On Hales-Jewett's theorem
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Summary. We prove that, for every finite semigroup S , there
exist elements a1,85, 000,81 ,3) of S and integers 11""'ik
such that
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We refer to [1] for the notion of (combinatorial) line as
well as for the other combinatorial concepts we use in the

sequel.
The following theorem of Hales-Jewett is well known.

Theorem ([2]). Given any finite set A and any integer r
there exists an integer N=N(A,r) such that for each n > N(A,r),

in any r-coloring of A" there is always a monochromatic line.

In [1], Graham presented an interesting algebraic application
of this theorem: for every finite commutative semigroup S , there

exist an element a of S and an integer n such that
n n
asx = a-y
for each x,y of S , i.e. a-x" is independent of x (shortly, we

speak of the constant word a-x" for S).

Trivially, there are finite non commutative semigroup with-
out constant word of type a-x" as for example, the semigroup D

presented by the following Cayley table
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True, for this semigroup the word x-u is constant, i.e. for
this semigroup a particular case of the word x7eb ("dual" of
a-x") is constant. But the semigroup D' presented by the fol-

lowing Cayley table

shows that x"-b is not a constant word for each finite semigroup.

Again, the direct product DxD' , where D and D' are as pre-
viously described, is a semigroup without a constant word of

type a*x™ and without a constant word of type xTeb .

After some other considerations like the previous ones, the
following question naturally arises: given any finite semigroup

does there exist a sort of constant word for it?
The following proposition gives us an answer.

Proposition. For any finite semigroup S there exist an

integer k, a (k+1)-tuple ay,85, 000,81, of elements of
S , and a k-tuple i1""'ik of integers such that
11 =g k
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is independent of x , i.e. it is a constant word for S .

Proof. Consider S both as an alphabet and as a set of colors.
From Hales-Jewett's theorem there exists an integer N(S,|S|)
such that for each integer n > N(S,|S|) and each |S|-coloring

n : L !
of S, a line of S is monochromatic.

This is true, in particular, when each element

(x1,x2,...,xn)

n

of S is colored by
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Now, if the monochromatic line is the diagonal then the con-

clusion follows immediately.

If the monochrcmatic line is not the diagonal then the lengths
of the "lakes" of the non-fixed coordinates (there is always such
a coordinate) give us the integer ij and the elements aj are

easily obtained looking at the fixed coordinates.
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