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Set theory and infinitary binomial coefficients

by J. W. Degen - September, 1986

Introduction

First some definitions.

Let X and Y be sets. We write X^" Y to mean that there is an in-

jection from X into Y , and X /^/Y will mean that there is a bi-

. jection between X and Y . Occasionally we shall need the notation

X^, * Y , by which we mean that either X is empty or Y can be sur-

jected onto X .
^

The expression (^) denotes the set of all subsets Z of X such that

Z .^-'Y , and is called a binomial coefficient, with basis X and

supponent Y . A binomial coefficient is called finitary (infinitary)

if its basis is a finite (infinite) set. It is well known that in-

finitary binomial coefficients play the central role in infinitary

combinatorics, notably in Ramsey theory.

Now, the present paper is not about Ramsey theory, that is: nothing
^

like homogeneous sets w. r. t, partitions of (^) will be considered.

The aim of our paper is a more modest one: viz. to establish size

comparisons between binomial coefficients, and between them and

other expressions. We shall restrict the range of our investigations

even further: We shall consider only binomial coefficients with
^

finite supponents, which are written as ('^), where n is a (settheo-

retic) natural number.

These delineations stated, the following question arises:
^

What nontrivial things can one say about the size of ('^), when X is

infinite? For if X is infinite, and m, n are any positive integers,

then X ^^(x
m -(;). (*

Okay. The statement (*) certainly follows from the axiom of choice

(AC), and we shall see below, that in turn AC is implied by-the spe-
)(

cial case: For all infinite X : X'^-^('^) . As an exercise, let us
^

prove that AC implies (*). Let us denote by (^-"/^) the set of finite

subsets of X . It suffices to show (using AC) that for all infinite

<co
)<: x
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,m
Let m ^(^», and let f  -X'" (i. e. f is a function from m into X).

Set I(f) range
m

the set (<<o) , i. e. we have
x

Then I is a surtection of <-/X'" onto
m£GJ'

k^' -
Using AC we have C-".̂ )^ '^<'X

m££u'

m

*^-/ x
m£Co

m

Furthermore

have, again by AC , X

for all positive integers n

m

.^~>, for some o<^ & on

it follows

mecj
<^'. -^n^/X;^X

^ 0

since X is infinite

Since -^ J^n
'oc.

we

Probably there is a shorter and more elegant proof of (*) from

AC . But our proof illuminates some typical arguments used in

size comparisons between infinite sets (infinite cardinals):

1 ) The passage f rom ̂ .. * to s^.

2) The passage from X is infinite to X

or if we had not made this passage:

3) X. X/^-X , if X is infinite

<^, for some oo

x.^x
^1

0
-X if X is infinite.

However, if we drop AC , many curious problems arise. So let ZF be

the Zermelo-Fraenkel set theory without AC . Then which of the

following assertions - which are all trivially ZF+AC-provable -
will remain ZF provable?

a) VX (X infinite

b) VX (X infinite

. 100. (^) <^(^
x

.^

100. (^))
c) \/X (X infinite-*-(?^ X^) , where X^" is the cartesian square

d) VX (X infinite-»X2^ (^) ).
e) VX { } <^( C^GX)

the answers to these questions will turn out as follows

a): YES ;b): N0;c): NO ; d): NO ; e): NO .

Of course, the numbers 2, 3 and 100 in a) and b) are only examples;

and the harmony of mathematics demands that they can be subsumed

under a general structure.

This demand can be indeed fulfilled, viz. by our Main Theorem below.



25 -

Let me close this introduction by mentioning that our choiceless

theory of infinitary binomial coefficients with finite supponents

has a recursion theoretic counterpart. After defining the recur-

sion-theoretic analogs of the set-theoretic notions, we can,

roughly, show:

A) If ZF proves something, then "it" is recursively true.

B) If something is recursively false, then ZF'refuses to prove

"it" .

the "something" refers, of course, only to a certain very special

kind of statements about our binomial coefficients'i

Let us begin with the detailed development.

