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Set theory and infinitary binomial coefficients

by J.W. Degen - September, 1986

Introduction

First some definitions.

Let X and Y be sets. We write XY to mean that there is an in-
jection from X into Y , and X ~~Y will mean that there is a bi-
Jjection between X and Y . Occasionally we shall need the notation
X<+ Y , by which we mean that either X is empty or Y can be sur-
jected onto X .

The expression (ﬁ) denotes the set of all subsets Z of X such that
Z~Y , and is called a binomial coefficient, with basis X and
Supponent Y . A binomial coefficient is called finitary (infinitary)
if its basis is a finite (infinite) set. It is well known that in-
finitary binomial coefficients play the central role in infinitary

combinatorics, notably in Ramsey theory.

Now, the present paper is not about Ramsey theory, that is: nothing
like homogeneous sets wW.r.t, partitions of (ﬁ) will be considered.
The aim of our paper is a more modest one: viz., to establish size
comparisons between binomial coefficients, and between them and
other expressions. We shall restrict the range of our investigations
even further: We shall consider only binomial coefficients with
finite supponents, which are written as (ﬁ), where n is a (settheo-
retic) natural number.

These delineations Stated, the following question arises:

What nontrivial things can one say about the size of (ﬁ), when X is
infinite? For if X is infinite, and m, n are any positive integers,
then X ~(0) ~ (%) (x)

Okay. The statement () certainly follows from the axiom of choice
(AC), and we shall see below, that in turn AC is:implied by:the spe=
cial case: For all infinite X : X’“J(g) - As an exercise, let us
prove that AC implies (*). Let us denote by Lézy the set of finite

subsets of X . It suffices to show (using AC) that for all infinite

X
X+ (7)< x .
<w
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Let m € @, and let f €,Xm (i.e. £ is a function from m into X).

Set I(f) : = range (f) . Then I is a surjection of ;Zéxm onto

the set Qﬁb) , 1.e. we have Qﬁn)ig N x™

Using AC we have Qg;)s; ;EZ}m

have, again by AC , Xf\ﬂ)czfor

for all positive integers n

’

mew
Furthermore, since X is infinite, we

] A~ ASD
some & € on . Since ‘/\oc ‘/\oc

it follows

m » A O

mew

Probably there is a shorter and more elegant proof of (*) from

AC . But our proof illuminates

some typical arguments used in

size comparisons between infinite sets (infinite cardinals):

1) The passage from<_* to

2) The passage from X is infinite to X " _X

b o
\'

> for some o

W ’

or if we had not made this passage:

3) XX ~~ X

, 1f X is infinite,

A . o Al et v
4) X-j\()ﬁvx , 1f X is infinite.

However, if we drop AC

, Mmany curious problems arise. So let ZF be

the Zermelo-Fraenkel set theory without AC . Then which of the

following assertions - which are all trivially ZF+AC-provable -

will remain ZF provable?

a) VX (X infinite —*100-(?
b) VX (X infinite —»()3()<1oo-(

. .. X, -~
c) vX (X 1nf1n1te-—*(2)a§b

d) VX (X infinite —>x%<C(

e) VX (@ <(§)~“w<x) .

the answers to these guestions

a): YES : b): NO c): NO

Of course, the numbers 2,3 and
and the harmony of mathematics

under a general structure.

) < (5))

X

2))
X2), where X2 is the cartesian square.
X
2))-

will turn out as follows

: d): NO ; e):NO .
100 in a) and b) are only examples;

demands that they can be subsumed

This demand can be indeed fulfilled, viz. by our Main Theorem below.



Let me close this introduction by mentioning that our choiceless
theory of infinitary binomial coefficients with finite supponents
has a recursion theoretic counterpart. After defining the recur-
sion-theoretic analogs of the set-theoretic notions, we can,
roughly, show:

A) If ZF proves something, then "it" is recursively true.

B) If something is recursively false, then ZF refuses to prove

llitll .

- the "something" refers, of course, only to a certain very special

kind of statements about our binomial coefficients.

Let us begin with the detailed development.

All of the consistency results we need can be found at least im-

plicitly in Jech: The axiom of choice, 1973.

As mentioned in the Introduction, our background theory is ZF with-
out any further choice principles. First we need some further de-
finitions. Once and for all the notion "infinite" is used as follows:
A set X is called infinite, if n< X for all n €& . Otherwise X
is called finite . In ZF we can prove that the following are equi-
valent for a set X

X is infinite,

not n~vX for all n ew,

n<* X for all new.

