We can keep repeating the process until we arrive at a graph with no
contractible edges. This means that there are no vertices other than those
of R and all edges are diagonals. Let us call these configurations primitives.
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THEOREM. — There are ezactly

n 2k T
Ly e (2k — 2)!
2 k>n/2 6" (k—1)!(2k —n)! (n —k)!

primitives for the labeled n-ring.

The sequence begins

1 3 11 45 197 903 4279 ...

The eleven diagonalizations for the 5-ring are described in Fig. 41.

one o, five of five of

Fig. 42

All configurations inside of 5-rings can be written as linear combinations
of these eleven. More importantly, all possible V(M)’s of any configuration
inside the 5-ring are linear combinations of the eleven color vectors for
these figures. All the entries in the color vectors of primitives are either 0 or
1 since any particular ring coloring is either consistent with the diagonals
or not, there is no further extension possible since there are no inside
countries,

These vectors are not linearly independent. To obtain the basis for the
space they span we need a way of continuing the process of Deletion and
Contraction beyond the stage of primitives. We introduce the notation of
a dotted-line diagonal to mean that the end point vertices must be colored
the same (analogous to the contraction of the two ring vertices). Deletion
and Contraction now says that we take a primitive with a diagonal and
form two new structures, one the primitive with the diagonal deleted and
the other a figure with the diagonal replaced by a dotted line (cf. Fig. 43).

We continue this process until all we have are dotted diagonals. There
are as many of these as solid-line primitives. Most of them, however, have
the color vector of all zeros (cf. Fig. 44).

The configuration above requires A and B to have the same color and
also for B and C' to have the same color. However, 4 and C are adjacent
ring countries and so no element in C satisfies these conditions. Of the
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M Md Mc
A A A
!
|
|
!
|
3 > o
V(M) = V(Ma) = V(M)
Fig. 43
A &
M =
B
V(M) = (0,0, ...,0)
Fig. 44

ring countries and so no element in C satisfies these conditions. Of the

eleven primitives listed for the 9-ring only the first 6 correspond to dotted
diagonalization with non-zero vectors.

Definition. — A prime is any non-zero color vector for a dotted
diagonalization of the n-ring.

Some different dotted diagonalizations give the same color vector

(cf. Fig. 45)

Fig. 45
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We have avoided this problem by defining the primes to be the color
vectors not the configurations themselves. Let

Q) 5 A7)

n>j>n/2
and let
An:Bn_Bn—1+Bn—2_"'iB1-
THEOREM [new|. — There are ezactly A, primes for the n-ring.

We already know that the color vector of any configuration is a linear
combinations of the dotted diagonalizations, we further believe that the
primes are in fact the basis for this vector space. This has been calculated
to be true through dimension (ring size) 14. It would be interesting to
prove this though it is not essential to the proof of the four color theorem.
One thing we do know is that the dimension of the space of primitives is
at most the numbers of primes.

Let us compare the advantage of looking only at the primes instead of
at the full set of primitives.

Ring Number of Number of Number of

Size primitives primes colorings
3 1 1 1
4 3 3 4

-5 11 6 10
6 45 15 31
7 197 36 91
8 903 91 274
9 4,279 232 820
10 20,793 603 2,461
11 103,049 1,540 7,381
12 518,859 4,005 22,144
13 2,646,723 10,440 66,430
14 13,648,869 27,261 199,291

Ezample. — The 232 primes for the 9-ring are pictured in Fig. 46. The
number of different variants possible through the action of the dihedral
group are indicated under each figure.

In order to get the full use out of the primes we convert them into
diagonal form which means we form linear combinations which have
distinct first non-zero component. We call these reduced primes. From
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Fig. 46
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YRR
YO

p6
|\\\ //’I
P11 D12 P13 P14 P1s

Fig. 47

these we can evaluate the whole scheme of a configuration by calculating
the extension numbers of the much smaller set of reduced primes.

We shall now illustrate this whole process for the 6-ring. The primes
for the 6-ring are shown in Fig. 47.

Their color vectors (sans parentheses and commas) are:

p1 =1111111111111111111111111111111
p2 =1111111111100000000000000000000
ps = 1111000000000000011111110000000
Ppa = 1100111000000110000011000000011
ps = 1010010100100000010010100010101
Ppe = 1100111000000000011100001110000
pr = 1010100001000101010010101000010
ps = 0000000000011111100000000000000
pe = 0000000110011000000000000001100
P10 = 0000000000010000101000010101000
P11 = 1010000000000000010010100000000
P12 = 1100111000000000000000000000000
P13 = 1000100000000100000010000000010
P14 = 1010010100100000000000000000000
P15 = 1100000000000000011100000000000
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It is easier to do our calculations if we replace these with linear
combinations which have unique first non-zero components, such as

