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THE DUALITY BETWEEN INCIDENCE ALGEBRAS
AND COALGEBRAS. A FEW REMARKS

BY
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Introduction

A set S with a suitable "decomposition law" gives rise to a
coalgebra C(S), the so-called Incidence Coalgebra of S. Its dual algebra
is the better known Incidence Algebra of S, A(S). In the last few years,
a few particular cases of these structures have been studied in great
detail (see [1],[2],[5]). These concepts have shown themselves to be
powerful tools in enumerative combinatorial problems with which they are
concerned. We are interested in them from a general point of view. In
fact, in our opinion they are likely to be the source of a correét alge-
braic counterpart of combinatorial structures.

In the quoted cases, S is the set of the intervals of a lo-
cally finite ordered set (see [2]) or the set of the morphisms of a
Moebius Category (see [1] and [5]). In both cases, the use of the so-
-called "standard topology" plays a central role. Nevertheless, this use
is not essential. As we shall see, it may be substituted by the duality
between A(S) and C(S). Making use of this duality, as well as of new re-
sults about Incidence Coalgebras, in the present work, we also general-

ize a few properties about Incidence Algebras due to Leroux [5]-

§1. Decomposition law of a set

Let S be a given set. Let N[S] denote the free abelian

monoid generated by S. A pair of applications:
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d:S—— > N[SxS]
e:S— > N

s
is said to be a decomposition law of S if the coefficients [q r]’ defined
o4

by: 2. ( S 1(q,r):=d(s), satisfy the following equations:
q,r q,r

1.1 NI I S T

r q,r q,t rv

1.2 2 1 Je(q) = Z[ e(q) =CS:

q q,r

s
If this is the case, these non-negative coefficients [q ]
’

are called section coefficients of S. We shall also say that the element

se€S can be cut into the ordered pair (q,r) in exactly [qS ] ways; more-
over, if fq £)>0, the pair (q,r) is said to be a decomposition of s.

The following example of decomposition law has been studied
in [1] and [5]. It can be also found, together with many others, in [4].
Let C be a small category and let S=Mor(C). Let us suppose that the set
{(q,r)|roq=s} is finite for every seS. The decomposition law of S is now

defined in the following way:

d:S———> N[SxS]

il if s is an identity of C
S ~>

0 otherwise

1 if rog=s

s
In this case, we have: [~ ] = {0 e bt

s
We denote [q,t,v] the common value of both sides of 1.L This
is the number of ways we can cut s into the ordered triple (q,t,v). Re-

iterating 1.1 allows us to define more general coefficients [9 ...s l]:

s ST s
bes [51"'5n n+1 )f sl...sn_ltg Sn+1]

as well as a map:

1.4 . M N[Sx...xS]
~ D S
S . o
Sl...Sn+1[51...S +1](sl’ ’Sn+1)
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INCIDENCE ALGEBRAS AND COALGEBRAS

Obviously, d1=d.

If [ S ]>0 the n-tuple (s ,...,s ) is called a decompo-
S1se-e5Sy 1 n

sition of degree n of s. In particular, the I-tuple (r) is said to be a

decomposition of degree 1 of s¢S if, and only if, r=s. The decomposition

(Sl""’sn) is called a strict decomposition if d(§i)£(§i,§i) for lsig¢n.

If each se¢S admits a finite number of strict decompositions, we say that

the decomposition law is hereditarily finite. In this case, the supremum

of the set of degrees of strict decompositions with reference to a given

element seS is called the length of s and denoted 1(s).