A set X is called o)-infinite (Dedekind-infinite), if co <X .
In ZF the &D—infinity of X is equivalent to the existence of a

nonsurjective injection from X into X

X is called £>—finite, if X is not éa—infinite. Clearly, any

c@—infinite set is infinite. On the other hand we have
1. Fact

It is consistent with ZF that there is an infinite set X such that
P(X) , the power set of X is &J-finite. (Of course, then X itself

iSc@-finite).

Let X be an infinite set such that X ¥ X,+X, (disjoint union) for

all infinite sets X1 and X2 . Then X is called amorphous.



2. Fact

The existence of amorphous sets is consistent with ZF .
Let X be an infinite set and n a positive integer. If (ﬁ).s;X we

say that X is n-fold infinite.

We are now ready for our first theorem, whose proof already exem-

plifies the kind of tricks to be used later on.

3. Theorem

3.1 2F - X is 2-fold infinite —=X iso)-infinite.

3.2 ZF 4= X isd-infinite —= X is 2-fold infinite.

Proof
Ad 3.1

X
2
three different elements a,b and ¢ from X . Define the function

Let X be 2-fold infinite and let I : (,)—aX be injective. Take

J as follows

J
a i > {a,b}
b - - {b,c}
c e fa,c}
new o T . s e BE =E = IO
X } — {x,c}
y | - fv.c}
z - > {z,c%

And so on for all of

x\fa,b,c}

Applying first J and then I we can inject X into a proper subset

of itself.

(The reader may convince himself, that this argument uses indeed

only the means available in ZF besides the:supposed injection I.)



Ad 3.2

We have to show that consistently with ZF there can be aod-infinite

set X which is not 2-fold infinite.

Using Fact 2, it suffices to show in ZF: (*) If A is an amorphous
set such that Anw = ¢ , then X := Auw is not 2-fold infinite.
For if we have an amorphous set, we can make it trivially disjoint

with «@ , and clearly X is Xa—infinite.

So let us show (*).
Suppose X is 2-fold infinite via the injection I : () — X

We distinguish the following cases:

Case 1. There are infinitely many n e€w such that 1—1(n) E (2) .

Then we have an @-sequence (Pi)i/a) of termwise distinct ele-
o
ments of (2) . From (Pi)ie&J we can easily define an w-sequence
, e e 2 A
(ql)lém of termwise disjoint elements of (2) Then T wen B3

and fggd q; split a subset of A into two infinite sets. This is a

contradiction to the amorphousness of A

Case 2. There are infinitely many b € A such that I_1(b) e () .

2
Within Case 2 we distinguish two further cases.

Case 2.1. There are infinitely many ¢ e A such that I({0,a}) = ¢
for some a e A
Case 2.2. There are infinitely many n € @ such that I({0,a}l) = n

for some a € A.

Now in both subcases we can split A into two infinite subsets. Again

a contradiction. 3

As mentioned in the Introduction, (g) and Xzanaingemxal < -incompa-
rable on the basis of ZF . We shall prove this below (Theorems 5

é) and X2 behave the

same way, if X is infinite. Recall, that one can prove in ZF:

AC «— VYinfinite X : ngx :

and 6). Nevertheless, there are cases where (

(To be precise, one needs XZP\/X for the direction e— . However,



since X $;X2 is trivial, X2 ~ X follows by the ZF-provable Schroder-

Bernstein-theorem from X2$;:X w)

4. Theorem

ZF — (VY infinite X : (é)s;;x)-—»Ac . i.e. AC is ZF-implied by

"every infinite set is 2-fold infinite".

Proof:

First we show

(1) ZF |- X is infinite —»2-X << (5)
To prove (1), take a five element subset A = {ao,...,a4} from
X . Then obviously 2-A S;Yé) . We have to inject into

(é) \\(g) the remaining set 2-X\2-A . Let x € XNA . Then we

map <0,x> to <x,ay and <1,x> toc¢x,a;> . This proves (1).

(2) We use now the hypothesis that every infinite set is 2-fold

infinite. Using (1) we have: For every infinite set X

To complete our proof, it is sufficient to show that X = X
for an arbitrary infinite set X .
The cartesian square X2 of X is the set {i{x5,{x,y}}: x,y € Xx}.

Thus X2 is a certain subset of

X X X X
r+) <1)+<2)
Z = + 5
1 2

Using (2) we get the following chain:

5+
7 < < OH+H<H<x .
2
Thus, since X" & Z , X2<X

5. Theorem

It is consistent with ZF that there is an infinite set X such that

not xzsgf(é) . Moreover, X can be chosen as a set of real numbers.