All of the consistency results we need can be found at least im-

plicitly in Jech: The axiom of choice, 1973.

As mentioned in the Introduction, our background theory is ZF with-

out any further choice principles. First we need some further de-

finitions. Once and for all the notion "infinite" is used as follows

A set X is called infinite, if n^"X for all n £ GO . Otherwise X

is called finite . In ZF we can prove that the following are equi-

valent for a set X :

X is infinite,

not n r^iK for all n & 6j> ,

n ^* X for all n ^ 0) .

A set X is called ^-infinite (Dedekind-infinite), if ec ^, X .
In ZF the ^-infinity of X is equivalent to the existence of a
nonsurjective injection from X into X .

X is called ^-finite, if X is not c^-infinite. Clearly, any

o^-infinite set is infinite. On the other hand we have

1. Fact

It is consistent with ZF that there is an infinite set X such that

i^>( X) , the power set of X , is ^-finite. (Of course, then X itself
is (^-finite) .

Let X be an infinite set such that X ^ X +X^ (disjoint union) for

all infinite sets X^ and X^ . Then X is called amorphous.
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2. Fact

The existence of amorphous sets is consistent with ZF .

Let X be an infinite set and n a positive integer. If (

say that X is n-fold infinite.

<: X we

We are now ready for our first theorem, whose proof already exem'

plifies the kind of tricks to be used later on.

3. Theorem

3. 1 ZF h-X is 2-fold infinite-*-X is o^-infi nite .

3. 2 ZF ̂ 'X is ̂ -infinite-*-X is 2-fold infinite.

Proof

Ad 3 .1

Let X be 2-fold infinite and let I : (',')-». X be injective . Take

three different elements a, b and c from X . Define the function

J as follows

new

[a, b]

{b, c3

^^}

[x, c}

{y-c}

[z, c^
And so on for all of

X\ia, b, c}

Applying first J and then I we can inject X into a proper subset

of itself .

(The reader may convince himself, that this argument uses indeed

only the means available in ZF besides the-supposed injection I.
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Ad 3 .2

We have to show that consistently with ZF there can be ac^-infinite

set X which is not 2-fold infinite.

Using Fact 2, it suffices to show in ZF: (*) If A is an amorphous

set such that A ^ (13 = 0 , then X := AL^d) is not 2-fold infinite.

For if we have an amorphous set, we can make it trivially disjoint

with cj , and clearly X is -^-infinite.

So let us show (*) .
y

Suppose X is 2-fold infinite via the injection I : ('^) -*. X .

We distinguish the following cases:

Case _1 . There are infinitely many n &60 such that I
-1

n
A

2

Then we have an (^-sequence (P, ). ^.,. of termwise distinct ele-
A, _ ' , 1 . ll

ments of (^) . From (P, )^/. /^ we can easily define an <ij-sequence
1

(q. )-;^.,, of termwise disjoint elements of (^) . Then
l&even

and >^^ q, split a subset of A into two infinite sets. This is a

contradiction to the amorphousness of A .

Case 2. There are infinitely many b e A such that I-'(b) <g ('^) .

Within Case 2 we distinguish two further cases.

Case 2. 1. There are infinitely many c e A such that 1(^0, a}) = c
for some a & A .

Case 2. 2. There are infinitely many n eo such that 1(^0, a}) = n
for some a £ A.

Now in both subcases we can split A into two infinite subsets. Again

a contradiction. Q

X s , .. 2
As mentioned in the Introduction, ('^ ) and X" arc in general . ^'-incompa-

rable on the basis of ZF . We shall prove this below (Theorems 5
^

and 6). Nevertheless, there are cases where ('^) and X'' behave the

same way, if X is infinite. Recall, that one can prove in ZF:

AC ̂ ->. Vinfinite X : X <. X .

However(To be precise, one needs X"/^^ X for the direction



28 -

X2 is trivial, X ^^/X follows by the ZF-provable Schroder.since X s&

Bernstein-theorem from X -^. X .)

