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FINITE AUTOMATA ACCEPTING ANIMALS AND LOWER SETS

(Summary)

INTRODUCTION

We consider finite automata which are equipped with n-ary trans-

fer relations. Such automata can operate on very general struc-

tures. cf. [1]. The action on (labelled) trees has widely been

investigated, cf. e.g. [2], [3]. [8]. [9]. The well known con-

structions and results of (string) automata theory neatly carry

over to tree automata. Our interest is in the operation on (la-

belled) structures embedded in u»n, the so-called (directed) ani-

mals, which can be thought of as a "commutative version" of

(regular) trees. Now, some results still carry over (see "posi-

tive" below), but we are also confronted with phenomena (e. g. the

undecidability of the emptiness problem), which are characteri-

stic for 2-dimensional automata concepts. All the "negative'

results can be obtained in the 2-dimensional, unlabelled case.

DEFINITIONS

1. (n, S)-automata

Let L be a finite alphabet and n a positive integer. A=(Q. T, i, F)

is a (n, £)-automaton :<=> Q is a finite set ("states"),

T c Qnx£ xQ ("transfer relation"), i   Q ("initial state"),

F c Q ("final states"). Elements of T will be denoted by p-o->q.

A is deterministic :<=> for every pair (p, a) there is at most one

state q such that p-o->q is in T.
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2. Animals

Let w = {0, 1, 2,.... }, succ^ = the k-th successor function in o".
For x, y 6 X c <u", x <^ y :<=> there is a succ-path from x to y,
which is completely contained in X. X is an aninal :<=> X is

finite and x 6 X implies 0<^x. X is a lower set :<=> X Is
finite and y< x   X implies y6X. If X is an animal, every

v : X -> £ is called a S-animal. {<7}-animals and animals are

identified. Any substitution n : S -> F induces a mapping from

Z-animals to F-animals, which is called a projection.
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3. Recognition

For an animal X, bor(X) ("border") consists of all y£ u" \ X,

which are successor of some x £ X. bor(0) := {0}. Let A=(Q, T, i, F)

and v : X -> £. A Q-animal c with domain X u bor(X) is an accep-

ting A-computation on v :<=>

c(y) = i for all y e bor(X),

(c(succ^y),..., c(succ^y))--v(y)->c(y) e T for all y   X,
c(0) e F.

The language of A is the set of all v, on which an accepting A-

computation exists. A set of S-animals is (deterministical ly)

recognizable if it is the language of some (deterministic) (n, E)-

automaton. REC(n, £), RECD(n, E) denote the class of (deterministi-

cally) recognizable sets.
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The principle of computations (let (p, q)-<7->r   T)

4. Local sets

A neighbourhood is a nonempty lower set. Let E be a neighbour-

hood, X an animal, x e u»n and v : X -> Z. p^ =(v) denotes the Z-
»"

animal w : Y -> E with Y = {y 6 3| x <^ x+y} and w(y) = v(x+y)

for all y 6 Y. parts. (v) := the set of all Px. =(v^' where x e X.
A set of E-animals a is S-local :<=> there are sets R ("allowed

root labels") and I ("allowed internal parts"), where R c Z and I

consists of Z-animals, whose domains are contained in S, such

that a nonempty S-animal v is in a iff v(0) R and parts=(v) c I.

a; is local, if it is 2-local for some S.
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EXAMPLE

An animal X is a tree :<=> for all x   X. the succ-path within X

from 0 to x is unique. Let T(n) := the set of all trees in u»n.

T(n) Is the language of the (nondeterminlstlc) automaton

A = (Q, T, 1, Q), where

Q = {l, 2...., n}u<l} and

T consists of all

(p^. pg,..., ?")->q
which satisfy the conditions

p^ 6 {i, k) (k = l..... n),
q   {l, 2...., n}.

For n=2, an accepting A-computation on
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RESULTS

"positive"

1.

2.

3.

4,

5.

6,

7,

REC(n, £) is closed under u. n.

RECD(n, I:) is closed under u, n, \.

Every finite set is deterministically recognizable.

Images of recognizable sets under projections are recogni-

zable.

Every recognizable set is the projection of some local set

Every local set is recognizable.

The recognizable sets are exactly the projections of the

local sets.
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"negative"

For all n»2 and every Z,

8. REC(n, E) is not closed under complementation.

9. RECD(n, £) is a proper subset of REC(n, £).

10. 9. remains true, if inputs are restricted to lower sets.

11. The emptiness problem "Given an arbitrary deterministic

(n, £)-automaton, is its language empty?" is undecidable.

Remarks on proofs:

1 to 5: Slight extensions of the standard techniques known for

tree atomata (cf. [3]) are used. 6: The states of the automaton

are - roughly speaking - the allowed internal parts characteri-

zing the local set. 7: Follows from 4& 5& 6. 8: The complement

of T(2) is not recognizable. A pumping argument is used. 9; Fol-

lows from 2 & 8. 10: The set a of triangles of length 2J in ai'- is

not det. recognizable, since {ok | k=2j} c a* is not regular.
Looking at Pascal's triangle mod 2, a local set with projection a

can be given. 11: The undecidable problem "Given an arbitrary

Turing machine, does it halt on the empty input tape?" is reduced

to the emptiness problem.

REMARKS

The details and some other results will be contained in [7].

More on lower set automata (relativized emptiness problems,

connections to contextsensitive languages) can be found in

[6].
In the case 1£|5:2, n=2, result 10 is a consequence of a

theorem in [4]. This article also deals with connections

between (2, E)-automata (operating on rectangles) and other

2-dimensional automata concepts.

When inputs are restricted to rectangles, the undecidability

of the emptiness problem follows from a theorem in [5].

The animals defined here are "directed animals with exactly

one source" in the sense of [10].
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