1.5 PROPOSITION. For every hereditarily finite decomposition
law of S if [qsr]>0 then 1(q)+1(r)<1(s).

b
Froof. Let 1(q)=j and 1(r)=h; let (ql"'°’?j) and (rl,...,qi) be strict

decompositions of q and r respectively. We have:

NI I 3 Sk | e DA | SN | S
jo1 h

1
ql...qj Leeey u,vu,v ql...qj LPERE R P AR
Thus, (ql,...,qj,rl,...,rh) is a strict decomposition of s and 1(q)+l(r)<
€1(s). U
If the decomposition law of S is hereditarily finite we put:

S(ay = (sSI1()n} and 5 = U

Our study of decomposition law will need the following prop-

erties, due to Joyal [4], relative to neutral elements of S. Recalling

that a neutral element of S is an element seS such that e(s)=1, we have:

1.6 If seS,, then s is a neutral element of S.

1.7 For each s in S there exists a unique pair of neutral el-
ements ?%(s) and 'Bés) such that [Gg:),s] and [s,ﬁiﬂs)J are
both positve numbers. In particular, | aig)’s]=[g’ g?s)]:l'
1.8 The following statements are equivalent:
i) s is neutral;
ii) e(s)>0;

iii) Dds)=s (resp. gl(s)zs).
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1 if s is a neutral element of S
As a consequence, we have: e(s)= {0

otherwise
1.9 If [ Sr]>0 and e(r)=s (resp. e(q)=1), then s=q and r=’31(s)
(resgi s=r and g= 9s)).
1.10 If [gfr]>0, then we have:
i) 2ds)=94q)
i1) 9(s)=9r)
iii) 9q)=9dr).
1.11 If the decomposition law of S is hereditarily finite then

for each neutral element s of S we have d(s)=(s,s); i.e.

1(s)=0.

If r,seS,, we will denote S( )(r s) the set of all elements
( ) such that 9(u)=r and 2 (u) =s. Furthermore we will denote U (r,s)

the set of the strict decompositions of degree n of the elements of S( )(r,s)

The set S will be said to be finitely generated if, for each
pair r,seS,, ‘
i) S(l)(r s) is finite,
ii)[r,s]={qeS, | there exist u, v,w S with [ ]>0 and 9, (u)=r, ao(w)=q,
a(u) s} is finite.

1.12 PROPOSITION. Let S be a set equipped with a hereditarily
finite decomposition law and finitely generated. If, for each
n>1 and for each pair r,seS,, the cardinality of S(n) (r,s)
is less than or equal to the cardinality of U; (r,s) then

S(n)(r,s) is a finite set.

Proof If n=1 the proposition is trivial. Let us assume that the con-
. n+l
clusion holds for n. If (ul,...,uml)eU (r,s) then S[u ]["uml ]=

u .
=[ ]>0 for a certain ues
ul...un+1 (

weS( )(r,q) such that u eS(l)(q,s) and [ v ]>0. For the inductive

)(r s). Thus there exlsts qc[r s] and

Un
hypothesis we have, for every qe[r,s], that un (r,q) is finite. Therefore

T (r,s) is finite and this implies that S¢ (r,s) is finite.
S (n+1)
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1.13 COROLLARY. With the hipotheses of the proposition 1.12, if

S, is a finite set then S(n) is a finite set. 0

With each set S, equipped with a hereditarily finite decompo
sition law and with each positve integer n, we may associate a directed

graph G(SO,S(H)), the length n graph of S, assuming So as its vertex-set

and S(p) as its edge-set. Each arrow s of S(,) is directed from A(s) to
91(5). Obviously, if r,seS, we can regard S(n)(r,s) as the subgraph of
G(SQ,S(n)) of the arrows ueS(n) such that Jy(u)=r and al(u)=s.

The sets S and T with hereditarily finite decomposition laws

are said to have isomorphic presentations if, for each neN, the length n

graphs G(So,S(n)) and G(TQ,T(n)) are isomorphic graphs. Thus, S and T
have isomorphic presentations if, and only if, there exists a bijection
(n)(ao(s),Ql(s)) and T(n)(<Po(90(s),‘Fo(81(s))) have

the same cardinality for each n and for each seS(n).

qo:50—> To such that the sets S

§2. Incidence coalgebras

Each decomposition law (d,e) of a-set S allows us to define
a coalgebra over a characteristic zero field K. Let us associate 'a vari-
able xg to each seS and denote K[S] the K-vector space spanned by xg's.
Owing to 1.1 and 1.2, the linear maps

2.1 AS:K{S]——————>-K[S]®K[S]

S (5]
X S L X X
s > §riq,r g

242 E:K[S] ——K
1 if s is a neutral element of S
Xs /\%{
0 othervise
satisfy the properties required for diagonalization and counit map in
a coalgebra. The corresponding coalgebra C(S):(K[S],ASES) is_said to be

the Incidence Coalgebra of S.

