An Erdös-Rado Theorem for Baire-mappings $\Delta: [\mathbb{R}]^n \to M$

Hanno Lefmann Bielefeld

Let IR be the set of reals endowed with the usual topology. Already known to Sierpiński is the following

<u>Theorem A:</u> Let M be a metric space and let $\Delta: \mathbb{R} \to M$ be a Baire-mapping. Then there is a perfect subset $P \subseteq \mathbb{R}$ such that either $\Delta \land P$ is constant or $\Delta \land P$ is one-to-one.

Here a mapping $\Delta: \mathbb{R} \to M$ is a <u>Baire-mapping</u> iff the preimage $\Delta^{-1}(0)$ of every open set $0 \subseteq M$ is a Baire-set, i.e. is the symmetric difference of an open and a meager set. A subset $P \subseteq \mathbb{R}$ is perfect iff it is nonempty, closed and has no isolated points.

Theorem A fails, if arbitrary mappings are allowed. This can be seen by use of the axiom of choice.

Blass considered in [Bl 81] Baire-mappings $\Delta:[\mathbb{R}]^n \rightarrow \{0,\ldots,r-1\}$, where n,r are positive integers. Here $[\mathbb{R}]^n$ denotes the set of n-element subsets of \mathbb{R} , which inherits a topology from \mathbb{R}^n endowed with the product topology. It turns out that certain subsets of $[\mathbb{R}]^n$ play an important role: Notation: Let n be a positive integer. Let $(\{1, \ldots, n-1\}; \leqslant)$ be a total order and let $P \subseteq \mathbb{R}$. Then $[P]_{\prec}^{n} = \{\{p_{0}, \ldots, p_{n-1}\}_{\leqslant} \in [P]^{n} | p_{i} - p_{i-1} \leqslant p_{j} - p_{j-1} \text{ iff } i \prec j \text{ for} all 1 \leq i < j < n\},$

where < denotes the usual order on \mathbb{R} .

So these subsets are determined by the relative distances between consecutive elements. Clearly, there are (n-1)! such subsets of $[P]^n$.

Blass proved in [B1 81] the following

<u>Theorem B:</u> Let n,r be positive integers. Then for every Bairemapping $\Delta: [\mathbb{R}]^n \rightarrow \{0, \dots, r-1\}$ there exists a perfect subset $P \subseteq \mathbb{R}$ such that $\Delta \upharpoonright [P]^n_{\mathcal{A}} = \text{const.}$ for every total order $(\{1, \dots, n-1\}; \leq)$.

Thus the image of n-element subsets of P only depend on their ordertype, and this result is optimal, since n-element subsets of IR can be partitioned according to their ordertype.

Next we consider mappings with an arbitrary range, not only with a finite one. Let $\Delta: [\mathbb{R}]^n \to M$ be a Baire-mapping, where M is a metric space. The aim is to find a perfect subset $P \subseteq \mathbb{R}$ such that the mapping Δ restricted to $[P]^n$ behaves nice. By topological means there is a perfect subset $P \subseteq \mathbb{R}$ such that the restriction $\Delta \wedge [P]^n$ is continuous. Since every perfect subset of \mathbb{R} contains a Cantor set, we restrict in the following to continuous mappings $\Delta: [2^{\omega}]^n \to M$.

72

To visualize 2^{ω} , consider the tree $2^{<\omega}$ whose points are finite 0-1 sequences ordered by the initial segment relation:

Clearly, every infinite path in $2^{4\omega}$ determines an element of 2^{ω} .

For the following it can be shown, that one need not consider the whole tree $2^{<\omega}$. It suffices to look at perfect, skew subtrees of $2^{<\omega}$. These subtrees satisfy: (1) above every node there is at least one ramification node and (2) on every level there is at most one ramification node.

For different infinite paths $\alpha, \beta \in 2^{\omega}$ let $d(\alpha, \beta)$ denote the length of the maximal common initial segment of α and β .

