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REMARKS ON THE SYMBOLIC METHOD

IN INVARIANT THEORY OF BINARY FORMS,

by

Luigi Cerlienco and Orlando Murru.

This paper is about work in progress. It is mainly con-

cerned with the notions of umbral space and umbral operator

as they are found, for instance, in [l] .

These concepts, though useful, nevertheless maintain a

certain air of charming and mysterious witchcraft. Our main

concern in this research has been to dissolve this magical

atmosphere by giving them a natural justification.

The course we shall follow seems likely to succeed. In

fact, the interpretation we shall describe gives quite triv-

ial proof to some theorems and allows a generalization of

the results in the case of m-ary forms. Moreover, this inter

pretation enables us to separate the algebraic from the com-

binatorial aspects of the problem.

Let us consider a binary form of degree n in the vari-1.-

ables x", x

ci) f(xl. x2' - ^ 0 ^(-l)pc-2)"-p
over a field K of characteristic zero.

Under a linear change of variables

1^\
C2)

^ ^
.

2 _2
:1 C2

f51

^
12 12

A = cic2~c2ci ^ °'
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(1) is transformed into
n

(D f(^, -x2) =Z^ (;) ap(, l)I'(, 2)"-P.
One may easily check that the coefficients S_, are connected

with the a_ by the linear invertible transformation

(3)
_n_
2: Cq a,
q=o p q

where the matrix (C^) is given by

(4) -q _ cli . . . cl(> clf"t
i, +... +i_=2n-q "1 . . '"I "2

n

Let us denote with

, 1 ^
fdl d2

^2 ^2
ldl d2

the inverse matrix of

Then

(5)

with

C6)

Dq a,
q=o p -q

q.2D'" = *:
p

d^ ... d> d];f+
i, +.,. +i =2n-q '1 - - . -l -2

. ^.

1 1
c: c;

Z 2
cl C2<

Consider the polynomial algebra 9:= K[A ..., A , u , u ].
A oovariant of index 5' is a polynomial

I(A^,..., A^, ul, u2)   (P0

such that

(7) I(a^..., a^, ^1, ^2) = Ag I(a^,..., a^, xl, x2)
for every form (1) and every change of variables (2). A covari-

ant in which the variables u", u" d6 not occur is said to be

an znvarzant.

The uvnbrat space U is the algebra of polynomials
1 2_

K[ai>a2'... >Ai»x2>u >u ] in d pairs of Greek variables and in
a pair of Roman variables.

The umbrat operator U is defined as the linear operator



11 -

u: u

Q(a , a ,..., u', u')

-^ 9
1 2

P(A ,..., A^, u', u') =
<U|Q(a , a^,..., u , u )>

which satisfies the following conditions:

(i) (U)u^a^ = A, 61 -' for every Greek letter a
(ii) <U|(us)l> = (us)1, s=l,2

(iii) <U|a^^ ... ^X^ul)i(u2)j> = <U|^a^... <U|X^^).
><U|(ul)i>. <U|(u2)j) .

.^
The polynomial P(A' ,.. ., A , u , u ) = <^U|Q(ci , a ,. .. , u , u )^

is said to be the umbrat evaluation of Q and Q is called the

umbral representation of P.

We shall also use the following notation:

<U(f)|Q(a^, a^,..., ul, u2)> := P(a ., a xl, x2)
|Q(u^, u^,..., u , u )) := P[a^,..., 5^, 5^ , 3c ).

Remark. Owing to the foregoing definition of umbral space,

any umbral evaluation is a polynomial of degree lesser than or

equal to d with respect to the variables Ay,..., A^. Usually

(viz [l]) this fact is avoided by considering infinite pairs

of Greek letters. It does not, however, cause any serious re-

striction. On the contrary, the definition adopted here

allows us to avoid more troublesome algebraic machinery.

1 2, , -1 _2
The change of variables (x^ , x") »->. (^^ , 3^") induces an

isomorphism

(9) <C: 5

'0'-

r^ <p
PCA^,..., A^, ul, u2)»->-P(A^,..., A^, ul, u2)

by which:

i) <(>(ul)-=Z. c^1 uj, <^(A)=Z. DqA^p
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ii) for every binary form fCx^, x'~) = f(x', x~), we have

P(ao,..., an, xl, x2) = PCao,..., a^, xl, x2);

iii) P is a covariant of index g iff

P(A ,..., A , ul, u ) = Ag P(A_,..., A_, u , u ).
o' -n-- o n

Tlie following proposition enable us to compute <()(P) in

terms cf its umbral representation. At the end of section 3

we shall give it a straightforward proof.

Prop. 1. If P(A ,. . . ,A, ul, u2) = <U|Q(c(^, a^,. . . ,ul, u)> then
? = $(P) = <U|QCd^a^d^a^dlci +d^a^,..., c^ul+C^U2, c^ul4-c^u2)>.
Equivalently, ifP=<^U|Q(a, a,..., u, u)^, we have

P(S^,..., a^, ^l, x) = <U(f)|Q(a a^,..., ul, u2)> =
.