4. The orem

ZF \- ( ^infinite X : (^) <, X) -». AC . i. e. AC is ZF-implied by
"every infinite set is 2-fold infinite".

2.X< (.

Proof:

First we show

(1) ZF|-X is infinite

To prove (1), take a five element subset A = -^a ..., a^} from
X . Then obviously 2-A ̂ (^) . We have to inject into

X~\A . Then we

This proves (1) .

x ) \(A) the remaining set 2-X\2-A . Let x

map <0, x> to <^, a> and <1, x> to<rx, a^>

(2) We use now the hypothesis that every infinite set is 2-fold

infinite. Using (1) we have: For every infinite set X :

^). (^)< x

2

<xTo complete our proof, it is sufficient to show that X'

for an arbitrary infinite set X .

The cartesian square X of X is the set ^l[x^, {.x, y5} : x, y 6 X}
^

Thus X'' is a certain subset of

z :=
f'+^)'

+

1 y Y 2

Using (2) we get the following chain:

+1 )+{2
(^)+(^X (^)

Thus, since Xz £ Z , Xz <^ X

5. Theorem

It is consistent with ZF that there is an infinite set X such that

<^ (a) . Moreover, X can be chosen as a set of real numbers.not X <^
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Proof:

First we show in ZF:

(1) If X is an infinite totally ordered set (say by C ), then

2.
x

This is so, because an element of 2-('^) is either of the

form <0, ^a, b}> or <1, {.a, b^> and because we can use the total
order C. on X as follows:

If ac b , we map<0, {,a, b5> to <a, b> and<1, ^a, b3> to<:b, a> .

IfbC a , we procede just dually, of course.

Next we show in ZF;

say C . Then i

(Proof of (2)

inject d.) into

2) Let X be an infinite <$)-finite set which carries a total order

) is also an infinite -^'-finite set.

( ., ) is indeed ^-finite. For suppose we could
.j^

('., ) , then we could first construct an 63-sequen-
^

ce of termwise disjoint elements e. ('^) . Then using the total

order c we could chose the C -smallest in each term of this

0-sequence, thereby manufacturing an 1^3-sequence in X and pro-

ving the contradiction that X is ^-infinite.)

.(3) Fact

.

<n
"There. is an infinite ^^-finite subset of the reals" is consis-

tent with ZF . Call this set X ; X is totally ordered by c =

the restriction of the usual ordering of the reals to X .

Suppose now we had X'

2) ^- (2)

(x)
2

This means, that

By (1) it would follow
^

("^) can be injected into a

proper subset of itself. Thus ('^) would be Dedekind infinite

which is a contradiction to (2) . C3

Remark

Supplement to Thm 5:

By the same methods as in the proof just given one may show:

It is consistent with ZF that there is an infinite subset Y of

the reals such that for all n ^-2 : not Xn^. (Y) .

On the other hand, we leave it as an exercise to prove in ZF:

If X is an infinite'totally ordered set and n e 6J , then
x

x
n
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Thus to refute (X)<^X2 we must look for sets which cannot be
totally ordered.

6. Theorem

It is consistent with ZF that there is an infinite set X such that

not (^)< X2 .

Proof:

Transferring the second Fraenkel model (Jech, p. 48) to a symmetric

model of ZF we have:

(1) It is consistent with ZF that there exists an cy-sequence

(p ) of pairwise disjoint unordered pairs P^ = {, a^, b^^
such that X := ^S-/' P. is cS-finite (although trivially

l£'<AJ - 1

infinite). We consider this set X .

(2) ZF h--X^ is also ^-finite (exercise)

(3) zFi-(x) is ̂ -infinite (immediate from the def. of X).

From (2) and (3) we have ZF t-not (^)<X2 . D

Incidentally, the proof of Thm. 6 yields another interesting fact

which we state as our next theorem.