Let 2^{ω} be endowed with the lexicographic order.

Let $T = \{\alpha_0, \ldots, \alpha_{n-1}\}_{<lex} \in [2^{\omega}]^n$. This set T induces a total order \leq on $\{1, \ldots, n-1\}$ by

 $i \leq j \Leftrightarrow d(\alpha_{i-1}, \alpha_i) \leq d(\alpha_{i-1}, \alpha_i)$

73

By $V(T) = \{d(\alpha_{i-1}, \alpha_i) | 1 \le i \le n-1\}$ we denote the set of the lengths of the ramification nodes of T.

For a total order $(\{1, \ldots, n-1\}; \leq)$ and a subset $P \subseteq 2^{\omega}$ let $[P]^n_{\prec}$ be the set of all n-element subsets of P, which have ordertype $(\{1, \ldots, n-1\}, \leq)$.

For a totally ordered set $X = \{x_0, \ldots, x_{n-1}\}$ and a subset $I \subseteq \{0, \ldots, n-1\}$ let $X:I = \{x_i | i \in I\}$ be the I-subset of X. We have the following

<u>Theorem C:</u> Let n be a positive integer and let M be a metric space. Then for every continuous mapping $\Delta:[2^{\omega}]^n \to M$ there exists a perfect subset $P \subseteq 2^{\omega}$ and for every total order $(\{1, \ldots, n-1\}; \leq)$ there exist subsets $I_{\checkmark} \subseteq \{0, \ldots, n-1\}$ and $J_{\checkmark} \subseteq \{1, \ldots, n-1\}$ such that for every pair (\leq, \leq^*) it is valid:

(i)
$$\Delta(A) \neq \Delta(B)$$
 for all $A \in [P]_{\prime}^{\prime\prime}$, $B \in [P]_{\prime}^{\prime\prime}$

or

(ii)
$$\Delta(A) = \Delta(B) \iff A: I_{\checkmark} = B: I_{\checkmark} \text{ and } V(A): J_{\checkmark} = V(B): J_{\checkmark} *$$

for all $A \in [P]_{\checkmark}^{n}$, $B \in [P]_{\checkmark}^{n}$.

Thus the canonical patterns are determined by paths and ramification nodes.

With respect to partitioning n-element subsets of the set of reals this means:

Theorem D: Let n be a positive integer and let M be a metric space.

Then for every Baire-mapping $\Delta: [\mathbb{R}]^n \to M$ there exists a perfect subset $P \subseteq \mathbb{R}$ and for every total order $(\{1, \ldots, n-1\}; \leq)$ there

74

exist subsets $I_{\checkmark} \subseteq \{0, \dots, n-1\}$ and $J_{\checkmark} \subseteq \{1, \dots, n-1\}$ such that for all pairs (\bigstar, \bigstar^*) it is valid:

(i)
$$\Delta(A) \neq \Delta(B)$$
 for all $A \in [P]^n_{\checkmark}$ and $B \in [P]^n_{\checkmark^*}$

or

(ii)
$$\Delta(A) = \Delta(B)$$
 iff $A: I \leq B: I \leq *$ and
 $\{k \in \mathbb{Z} \mid 2^{k-1} \leq a_j = a_{j-1} \leq 2^k \text{ for some } j \in J \leq \}$
 $=\{k \in \mathbb{Z} \mid 2^{k-1} \leq b_j = b_{j-1} \leq 2^k \text{ for some } j \in J \leq *\}$
for all $A \in [P]_{\leq n}^n$ and $B \in [P]_{\leq *}^n$ with
 $A = \{a_0, \dots, a_{n-1}\} \leq and B = \{b_0, \dots, b_{n-1}\} < .$

Proofs of these results will appear elsewhere.

Reference

[B1 81] A. Blass, A partition theorem for perfect sets, Proc. Amer. Math. Soc. 82 (2), 1981, 271-277.

H. Lefmann Fakultät für Mathematik Universität Bielefeld D-4800 Bielefeld