1 , _2 _1 , _2 ^1.. 1, ^1^2 ^2^1, ^2.. 2.
^ci"l+c]'ct2 'C2al+c2a2 ' ' ' ' 'diu'+d2u~ 'diu^+d2u"y-

2. - We shall need the notion of symmetric power V"" of a

vector space V.

Let m=dim(V). Let us consider the n-th tensor power V

of V. Let W be the subspace of V"" generated by all the elements

of the form v, ©...©v -v , ^ ®...®v / , , oeS_. Let us
l"'''*'n 'o(l) ~'''~'a(,n) ' """n

(10) Von := V0n/W
and

V, 0.., 0V
1"~ ' " n ^10---8vn^od w

It may be useful to remark that W is the kernel of the

linear application

s : v
®n

v
®n

Thus,

V^0... 0V I-> ^T/ " V /^0... 0V
1" ' ~ ~~'n "' a'eS ' CT (1)

n
o(n)

Im(s) ^ V
on
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We have:

,on^ ^n+m-1
a) dim(V"") = (" ^ ')
b) if b = (b^,..., b_) is a basis of V, then the set of the

elements of the form

(11) B... :=b, o.. . ©b, o. . . . ob o. .. ob , i=(l,..., 1,...., m,..., m)
i 1 1 'm m

,
®n

is a basis of V - .

,
-x- . .. , . . ,1

Let us now consider the dual space V of V and let b-,..

..., b'" be the dual basis of b^,..., b_: b""(b. ) = 6T.

By means of s, the isomorphism (V^') 's (V ^' induces an

isomorphism between (V^) and (V ) . Thus, we may regard
yl_ _vn ^i ir-><- __ _ <--"_ -" .<r®n
X~o... oX", X~eV' as a form on V" and we have

C12)
(Xl©...oXn)(x, o. .. ox ) = l/n!^, Xo(l) (xj . . . Xo(n) (x_) =

n oeb^ i n

= 1/n'Z;, Xl(x, ^J... Xn(x^_J.
'oeS. 'o(l) o(n)

In particular

(13) B1(B^) = (^ n ) &.,, 1=(1, . -,J,, . . . . , m, . . _._^mJ .
Pm

3. - For the sake of simplicity, let us now suppose that:

1) dim(V) = 2

2) b = (b^, b^) and b = (b^, b^) are two basis on V such that

\-^^\ bisdtb i+drb2 .

b2-c21bi+c^2 b2adrb itdrb2
3) x = xlb^+x2b^ = ^lb^+x2b^eV.

If K is an algebraically closed field, it is possible to

find - in o<a different ways - n linear forms X =X^b +X^b =
^i^l.,-ir2 ".< .
=X^b'-+X^b'eV', i=l,..., n, such that

(14) f(xl, x2)=CX^xl+X^x2)... (X^xl+X^x2)=(X^xl+X^x2) . . . (X^lxl+
+X^x2)=f(xl, x2);
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that is

(15)
1 2^ 7^-1 -2^ ,,, 1 ».n^ , sn

f(x^, x~) = f(x*, x") = (X^e... ®X")(x"").

Because of CX1Q... oX")(x8 n)=(Xo(l)®...sXCT(n))(xen), oeS ,

we may also put

(16) ffxl. x2£Cxl, x2) = (Xlo... GXn)(xon).

If !=(1,..., 1, 2,..., 2), instead of B we may use B :
P n-P

Bp:=(bl)0po(b2~)0(n-p).

We have BpCxon)=Cx1)p(x2)n-p. Thus,

-1-^2^ =7" rn^ o r^l^P^2^n~P-r r"- rn^ . uPw^en-
f(x';x^ ' p^o 9 ^(^)r(^)" yc(^ Cp) a^ B-)(x°")

with Xlo.. ;oXn = £ Cn)a Bp.
p=b 'p' p"

(17)

All this .suggests that we can associate the linear form

P :. ̂  (;)a^B-. (Venr
with the binary form f(xl, x2) = JT. (n)a (xl)p(x2)n-p even when
K is not algebraically closed.

Of course, with reference to a new basis b in V, we also

have

(17') F = ^ (n)ajp.
p=o vp' p-

Applying B , B  . (V®nf ̂ V®n to (17), (17') respectively,
p p

we have

(18) ap = BP(F), a_ = BP(F).

