Séminaire Lotharingien de Combinatoire, B20d (1988), 15 pp.
[Formerly: Publ. I.R.M.A. Strasbourg, 1988, 372/S-20, p. 23-38.]
Jiang Zeng
La ß-extension de la formule d'inversion de Lagrange
à plusieurs variables
Abstract.
We show that Gessel's combinatorial
proof of the multivariable Lagrange inversion formula can be given a
ß-extension, which generalizes Foata and
Zeilberger's ß-extension of MacMahon's Master
Theorem. Moreover, we show that there is no need to use Jacobi's
identity in the derivation of the Lagrange formula. Finally, combining
Gessel's method and ours we obtain a new proof of Jacobi's identity.
The paper has appeared as:
Jiang Zeng, La ß-extension de la formule d'inversion de Lagrange
à plusieurs variables, Studies in Appl. Math. 84
(1991), 167-182.