7. The orem

ZF -^-YX : ^) <:(^)
ZF ̂  ^X : 0 ^(x)-

-^^x'

.^<x

Exercise:

Show in ZF:

c<) )--^ <* x
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Remark

It is an open problem whether:

ZF h-^X :^^* (^)-^^<:* X .

By now we have given exactly the announced answers to questions

c) , d) , e) . We now turn to questions a) and b) .

We introduce first some new notions. Let X be a variable and

k

natural numbers). Then we call the expression

,..., k^ with k^ 7^ 0 be natural numbers (more precisely: terms for

ko-(S) + k1 x) +... + k,. (x,;

a Pascal polynomial (over 6J ) of degree n.

If X is interpreted as a set, then the Pascal polynomial gets the

expected interpretation: + as disjoint union, . as cartesian pro-
y

duct, and ('J, ) as the set of all ^cf-element subsets ofX . IfX is

a nat.ural number, then the value of the polynomiai is taken to be

without much ado as the natural number representing the cardinality

of the resulting finite set.

8. MAINTHEOREM

Let E and F be two Pascal polynomials such that E(n)<^F(n) for

sufficiently large n &<^ . Then we have

8. 1 ZF !- ^infinite X : E(X)<F(X) .

8. 2 ZF>-^ Vinfinite X : F(X)^E(X) .

Proof of the Main Theorem:

We need the

Lemma I

In ZF one can prove:

Let k, n   Co and let X be an infinite set. Then k-(x)^ (_x,)
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Proof of Lemma I:

If either k or n is zero, the statement is trivial. Thus we may

assume that k and n are both positive.

We shall make use of the following two easy properties of fini-

tary binomial coefficients:

(A)

(B)

n+1 ) +n
n

k. (n+1)+n
n+1

n-1 k. k. (n+1)+n k-(n+1+n
r+1

Let now the infinite set X be given. We take a set

A = -^a^ , . . ., a y-} of ^t? = k . ( n+1 ) +n elements from X . By (A^) we have
k <An' A

n+1

The remaining task is the following:

We have to inject k . t'^) \k . ('_') into

means of ZF .

Now, an element p & k

x

n+1 \( n+1 using only the

A^)~^k. (^5 has the form <i, {o^^ , . . . ,^}> ,
where i = 0, . . ., k-1 and c</^ £ X .

Let r be the number of the oc^, 's belonging to A . Obviously
X >^ , A

O^^r.s^n-1 . We transform p to an element of (",\, )^(", 1) as

follows: We drop the first coordinate iof p . In the resul-

ting set ^ .. ., cC^ we retain all oC^, e. x\h , but replace the
r A-elements by r+1 A-elements. The property (B) tells us that

this transformation can be done injectively. In fact we must

choose injections, but only a finite number of times, which is

allowable in ZF.

The Lemma I is proved. However, it may be useful to illustrate

the proof by a special case:

Let X be infinite. Show in ZF that

<,x
2

x

3

Take 8 = 2. 3+2 elerpents A = ia^,..., a^} from X
Then 2. (^)<(^)
case .

C,'), as one may verify just for fun in this special
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So we have to inject 2. (x) \2(A) into the set (x) ^-, ( ^ ) . Let
x ^

then p   2-(^) v\ 2 . (^) . p is of one of the following four forms

.-0 , [x , y5^, <0 , {x , a^> where x, y 6X\A ,

<1 , ^x, y;^, <1, {x, ap a £ A

Send

<0, {x, y^> to [x, y, a^ , and

<1, {x, yj> to {x, y, a ^ .

This disposes of the first column.

Now we know that 2 -
1

(^) . Again we can use an injection

) ^-
2

which disposes of the second column, by trans-

forming <i, ^x, a]> into an {x, a', a"j , a, a',a
1=0.1

& A a

Remark

Lemma I is a sort of "Compactness argument" in so far as it

jumps form finitary binomial coefficients to infinitary binomial

coefficients. Though the idea is quite simple, namely the breaking

of a task into two subtasks, it is remarkable that this can be

done constructively, i. e. in ZF, whereas other compactness argu-

ments like Konig's Lemma (for arbitrary binary trees)or the com-

pactness theorem of first order logic (for not necessarily well-

ordered languages) cannot be carried out in ZF, without AC .

