
Publ. I.R. M.A. Strasbourg, 1988, 341/S-16
Actes 16 Seminaire Lotharingien, p. 109-122

THE DUALITY BETWEEN INCIDENCE ALGEBRAS

AND COALGEBRAS. A FEW REMARKS

BY

LUIGI AZZENA AND FRANCESCO PIRAS

Introduction

A set S with a suitable "decomposition law" gives rise to a

coalgebra C(S), the so-called Incidence Coalgebra of S. Its dual algebra

is the better known Incidence Algebra of S, A(S). In the last few years,

a few particular cases of these structures have been studied in great

detail (see flj, [2j, [5]). These concepts have shown themselves to be

powerful tools in enumerative combinatorial problems with which they are

concerned. We are interested in them from a general point of view. In

fact, in our opinion they are likely to be the source of a correct alge-

braic counterpart of combinatorial structures.

In the quoted cases, S is the set of the intervals of a lo-

cally finite ordered set (see [2]) or the set of the morphisms of a

Moebius Category (see [l] and [5]). In both cases, the use of the so-

-called "standard topology" plays a central role. Nevertheless, this use

is not essential. As we shall see, it may be substituted by the duality

between A(S) and C(S). Making use of this duality, as well as of new re-

suits about Incidence Coalgebras, in the present work, we also general-

ize a few properties about Incidence Algebras due to Leroux [5] .

§1. Decomposition law of a set

Let S be a given set. Let N[S] denote the free abelian

monoid generated by S. A pair of applications:
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d:S-

e:S.

->N[SxS]

.$- N

is said to be a decomposition law of S if the coefficients [J, defined
g ~^'T

by: 2-. [_ _1(q;r):=d(s), satisfy the following equations:
(l>r <l»r

i[-SJ[/J = ^[/J[_SJ
-r-'q, r"t, v' -r^'q, t"r, v-

1.1

1.2 ^Clc(q)-£[r'<le(q>-^'
If this is the case, these non-negative coefficients [op]

are called section coefficients of S. We shall also say that the element

seS can be cut into the ordered pair (q, r) in exactly ^ ] ways 5 more-
s

over, if [n. r]>0, the pair (q, r) is said to be a decomposition of s.

The following example of decomposition law has been studied

in [l] and [5J . It can be also found, together with many others, in [4] .

Let C be a small category and let S=Mor(C). Let us suppose that the set

{(q, r)|roq=s} is finite for every s^S. The decomposition law of S is now

defined in the following way:

d:S.

s

e:S-

s

-^N[SxSl

r^(q'r)

if s is an identity of C

otherwise

s ^ (1 if roq=s
In this case, we have: I J = -IZ ~~. ~"1.

. 0 otherwise.q, r'

s

We denote [n. f. v] the common value of both sides of l. L This

is the number of ways we can cut s into the ordered triple (q, t, v). Re-

1. 1 allows us to define more general coefficients C. s^ 1:
n+1

sl---snsn+l 
= 

T sl-'-sn-ltj^sn+lj
as well as a map:

1.4 N[Sx... xS]

. sn+l
Ksl»---'sn+l)



INCIDENCE ALGEBRAS AND COALGEBRAS

Obviously, d"=d.

If [, , ]>0 the n-tuple (s, ,..., s ) is called a decomDO-
s^,..., s^ - . i' '-n

sition of degree n of s. In particular, the 1-tuple (r) is said to be a

decomposition of degree 1 of s^S if, and only if, r=s. The decomposition

(s^,..., s^) is called a strict decomposition if d(s^)^(s^ , s^ ) for Is-ifn.
If each s<S admits a finite number of strict decompositions, we say that
the decomposition law is hereditarily finite. In this case, the supremum
of the set of degrees of strict decompositions with reference to a given
element seS is called the length of s and denoted l(s).

1. 5 PROPOSITION. For every hereditarily finite decomposition
law of S if [/_J>0 then l(q)+l(r)^l<s).

