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Abstract: The notion of 'order' for Jacobi-configurations has been

introduced in part I of this article. In this second part

the exponential generating function for Jacobi-configu-

rations of bounded order, i. e. the analog of the classical

generating function of Jacobi's for his polynomials, Is

derived. This result (and its proof) make use of certain

matching polynomials and their combinatorial properties.

These matching polynomials are close relatives of the

Tchebycheff-polynomials.
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Introduction

In [PL] D. Foata and P. Leroux presented the first combinatorial model -

"Jacobi-endofunctions" - for the Jacobi-polynomials, and using this

model they succeeded in giving a completely combinatorial proof of

Jacob!'s generating function for his polynomials. This model has been

used (and extended) in [LS] and [ST] for further combinatorial studies

along these lines. In particular, in [ST] a concept of 'order' for the

Jacobi-endofunctions was defined, which was used in that article in order

to establish the equivalence between the Foata-Leroux-model and another

model Introduced by the present author. It is the purpose of this article

to present the exponential generating function for Jacobi-endofunctions

of bounded order in terms of matching polynomlals. The matching polyno-

mials which show up here are in fact close relatives of the Tchebycheff-

polynomials (of either kind), and the main result of this article may be

looked at as a kind of rational approximation of the Jacobi generating

function in terms of Tchebycheff-polynomials. Though converging rapidly

and being easy to calculate, the author feels that the main interest for

this approximation comes from its strong comblnatorlal motivation.

This article is organized as follows: In sec. 1 we recall briefly the

Foata-Leroux model for the Jacobi-polynomials. In the second section the

operations of 'reduction' and 'contraction' on Jacobi-endofunctions are

reviewed - these lead in a natural way to the concept of 'order'. The

generating functions of interest are defined in section 3, where the basic

recurrence Is proved by inverting the reduction-contraction procedure.

The main result is stated In sec. 4, where the relevant matching polynomial

will be defined. The main combinatorial trick - the duplication formula

for the matching polynomials - is presented in the fifth section. The

proof of the main result will then be completed in sec. 6 . Some additional

remarks conclude the article.

The present article can be read independently from part I - all the

relevant notions from [ST] are reviewed here. Nevertheless, it should be

noted that the major motivation for the work presented here is to be

found in the predecessor of this article.
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1 jacobi-endofunctions: definition and notation

To begin with, let us briefly recall the model of Jacobi-endofunctions
as introduced by Foata/Leroux in [PL]. ( Indeed, we do not use exactly

the same notations ).

For any pair (A, B) of disjoint, finite sets JAC(A. B) denotes the set of
all endofunctions f of S:=A>jB such that the restrictions

f I A : A->S and f|B : B->S
are both injective. For any finite set S, JAC(S) denotes the set of all

9=((A, B), f), where (A, B) is an ordered bipartition of S and f<£JAC(A, B).
We will write JAC[n] when S = [n] = {l, 2,..., n}.

For f£JAC(A, B) let R(f) denote the set of recurrent elements of f. Then

f|R(f) is a permutatlon of R(f) and we denote by cyc(f|A) the number of
cycles of f|R(f) which are contained in A, and similarly for cyc(f|B).

Each ̂ =((A, B), f) is the given the weight
w<9) := d^)cyc(fiA)(i^)CYC(flB)xlAIYIBI .

and it is shown in [FL] that

9^'^)(X, Y) = S i W«S) .' S&JAC[n] i
where ?^'<i>((X, Y) denotes the n-th homogeneous Jacobi-polynomial:

'P(0/'^)(X, Y) = ^(^(l+6<+j)^l+P+i)^XiYj ,^

'^.-
l. e. these polynomials are related to the Jacobi-polynomials in their

standard notation P^'^)(x) (c. f. [AB] , [AS] , [ER] , [RA]) by
(0<'(3)(X, Y) = n! . (X-Y)n-P^'^>)((X+Y)/(X-Y))
]^

n^p^'^W = y(o<'P))((x+l)/2, (x-l)/2)
n *"' ' n

Jacobi's generating function, when written in homogeneous form, states

that
Tp(o<r(2>)(X, Y) = S ?10<'P>)(X. Y) / n!

^n.

