An Erdös-Rado Theorem for Baire-mappings $\Delta:[\mathbb{R}]^{n} \rightarrow M$

Hanno Lefmann
Bielefeld

Let \mathbb{R} be the set of reals endowed with the usual topology. Already known to Sierpinski is the following

Theorem A: Let M be a metric space and let $\Delta: \mathbb{R} \rightarrow M$ be a Baire-mapping.

Then there is a perfect subset $P \subseteq \mathbb{R}$ such that
either $\Delta \mathcal{P}$ is constant
or $\quad \Delta P \mathrm{P}$ is one-to-one.

Here a mapping $\Delta: \mathbb{R} \rightarrow M$ is a Baire-mapping iff the preimage $\Delta^{-1}(0)$ of every open set $0 \subseteq M$ is a Baire-set, i.e. is the symmetric difference of an open and meager set. A subset $P \subseteq \mathbb{R}$ is perfect iff it is nonempty, closed and has no isolated points.

Theorem A fails, if arbitrary mappings are allowed. This can be seen by use of the axiom of choice.

Blass considered in $[B 181]$ Baire-mappings $\Delta:[\mathbb{R}]^{n} \rightarrow\{0, \ldots, r-1\}$, where n, r are positive integers. Here $[\mathbb{R}]^{n}$ denotes the set of n-element subsets of \mathbb{R}, which inherits a topology from \mathbb{R}^{n} endowed with the product topology. It turns out that certain subsets of $[\mathbb{R}]^{\text {n }}$ play an important role:

Notation: Let n be a positive integer. Let (\{1, $n, n-1\} ;\{)$ be a total order and let $P \subseteq \mathbb{R}$. Then

$$
[P]_{\alpha}^{n}=\left\{\left\{p_{0}, \ldots, p_{n-1}\right\}<\in[P]^{n} \mid P_{i}-p_{i-1}<p_{j}-p_{j-1} \quad \text { if } \quad \text { i\&j for } \quad \text { all } 1 \leq i<j<n\right\},
$$

where < denotes the usual order on \mathbb{R}.

So these subsets are determined by the relative distances between consecutive elements. Clearly, there are (nfl)! such subsets of $[P]^{\mathrm{n}}$.

BIas proved in [B1 81] the following

Theorem B: Let n, r be positive integers. Then for every Baremapping $\Delta:[\mathbb{R}]^{n} \rightarrow\{0, \ldots, r-1\}$ there exists a perfect subset $P \subseteq \mathbb{R}$ such that $\Delta P[P]_{\alpha}^{n}=$ const. for every total order $(\{1, \ldots, n-1\} ; \leqslant)$ 。

Thus the image of n-element subsets of P only depend on their order type, and this result is optimal, since n-element subsets of \mathbb{R} can be partitioned according to their ordertype.

Next we consider mappings with an arbitrary range, not only with a finite one. Let $\Delta:[\mathbb{R}]^{n} \rightarrow M$ be a Baire-mapping, where M is a metric space. The aim is to find a perfect subset $P \subseteq \mathbb{R}$ such that the mapping Δ restricted to $[P]^{n}$ behaves nice. By topological means there is a perfect subset $P \subseteq \mathbb{R}$ such that the resfriction $\Delta \beta[P]^{n}$ is continuous. Since every perfect subset of \mathbb{R} contains a Cantor set, we restrict in the following to contnuous mappings $\Delta:\left[2^{\omega}\right]^{n} \rightarrow M$.

To visualize 2^{ω}, consider the tree $2^{<\omega}$ whose points are finite $0-1$ sequences ordered by the initial segment relation:

Clearly, every infinite path in $2^{\langle\omega}$ determines an element of 2^{ω}.

For the following it can be shown, that one need not consider the whole tree $2^{<\omega}$. It suffices to look at perfect, skew subtrees of $2^{<\omega}$. These subtrees satisfy: (1) above every node there is at least one ramification node and (2) on every level there is at most one ramification node。

For different infinite paths $\alpha, \beta \in 2^{\omega}$ let $d(\alpha, \beta)$ denote the length of the maximal common initial segment of α and B.