(l»r

F^^f. Let l(q)=j and l(r)=h, let (q^,..., q ) and (r^,..., r ) be strict
decompositions of q and r respectively. We have:

',,.., ;,... ^ - ^0(,, n. <^., l.^t, ';^.<,^,. r,^o
Thus, (q^,..., q , r^,..., r^) is a strict decomposition of s and l(q)+l(r)<:
<l(s). g

If the decomposition law of S is hereditarily finite we put:

S(^ = ^S|l(s)=n} and S^-^S^.
Our study of decomposition law will need the following prop-

erties, due to Joyal [4], relative to neutral elements of S. Recalling
that a neutral element of S is an element seS such that e(s)=l, we have:

1.6

1.7

1.8

If seSg, then s is a neutral element of S.

For each s in S there exists a unique pair of neutral el-

ements ^(s) and ^(s) such that [^, s, J and [" ^_J are
^S ) , S S , C/-^. S

both positve numbers. In particular, f^, s, ]=[ s, J=i.
:s), sJ -l-s, 9^(s)-l~"

The following statements are equivalent:

i) s is neutral;

ii) e(s)>0,

iii) '3d(s)=s (resp. '3^(s)=s).
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As a consequence, we have: e(s)=
if s is a neutral element of S

otherwise

1.9

1. 10

1. 11

If [ ]>0 and e(r)=s (resp. e(q)=l), then s=q and r=9^(s)
(resp. s=r and q='9j[s)).

If [ ]>0, then we have:
i) 3d;s)='9j;q)

ii) 9^s)=9^r)
iii) 9,(q)=9j;r).

If the decomposition law of S is hereditarily finite then

for each neutral element s of S we have d(s)=(s, s), i. e.

l(s)=0.

If r, seSo, we will denote S/_^(r, s) the set of all elements

ueS^ ^ such that 9Ju)=r and 9(u)=s. Furthermore we will denote Up(r, s)

the set of the strict decompositions of degree n of the elanents of Sf_^(r, s)

The set S will be said to be finitely generated if, for each

pair r, seSo,

i) S,., Jr, s) is finite;

ii)[r, s]={qeSo|there exist u, v, w S with [ ]>0 and 9g(u)=r, c^ (w)=q,

3^(u)=sJ is finite.

1. 12 PROPOSITION. Let S be a set equipped with a hereditarily

finite decomposition law and finitely generated. If, for each

n^l and for each pair r, seSy, the cardinality of S^n) (r, s)

is less than or equal to the cardinality of U'^' (r, s) then

s/_i(r»s) is a finite set.

Proof If n=l the proposition is trivial. Let us assume that the con-

clusion holds for n. If (u,,..., u_, ) Un+(r, s) then Z, [ v ][ u ]=
^ .. ^. ". ... .. -r---'"^i-us VA'-/ '". '" vTSLUi... ^JLv, u^i

un+l
]>0 for a certain ueS, _ , ^(r, s). Thus there exists qs[r, s] and

weS/_^(r, q) such that u_ ,eS/, ̂ (q, s) and [ ]>0. For the inductive
u^.. -u^'

hypothesis we have, for every qe[r, s], that Un(r, q) is finite. Therefore

(r, s) is finite and this implies that S(n^. ^)(r, s) is finite. []
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1. 13 COROLLARY. With the hipotheses of the proposition 1. 12, if

S is a finite set then S,. ^ is a finite set. D

With each set S, equipped with a hereditarily finite decompo

sition law and with each positve integer n, we may associate a directed

graph G(So, S(n)), the length n graph of S, assuming So as its vertex-set

and S(n) as its edge-set. Each arrow s of S(^) is directed from 3o(s) to

^(s). Obviously, if r, seSo we can regard S^ ^(r, s) as the subgraph of

G(SQ, S(^)) of the arrows ueS^^ such that "5o(u)=r and 9^(u)=s.
The sets S and T with hereditarily finite decomposition laws

are said to have isomorphic presentations if, for each neN, the length n

graphs G(SO, S(^)) and G(To, T(^p are isomorphic graphs. Thus, S and T
have isomorphic presentations if, and only if, there exists a bijection

(.fo:So->To such that the sets S(9o(s),^(s)) and T^)(<fo(3o(s), fo(9i(s))) have

the same cardinality for each n and for each seS^^.