= ^ (1/n!) ^ j w(y) ; ^eJACtn] j
= 20<n+P ̂ -1(1-(X-Y)+^)-0<(1-(Y-X)+^)~1-' ,

where ^i = K-(X. Y) = (1-2(X+Y)+(X-Y)2)1/2 .
As indicated in the introduction, this is exactly what has been

demonstrated In [FL] using the model of Jacobi-endofunctions. We will

not go into the details of their proof, but we mention that the
expression on the r. h. s. reflects the fact that in the combinatorial
picture of Jacobi-endofunctions ((A, B), f) three types of connected
(w. r. t. f) components show up:



-116-

components where all the recurrent elements belong to A:
type-a-components In the terminology of [FL] ,
components where all the recurrent elements belong to B:
type-b-components,

- mixed components, where both recurrent elements belonging to A
and to B are present: type-m-components.

According to the general principles of enumeration of exponential
structures ( see e. g. [FO]. [JO] ), the exponential generating function
in question must have the form

v^. v^. v. . v,°<. v^. v,
a D m 'a'b't

where V^ = V^(X. Y) = ^ (l/n!)F j v(^) ; ^eJAC [n] j for
i=a( b, m, t, resp. ) is the exponential generating function for
type-a (type-b. type-m, all, resp. ) configurations under the valuation

v(^) = xlA'YlBI , for 5 = ((A. B), f) .
The same pattern will emerge below.

i"n- ;n:"o
"- . » 4^ 33 A - * 8

1 3 ZG

a ^^^ zi

. . . 0
Al ^ w

3o

39 2^
20 A . A .

^uv<-1
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2 Reduction, contraction, and order

The concept of 'order', as introduced in [ST], reflects further
structural properties of Jacobi-endofunctions (and other types

of discrete structures as e. g. the 'complete oriented matchlngs'

which are equivalent to them) - it is a kind of complexity measure,

closely related to the 'register number' of binary trees, see e. g.

[FR], [PR], and the references cited there.

Let g>=( (A, B) , f) £ JAC(S) ; an element x £ S is said to be regular
(singular resp. ) w. r. t. f if |f-l(f(x))| = 2 ( =1 resp. ).

is reduced if f has no singular points - S is then a set of even

cardinality. JAC (S) denotes the set of reduced
on S. The following facts were proved in [ST] :

cardinality. JAC_^,, (S) denotes the set of reduced Jacobi-endofunctions

Proposition: a) For any finite set S,
JAC(S) ^ ®JJAC (S)^LAG^(E, D) ; D ^ E=S, |D| even j ;

b) For any finite set S of even cardinality,

JACred(s^ JAC(A) X BU(A, B) ; AoB=S, |A|=|B|j

Here " ... ^ .. . " is to be read as: "there exists a bijection between...

and ... ", ® standsfor a disjoint union. LAG^(E, D) denotes the set of
all constructs (((E , E^), D), f), where (E^, E^) is an ordered bipartition
of E, and E, D are disjoint, finite sets, and f is an injective mapping
from E into E^D. Thus ((E, D), f) is a . Laguerre-configuration' in the

sense of [FS] . Finally BU(A, B) denotes the set of all bijective mappings
from A into B, where it is understood that A, B are disjoint, finite sets

of equal cardinality.

A proof of this proposition has been given in [ST]. In order to keep the
present article reasonably self-contained, the proof will be illustrated
by an example.

a) Let A={1, 2,..., 23}, B={24, 25,... 41}, and let f:[41]->[41] be given
via its graphical representation: (see figure 1. ).

It is easy to check that ((A, B), f)  JAC[41]. Indeed, there is one

type-a-component, there are two type-b-components, and there are two
type-m-components. We have

D. = {f-regular points} = {3, 4, 5, 9, 10, 11, 13, 14, 17, 20, 23, 25, 26, 27, 29,
30, 31, 32, 35, 36, 39, 41} ,

E, = {f-singular points} = {1, 2, 6, 7, 8, 12, 15, 16. 18, 19, 21, 22, 24, 28, 33,
f --»--- 34, 37, 38, 40} .
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For xcDf let g(x):=fm(x), where m is the least i>l s. th. f (x)£D
Then ((A^»D^, B^D^), g)£JAC (D ), which Is visualized by figure 2.
.'

.

z?

3^

^unaZ.