There are many theorems of the same type as Lemma I . For the

purpose of illustration, define F(X;n) to be the set {f : f isa
function from an n-element subset of X into xj . Adapting the

main ideas of the proof of Lemma I we can show:

ZFf-For any k, n  . oj and any infinite set X : k-F(X ;n)<'F(X ; n+1 )

We now show how Lemma I yields the first part of the Main Theorem

and how Lemma I together with Fact 1 yields the second part of the

Main Theorem.

Let E(n)<^F(n) for sufficiently large n .

Then we have two cases:
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Case 1: degree of F ~~>degree of E .

Case 2: degree of F = degree of E = d , and for some n-^. d
the coefficient of ('^) in F is greater than the coefficient

of ( ) in E . Let N be the largest such n .

We prove first 8. 1 .

Suppose we have Case 1 . Let d = degree of E , d^= degree of F ;
d, <^d^ . Repeated application of Lemma I yields 8. 1 . Again, in

Case 2, Lemma I, repeatedly applied yields the desired result.

Now we prove 8. 2.

By Fact 1 we have, consistently with ZF, an infinite set X , such
that J°(X) is .x'-finite . It follows that (A) is .-\. '-finite for

every n .

Take Case 1 first. Let w. l. o. g. d+1 be the degree of F and d...

the degree of E .

Suppose we had F(X)<^ E(X) .

A fortiori we would then have

x

d+1
x +. . . ̂ =E(X)] .'d 'd

We multiply this ̂ . -relation on both sides by 2. Then by-Lemma I:

is ^-infinite .2
x

d+1
^

( " ). But this means that ( ^^

Contradiction.

Finally we dispose of Case. 2. (See the def . of N above). Let d

be the common degree of E and F , and let first d = N .

Then if F(X)^E(X) we have

RN (^<kN^) +--- r=E(x)i ' where kN>kN .

Then 2-k NVN 2. k^(^) by Lemma I .
^ . , , , x

But this means that 2-k^, (^) and as one easily shows, hence ("', ) is

Dedekind infinite. Contradiction.

Secondly, the subcase d> N is treated similarily.

This completes the proof of Theorem 8.
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Remark

We may extend our Main Theorem to the case of iterated binomial

coefficient, but refrain from that in order to avoid boredom.

However, we propose the following Exercise

ZF f- ^infinite X

ZF^^- Vinfinite X :

<^<( ^>

x
. 4'

Infinite, c^i-finite sets are clearly sufficient for such global in-

dependence results as in 8. 2. However, there are "singular" inde-

pendence results of the same type as in 8. 2, which can be obtained

concerning Dedekind-infinite sets.

9. Theorem

The following is consistent with ZF:

There is a Dedekind infinite set X such that not <1

Proof :

Define X := A <^1^ , where A (^d) = 0 and A is amorphous. Then

proceed more or less the same way as in the proof of 3. 2.

By AC(n) we mean that every family of n element sets possesses a

choice function.

10. The Blowing Up Theorem

Let n ^-2 . Then ZF + AC(n+1) proves:

If X is n-fold infinite, then X is n+1-fold infinite.

Remark

We cannot take n = 1 in Thm. 10. For then we would prove in

ZF+AC(2) the full AC ; which is impossible.
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Proof:

We show the Thm for n = 2 . The general case follows the pattern
exemplified in this case.

Let the 2-fold infinite set X be given. Then we have an injection
f .:

x

X'"-. By AC (3)^ we have a choice function c on (x)

Define a function g : (^) -* ((2)>) as follows:
[x, y, zj t-9-^ {{x, yj, {y, z^' , where y = c(^x, y, zt) . '

g is- injective. '

Then define a function h :
'^'

(^) as follows:

f{x, yj, fu, uj^ ff(^x, yj), f({z, uJ)J .
h is also injective

To inject (3) into X we first apply g , then h , and finally f .Q

Problem

Can we eliminate AC(n+1) in the above argument?