§2. Incidence coalgebras

Each decomposition law (d, e) of a set S allows us to define

a coalgebra over a characteristic zero field K. Let us associate a vari-

able x,, to each seS and denote K[S] the K-vector space spanned by x^'s.

Owing to 1. 1 and 1. 2, the linear maps

2.1

2.2

A^:K[S]. ^K[S]®K[S]

L.LS^-|X^®X_
q7r'q, r' q" r

^:K[S]-^K

xs
1 if s is a neutral element of S

. 0 otherwise

satisfy the properties required for diagonalization and counit map in

a coalgebra. The corresponding coalgebra C(S)=(K[s] , Aqi Sc;) is_ said to be

the Incidence Coalgebra of S.

We will assume throughout that the decomposition law of S is

hereditarily finite. Under this hypothesis it is easy to check that
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A^K[S^])sK[Sj®K[S^] for each neN. Thus, if we restrict both A and
^ to K[S ], we obtain a subcoalgebra C(S ) of C(S).

We come now to prove a proposition about grouplike elements

of C(S), i. e. elements c satisfying the conditions A^(c)=c®c and £c(c)=l.

Statement 1. 11 tells us that if s is a neutral element of S then x_ is a
s

grouplike element of C(S).

2.3 PROPOSITION. If c is a grouplike element of C(S) then c=x,

for some seSo.

Proof. Let c=2. ksXg be a grouplike element of C(S). We have:

A^c)4ksA^x, )4ks^qsr]xq®x^^(Z^[qs^)xq®x^L. kqkrXq®x,.
Let Xf be a generator of C(S) occurring in c such that l(t)$. l(s) for

every Xg wich occurs in c. Then k k =.^-ks [^^]^0. Thus there exists seS
such that ks^0 and [t, t1^0, from prop. 1. 5 it follows Ks)?'21(t). Hence
l(s)=l(t)=0. Thus, if Xg occurs in c then seSo. Since grouplike elements

of a coalgebra over a field are linearly independent (see[7]), we have

c=ktXt, teSo. Owing to £^c)=l we deduce kt=l. This completes the proof.
D

Let C(S), C(T) be incidence coalgebras. We recall that a lin

ear map cj):C(S)-s-C(T) is a coalgebras map ifA^, o^=(U>81^) oAs and &j, o<f>=£g

2. 4 PROPOSITION. Let cf;:C(S)-^C(T) be a coalgebra map. Then,

for every seSu there exists t£To such that <p(xs)=Xf

Proof Let seSo, then A^(x g»=(Cf>S, (£)o^^xs)=^Xs)®fxs) and £^Xg))=
=£^. Xs)=l. Thus Cp(xs) is a grouplike element of C(T). Hence, by prop 2.3

c^(xs)=Xt where teTo Q

2.5 PROPOSITION. Let^>:C(S)-^C(T) be a coalgebra map. If x^ ,
teT, occurs inc^(xs) then there exist two dccompositions (qr)

and (u. v) of s such that:

i) ^ occurs ln^<x^) and x,^(t)=f<x^(r)) i

ii) ^occurs in Cf(Xy) and xg (t)=f(x-d (u) ̂ .
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Proof By prop. 2. 4, the conclusion holds when l(s)=0. Arguing by induc-

tion on l(s)=n, let us assume that it holds for each element of S with a

length less than, n. If c^>:C(S)-»-C(T) is a coalgebra map and if <y(x )=
T-.