We will assume throughout that the decomposition law of S is

hereditarily finite. Under this hypothesis it is easy to check that
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.AS(K[Sn])gK[Sn]®K[Sn] for each neN. Thus, if we restrict both AS and
ES to K[Sn] , we obtain a subcoalgebra C(Sn) of C(S).

We come now to prove a proposition about grouplike elements
of C(S), i.e. elements c satisfying the conditions As(c)=c®c and Es(c)=l.
Statement 1.11 tells us that if s is a neutral element of S then Xg is a

grouplike element of C(S).

2.3 PROPOSITION. If ¢ is a grouplike element of C(S) then c=Xg

for some s¢So.
Proof. Let c= 2;.ksxs be a grouplike element of C(S). We have:
_5,s _5 .S s _ sr S _ qur
Aéc)—ék As(xs)—ék %—x[q,r]xq®xr- c%‘r(zsk [q,r] )xq®xr-%_—rk K'xq®xp.

Let xt be a generator of C(S) occurring in c¢ such that 1(t)>1(s) for
every Xg wich occurs in c. Then ktkt=};ks [tft];éO. Thus there exists seS
such that k5£0 and [tft];éO; from prop.1.5 it follows 1(s)=21(t). Hence
1(s)=1(t)=0. Thus, if xg occurs in c then seS,. Since grouplike elements
of a coalgebra over a field are linearly independent (see[7]), we have

c=ktxt,t€S°. Owing to ES(C)=1 we deduce k®=1. This completes the broof.
0

Let C(S), C(T) be incidence coalgebras. We recall that a lin

ear map c?:C(S)———>—C(T) is a coalgebras map ifApo¢=(¢® ) oAgand Ero$=€s

2.4 PROPOSITION. Let ¢:C(S)—>C(T) be a coalgebra map. Then,

for every se€So there exists teTo such that P(xs)=xt.

Proof Let seSo; then Arl(ﬂf(xS)):(CP@-C{-‘)oAs(xs)ﬂﬂxs)@(\O(xs) and E,I(({)(xs))=
=55(xs)=1- Thus C{‘(xs) is a grouplike element of C(T). Hence, by prop 2.3

:?(xs)=xt where teT, 0

2.5 PROPOSITION. Let Q:C(S)ﬁC(T) be a coalgebra map. If x¢,
teT, occurs in cf(xs) then there exist two decompositions (q,r)
and (u,v) of s such that:

i) X, occurs in cth(’%‘) and x.au(t)=<f(xao(r));

ii) X, occurs in Cf’(xu) and xal(t)=<f1(xfal(u)).
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Proof By prop.2.4, the conclusion holds when 1(s)=0. Arguing by induc-
tion on 1(s)=n, let us assume that it holds for each element of S with a
length less than n. If ¢:C(S)—C(T) is a coalgebra map and if C\D(x )=
—5—1?)&) then, for each pair w,zeT, we have: e wkb[a b é:kg w z e
So, for w=9dt) and z=t we ha.vez.kg (t) t[a ] kt;éO (why x, occurs in
(x )). Hence there exists a decomp051t10n (i,j) of s such that k. °(t)740
and k ;40 If i=J4s) then j=s, thus, by prop.2.4, X530 (t)= P(x B, 23 ). If
l(_3)<l(s) then, by the induction hipothesis, there exists a decamposition
h,r) of j such that x occurs in ¢)(x ) and x =4 . N ob-
r) = 3 . o) amd Ty gy ) Mo e

tain the proof of the existence of the decomposition (q,r) of s by:

