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Preface

In these lecture notes, we attempt to introduce a selection of topics in theory of linear operators on
Hilbert spaces and its applications to non-relativistic quantum mechanics. Chapter 1 introduces basic
definitions of Banach and Hilbert spaces and linear operators on them, following mostly Teschl’s book
(§0.2–0.6, §1.1–1.3, and §1.6) [1] and Schuller’s lectures (Chapters 1–3) [2] as well as the first volume
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of Reed and Simon’s series (Sections II.1–II.3 and Sections III.1–III.2) [4]. Chapter 2 focuses on the
notions of self-adjoint and closed operators and develops spectral theorem, following mostly Teschl’s
book (§0.7, §2.2, §2.4, §2.6, §3.1–3.2, and §3.4 as well as §A.6) [1], Schuller’s lectures (Chapters 7–8
and 10–11) [2], the first volume of Reed and Simon’s series (Sections III.5 and VIII.1–VIII.2) [4], and
Conway’s book (§10). Chapter 3 presents applications of the developed theory, introducing axiomatic
construction of non-relativistic analysis and focusing on several important classes of operators therein
such as momentum operator and Schrödinger operators, following mostly Teschl’s book (§6.1 and §7.1–
7.3) [1] and Schuller’s lectures (Chapters 9 and 18–19) [2]. For a more detailed discussion on spaces
of absolutely continuous functions and Sobolev spaces used in Section 3.2, we refer to Leoni’s book
(Chapters 3, 7, and 10–11) [5], whereas Kato-Rellich theorem discussed in Section 3.4 can be found in
Kato’s book (Chapter 5, §4.1) [6] and the second volume of Reed and Simon’s series (Section X.2) [7].
Chapter 4 addresses applications of nonstandard analysis as an alternative approach to operator theory,
following mostly Goldblatt’s book (Chapters 1–3) [8] as well as Albeverio, Fenstad, Høegh-Krohn, and
Lindstrøm’s book (Sections 1.1–1.2) [9] referring to the usual ultrapower construction of a hyperreal
field, and the papers by Benci and Luperi Baglini referring to the Λ-limit approach and construction
of space of ultrafunctions [10, 11, 12, 13]. Many thanks to Gerald Teschl (Universität Wien), Vieri
Benci (Università degli Studi di Pisa), and Lorenzo Luperi Baglini (Università degli Studi di Milano)
for numerous suggestions and comments that helped to improve the contents of Sections 2 and 4.

1 Banach spaces

1.1 Normed spaces and completeness

Before we start to work with operators, we have to set up the playground, which is Banach spaces. In
order to develop the definition of Banach space, we start with a set V and add new structures step by
step. First, we equip V with a linear structure.

Definition 1.1. Given a non-empty set V and a field K, a K-vector (linear) space is a tuple
(V,+, ·), where + and · are binary operations dubbed summation and scalar multiplication, respectively,
and defined as

+ : V × V → V, (v, w) 7→ v + w, (1)
· : K× V → V, (λ, v) 7→ λv, (2)

satisfying the following properties.

1. (V,+) is an abelian group with identity element 0 and inverse −v ∈ V for arbitrary v ∈ V .

2. ∀α, β ∈ K, ∀v ∈ V : α(βv) = (αβ)v (compatibility).

3. ∀α, β ∈ K, ∀v ∈ V : (α+ β)v = αv + βv (distributivity for K)

4. ∀α ∈ K, ∀v, g ∈ V : α(v + g) = αv + αg (distributivity for V )

5. ∀v ∈ V : 1v = v, where 1 ∈ K is the identity element of K.

In what follows, we always assume that K = C. Next step is to equip the vector space V with
a certain function ∥·∥V : V → R known as norm, which satisfies certain properties highlighted the
following definition.