=Zl^^ then, for each pair w, zeT^ we have: a^Sk^ k^^t)"l=^Tk^ ̂ z^ .'
So, for w=9d[t) and z=t we have J-k^°(t)k^s^=kt^0 (why x occurs in

a, b d '2.
(Xg)). Hence there exists a decomposition (i, j) of s such that k^° ^0

aiid k^O. If i=9j;s) then j=s, thus, by prop. 2. 4, x9o(t)=CP^X-2 ^t ^" If
l(j)<l(s) then; by the induction hipothesis, there exists a decompositi.on

(h, r) of j such that x occurs in <^>(x ) and x ^ ^=<f(3^ / ^ ). Now we °b-
I* 0^ ^, T^ ̂  OQ

tain the proof of the existence of the decomposition (q. r) of s by:

o<[. s. ][, j ]$[. ,
s ]=^LW.1[ 

s 
]. Similary we can prove ii). Q

'i, j" "h, r"'.'"i , h, r" w l, h" "v, r"

If we write ®K['S] for the n-fold tensor product of K[s]

with itself, making use of 1. 4 we may define two new linear maps:

A^:K[S1 -n®Krs]

TTT n+l's.
Jx_® ..:®x

. sn+l' SF ~ s"+l
and

A^:K[S]- n®K[S]
L_t

s, ...s
.. . ®x

n+1 °l 'n+1

where the last sum ranges over all the strict decompositions (s^... s ^)
1 n+1

of degree n+1 of s. Thus, if P(~ :KfS]-^-K[SJ is the linear map defined by

-0 is scSo

1 otherwise
ps(xs) =

we have Ag=(®P^)°Ag where ® Pg is the n-fold tensor product of Pg with
itself. Obviously, A =Ac. It is easy to check that:

2.6
n+1

AsT A= (A"&I)oAg= (As®(®I))oAg

where I:K[S]-?-K [Sj is the identity map. So, if c^:C(S)-^-C(T) is a co-
algebra map, proceeding by induction on n, from 2. 6 we deduce:

2.7 An^= (n^\)^
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. PROPOSITION. If<4>:C(S)

u<0= f%l(
'T

;(T) is a coalgebra map then:

A^y= (n®lPs)o(n®lcp)oA;.

Z£^A;o^(n^p^oA;o^(^lp^o(n^), A^(n®(p^y))o(A^-An).
But, by 2. 4 and by the definition of P^ , (n^1 (P^o <^) )o (An-^) is the zero
map; soA^o^>= (n^)lP )o(n®lcf))oA^ D

We observe that KCs^]cKer(A^). If Ker(A^)=K[S ] we say that
C(S) is an n-regular coalgebra, moreover C(S) will be said to be regular
if it is n-regular for each natural number n$l.

Making use of the foregoing proposition we con prove the fol
lowing basic result:

2. 9 PROPOSITION. Let ̂ ):C(S)-^C(T) be a coalgebra map. If C(T)
is an n-regualar coalgebra then, for each men, ^(C(S_))cC(T_)

m n'

proof The special case where n=0 has been considered in prop. 2. 4. Let

now n>0. If x^eKC.Sj, m.<n, then2g(x )=0, hence, by prop. 2. 8, A ;(<f(x^) )=0
s

Thus, owing to the n-regularity of C(T), c^(x )eK[T ] . ' Q

2. 10 COROLLARY. Let c{?:C(S)-^C(T) be a coalgebra map and let C(T)

be regular. If x^ occurs in C^Xg) and l(t)=l(s) then x^^^=
=^(x^(s))andx^(trt f(x^(s))- D

2. 11 PROPOSITION. If C(S) and C(T) are two isomorphic regular
incidence coalgebras then S and T have isomorphic presentatims.

proof Ifcf=C(S)->. C(T) is a coalgebra isomorphism then, by prop. 2. 4,
we can define a bijection ̂ :S^-^-T^ putting c^(s)=t wheneverC^(x )=x^ .
Moreover, by prop. 2. 9, <^restricts to a coalgebra isomorphism between

C(S^) and C(T^) for each neN. Thus, if^(x^)=Zktx and if l(s)=n, put-
ting .lf(xs)=l(t)^nksxt we obtain a linear one-to-one correspondence be-
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tween the vector spaces K[S, J=;K[S ]/K[S J and K[T, J^K[T ]/K[T ,]
n n-1 (n) n n-1

Now, by corollary 2. 10, for each sc^^<^ restricts to a linear one-to-

-one corrispondence between K[S 
^ ^(9o(s), 3i(s))J and K[T (<yo (9o(s)),<fu (^(s))].