O<[ S ][ J -Ig[ ] Z[_ . Similary we can prove ii). 0

If we write ®K[S] for the n-fold tensor product of K[S]
with itself, making use of 1.4 we may define two new linear maps:

n+1

AGK[S] ——— @ K[S]
x I ;_ ( S Ix@® .. 8
S S1°+<Sn+1 sl...sn+1 Sy Sn+1

and
Z R[S}~ " K[S]
Xy —> ( Jx ®...8x
s le'“sml s

where the last sum ranges over all the strict decompositions (s_...s Y
n+

of degree n+l of s. Thus, if B :K[S]——-K[S] is the linear map defined by

0 is s¢€So
Ps(xs) = {

1 otherwise

we h Zn~(n+1P )OAnwhere el P. is the n-fold tensor productof Pc with
e have Ag=("@ Pg s ® B is p S
itself. Obviously,A1 =A It is easy to check that:

n+1

2.6 Ag - anon o= (A58(8D))oby

where I:K[S]—K[S] is the identity map. So, if ¢:C(5)—C(T) is a co-
algebra map, proceeding by induction on n, from 2.6 we deduce:

n+1

2.7 A CP" (®‘f’)uAs
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2.8 PROPOSITION. If ¢p:C(S)——=C(T) is a coalgebra map then:
AN n+1 n+1
A o= (®Pg)o( ®<P)OA

=n nil . n nil n+1 n ,n+l =n 0 =n
Proof A oP=('@ P )oleP=(S P )o (S P1o8=(E (o )o@ LAT-AY).
But, by 2.4 and by the definition of P (né} (PToff))o(Arsl—zg) is the zero

map; soA of= (n&l )(nél?)oé g

We observe that K[Sn]gl(er(zrsl). If Ker(ZE):K[Sn] we say that

C(S) is an n-regular coalgebra; moreover C(S) will be said to be regular

if it is n-regular for each natural number nxl.
Making use of the foregoing proposition we con prove the fol

lowing basic result:
2.9 PROPOSITION. Let :F:C(S)AC(T) be a coalgebra map. If C(T)
is an n-regualar coalgebra then, for each men, cf’(C(Sm) )SC(Tn)

Proof The special case where n=0 has been considered in prop.2.4. Let

now n>0. If xeK[S ], msn, thend (x )=0; hence, by prop.2.8,A (‘f‘(x ))=0

Thus, owing to the n-regularity of C(T) CP(x )eK [T ] 0
2.10 COROLLARY. Let ¢:C(5)—=C(T) be a coalgebra map and let C(T)
be regular. If X; occurs in Cf(xs) and 1(t)=1(s) then X90(t) =
=Lf(x’9o(s)) and xal(t)=gf(x,al(s)). 0
2.11 PROPOSITION. If C(S) and C(T) are two isomorphic regular

incidence coalgebras then S and T have isomorphic presentations.

Proof If CF:C(S)——>-C(T) 1s a coalgebra isomorphism then, by prop.2.4,

we can define a bijection P, :S5—>T, puttlng cfl(s) =t whenever C.f(x )=x

t
Moreover, by prop.2.9, CPrestrlcts to a coalgebra isomorphism between

C(S ) and C(T ), for each neN. Thus, 1f<-f’(x )= Zktx and if 1(s)=n, put-

ting ‘f) (x 1(t)~'n sx we obtain a linear one- to-one correspondence be-
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tween the vector spaces K(S, J=~K[S ]/K[S ] and K[T, _J~K[T 1/K[T ]
(n) n n-1 (n) n n-1

Now, by corollary 2.10, for each ses(n), an restricts to a linear one-to-
(n)(ao(s),al(s))] and K[T(n)(q’o(ao(s)),?o(al(s))] s
(n)(BO(S),'él(S)) and T(n)(cfo(éo(S)),‘f’o(El(S))) have the same
cardinality. 0