Proof:

First we show in ZF:

(1) 1f X is an infinite totally orderedset (say by C ), then
2
( )\\ X© .
g) is either of the

form <0,{a,b}> or <1,{a,bl> and because we can use the total

ThlS is so, because an element of 2 (

order C on X as follows:
If ac b, we map <0,{a,bi> to <a,b> and <1,{a,bl> to <b,a>
If bC a , we procede just dually, of course.

Next we show in ZF:

(2) Let X be an infinite O _finite set which carries a total order,

say £ . Then (g) is also an infinite zj—finite set.

(Proof of (2): (é) is indeed -finite. For suppose we could
inject @ into (é) , then we could first construct an wW-sequen-
ce of termwise disjoint elements E:(g) . Then using the total

order £ we could chose the rC -smallest in each term of this
W-sequence, thereby manufacturing an @ - -sequence in X and pro-

ving the contradiction that X is < -infinite. )

(3) Fact

"There is an infinite élfhﬁtesubsetof the reals" is consis-
tent with ZF . Call this set X ; X 1s totally ordered by © =
the restriction of the usual ordering of the reals to X .

2~<(>2() . By (1) it would follow

% =f2 )~\ (X ») . This means, that (

Suppose now we had X

é) can be injected into a

proper subset of itself. Thus (;) would be Dedekind infinite,

which is a contradiction to (2). (3

Remark

Supplement to Thm 5:

By the same methods as in the proof just given one may show:
It is consistent with ZF that there is an infinite subset Y of
the reals such that for all n>>2 : not gl ¥

On the other hand, we leave it as an eéxercise to prove in ZF:

If X is an infinite totally ordered set and n € @ , then

X
(g s 5B



§)4§:X2 we must look for sets which cannot be

=

Thus to refute (

totally ordered.

6. Theorem

Tt is consistent with ZF that there is an infinite set X such that

not (é)sg %“ ,

Proof:

Transferring the second Fraenkel model (Jech, p-48) to a symmetric

_model of ZF we have:

(1) It is consistent with ZF that there exists an @ -sequence

(Pi)ie@ of pairwise disjoint unordered pairs Pi = {ai,biS
such that X := ;55’ P, is oJ-finite (although trivially
infinite). We consider this set X .

(2) 2ZF F-XZ is also A-finite (exercise)

(3) ZF F~(§) isd-infinite (immediate from the def. of X).

From (2) and (3) we have ZF {— not (§)$§;X2 s b=l

Incidentally, the proof of Thm. 6 yields another interesting fact

which we state as our next theorem.

7. Theorem

ZF =YX @ \<(>2()——»a,\<x2

ZF 4= VX Q:'\:(é)—»a) <X

Exercise:

Show in ZF:

N X<

W (5P * X



Remark

It i1s an open problem whether:

ZF = VX e s (é)—*fog* X .

By now we have given exactly the announced answers to questions
c), d), e). We now turn to questions a) and b).

We introduce first some new notions. Let X be a variable and

ko,...,kn with kn % 0 be natural numbers (moregnecisely: terms for
natural numbers). Then we call the expression
X X X
ko-(o) + ke

1) +ee ot kn-(n)

a Pascal polynomial (over ©b ) of degree n.

If X is interpreted as a set, then the Pascal polynomial gets the
expected interpretation: + as disjoint union, - as cartesian pro-
duct, and Q;) as the set of all .J-element subsets of X . If X is

a natural number, then the value of the polynomial is taken to be
without much ado as the natural number representing the cardinality

of the resulting finite set.

8. MAINTHEOREM

Let E and F be two Pascal polynomials such that E(n)<F(n) for

‘ (strictl
sufficiently large ne€ . Then we have y3

8.1 ZF = Vinfinite X : E(X) < F(X)

8.2 ZF = Vinfinite X : F(X)<{E(X) .

Proof of the Main Theorem:

We need the

Lemma I

In ZF one can prove:

Let k, n€@ and let X be an infinite set. Then k-(ﬁ)sg (  J

n+1



Proof of Lemma I:

If either k or n is zero, the statement is trivial. Thus we may
assume that k and n are both positive.
We shall make use of the following two easy properties of fini-

tary binomial coefficients:

k-(n+1)+n k-(n+1)+n
‘2 oo B Sl n+1 )
(B) r < Nl —s k- (X (ne1)+ny — k-(n+l+n,

r = r+1

Let now the infinite set X be given. We take a set

A = {a1,...,ag of ¢ = k-(n+1)+nelements from X . By (A) we have
- A ¢
< )