Thus the sets S, , (^(s), "^.(s)) and T, , (q>_(5, (s)), ip. (9. (s))) have the same
n) 'o . - - - -^ . . (n) lo o '' fo''i

cardinal!ty. Q

We observe that the hypothesis of regularity is necessary in

prop. 2. 11 as the following example shows. Let S=^u , u , u , p, q, r, sj be.

If S^{^, u^u^, S(^^p, q, r^, S(^={sJ with u^= 9,(p)= 3(r)= 9^(s), ^=
='9^p)=^(q), u =3^q)=9^(r)=9^s) and L s ]=2 then C(S) is a regular
incidence coalgebra. While the set T=^u', u^ , u^ , p^'q^'rJs'J with To={u', ul, u1 },

T(l)=^'q'l' T(2)^r, ls'^ "i=3o(P')=^r')=5o(s'), U2= S/P')= ̂ (q-), U3=
='3.(q" )='5jlr1 )=S(s') and L, s J=Li^ J=l 6ives rise to a non-regular in

P)(IT)CI ~

cidence coalgebra C(T). For x -x 6Ker(&^, ) and x -x ^K[T ]. Obviously
S and T have not isomorphic presentations while the linear nap cf:C(S) - ̂ C(T)

defined by <^( 3^ )=Xy, , i=l, 2, 3, <^(x^)=x^i , cf(Xq)=Xq, , <^(Xg )=Xg, +x^, and
<^(x^=x , -x^i is a coalgebra isomorphism.

§3. Incidence algebras

In enumeration problems relative to a set S with a decomposi

tion law, the tool usually used is not the Incidence Coalgebra C(S) but

its dual algebra C(S)-;- This algebra is obtained by C(S) defining the con

volution product f;;-g of the elements f, g£K[S]*=Hom(K[S], K) in the fol-

lowing way:

3. 1 (f..g)(Xg):=mo(f®g)oA^ )= ̂-r[qsr]f(Xq)g(x^)
where m:K®K-^-K is the product over K. It is plain that this convolution

product is associative and that the linear form £g is the two-sided iden^t
ity. The vector space K[S]-;:- together with the convolution product is

called the Incidence Algebra of S. It will be denoted A(S). The invertible

elements of incidence algebra of S are characterized by the following

proposition.

3.2 PROPOSITION. An element feA(S) is invertible if and only

if, for each seS , f(x ) is an invertible element of K.
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We recall that if A, B are two R-modules, a family (f^)^^]; of elements of
Hom^(A, B) is said to be a summable family if, for every a<A, the set

{iel|f^(a)^0} is finite. Given a summable family (f^^gj of elements of
HomR(A, B)^ we obtain a new element ^ f^ of Hom^ (A, B) putting, for each
a A' (i^Tfi)(a):=; i$7fi(a)- Thus' if A=KCS] and B=K the set (Xs ) whereses

XS:K[S]- K

^t ^ ~^ °t

is a sununable family. Obviously if f is an arbitrary element of K[S'J*

then family (f(x^. )xs)^^(; is a summable family and we have: ̂ s-f(x )xs=f.
s

3. 3 PROPOSITION. Let ^:KfT]<--^K[Sj» be a linear map. If

(«^'(xt))^^ is a summable family of K[S]* and if, for every

family (k^)^^ of elements of K, ̂ '(^k^xt)=^, k^'(xt) then
there exists a linear mapc^:K[sj->-K. [l] such tha. t^(f)=l
(i. e. ̂ is the dual map of'.,'1).