—one corrispondence between K[S

Thus the sets S

We observe that the hypothesis of regularity is necessary in
prop.2.11 as the following example shows. Let S= {ul,u2 ,u3 »P»q,T,s} be.
If S ={u ,uz,u3} , S(1)={p,q,r}, S(2)={s} with u1=’3°(p)= 9 (r)= 90(5); W =
= = = = = [ S = 1
_Bl(p)— ao(q), u, al(q) al(r) ’al(s) and [p,q] 2 then C(S) is a regular
incidence coalgebra. While the set Tz{ul',uz',ué,p,'q;r"s'} with T ={u1' ,ué,u:'s},
T(1)={p"q'} 9 T(2)={I‘"S'} ’ u1'=8'0(p')=3°(r')= ao(s')ﬂl?t: Bl(p')= ao(q')’u:;:
='a(q')='3fr')=3(s') and [ S ]:[p r']=1 gives rise to a non-regular in

1 .1 p;ql ] 1 —

»Q

. . 7 1 - .
cidence coalgebra C(T). For XS, xr|eKer(AT) and X xr,¢K[T1] . Obviously

S and T have not isomorphic presentations while the linear map ¢:C(S)—C(T)

defined by Cf(xui)=xui, i=1,2,3, ({i(xp)=xp, s (lv(xq)=xq. 3 C|0(xs)=xs.+)&,. and

<f>(x l_)=xs,-x[,.is a coalgebra isomorphism.

§3. Incidence algebras

In enumeration problems relative to a set S with a decomposi
tion law, the tool usually used is not the Incidence Coalgebra C(S) but
its dual algebra C(S)* This algebra is obtained by C(S) defining the con
volution product fig of the elements f,geK[S]*=Hom(K[S],K) in the fol-
lowing way:

3.1 (f-;:-g)(xs):=mp(f®g)°A5(J% )= g,.‘r[qfr]f(xq)g(xr)

where m:K® K—K is the product over K. It is plain that this convolution
product is associative and that the linear form&sis the two-sided ident
ity. The vector space K[S]* together with the convolution product is

called the Incidence Algebra of S. It will be denoted A(S). The invertible

elements of incidence algebra of S are characterized by the following

proposition.

3.2 PROPOSITION. An element fe A(S) is invertible if and only

if, for each s€S°,f(xS) is an invertible element of K.
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We recall that if A,B are two R-modules, a family (fi )ieI of elements of

Homp(A,B) is said to be a summable family if, for every acA, the set

{ieI|f;(a)#0} is finite. Given a summable family (f;); ¢7 of elements of

Homp(A,B) we obtain a new element iAZ—I f; of Homp (A,B) putting, for each

aeA, (iezlf-l)(a'):= f:Tfi(a)- Thus, if A=K[S] and B=K the set (& )seS where
) 4 ;) [

s
Xy > St

is a summable family. Obviously if f is an arbitrary element of K[S]:

. . : > s
s o =
then family (f(xs)x )Ses is a summable family and we have.m f(xs)x =f%

3.3 PROPOSITION. Let :K[T]*——~K[S]* be a linear map. If
(&]/(xt))teT is a summable family of K[S]* and if, for every
. )Y t t
family (k) r of elements of K, K‘J(ffe_'.rktx )=é;rkt"r(x ) then
there exists a linear map Cf’:K[S]——}-K [T] such that Y(f)=fop
(i.e. \{Jis the dual map of ().

Proof We put (\l»’(xt))(xs)=k§. Since (\f/(xt))teT is a summable family,

k§=0 for all but a finite number of teT. So, the linear map:
c.F:K[S]——)— K[T]
Xg T Z.kt X¢
. . 32 : t
is well defined and, for each feK[T]:*, Y(f)=fof. In fact, if f=tZe;rf(xt)x

is any element of K[T|* and xsel\’[S] we have:

(vaP)(xs)=f(1%‘ktxt)=§rl§f(xt) and

s

- t (> t _ t .