Ay .
k'(n) = (n+1

The remaining task is the following:
X
+

A

n+1) using enly the

e have te injeckt k-(’;)\k-(ﬁ> into ( X\

means of ZF

Now, an element p € k-(ﬁ)\\k.(ﬁ) has the form <i,5x1,...,aﬁ}> "
where 1 = 0,...,k=-1 and oy, € X

’

Let r be the number of the ®Xp's belonging to A . Obviously

i - X N A
0<r <« n-1 . We transform p to an element of (n+1) \(n+1) as
follows: We drop the first coordinate i of p . In the resul-

ting set {o 7”“%5 we retain all of, € XA , but replace the

177
r A-elements by r+1 A-elements. The property (B) tells us that
this transformation can be done injectively. In fact we must

choose injections, but only a finite number of times, which is

allowable in ZF.

The Lemma I is proved. However, it may be useful to illustrate
the proof by a special case:

Let X be infinite. Show in ZF that

X X
2-(50 <5 ()

Take 8 = 2-.3+2 elements A = {a ...,a8} from X

‘l ’
Then 2-(2)5§-(§), as one may verify just for fun in this special

case.



X ) \“(A

So we have to inject 2~(2) \2(2) into the set (3 3) . Let
then p € 2-(2)\\2-(2) - P 1s of one of the following four forms:
L0,i{x,y5>,<0,{x,a}> where x,y € X\NA ,
<1,{x,y}7,<1,§x,a§> a €A
Send
<0,{x,y3> to {x,y,aﬁ , and

<1,{x,y1> to {x,y,azg

This disposes of the first column.

Now we know that 2-(?)§; (g) - Again we can use an injection
I : 2-($)§$:(2) which disposes of the second column, by trans-
forming <i,ix,a}> into an {x,a',a"?, a,a',a" ea . O
i=0, 1
Remark
Lemma I is a sort of "Compactness argument" in so far as it

jumps form finitary binomial coefficients to infinitary binomial
coefficients. Though the idea is quite simple, namely the breaking
of a task into two subtasks, it is remarkable that this can be
done constructively, i.e. in ZF, whereas other compactness argu-
ments like Konig's Lemma (for arbitrary binary trees) or the com-
pactness theorem of first order logic (for not necessarily well-

ordered languages) cannot be carried out in ZF, without AC

There are many theorems of the same type as Lemma I . For the
purpose of illustration, define F(X;n) to be the set {f : £ is a
function from an n-element subset of X into X} . Adapting the

main ideas of the proof of Lemma I we car show:
ZF F— For any kK, n€w and any infinite set X : K-F(X;n)<lF(X:n+1) .
We now show how Lemma I yields the first part of the Main Theorem,

and how Lemma I together with Fact 1 yields the second part of the

Main Theorem.
Let E(n) <F(n) for sufficiently large n

Then we have two cases:



Case 1: degree of F “>>degree of E

Case 2: degree of F = degree of E = d , and for some n:<:d

the coefficient of (ﬁ) in F is greater than the coefficient

of (i) in E . Let N be the largest such n

We prove first 8.1.

Suppose we have Case 1. Let d1 = degree of E , d2 = degree of F

d1<<:d2 . Repeated application of Lemma I yields 8.1. Again, in

Case 2, Lemma I, repeatedly applied yields the desired result.

Now we prove 8.2.

By Fact 1 we have, consistently with ZF, an infinite set X , such
that JO(X) is &-finite. It follows that (ﬁ) is X -finite for
every n

Take Case 1 first. Let w.l.o.g. d+1 be the degree of F and 4 >0
the degree of E

Suppose we had F(X)<_ E(X)
A fortiori we would then have

X X
(gog) kgt +...[zE(x]

We multiply thiss;:;relation on both sides by 2. Then by Lemma I:

T G Bl G

ar1) S But this means that ( ) is #-infinite.

X
d+1" "~ d+1

Contradiction.

Finally we dispose of Case.2. (See the def. of N above). Let d

be the common degree of E and F , and let first 4 = N .

Then if F(X)<;—E(X) we have

X, - 5 3 ,
ky (§) <kN(N) +... [=E(x]] , where k> ky
Then 2 -k (%) < 2-k' (%) by Lemma I

NN S N'NT PY

But this means that 2-k&(§

Dedekind infinite. Contradiction.

) and as one easily shows, hence (;) is

Secondly, the subcase d> N is treated similarily.

This completes the proof of Theorem 8.