Proof We put (^(xt))(x3)=kJ. Since (^f(xt))^^y is a summable family,
k^O for all but a finite number of teT. So, the linear map:

^>:K[SJ-^. K^T]
xs --- tzTkS xt

is well defined and, for each feK[T]», ̂ (f)=fo<f>. In fact, if f=Z-,f(x^)xt
is any element of K[fl* and x  K[s] we have:

(f^)(x, )=f(^K, )=^l{f(x, ) and
^(f)(x, )=^(^f(^)xt)(x, )=(^f(x, )^(xt))(x, )^f(x^)^(xt)(x^)=
=t^f(xt)^ . D

We observe that if we equip K[T]* and K[s]* with the standard

topology then the continous linear maps ̂ :K[Tj»->-K[S]* are exactly the
same linear maps keeping the summable families. Thus the prop. 3. 3 shows

that if ̂  is continous, with respect to the standard topology, then ip is
the dual map of a linear map (f: K [s]-^- [Tj .
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3. 4 PROPOSITION. If the algebra map^:A(T)->A(S) is the dual

map of a linear map<^:C(S)-?-C(T) then c^ is a coalgebra map

Proof By ̂ (fftg)=4<f)-:;-*Kg) we deduce that (f-;;-g>)f=(fof)*(gof). Hence:

mo(f®g)oA otf5 =mo((fo^)(3(go<p))oA =mo(f®g)o(kf®f)oA .

If C\, u^)(x^)-Z^huvx ®x^ and (lf>®f?)oA,(xJ=jLkpqx_®^, putting f=xr,
s u, v s u" v '' '" -S' s' p7q s p~"q

g=xt we have mo(xr®xt)oZ^o^(x )=hrt and mo(xr®xt)o(^®(poZ^, (x )=krt

ThusA^o<f=(Cf&^)oA^ Moreover :£ o<f=^(6^=$^ Q

We come now to the study of the algebra A(S) considering the

subsets:

Jn(S) = {feA(S)|f(Xs)=0 for every s&S^_^].

All these sets are ideals of A(S) and, in particular, J, (S) is its Jacobsai

radical. In fact it is possible to prove that . fe. J, (S) if and only if,

for every pair of elements g, heA(S), £g-g.%. f.;;-h is an invertible element of
A(S). Moreover, for each n.>l, we have

3. 5 J"., (S)cJ_(S) andJn. l(s)CJn(s) (J^(S))cJ (S).

Now we want to give a condition about the algebra A(S) which

is a consequence of the notion of n-regularity.

3.6 PROPOSITION. If C(S) is an n-regular incidence coalgebra

then, for every pair of sequences s ,..., s eS, with l(s )>n,

and k ,..., k^£K then exists a finite family of scalars
h

of degree n+1 of s^, i=l,...,m, such that:

f=2Zh^...^
with f(xg )=ki.

ri. -. r^. i' where (ri»... »rn+i ) is a strict decomposition

n+1 x ^-. .*x n+l

Proof If C(S) is an n-regular incidence coalgebra then the space spanned

by5^. Xs^)ts, with l(si)>n and i=l,..., m, has not a dimension lower than
m. Hence, if A^XS^)= Z. [r^ _5i^^x^. ^ ... <8x there exist h^.
such that Z. [^ si^ ~\h^ ^ =k, . Thus f=Zh

-rr--rn+i' rr--rn+i 1 - rr--rn+i
isfies the conditions f(xg )=k^.

X '. -;;-... j;-X

ln+l
^+1 sat

a
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3. 7 PROPOSITION. Let C(S) be a regular incidence coalgebra. If

S is finitely generated then, for each n^l and for each pair

r, seSo,

xr*Jn(S)*xs = xr-:;- (J^ (S) )n;,. xs.

Proof Since J^(S) c J (S), we will only prove that xr;Jn(S)»xs&xri;-(Ji(S))^
The proof is by induction on n. The conclusion ' clearly holds when n=l.