dy =p1 —p2 — ps — ps — ps — po + P11+ P12 + p13 + pis
da = —p1 +ps + pa + p7 + po — P11 — P13
ds = —p1 + ps + ps — ps + pe + P17+ P9 — p12 — pis + p1a — p1s
dy =p2 — ps+ps — pr + ps — py + p1s — pa
ds = —p1 + ps + pe + p7 + po — P11 — P15
de =p1 —p2 — ps + Ps — ps — po — p11 + 2p12
d7 = p2 + ps + pa — ps + ps — pr + 2p11 — 2p1a
ds = —p1 + p2 + pa + ps + po = 2p12
dio = 2p1 — p2 — p3s — ps — 2pg — ps — P9 + 2p12
diz = —p1 +p2 + ps + ps + p1o — P14
di3 = 2p1 — 2P — ps — ps — pe — Ps — P10 + 2p12 + P14
dis = —=p1 +p2 + pa + ps + ps — 2p12
dig = —p1 +p2 + ps + ps + ps — p12 — P14
dig =p1 — p2 — ps — pg + P14
d21 = p1 — p2 — Ps — ps + P12
We have subscripted the d’s such that d; is the only one of these vectors

to have a non-zero entry in column ; (the entry is a 1 or —1). That we can
do so proves that the p’s are independent. Let us define the set BASIS.

BASIS={12345678101213 141819 21}

We are now ready to describe the Victor Vector Method of demonstrat-
ing the reducibility of a configuration M inside a 6-ring. For every i in the
set BASIS count how many times coloring C; extends to M , call this as
before z;. Since the vector V(M) is a linear combination of the p’s and
the p’s are a linear combination of the d’s, we have :

VIM)= )" ad.

t€EBASIS

Therefore by counting the extension numbers of 15 colorings of the 6-
ring instead of the full 31 we can still evaluate the whole scheme. For
the 14-ring we need to extend only 27,000 instead of 199,000; which is a
considerable saving.

From this point the reducibility method continues as the block count
consistency method described above, but with one new wrinkle. C-
reducibility is easier to prove than ever. The colorings whose subscripts
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are in the set BASIS act as a reducer in that if any configuration includes
all such colorings, or misses all such, then it must be reducible since either
its vector or its complement’s vector is all zeroes. In fact, a particular
C-reducer need only be checked by noting whether those vectors in BASIS
that span it are either missed or contained. In other words, once we have
chosen the vectors in BASIS all the problems of intersecting large sets of
colorings can be reduced to problems of intersecting much smaller sets of
colorings.

The best part of all of this is that the choice of the colorings in BASIS
was not unique. There are many spanning sets possible for the set of
primitives diagonalized from the set of primes as above. There are many
ways of choosing the 27 thousand independent indices out of 199 thousand
colorings for the 14-ring. Each selection has the possibility of acting like a
reducer.

If the existing (and exhausting) Kempe-based proofs of the four color
problem are correct, this method can show the same result in a tiny
fraction of the time and printout space. Not only does V-reducibility mean
that we do not have to check the extendability of so many colorings in
the first place, but it also means finding reducers is easier. Using block
count consistency means that once a configuration has been shown to be
reducible the proof can be printed out by the computer in one long line. All
1t needs to do is to specify the constants each equation must be multiplied
by to be added up to say “the sum of the z’s is 0.” The number of such
constants is the number of equations for the ring, so though this step is
automatic and surveyable it is not trivial to perform.

What we have presented so far is a methodology which can take the
final decision of reducibility out of the hands (circuits) of a computer
and return it to humans. This, even when it leads to a disproof of the
existence of critical maps, does not answer the important question: Why
four? Perhaps the machinery we have set up can shed some light on this
point. The generating function for the number of primes (4, above) is

y(z) = l—z—\/(12:—z)(1 —32).

Following the methods that P. Flajolet expounds in this very volume we
observe that there are algebraic singularities at (—1) and 1/3. The one at
1/3 dominates giving

1 [2/3— /(1= 32)(4/3)

~1¥1/3 2/3

n

Therefore :
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THEOREM [Flajolet, 1987].

9
A, =
83~

Let us be careful to remember that the definition of the primes had
nothing to do with the number of colors, it is simply a property of
planar maps. Recall also that the number of A colorings of the n-ring
was shown to grow like (A — 1)®/n!. This means that A less than 4 has
no chance of providing enough colorings to surpass the dimension of the
space spanned by the geometry, but that A = 4 will eventually catch and
exceed this quantity. For A four or greater, the ratio of the dimension of the
primitives to the number of colorings will become so large that “random”
configurations will be likely to contain a spanning set of colorings and
therefore be D-reducible. Note that we observed that they need only
contain a spanning set of colorings (like BASIS above) not have their scheme
equal to all colorings, in order to be reducible.

We therefore suggest that it is the coincidence that both the dimension
of the primitives and the number of colorings grow as powers of three that
lies at the heart of why four colors are enough to color any planar map.

50 ~% (1+0(1/n)).
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