By a similar argument, more generally we get

i a ... a (:
Pl P2""Pdv

" 

/ '" / 

L"'Pl"""Pd'
(19) a^ a^ ... a^ (xl)s(x2)t~s=[(B, O... OB, )®BS](Fe>dexot)
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as well as

-1, s, -2, t-s ^Si ^^.od ©t(19') a^. a^. . . . a^-(xi)s(x^)I:~s;=[(B^ o... ©B^ )®BS} CFOa0xot)
pl P2

To sum up, we associate with each polynomial

1 2. 1^ s , 2^ t-sP(A_,.. ., A , u\uz) = Z:rpl'"pd A ... A (ui)s(uz)
on - s Pl Pd

(homogeneous both as a polynomial in A_,..., A and as a poly-

nomialin u", u") the element

v =j: rPl---Pd(B_ O... OB )®BS £CVOn)0d8CV")ot.
s ~ Pl Pd

If we express the same element v in the basis induced

by b:

v = Z. TP^--pd(B e... oB )@BS
s ' Pl Pd'

we obtain the polynomial

KP) = P(A_,..., A_, ul, u2) = jl 7pl-'-pdA_ ... A_ (ul)s(u2)
o- -n- - - s Pl Pd

l^s , 2, t-s

(20)

Denoting the foregoing map by

^: (v0 n)0d®cv')os_^ ^
v

we have proved that

I^rp^. 2_^- The diagram

9 ^.9

(21)

(V0n)od@(V )ot

is commutative. a

We are now able to prove Prop. 1.

Proof of Prop. 1. Consider the diagram
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(22)

where ^^ is the linear map by which

n (M) =

B 0... QB 8B'
p p

if M is a monomial of the form

M=a, P- cx2n-p- ... X, Pdx, n-Pd(ul)SCuz)n-p^ 1 s^2 t-s

0 for any other monomial M

and x ls the morphism of algebras defined by

1 .2
x(a. ) = d. a^+d. a^ (for any Greek letter a)

i, __ _i.. l. _i..2
x(u') = c^u~+c^u- .

It is easy to see that every triangular diagram in (22) is

commutative. Thus, the same is true for the rectangular one.

This is precisely what we had to prove. ' I|

What we have seen up to now seems to point out that the

two spaces (Von)0d0(V^)Qt and (Von)0d0(V^<:)t, together with
the canonical projection, supply a natural framework for study-

ing homogeneous covariants of binary forms.

Indeed, going into slightly more detail in the calculations

involved, it becomes clear, via the identification

B,@... 8B, 8BS = a? af^ . . . Xp^fpc'Cu1) s (u2) t-s
r( rd.

that i) as a first approximation, the umbral space U is
,

on, 0d. Qtnothing but (V'yll)*6'u@CV+)u'1'; ii) the umbral operator U re-

presents the canonical projection from (V ) ®(V ) to
(Von)odO(V")Qt.
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4. - In what follows the graded algebra 1J':=(S(V)) -

more precisely, the internally graded algebra ^_*(J induced

by V - plays the role pl^ydd by (V ) in the foregoing

treatment. In such a way, we shall gain a twofold advantage.

On the one hand, it allo-ws us to represent every polynomial

P6y-' (not necessarily homogeneous) of degree d. On the other

hand - and this is the main point - 'U appears to be the

suitable setting where such representations of invariants may

be factorized. Let us sketch how this can be done.

(23)

We shall need the symmetric graded algebra

S(V) = (K, V, V02, ... , V0P, ... )

as well as its d-th tensor power

(24) CS(V))0d = V = CV^,^, ... , Vp,
where

C25) u ==.
ll+-"7-+id=p

Voll0... 8Vuld.

(26)

The multiplication on S(V) is defined as follows:

V°P^VGq _ V®(p+q)
v^Q... 0V W^G... OW ^ V. ©...0V ©W,Q... OW

1"'' ""p'"l~'' ""'q

Therefore, the multiplication on <U"=(S(V)) is given through

the bilinear maps defined by

(27) ^'v, V,
p+q

(v-, 0. . . 8v_, , w, 8. . . ®w^)t- ->- -(v^w )8. . . 0(v^w^)

where the product v. w is as in (25).

Observe that both SCV) and 'L^ are generated, as graded

algebras, by their elements of the first degree.
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Let us factorize the space \f by means of the sub-

space "U^ defined in the following way. If either p>nd

or p^nh \, [f is V^ itself. If instead p=nh, h<:d,
first observe that we have

(28) V = oCp ® <tp Cp=nh)
where

(29) ^:= . , ®),, __K0j°®V@n0... ®K8jh-18V0n8K®jh (p=nh) .
-p- j^. T. +j^d-h-

The elements of the o^. 's are said to be the irredundant

elements of U .

