Bernd Voigt (Bielefeld)

Cycles in graphs with small density

This talk reports on some work that has been done jointly with A. Gyárfás and M.J. Prömel.

Definition: Let G be a finite graph,

$$
\mathcal{L}(G)=\sum\left\{\frac{1}{\ell}, G \text { contains some cycle of length } \ell\right\}
$$

Examples: $\quad \mathcal{L}\left(C_{n}\right)=\frac{1}{n}, \mathcal{L}\left(K_{n}\right)=\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}$

$$
\mathscr{L}\left(K_{n, n}\right)=\frac{1}{4}+\frac{1}{6}+\ldots+\frac{1}{2 \cdot n}
$$

Erdös and Hajnal suggested to consider the function

$$
\mathrm{f}(\alpha)=\inf \left\{\mathscr{L}(\mathrm{G}) \quad \left\lvert\, \frac{|\mathrm{E}(\mathrm{G})|}{|\mathrm{V}(\mathrm{G})|}>\alpha\right.\right\}
$$

where α is a positive real.

Obviously

$$
f(1)=0 .
$$

Erdös and Hajnal conjectured that

$$
\begin{aligned}
& \mathrm{f}(\alpha)=(1 / 2+o(1)) \cdot \log \alpha \\
& \text { as } \alpha \text { tends to infinity, }
\end{aligned}
$$

but originally even for large α it was not clear whether $\mathrm{f}(\alpha)>0$ or not.

Theorem: (Gyárfás, Komlós, Szemerédi)
There exists some constant $c>0$ such that $f(\alpha)>c \cdot \log \alpha \quad$ for every $\alpha \geqq 2$.

This result does not give an answer for small densities α, i.e. for $\alpha \in] 1,2[$. Here we can show:

Theorem: For every $\varepsilon>0$ and every $1<\alpha<2$ one has

$$
\begin{aligned}
& f(\alpha)>\left(\frac{1}{\alpha-1}\right)^{1+\varepsilon}+o(1) \\
& \text { as } \alpha \text { tends to } 1 .
\end{aligned}
$$

This result can be sharpened somewhat by considering the function $f^{*}(g, \alpha)$, where

$$
f^{*}(g, \alpha)=\inf \left\{\mathscr{L}(G) \quad \left\lvert\, \frac{|E(G)|}{|V(G)|}>\alpha\right. \text { and girth }(G)>g\right\} ;
$$

we can proof the following

Theorem: For every $\varepsilon>0$ and every $1<\alpha<2$ it follows that

$$
\begin{aligned}
& \mathrm{f}^{*}\left(\left(\frac{1}{\alpha-1}\right)^{1+\varepsilon}+o(1), \alpha\right) \geqq \frac{\alpha-1}{17} \\
& \text { as } \alpha \text { tends to } 1 .
\end{aligned}
$$

Question: For fixed $\alpha>1$, is $f^{*}(g, \alpha)$ bounded (possibly not) as g tends to infinity?

Proof and details will appear elsewhere.

Literatur:

Erdös, P.: "Some recent progress on extremal problems in graph theory", Proc. 6.th S.E. Conference on graph theory, Utilital Math., (1975), 3-14

Gyárfás, A./Komlós J./Szemerédi, E.: "On the sum of reciprocals of cycle lengths in graphs", to appear