For x£E simply let h(x):=f(x), then( ( (A^ E^ , B^E^) , D^) , h) £ LAG^ (E^ , D^ ) ;
this part is visualized by figure 3. :

.--<
|21 2 S

-»-0 ^
^i 3 a

A
27

-A
25

A
2C

28

0
4

^

0
^

A
-to

Cf-^-t^

33
Q/ >

-^-.8

A
29

Q 0 A
9 Ao 32.

-«-o
-<2. -<3

A
3-1

0
23

^.3

The reader should check this decomposition ("reduction") of Jacobi-

-endofunctions into a 'regular part' and a 'singular part' is indeed

perfectly reversible.
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b) Let A = {3, 5, 7, 9, 10, 14, 16, 17. 18, 19, 20, 23, 25, 28} ,

B = {1, 2, 4, 6, 8, 11, 12, 13, 15, 21, 22, 24, 26, 27} ;

f: [28]->'[28] Is given graphically by figure 4.

-lo

25 as

^re. 4.

Obviously ((A, B), f)  . JAC [28]. Let now

A = A^f~ (A) = {10, 14, 17, 18, 19. 20, 23, 25} ,
B^ = A^f-l(B) = {3, 5, 7, 9, 16, 28} .

For x  A we define

g(x) := the unique y^A s. th. f(f(x)) = f(y) ,

so that ((A^, B^), g)  JAC(A), as can be seen from figure 5

28

2?

^r*
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On the other hand, for x  A we may define

h(x) := the unique yeB s. th. f(x)=f(y)
then heBIJ(A,B), In our case :

A:
h:

B:

3

^
1

5

I
6

7

I
2

9

^
4

10
i

11

14
I
8

16
i

12

17
4,

13

18
.^
15

19
A

21

20
^

22

23
4.

24

25
1

28
^

26 27

Again the reader should verify that the decomposition ("contraction")
is reversible.

Let now JAC := 9 j JAC(S) ; S any finite set ; , and similarly for
JACred- By the constructions indicated in the proof of the proposition
we have mappings

JACR

c JAC
red

JACred :((A'B). f)

JAC :((A, B), f)

( (A^D^, B^D^) , g)

((A^, B^), g)
called 'reduction' and 'contraction'.

Since each application of C reduces the size of a configuration by one
half each configuration will eventually disappear when applying C-R-pairs
repeatedly. We may thus define

(k) (k)
JAC"*' (JAC^.^ resp. ), the set of Jacobi-configurations (reduced

inductively by:

.
(0)

Jacob! configurations resp. ) of order k,

JACred := {/} ' where ^ denotes the empty function
[0)JAC , - H-1-C^,
(k)
red

(k)

JAC^ := C-l(JAC(k-l)
JAC

We have

,. R-1, ^C^>>

JACI0^ £ JACI1! £
'red - """red ~

which is the set of all ((A, B), f) with f a
permutatlon of A ^»B ;

, for k > 0 ,

, for k> 0 .

SJACJ.^ SJAclk:1^
red

in in in in

JAC(0) C JAC(1)C ..... cjAC(k) £ JAC(k+l)£
and the limits of the horizontal £ -chains are JAC
respectively.

red
and JAC,

,
(1)As a side remark, we note that the functions appearing in JAC'

are precisely the "pieuvres" introduced by F. Bergeron in [BE]
as a combinatorial model for the study of orthogonal polynomials.
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3 Generating functions - the basic recurrence

What we are interested In is an explicit expression for the exponential

generating function

TP^'P)(X. Y) := Z(l/n')E S w(y) ; 9£JAC(k-l)[n] j ,
for k>0. According to the general principles mentioned at the end of

section 1 we will have

TP^'P)(X, Y) = (E(l/n!)E ! v(<p) 5>£JAC^-l''[n]S )1+6<

If we define

. (E(1/"')Z; S v(S>) ; ^^k-l)[n]j )1+<3
. ( E <l/n!)E S v(s» ; 9£JAC1 tni S )

, (k-l)Fk(xrx2'Yi'Y2) := E<l/n!)E S v(g>) ; 9£JAClK-l)[n] j

A^ := AnR(f) , A^ := A\A^ , B^ := BnR(f) , B^ := B\B
where for y = ((A, B), f)£ JAC we put

A := AnR(f) , A := A\A

v(y) :. ^^2^[\^^
then S(l/n!)^ j v(y) ; g> £ JAC^k-l)[n] j = F (X, X, 0, Y) ,

^'(1/ni) S ^ v(?) y£ JAC^k-l)[n] j = F^(0, X, Y, Y) ,
and £(l/n!)S ! v(3>) ; y£ JAC(k-l)[n] j = F (X, X, Y, Y) ,

so that ^(l/n!)S i v<3>) ; 5» £ JACm(k-1) [n]
F (X, X, Y. Y)

F^ (X, X, o , Y ). F^ (oTxTYTvy
Thus our final result will be presented in the following form:

Proposition: For any k>0, the exponential generating function

for Jacobi-endofunctions of order k-1 is given by

-TP^'f2))(X, Y) = F^(X, X, 0, Y)0<. F^(O. X, Y, Y)^. F (X. X. Y. Y) .