Denoting with H^ the subspace of ^ generated by all
the elements of the form

vl®---0vd - va(l)0---0va(d)' OE S,

let us put

W ZlVp :' Hp® J; Cp=nh)

We have

(31) ẑu:

0 if p^nh or p>nd

,
©n^ sh

(V~")~" if p=nh

Consider the graded quotient module

(32) ^ := (^/^, ... , Vp/UJp, ... ) -
= (K, 0,..., 0, V0n, 0,..., 0, CVGn)G2, 0,..., 0, (V0n)od, 0, 0,... )

(n-1)times (n-1)times definitely

^-'/LiJ' is also a graded algebra - namely, the symmetric

graded algebra generated by its elements of. degree n - but

it is not a graded quotient algebra of V . In other words,
the submodule ^=(k)l, . . . , 1^, .. . ) is not an ideal of the
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graded algebra U .

The relationship between the approach to invariant

theory allowed by these algebraic structures and the sym-

boiic mrthod is visualized by the following commutative

diagram (34):

u u (p

Z. V®^s(v^) ETT®1 -rL%y ®zscv^

-' ub *s.
u-

<}> (34)

u 9

where:

a) u^is the isomorphism of algebras defined by'b-

10... ®l@b,@10... 01
(j-l)times ~ (d-j+l)times

u)b^z'i->= ^ .;
I®...QlQb1

d times

if z is the j-th letter among {a,.

if z=u ;

.. A}

b) Z n~ : J^ I/-*~ Z- ̂ /yJ is the canonical projection;
c) ^ is the morphism of algebras such that

^^: B ®I=[b^__Ob^ Ob^.^Ob^] ®1 ^ ->~ A

and
p times (n-pV

^i^: 10b' .- -*- u

Lastly, consider another morphism (of modules), the sym-

metrization map

(35) ^=I(5^,..., ^,... ):
Here ^ is the linear map defined by
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J?
L:;.

where

u V.

V, 0... ®V, h
1

1/d! ^ \F_^, 8... ®^,
0£ S, ' 0 Cl) - 0

,
®n

v.
1

v. if v. eV" or v. eK
1 - i i

i. 0 otherwise

Lemma. Let w be an element of ̂  ^c ^^ Ch<d) ; then
S(w)=0 if and only if we H^^ .

Proof. (Assume dimV=2; in the general case the same pattern

may be followed).

Throughout the proof, we shall only consider d-ples s^,..., s^
such that -l$s, s<n and 7^, { sj s^ =-1 }=d-h.

The elements of the form

with

and

B 8... 8B
-sl'"""sd

B_ = b-, ® . . .©b,®1?^o . . . ob,, if s^O
5- .1 -.^_...__^ \^.. _.----<- 1

l s, - - n-s,

'-1
leK

provide a basis for oC. We have:

.Sw = .5(>"-. ASI '... '^B, ®...
s< s^

^rz
-i$s $... <s <n

[j_At""--t.

) -

B. ®. . .1 )

(where the sum into parentheses ranges over all the d-ples

t^,..., t such that ^{t^|t^=r} = ^/{s^|s^=r}for every
re{-l, o, l,..., n})

r_

F

J~ ... (I_At<"--'t< <$(B, Q... OB, )) =
-l$s^<. . .<s^n ' ~ T-, ^ ' .

(^_At<> ... '^ ) ^(B, 0... QB, ) .
-l<s^. . .<s ,<n



21 -

Since the vectors . ^(B_ 8... ®B_ ), -l^s^ <:. . . ^s _, ^:n, are
sl sd-

linearly independent, . 5>(w)=0 implies ^A 1'''' d=0. It fol-

lows that, if ^(w)=0, then

w»£_
-l<:s, i:.. .,s:s .^n

(Z-A^'---'t d[B, 0... 0B, - B_ 0. . . 0B_ "]) ,
-1 Td sl sd^

that is. we H
hh D

The proof of the following proposition presents now no

special difficulties.

Prop. 3. Ker( g^) = l0p (= Hp © ̂  if p=nh).

As a corollary we deduce the following Proposition 4.

Prop. 4. (The symmetrization condition) Let Ve J^'[/»
then (ITT)(V)=O in ^V/uJ- if and only if ^(v)=0 in Z IT .

Referring to the notion of symmetrisation S(Q) of an

irredundant polynomiat QeU as it appears in [l"] , it is easy

to prove that:

i) if Qe U is an irredundant polynomial in h Greek let-

ters (h<d), then tl)bcQ)£<^nh; conversely' if u ^ ^Q)e c^nh'
then Q = Q +. .. +Q where Q^ is an irredundant polynomial

in h Greek letters.

ii) S(Q)=0 if and only if 5(^(Q))=0. More precisely, we
have

(^lo5o(. ^)(Q) = (^)-1 F 8(0^)
where, denoting with S,,..., ^,. the Greek letters which -occur

in Q, f is any injective, increasing map from {S,,..., &,_}
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to {a, g,..., X} and Q^ := Q(f(^) , . . . , f(S^)) .

As a consequence. Proposition 4 is equivalent to the

usual form of the symmetrization condition, that is

:(Q)=o U(Q)=0.
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