Remark

We may extend our Main Theorem to the case of iterated binomial
coefficient, but refrain from that in order to avoid boredom.

However , we propose the following Exercise

X
(50
ZF b— Vinfinite X : (§)<<§> g
X

(5)
ZF 4“ Vinfinite X : (g \<(z)
Infinite, &J-finite sets are clearly sufficient for such global in-
-dependence results as in 8.2. However, there are "singular" inde-
pendence results of the same type as in 8.2, which can be obtained

concerning Dedekind-infinite sets.

9. Theorem

The following is consistent with ZF:

There is a Dedekind infinite set X such that not (é)égg(é) "
Proof:
Define X := A v ® , where AN @ = @ and A is amorphous. Then

proceed more or less the same way as in the proof of 3.2.

By AC(n) we mean that every family of n element sets possesses a

choice function.

10. The Blowing Up Theorem

Let n =2 . Then ZF + AC(n+1) proves:

If X is n-fold infinite, then X is n+1-fold infinite.

Remark

We cannot take n = 1 in Thm 10. For then we would prove in

ZF+AC(2) the full AC : which is impossible.



Proof :

We show the Thm for n = 2 . The general case follows the pattern

exemplified in this case.

Let the 2-fold infinite set X be given. Then we have an injection

(é)—+'x71 By AC (3) we have a choice function c on (§)
s v
Define a function g : (g)'—’<32{> as follows:
g 2

{x,y,z} iy {fk,yf,fy]zﬁ , where y = c(i{x,y,z})

L % 2

g is injective.
X
(2) X
Then define a function h : 5 -—’(2) as follows:

f{X,Y§,{u,uf} '—l—*{f({x,yf),f({z,u})} )
h is also injective.

To inject (g) into X we first apply g , then h , and finally £ .0

°

Problem

Can we eliminate AC(n+1) in the above argument?

Perhaps there is a simple trick that I have overlooked!

Supplementary Remarks on the Main Theorem

First notice, that the unprovability part 8.2 is witnessed by one

infinite set X such that ZW(X) is<2Lfinite.

During the proof of Thm 6 we encountered a X -finite set X such
that (é) and hence 2(X) isé&—infinite. This set therefore cannot

be a witness for 8.2 [since (é) + 1€§:(§)]

On the other hand, if we consider ordinary polynomials over @

4

then we

’

i.e. polynomials whose monomials are of the form kX"

can prove the following:



Let P and Q be ordinary polynomials such that P(n) - Q(n) for

sufficiently large n . Then

8.1* ZFF Yinfinite X : P(X) ~_ Q(X) and the fact

’

-

8.2* ZEy—~ Vinfinite X : Q(X)«_ P(X) can be witnessed by an

infinite JJ-finite set X

Since (;)‘<fn2 for sufficiently large n and ZEK—VYinfinite

’

) (é)aisz , the first part of our Main Theorem fails for "mixed
polynomials" . Observe that the mixed polynomial identity ¥ set
X 2-(;) + X ~ox? , is ZF-unprovable.

After all these curiosities about binomial coefficients in ZF, it
comes as a big relief to learn that ZF can prove the Binomial

Theorem for Sets in the following version:
Let X and Y be any two disjoint sets, and n € @ . Then

(x+¥) "~ = (M) xPigdh

i=0 "1

Where all of the notation is to be understood in the set-theoretic

sense.

The proof is left as an exercise. U

And also the fundamental recursive equation

(n+1)

n n
& = (,.) + ( )

k k-1

can be proved in ZF in the following generalization.

Let k >0 , X any set, and a é’X . Then

(X+[a3
k

The essential content of the paper may be recovered grom the
accompany4ing. gLgure, which depicts a thansfinite extension
of Pascal's trniangle.

14 lermelo's Ac 48 to be satisgied, then no universe of set
theony with such a thiangle can exist. 1 think that com-
binatornialists owe such a great debt to Pascal, that they
should help to save his Transfinite Triangle against the
onslaught of arbitrany chodice.

Reference: Jech, "The axiom of choice", 1973



Extending Pascal's Triangle to the

Transfinite

.................

Here A is an infinite set such that QU(A) 1s Dedekind

The arrow X — Y in the figure means that
XY A —= Y <X . Observe that (?) A B

A-1
all 1i€w , where A-i denotes a set which arises

finite.

) for

from A by subtracting i elements. Thus the
transfinite levels of this triangle,
starting with A is completely sym-
metric - without an axis of sym-

metry. T le-will meet in chaos.

8¢