The clue to the determination of F,. (X,, X^, Y,, Y^) is contained in

the following basic recurrence:

Proposition: For any k>0 ,

Fk+l(xl'x2'yl'Y2) = Fl(xl'x2'Yl'Y2) Fk^^2^21l2'^2^'!21]2)
where ^= X^/(1-X^-Y^) , T] ̂ = Y/(1-X-Y) , (1=1, 2).

Proof: First note that

F^(X^X^, Y^Y^) = i/(i-x -Y )

which is just the exponential generating function for "bicolored permu-

tations", i. e. pairs (permutation, bipartition). This factor takes care
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of those components which disappear when passing from JAC(k) to JAC(k)
via reduction: these are the components which consist entirely of
singular points, and these components together form a configuration
of order 0. Its cofactor gives the contribution to JAC(k) which comes
from those components which contain at least one (and thus at least
two, because they always come in pairs) regular point(s). These
components may be reconstructed in all possible ways from the objects
counted by F^ in two steps - by simply reversing the reductlon-con-
traction procedure:

1) replacing each point in some order-(k-1)-configuration by a pair of
points, or, more specifically:

- replacing each non-recurrent (i. e. Xg-or Y^-valued) point by a pair
consisting of one X^-valued and one Y^-valued point (i. e. both
non-recurrent);

- replacing each recurrent (i. e. X^-or Y -valued) point by a pair
consisting of one recurrent (X^-or Y^-valued) and one non-recurrent
(Y^- or X -valued) point.

[all points existing at this stage will be regular].
2) adding to each of these (regular) points a (possibly empty) sequence

of singular points, or, more precisely:

- adding to each non-recurrent (i. e. X^- or Y^-valued) point a sequence
of (non-recurrent) points which may carry X^ or Y as valuation;

- adding to each recurrent (i. e. X^-or Y^-valued) point a sequence of
(recurrent) points which may carry X^ or Y^ as valuation.

[all the points introduced at this stage will be singular]
Apart from the fact that the functional parts of the Jacobi-configurations
have to be assigned to the point sets thus constructed In a compatible
way - this can be reconstructed from the description of reduction (i. e,
the inverse of step 2) and contraction (i. e. the inverse of step 1)
given in section 2 - it should be clear that on a quantitative basis this
inverse procedure is then described by the substitutions given in the
proposition.

(Note that Jacobi-configurations are actually labelled configurations,
We have not considered labellings at all here - this is what the
exponential generating functions automatically take care of)

To conclude this section, figure 6. gives an illustration how the

substitution procedure of the proposition may be visualized (locally):
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plqare 6. ..

the substitution

viewed locally

!.!
^ I

^^:::^

^^::Jl
-^

)

f'U
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4 Statement of the main result

In order to state the main result we introduce a kind of matching polynom:

for graphs of type 'line' and of type 'cycle*.

Let L (C resp. ) denote the line (cycle resp. ) on n vortices. We may choc
[n]={l, 2,..., n} as vertex set for both L and C ; the edge sets are

E(L ) = {(1, 1+1); 1^ Kn} and E(C^) E(L^)^{(n. l))
A matching is then a subset^jL S g( L ) (or °E(C )) such that no two edges
in^A-have a vertex in common. 1fTl(L ) ( <YTl(C ) resp. ) will denote the set
of all matchings on L^ (C^ resp. ). Each element of E(L ) will be given a
weight as follows:

the edges (2i-l, 2i), where l^Kfn/21, are given weight -x ,

the edges (2i, 2i+l), where l$i<rn/21, are given weight -y ,

if n is even, the edge (n-l, n) is given weight -z .

For E(C ) we proceed similarly, and we complete the definition by:
the edge (n, l) is given weight -w .