Perhaps there is a simple trick that I have overlooked!

Supplementary Remarks on the Main Theorem

First notice, that the unprovability part 8. 2 is witnessed by one
infinite set X such that ^(x) is <§>-fi ni.te .

During the proof of Thm 6 we encountered a ^'-finite set X such
that (^) and hence ^( X) is ̂ '-infinite. This set therefore cannot
be a witness for 8. 2 I si x

since (^) + 1
x

2
. ] .

On the other hand, if we consider ordinary polynomials over (U
i. e. polynomials whose monomials are of the form k. X" . then we
can prove the following: . . : . .
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Let P and Q be ordinary polynomials such that P(n)

sufficiently large n . Then

\/infinite X

Q(n) for

. 1* ZFl P(X

. 2* ZFJr- Vinfinite X : Q( X ) <<

infinite cS-finite set X .

Q(X) , and the fact

P(X) can be witnessed bv an

S i nc e (

X : (^)
for sufficiently large n , and ZF^^-\ infinite

the first part of our Main Theorem fails for "mixed

polynomials". Observe that the mixed polynomial identity V set

2.( + x ^~>y.~ is ZF-unprovable.

After all these curiosities about binomial coefficients in ZF. it

comes as a big relief to learn that ZF can prove the Binomial

Theorem for Sets in the following version:

Let X and Y be any two disjoint sets, and n <S <:<j . Then

(X+Y)n/V XQ (?). X"-1. Y1 ,

Where all of the notation is to be understood in the set-theoretic

sense.

The proof is left as an exercise. D

And also the fundamental recursive equation

nn+1 ^ / n
k / - vk + (k^1)

can be proved in ZF in the following generalization.

Let k"> 0 , X any set, and a ^ X . Then

x:iai'-^ +
k-1

Th. & e44&n^ca-£ c. onte. nt o^ >th. & pap&A may 6& ^ecoyeAe. d ^om the.
ac. c. ompani/>ing. ^QLi^e., wkich. de. p^c^t^ a t^an^^izite. &x-te. n4^on
o^ Pa&c-at'^ VU.a.nQia.

1,6" Ze^.m&-£o'4 A£ ^ ^o be. 4a^c4^&d, ^an no u.n^ueA4£ Oj$ <i>e^
thao^Lj w^th. ^u. c.h a. tfbicLnQte. can exUi.. I -t^nfe th.at com-
b^na^o^taU^^ owe. ^u-ch a Qn.zat d^bt to Pa^c. a. i, th. ai. . th-iy
^hou-td htip to 4au£ U6 T/tan4 ̂ n^a Jn^anQtz cLQcu. ni>t . the.'
on&ta.uLQht o^ oM. b^fLO. fttj c. h. o^. c. ti'.

Reference: Jech, "The axiom of choice", 1973



Extending Pascal's Triangle to the

Transfinite

1 =

Here A is an infinite set such that ^(A) is Dedek. nd
fi nite. The arrow X -Y in the figure means that

^X<Y A -. Y <x . Observe that (A) /^(/_. ) for
^all i£co , where A-i denotes a-set which arises

^from A by subtracting i elements. Thus the
transfinite levels of this triangle

^starting with A , is completely sym-
metric - without an axis of sym-

metry. -... ^_will meet in chaos.

1+1

^ ^ \
2+(^)

(':) ^
/ ^ /

:A)+(A]
1 /-r^2

1+2(^)+(^)

<2A'^<t>

?)+2(^+(^:

(AS3'^AA2'-<Aa2'^AA, '-<,A, )^

(A^'^<^'-<^ <AA2'+2'<A, '^-<<A, ).2

Ou

00

AND SO ON...