Let 2^{w} be endowed with the lexicographic order.

Let $T=\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}_{<l e x} \in\left[2^{\omega}\right]^{n}$. This set T induces a tctal order \leqslant on $\{1, \ldots, n-1\}$ by

$$
i\left\{j \Longleftrightarrow d\left(\alpha_{i-1}, \alpha_{i}\right) \leq d\left(\alpha_{j-1}, \alpha_{j}\right)\right.
$$

By $V(T)=\left\{d\left(\alpha_{i-1}, \alpha_{i}\right) \mid l \leq i \leq n-1\right\}$ we denote the set of the lengths of the ramification nodes of T.

For a total order (\{1, ..., $n-1\} ; \leqslant)$ and a subset $P \subseteq 2^{\omega}$ let $[P]^{n}$ be the set of all n-element subsets of P, which have ordertype (\{1,..., n-1 $\}, \mathbb{R})$.

For a totally ordered set $X=\left\{x_{0}, \ldots, x_{n-1}\right\}<$ and a subset $I \subseteq\{0, \ldots, n-1\}$ let $X: I=\left\{x_{i} \mid i \in I\right\}$ be the $I-s u b s e t$ of X. We have the following

Theorem C: Let n be a positive integer and let M be a metric space. Then for every continuous mapping $\Delta:\left[2^{\omega}\right]^{n} \rightarrow M$ there exists a perfect subset $P \subseteq 2^{\omega}$ and for every total order (\{1, .., $\left.\left.n-1\right\} ; \leqslant\right)$ there exist subsets $I_{<} \subseteq\{0, \ldots, n-1\}$ and $J_{<} \subseteq\{1, \ldots, n-1\}$ such that for every pair $\left(\leqslant, \leqslant^{*}\right)$ it is valid:
(i) $\quad \Delta(A) \neq \Delta(B)$ for all $A \in[P]_{<}^{n}$, $B \in[P]_{<*}^{n}$
or
(ii) $\Delta(A)=\Delta(B) \Longleftrightarrow A: I_{<}=B: I_{<} *$ and $V(A): J_{<}=V(B): J_{<} *$ for all $A \in[P]_{\alpha}^{n}, B \in[P]_{<*}^{n}$.

Thus the canonical patterns are determined by paths and ramification nodes.

With respect to partitioning n-element subsets of the set of reals this means:

Theorem D: Let n be a positive integer and let M be a metric space.
Then for every Baire-mapping $\Delta:[\mathbb{R}]^{n} \rightarrow M$ there exists a perfect subset $P \subseteq \mathbb{R}$ and for every total order $(\{1, \ldots, n-1\} ; \leqslant)$ there
exist subsets $I_{<} \subseteq\{0, \ldots, n-1\}$ and $J_{<} \subseteq\{1, \ldots, n-1\}$ such that for all pairs ($\leqslant, \mathbb{S}^{*}$) it is valid:
(i) $\quad \Delta(A) \neq \Delta(B)$ for all $A \in[P]_{\prec}^{n}$ and $B \in[P]_{<*}^{n}$ or
(ii) $\Delta(A)=\Delta(B)$ iff $A: I_{<}=B: I_{<}$* and $\left\{k \in I \mid 2^{k-1} \leq a_{j}-a_{j-1}<2^{k}\right.$ for some $\left.j \in J<\right\}$ $=\left\{k \in Z \mid 2^{k-1} \leq b_{j}-b{ }_{j-1}<2^{k}\right.$ for some $\left.j \in J_{<^{*}}\right\}$
for all $A \in[P]_{<}^{n}$ and $B \in[P]_{<~}^{n}$ with
$A=\left\{a_{0}, \ldots, a_{n-1}\right\}<$ and $B=\left\{b_{0}, \ldots, b_{n-1}\right\}<$.

Proofs of these results will appear elsewhere.

Reference

[B1 81] A. Bias, A partition theorem for perfect sets, Proc. Amer. Math. Soc. 82 (2), 1981, 271-277.

```
H. Lefmann
Fakultät für Mathematik
Universität Bielefeld
D-4800 Bielefeld
```