To each matching ̂ A. e'NL(L^) (or^£. U(C^) ) we associate a monomial M(^c)
in the variables x, y, z, w (where z and w do not necessarily show up) :

this is the product of the weights of all the edges belonging to ̂ JUL .

The matching polynomials associated to the graphs L_ and C_ are then

L^(x. y, z) := Si M(/^) ;^ ^rrL(L ) j .
C^(x, y, z, w) .. = S ! M(/U) ;^eTyL(c^) j .

The reader may check that the following are the first few values:

L^(x, y, z) = 1
L^(x, y, z) = 1-z
L (x, y, z) = 1-x-y
L^, (x, y, z) = l-x-y-z-hxz

2
L^(x, y, z) = l-2x-2y+x*"+xy+y'

2
L^(x, y, z) = l-2x-2y-z+x'"+xy+2xz+y*"+yz

C^(x, y, z, w) = l
C (x, y. z, w) = 1-z-w
Cg(x, y, z, w) = 1-x-y-w
C^. (x, y, z, w) = 1-x-y-z-w+xz+yw

C^(x, y, z, w) = l-2x-2y-w+x"+xy+y*'+yw+xw
2

C (x, y, z, w) = l-2x-2y-z-w+x"+xy+2xz+xw+y*'+2yw+Yz

It is clear that for n odd the polynomlals L^(x, y, z) and C_(x, y, z, w) do

not contain the variable z (in these cases we may simply write L^(x. y)

and C (x, y, w) ), and that for n even these polynomials are linear in z.
The polynomials C^(x, y, z, w) are always linear in w.
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[ndeed, all these polynomials are easily represented in terms of the
cwo-variable polynomials L^(x, y) (for n odd), L^(x. y. x) and L^(y, x. y)
(for n even):

(la) L^(x. y, z) = L^^

(Ib) C,

_^(x, y) - zL^^_g(x, y, x)

;^(x, Y, z, w) = L2k-l(x'Y) ~ WL2k-2(Y'x'y) ~ ^^-2(xl v'x}

. (1c) C^^(x, y, w) = L^^(X, Y) - wL^_, (x, y)
These identities (and many more of the same type) are simple consequences
from the underlying matching model. We mention as examples

(2a) L2k-l(x'y) = L2k-2(x'Y'x) ~ YL2k-3(x'Y)
(2b) L^_^(x. y) = L2k-2(y'x'y) ~ XL2k-3(xry)

which can be combined to give

(20 ZL (x, y. x) + wL^_^(Y, x. y) = - (z+w) L^_^(x, y) + (yz+xw)L^_3(x, y)
and, together with (Ib) :

(3) C (x, y, z, w) = (l-z-w)Lg^_^(x, y) - (yz+xw) L^_g (x, y) .
This will be used below.

Our main result can now be stated:

Theorem: The exponential generating function F^(xi'X2'Yi'Y2^ for
Jacobi-endofunctions of order k-1 can be written in terms

of matching polynomials as:
L ^ (^'^2}

2K-1
Fk(xl'x2'Yl'Y2) = C^(X^. Yg, X^Y^)

Since for n even we obviously have

C (x, y, z, 0) = L (x, y, z)
C (x, y, 0, w) = L^(y, x, w)

we find:

, (cx^)
Corollary: The exponential generating functionTP^ r (X, Y)

for Jacobi-endofunctions of order k-1 can be written in
terms of matching polynomials as

-p (^. ^) (X, Y) =

L ^ (X, Y)
2"-1

0<

L ,. (X, Y, X)
2'

L ,. (X, Y)
2"-1

L ,. (Y, X, Y)
2'

P r.L ,. (X, Y)
2^-1

c ,. (X, Y, X, Y)
2'

This result can be written in a more attractive way. We make use of the
combinatorially obvious identities

(4) C^(X, Y, X, Y) = L^(X. Y. X) + L^(Y, X. Y) - L^_, (X, Y) . and
(5) L^(X, Y, X) - XL^_^(X, Y) L2n+l(x'Y) L^(Y, X, Y) - YL^_, (X, Y) .
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By substituting (5) into (4) we find

(6) (l-X+Y)L^^_^(X. Y) + Cg^(X, Y, X, Y) » 2L (X. Y, X) .