Thus we suppose that the conclusion holds for n. For prop. 1. 12, since

C(S) is regular, the sets S(^^(r, s) are finite for each m^l. Thus, if

fex -;;-J ^(S)-;:-x , for prop. 3. 6, we can find a sequence of linear forms

6n+l'Sn+2'---'en+i6(Jl(s))"^' such ̂hat gn+i(Xq) = f(Xq) - ^ ̂ j (xq)
for every q S(^+i)(r, s) and gn+i = Z-hr^ .. . r^^x:l %...,;. x'Il+J- where the
sum ranges over all the strict decompositions of degree n+1 of the el-

ements of s(n.,. i)(r»s). Obviously the family (^+i)i^l is a summable fam-

ily and we have ^j^Sn+i' Therefore:

,
z.

f= ( uf77s] xl)w tz-hri .. rn. ix^-*x
n+i

V6S^)&-, U)
where the second sum ranges over all the strict decompositions (r,,..., r_.)

of elements of ^<s(n+i) (r;s) with r^=v. Thus:

f = ^sj xv:;'e"^
v£S(i)(r, u)

whith g ^xu-;;-Jn(S)-;;-x =x-;;-(Ji (S))n--;-xs by the induction hypothesis. Since

the set of pairs (u. v) such that ue[r, s] and veS^^ (r, u) is finite , we
can conclude that f xr.i;-(Ji(S)) -» xs . Q

3.8 COROLLARY. With the hypotheses of proposition 3. 7, if So is
>n

a finite set then Jn(S)=(J^(S))'

Proof By corollary 1. 13 S(n) is a finite set and we have:

Jn(S) = ^^xr.-Jn(S).̂ xs = ^^ xr*(Ji (S) )". xs -(^(S))n. |i
yS ^>o r;S£^o

In order to prove a proposition, for incidence algebras, sinri.

lar to the prop. 2. 11 we need two results which we give without proof.

These results have been proved by Leroux (see [5]) in a particular case,

but it is possible to repeat the same proof in our case.
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3.9

3. 10

PROPOSITION. If ^ :A(S)-

^(Ji(S))CJi(T).

. A(T) is an algebra map then

a

PROPOSITION. If ^:A(S)-^. A(T) is an algebra isomorphism
then there exists an inner automorphism L of A(T) such that

Co^ restricts to bijection from (xs)ggs to (xt)^^ Q

3. 11 PROPOSITION. Let S be a finitely generated set with regular

incidence coalgebra and let ̂ :A(S)-^-A(T) be an algebra map.

If So is finite or <^ restricts to a bijection from (xs)g
to (x )^g<p^then ^ is the dual map of a coalgebra map Cp from
C(T) to C(S).

Proof Let us suppose So is finite. By corollary 3. 8 and prop. 3. 9 we have

^(Jn(S))=^(Ji(S)n)=(4/(Ji(S)))^(Ji(T))n=J^(T). Therefore, if te^then:
i) s s(n) and ̂ (xs)(x^)^0 implie n,<m, so, since Sm is a finite set,

^(xs) g is a summable family,

ii) for every family (ks)ggs of elements of. K,

^(^xs)(x, ) -^^)^) ^(^^xs)(x, ) = (^k^xs))(x, ),
in fact S^ is finite and, since ̂  k^J^^(S), ̂ (^^vs)ej^(r[)
Thus, by prop. 3. 3 and prop. 3. 4 ^ is the dual map of a coalgebra map

C^:C(T)-^C(S).

If ̂ restricts to a bijection from (x )g g to (xt)^g^, we
put, for s So, ^'d(s)=teTo whenever ̂ (xs )=xl, then, by prop. 3. 7 and 3. 9,
we have:

^xr^(S),, xs)=^(xr. -(Ji(S))n-xs)c^(xr)-^(T), ^(xs)=x'f'o(r)*Jn(T)-. -xtu(s)
Now, arguing as above, we can conclude the proof. Q

3. 12 COROLLARY. Let C(S), C(T) be regular incidence coalgebras

and let S, T be fini^ely generated sets. If A(S) and A(T)

are isomorphic incidence algebras then S and T have isomorphic

presentations.
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Proof If vp:A(S)-^-A(T) is an algebra isomorphism then, by prop. 3. 10,

there exists an inner automorphism I of A(T) such that Lo^ restricts to

a bijection from (xs)s^s^ to (xt)^ 1.^. Thus C(S) and C(T) are isomorphic
coalgebras and, by prop. 2. 11, we get the conclusion. Q
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