P (g )= P2 £t XE) ()= (2 £ ) YOx)) (g )= 2t (x ) (8 () =

il ¥

= Zaf(x P - 0
We observe that if we equip K[T]* and K[S]* with the standard
topology then the continous linear maps \iJ:K[T]*——->—K[S]* are exactly the
same linear maps keeping the summable families. Thus the prop.3.3 shows

that if \}J is continous, with respect to the standard topology, then ¥ is

the dual map of a linear map cf?:K[S]—-»— [T]«
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3.4 PROPOSITION. If the algebra map \{/:A(T)—-»A(S) is the dual

map of a linear map ¢:C(S)——~C(T) then < is a coalgebra map
Proof By Y(fxg)=f)xHg) we deduce that (figlhP=(foP)x(gof) . Hence:
mo (f® g)oATo‘f=mo((fokF)® (go?))oﬂszmo(f®g)o(‘~f’®‘|°)cAs.
If (A,rocf’)(xs)--l%h:vxu@xv and (q’&‘{?)oAs(xsk%ksqxp@xq, putting f=xT,
g=xt we have mo(x1‘®xt)oAl_u‘{»’(xs)=hIS't and mo(xT'® xt)o(tf’@@olg(xs):kgt

Thus ATo<f=(f-{’ &kP)oAs Moreover: ETokP=\]»'(E,.I)=£S 0

We come now to the study of the algebra A(S) considering the

subsets:

Ja(8) = {feA(S)If(xs)=0 for every seS,_;}.

All these sets are ideals of A(S) and, in particular, Jl(S) is its Jacobson
radical. In fact it is possible to prove that _fEJJl(S) if and only if,
for every pair of elements g,heA(S), Es—g.x.f.x.h is an invertible element of

A(S). Moreover, for each n31, we have
n
3.5 I he1(8)ed (8) and (J,(8))= 7 (8).

Now we want to give a condition about the algebra A(S) which

is a consequence of the notion of n-regularity. .

3.6 PROPOSITION. If C(S) is an n-regular incidence coalgebra

then, for every pair of sequences s -++,S;€S, with 1(si)>n,

1’
and kl,...,kmeK then exists a finite family of scalars
hrl' o’ where (15'1,...,1*n+l ) is a strict decomposition
' n+

of degree n+l1 of sy, i=1,...,m, such that:
i Pl .. s nxl
f_Zhrl"’rrHlx oo et X
with f(xg, )=kj.
i

Proof If C(S) is an n-regular incidence coalgebra then the space spanned

by Agxsi)‘s, with 1(sj)>n and i=1,...,m, has not a dimension lower than

. A s. .
m. Hence, if Agxsi)= Z‘[rl"'lrml]xrl@ ...®xrn+1, there exist hr1 -
such that Z[ Si Th =k.. Thus f=Zh xrl,\;....-;:-xI;l+l sat
I‘l...rn+1 rl...rn+1 p I‘1..-!’n+1 -
isfies the conditions f(xg;)=kj- 0
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3.7 PROPOSITION. Let C(S) be a regular incidence coalgebra. If
S is finitely generated then, for each nsl and for each pair
I',SGSQ,

xrv‘:-Jn(S)-x-xs = xr-::-(Jl(S))n*xs.

Proof Since J;‘(S) c Jn(S), we will only prove that xr-xJn(S)-:acss_.xr*(Jl(S))gf
The proof is by induction on n.The conclusion - clearly holds when n=1.
Thus we suppose that the conclusion holds for n. For prop.1.12, since
C(S) is regular, the sets S(m)(r s) are finite for each mxl. Thus, if
fex” I 1(8)sx xs, for prop.3. 6 we can find a sequence of linear forms