Putting now

C (X. Y, X, Y)
%^(X, Y) := ^

L \. TX. Y)
2^-1

we finally arrive at:

TP^'is)(X. Y) = 2 -^ - 2 - R »^^ -
[1-(X-Y)+?%, _] [1-(Y-X)+ /9.. ] ^k^(x-y)+^J LI-(Y-X)+ 5^ J- . u^k

which exactly matches the form of the classical Jacobi-generating function
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The duplication formulas for the matching polynomials

he proof of the theorem stated in the previous section relies on a simple
iroperty of matching polynomials which is stated and proved combinatorlally
lelow. Though we will only need the result for -lines', the corresponding
. esult for 'cycles' will be stated, without going into the details of the
similar) proof.

,et us again consider the graphs L^ and C ^, as in section 4. Now we put
i weight v on each vertex and a weight -u on each edge. To each matching

£^(L_) (or W-(c», )) we now associate the monomial m(^u-) (in the
rariables"u and v) : the product of the weights of the edges in times
:he product of the weights of the vertices not covered by an edge of/^ ,
l. e. m(juu) = (-u) 1^'lvn~21/^ * , where \^\ denotes the number of edges
Ln/^ . The matching polynomials 1^, c^ are then defined by

ln(u'v) = s i m(^) ^ ^(Ln) | '
Cn(U, V) = C S m(/^) ;^£q^<cn) i .

?or convenience , we give a table of the first few values:
v

1 (u, v) = v
1^(U, V) = V--U
l. (u, v) = v3-2uv

4 - 2. 2
1, (u, v) = v'-3uv-+u~

3 - 2
1 (u^v) = v"-4uv~+2u~v

5 6_ 4_22 3
l^(u, v) = v''-5uv'+6u~v~-u

6

c^(u, v)
c^(u, v) = v2-2u

3
c^(u, v) = v~-3uv

c. (u, v) = v^-4uv~+2u"

c, (u, v) = v"-5uv~+6u~v
5 g 4. _22^.. _3

c (u, v) = v"-6uv"+9u~v~-2u
6

The following identities are obvious from the definition

l, (u, v) = un/21^(l, v/ul/2)
n

C^(U, V) = Un/<;C (1, V/UA/^)
Vnl^(U/V2. 1)
vnc^(u/v2, l)

it is also clear that by unifying variables in L .

n' C we can pass to l^'cn

L_(x, x, x)
n = l^(x, l)

C (x, x, x, x) = c^(x, l)

Combining these observations we get

(7a)

(7b)

A more interesting relation is given in the following

L^(x/y2, x/y2, x/y2) = y^ln(XIy)
cl(x/y2, x/y2, x/y2, x/y2) = y~nc^(x, y)

Lemma (the duplication formulas)

(8a)

(8b)
l^(xy. l-x-y) = L^^(x, y)

C (x, y, x, y)c (xy, l-x-y)
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Proof: Only (8a) will be proved - a proof of (8b) can be given along the
game lines.

For the purpose of proof we will Introduce the notion of 'pseudomatchlng'

(p. m. ). A p. m. on L^^+i ls a subset T of E(Lg^^ ) such that none of the
vertices 2i (l^i^n) is covered by two edges in ^r . It Is thus permitted
that both (2i-2, 2i-l) and (21-1, 21) belong to ^ . and we will speak of a
. collision at vertex 2i-l in JTr . in this case. (Note that if there Is a
collision at vertex 2i-l in TT then there can't be a collision at vertex

2i+l in ^ (and vice versa), because otherwise we would also have a collisic

at vertex 21 in-TT ). By <T> we will denote the number of collisions in T ;

the pseudomatchlngs ^ with <^r> = o are then exactly the matchings.
^(Lo>, ^. i) wil1 then denote the set of all p. m. 's on L^_ ,, .

/s^

We will now define a relation Q^ c/YTL(L_) x Tfl(L^_ , , ) :

(^LL. T ) £ Q^ iff for all 1 ^ 1-=: n : if (i, i+l)£^j., then there is a
collision at vertex 21+1 in T .

Thus if ̂ *-  (Tfl(L^) , an edge (i, i+l)£^jLL determines the situation for ^
between 2i-l and 2i+3 (if (/^, -TT ) £ Q^ ): edges (21, 21+1) and (2i+l, 2i+2)
are present in TT , wheras (2i-l, 2i) and (2i+2, 2i+3) aren't.

