At first I would like to generalize certain aspects of 12-tone music to n-tone music, where n is a positive integer. Then I will explain how to interpret intervals, chords, tone-rows, all-interval-rows, rhythms, motifs and tropes in n-tone music. Transposing, inversion and retrogradation are defined to be permutations on the sets of "musical objects". These permutations generate permutation groups, and these groups induce equivalence relations on the sets of "musical objects". The aim of this article is to determine the number of equivalence classes (I will call them patterns) of "musical objects". Pólya's enumeration theory is the right tool to solve this problem.
In the first chapter I will present a short survey of parts of Pólya's counting theory. In the second chapter I will investigate several "musical objects".
The following versions are available: