Bernd Voigt (Bielefeld)

Cycles in graphs with small density

This talk reports on some work that has been done jointly with A. Gyárfás and M.J. Prömel.

Definition: Let G be a finite graph,

 $\mathcal{L}(G) = \sum \left\{ \frac{1}{\ell} \mid G \text{ contains some cycle of length } \ell \right\}$

<u>Examples</u>: $\mathcal{L}(C_n) = \frac{1}{n}$, $\mathcal{L}(K_n) = \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n}$ $\mathcal{L}(K_{n,n}) = \frac{1}{4} + \frac{1}{6} + \ldots + \frac{1}{2 \cdot n}$.

Erdös and Hajnal suggested to consider the function

$$f(\alpha) = \inf \left\{ \mathcal{R}(G) \mid \frac{|E(G)|}{|V(G)|} > \alpha \right\},$$

where α is a positive real.

Obviously

f(1) = 0.

Erdös and Hajnal conjectured that

 $f(\alpha) = (1/2 + o(1)) \cdot \log \alpha$

as α tends to infinity,

but originally even for large α it was not clear whether $f(\alpha) > 0$ or not.

Theorem: (Gyárfás, Komlós, Szemerédi)

There exists some constant c > 0 such that $f(\alpha) > c \cdot \log \alpha$ for every $\alpha \ge 2$.

This result does not give an answer for small densities α , i.e. for $\alpha \in]1,2[$. Here we can show:

Theorem: For every $\epsilon > 0$ and every $1 < \alpha < 2$ one has

$$f(\alpha) > (\frac{1}{\alpha - 1})^{1 + \epsilon} + o(1)$$

as α tends to 1 .

This result can be sharpened somewhat by considering the function $f^*(q, \alpha)$, where

$$f^{*}(g,\alpha) = \inf \left\{ \mathcal{R}(G) \mid \frac{|E(G)|}{|V(G)|} > \alpha \text{ and } girth(G) > g \right\};$$

we can proof the following

Theorem: For every $\epsilon > 0$ and every $1 < \alpha < 2$ it follows that

$$f^*\left(\left(\frac{1}{\alpha-1}\right)^{1+\varepsilon} + o(1), \alpha\right) \ge \frac{\alpha-1}{17}$$

as α tends to 1 .

Question: For fixed $\alpha > 1$,

is $f^*(g, \alpha)$ bounded (possibly not) as g tends to infinity?

Proof and details will appear elsewhere.

Literatur:

- Erdös, P.: "Some recent progress on extremal problems in graph theory", Proc. 6.th S.E. Conference on graph theory, Utilital Math., (1975), 3-14
- Gyárfás, A./Komlés J./Szemerédi, E.: "On the sum of reciprocals of cycle lengths in graphs", to appear