On the other hand, if 1  [n] is not covered by an edge of ^u. , then at most

one of the edges (2i-l, 2i) and (2i, 2i+l) may belong to T (if (^K, ^T )£Q ),
which gives three possibilities. We find that for each ^-e/TfirL( L ) there
are exactly 3n~2 t^A-. T  T?l(L^^^^) s. th. (^L, ^ ) Q^. Looking at these
possibilities and taking the valuations of the edges into account gives:

Fact 1: for each ̂JUL £ rWl( L^) :

»<^)|u<-xy, v<-l-x-y = (-D 1/" S i M(^ ) ^e%(L,^), (^^ ) £ Q,i
~ T

Next we take ;T   <X-(L^^^, ) . If there is no collision at vertex 21+1 In V ,
then vertex i cannot be covered by an edge of JLA. if ( jLA., 2r ) £ Q_. But if there

is a collision at vertex 2i+l in .V , then ^- may or may not contain the edg
(1, 1+1). [Note that we are guaranteed that edges (i-l, i) and (i+l, i+2) are

^ y
not^ in ^JL in this case!]. We find that for each T 6 TtL(L^^^, ) there are

<TT >
^ILe^fUL) s. th. (^L, ;T)£Q^. More precisely: for each 0^. k^<^>

there are (< ̂ } ^£<WJL^) s. th. [ ̂  ,^ )   Q^ and t^. | =k .
As a consequence we get:

Fact 2: For each TC^<L2n+i)
^ { (-i)1^-1 ; ><-e/TrL(L^), (^i, ^ ) Q^ } =

. JK- " L °

if

if

<^> = 0
^s/

<T > > 0
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. xy, v<-1-x-y

low the proof of the lenuna is easily completed:

l^txy. l-x-y) = S j m(^) ;^ ^(L^) i |^

(FI) ̂  j (-l)l^l^i M(;T)^C%(L^, ), (^^ ) Q^i ;^L£rM.(L^) i
SM (;TT) s S (-D'^L^£^^), (^. ^ ) Q^i =^£%(L2^i )i

A

) , <TT> = 0
^^

'=' s s M<¥ ̂ ;^e ^(L
¥

2n+l

L2n+l(xry)

To conclude this section we mention briefly the relation between the

Tchebycheff-polynomials U^(x), T^(x) (in the standard terminology of
[AB], [ER], [RA]) and our matching polynomials for L and C^ :

1(1, x) = U^(x/2)
c (l, x) = 2-T^(x/2) .

This follows from the fact that the familiar recurrence formulae for

the Tchebycheff-polynomials:

un+l(x) = 2xun(x) - un-l(x)
(x) = 2xT^(x) - T^. ^(x).

n+1

correspond to

n

Ln+l (l. x) = xl^(l, x) - ln-l(l'x)

cn+l(l'x) xc^(l, x) - c^_^(l, x)

U (x) = 1, U^(x) = 2X
TQ(X) = 1, T^(x) = x

1^(1, X) = 1, 1^(1, X) = X ,

CQ(I, X) = 2, c^(l. x) = x .

These two identities follow from the combinatorial definition of the
polynomials l^(u, v), c (u, v) just as the corresponding identities (la), (lb),
(1c) in section 4. One might now translate all the expressions involving
the matching polynomials L (x, y, z), Lg^^x. y), and C^^(x, y) into
expressions involving the Tchebycheff-polynomials using the identities
stated at the beginning of this section.
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6 Proof of the main result

The theorem stated in section 4 can now be proved by combining the basic
recurrence for the ^(xl'X2'Yl'Y2) <8ec-3) and some facts about matching
polynomials (sec. 4 and sec. 5).

Recall that

1

Fi(xrx2'yrY2) 1^XTY1
L1(X2'Y2)

c2(x2'Y2'xl'Yl)
From the basic recurrence we get via induction

. 

Fk. i'xrx2-YrY2> -Fi'xrx2-Yi. Y2"^<ri^. f2^. Lli. ^l2>
1 L2k_, (L1l2 '?27l2)

1-X1-Y^ L;2k(j21]2'!2Tl2'Jl^2'f2 t1l) '

X.

where ? i = T-3^

2'

Y

^ll l-xl-Yi , i=l, 2 .

Due to (Ib) the denominator can be rewritten as

. 1-X1-Y1' <L,k_/|2l2. ?2^) - . ill2 +j2'll>^<L^. ?^.!^, )) .