En+128n42r - 280, 1€(J) (s)™, such that gn+1(xq) = f(xq) "Z‘[ tn+j(xq)

for every qu(ml)(r s) and En+i —Z_hrl mlx-l .,‘.---n-x where the

sum ranges over all the strict decompositions of degree n+l1 of the el-

ements of S(n;_i)(r,s). Obviously the family (gn+i )izl is a summable fam-

ily and we have f=i§1gn+i' Therefore:
= ;_ 2. Tn+i
f=( e = ] (*_hrl"'rm»ix oo X )
VGS(I)
where the second sum ranges over all the strict decompositions (r ,...,r .)
1 i

of elements of iL>’JrS(n+i)(r,s) with ry=v. Thus:

_f = uelr,s] xv'x'g""’
veS(1)(r,u)
whith gu,VG.xue:-Jn(S)-i%xS:xu%:-(J] (8)) xS by the induction hypothesis. Since
the set of pairs (u,v) such that uelr,s] and veS(q1) (r,u) is finite,we
can conclude that fex A(Jl(S))n+1 S 0
3.8 COROLLARY. With the hypotheses of proposition 3.7, if S, is

a finite set then J; (5)=(J; (s))".
Proof By corollary 1.13 S(n) is a finite set and we have:

FlS) = r;&xmn(s).x_xs =r;_s>:€_soxr-;:~(J1(S))gxs =4 (s))". ¥

In order to prove a proposition, for incidence algebras, simi
lar to the prop.2.11 we need two results which we give without proof.
These results have been proved by Leroux (see [5]) in a particular case,

but it is possible to repeat the same proof in our case.
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3.9 PROPOSITION. If ?:A(S)—%—A(T) is an algebra map then
WP, (8)) g I (T). 0
3.10 PROPOSITION. If qJ:A(S)——e-A(T) is an algebra isomorphism
then there exists an inner automorphism L of A(T) such that
bolf' restricts to bijection from (xs)seso to (xt)té-r0 0
3.11 PROPOSITION. Let S be a finitely generated set with regular

incidence coalgebra and let Y:A(S)——>A(T) be an algebra map.
If So is finite or\i} restricts to a bijection from (xs)seso

to (xt)te'ro then \{/ is the dual map of a coalgebra map (Ffrom
C(T) to C(S).

Proof Let us suppose So is finite. By corollary 3.8 and prop.3.9 we have
\,/(Jn(S))= \P(JI(S)D)=(‘+/(J1(S)))I§ (JI(T))n=Jn(T). Therefore, it te’[&m)thm:

i) ses(n) and \y(xs)(xt);éo implie n¢m, so, since Sp is a finite set,

k’J(xS)ses is a summable family;

ii) for every family (ks)ses of elements of.K,
\y(s%ksxs)(xt) =\}/(%mksxs)(xt) +$(S€zszsmksxs)(xt) = (S%mksﬁis))(xt);
in fact S, is finite and, since s%%;smksxse‘lm”(S), ‘f’(sfz—;-smksxs)&'.lmﬂ(ﬂ
Thus, by prop.3.3 and prop.3.4 \f-’ is the dual map of a coalgebra map
C{’:C(T)ﬁC(S).

If Y restricts to a bijection from (xs)seso to (Xt)teTo we

put, for seSo, Wds)=teTo whenever kf/(xs)=xt, then, by prop.3.7 and 3.9,

we have:
, . n r
\P(xx;"]n(s)*xs)= \er':“ul(s))-x- XS).(_: \"'(xr)*Jn(T)-:(-*(XS)=X*0( )-x-Jn(T)-X-th(§)
Now, arguing as above, we can conclude the proof. ' 0
3.12 COROLLARY. Let C(S), C(T) be regular incidence coalgebras
and let S, T be finively generated sets. If A(S) and A(T)

are isomorphic incidence algebras then S and T have isomorphic

presentations.
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Proof If\F:A(S)—-a~A(T) is an algebra isomorphism then, by prop.3.10,

there exists an inner automorphism L of A(T) such that Loy restricts to

a bijection from (xs)seSo to (xt)teTo' Thus C(S) and C(T) are isomorphic

coalgebras and, by prop.2.11, we get the conclusion. il
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