Using (7a) in both numerator and denominator leads to

^1-X2-Y2>-2"+1 1^^(X, Y,, 1-^-Y,)
X, Y^+X, Y.

i-^-y, )(i-x, -Y, )-2~«[i^^, x^, i-x, -y, ) - ^J^. l^ , (X^, I-X, -Y,Lgk_ IA2'2 k2-z2

L,k_/x2Y2'l-x2-Y2)
1-X, -Y, )1l~Yl)12k_/x2Y2'l-x2-Y2) - (xlY2+x2yl)\k_JX 2Y2'l-x2-Y2)

2"-2

Now the duplication formula (8a) comes into play, which gives

L^1_, (X2'Y2)
. 1-X1-Y1)L^1_/X2. Y2> - <xlY2+x2Yl'L, k«^<x2-^)

Identity (3) allows to rewrite the denominator as

c^l(x2'Y2'xl'Yl)
so that we finally arrive at

Fk+i(xrx2'YrY2) = -T
L2^1_/X2'Y2)

,
k+l(x2'Y2'xl'Yl)

as desired.
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Some additional remarks

) It is clear from the underlying combinatorial model that the generating
anctions F^(X. Y. X, Y) converge to ^~1(X. Y) as k^ o0 in the usual (dis-
rete) topology for formal power series. This can be stated more precisely
y observing that Jacobi-endofunctions of order > k have size 2" (at least),
ince contraction reduces the size of each configuration by one half. Thus
he series F, (X, Y, X, Y) and ^-1(X, Y) =^°'0)(X, Y) coincide for^al^terms
f degree < 2 . The same holds for TP^'1 (X, Y) converging to-TP(0<'^) (X, Y)
s k- 00

) It is worth noting that the polynomials L (x, y) and C (x, y) which
ppear in the rational approximation can easily be calculated. Among the
dentities of relevance we mention

9)

10)

%n+l<u-vl - c^<u'v> - 2UZ
\n. l_, (u'v> - %n(u'v> \"., (u-v)

instead of giving combinatorial proofs of these identities "from scratch"
which is not difficult), we content ourselves to remark that (10) is
iquivalent to

1 (u, v) = c (u, v). c^(u, v). c^(u, v)-... -c (u, v)
2n+ -1 -t -s .* 2

and that (9) is nothing but the duplication formula (Sb) in disguise.
Fo justify this remark let us write

' C^(U, V) = V2nC^(U/V2. U/V2) = v2nc^(u2/v4. 1-2u2/v4) = c^(u2, v2-2u) .
If we define polynomials ^" (u. v), b^(u, v) by

2k
b^(u, v) == u-
"S^(u. v) := c ^(u, v)

f.or k-^0, then we have the simultaneous recursion

bk+l(u'v) = bk<bi(u'v)'ci(u'v))
.c (u. v) = .c^(b^(u, v), c^(u. v))

This extends obviously to

bk+n(u'v) = bk(bn(u'v^'cn(u'v))
'ck+n(u'v) =ck(bn(u'v)'^n(u'v)) '

for k, n-?0. Putting now k=l in the second identity gives

c_n+l(u'v) = ^n(u'v) = ^(bn(u'v)^n(u'v)) = c:n(u'v) - 2U-
n
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Along the same lines one can derive a generalized basic recursion:

\. n^'Vl^-\^-V. -^-^[k\w'^\w^k\w^k\w
where

(k) _ X1Y2(X2Y2)
2k-2-l

^

for k, n "? 1.

%k(x2'Y2'xi'Y?- 1
(k) _ Y1X2(X2Y2»

2k-2-l

%k(x2'Y2'xi'Yl) , 1= 1, 2 ,

3) As a concluding remark, the present author would like to draw the

reader's attention to work in the same direction done by G. X. Viennot and
his bordelais school of bijective comblnatorics, where similar results

were obtained recently. Indeed, what has been presented here for the

special case of Jacobl-polynomials should be seen in a broader context,
and a considerable portion of the results could be synthesized from
specializations of more general theories under development. The interested
reader should consult in particular the work of Viennot[VI], de Sainte-

-Catherine [SC], Viennot and Vauchaussade [W], and Vauchaussade [VA]
Let us mention finally that the idea of combinatorially interpreting
quotients of matching polynomials as generating functions for treelike
structures is due to Godsil [GO] .
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