Definition 1.2. A C-vector space V is called normed if it is equipped with a function ∥·∥V : V → R
of properties:

1. ∀v ∈ V, ∥v∥V ≥ 0 (positive definiteness),

2. ∀v ∈ V,∀λ ∈ C, ∥λv∥V = |λ|∥v∥V (scaling invariance),
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3. ∀v, w ∈ V, ∥v + w∥V ≤ ∥v∥V + ∥w∥V (triangular inequality),

4. ∀v ∈ V, ∥v∥V = 0 ⇒ v = 0,

known as norm. It is called semi-norm (with V being called respectively semi-normed) if the last
property is not satisfied.

Exercise 1.1. Show that any semi-normed space can be made into normed by taking a subset N =
{v ∈ V |∥v∥V = 0} and factorizing over it, Ṽ = V/N .

Having equipped the vector space V with a norm, we can introduce the notion of convergence for
its elements. If {vn}n∈N is a sequence of elements vn ∈ V ∀n ∈ N, we say that it converges to a certain
v ∈ V if

∀ε > 0, ∃N ∈ N such that ∀n > N : ∥vn − v∥V < ε, (3)

which can be written is v = limn→∞ vn.

Definition 1.3. A sequence {vn}n∈N in V is convergent if there exists v ∈ V such that

lim
n→∞

vn = v. (4)

Definition 1.4. A sequence {vn}n∈N in V is called Cauchy sequence if

∀ε > 0, ∃N ∈ N such that ∀n,m > N : ∥vn − vm∥V < ε. (5)

Every convergent sequence is Cauchy, but an arbitrary Cauchy sequence, generally speaking, does
not necessarily converge to an element of V . This suggests the following definitions:

Definition 1.5. A normed space V is called complete1 if every Cauchy sequence in V is convergent.
A complete normed space is known as Banach space.

1.2 Bounded operators

Having introduced normed and Banach spaces, we proceed by studying maps that preserve their linear
structure.

Definition 1.6. Let (V, ∥·∥V ) and (W, ∥·∥W ) be normed spaces, and DA ⊆ V a linear subspace of V .
We call a map A : DA → W such that

A(λv + h) = λAv +Ah (6)

a linear operator with domain DA.

In what follows, we focus only on linear-structure-preserving maps and, hence, refer to Definition
1.6 as operator implying its linearity. Moreover, for the sake of simplicity, we assume DA = V , unless
otherwise specified.

An important class of operators is bounded operators, which is defined as follows.

Definition 1.7. An operator A : V → W is called bounded if

sup
v∈V \{0}

∥Av∥W
∥v∥V

< ∞. (7)

Importantly, for given normed spaces V and W , the set of all bounded operators A : V → W forms
itself a normed space with the quantity given in (7) regarded as norm. Moreover, it is even a Banach
space if W is one.

1In these notes, we operate with Cauchy sequences and completeness in terms of norm. However, these notions do
not have to be necessarily defined via norm, but can be provided from weaker structures such as metric and topological
spaces.
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Theorem 1.1. All bounded operators mapping a normed space (V, ∥·∥V ) to a Banach space (W, ∥·∥W )
form a Banach space L(V,W ) equipped with a norm

∀A ∈ L(V,W ), ∥A∥ := sup
v∈V \{0}

∥Av∥W
∥v∥V

, (8)

known as operator norm.

Proof. In order to prove the theorem, we proceed with the following steps:

1. Demonstrate that L(V,W ) is a C-vector space.

2. Demonstrate that L(V,W ) is a normed space if V and W are normed.

3. Demonstrate that L(V,W ) is a Banach space if W is Banach, i.e., prove its completeness.

Step 1. We start by considering L(V,W ) as a set of all bounded operators from V to W and
equipping it with two binary operations

+ : L(V,W )× L(V,W ) → L(V,W ), (9)
· : C× L(V,W ) → L(V,W ), (10)

which are consistent with the corresponding linear operations in W , i.e.,

(A+B)v := Av +Bv, (11)
(λA)v := λ(Av), (12)

for all v ∈ V . Linearity of operations (9) and (10) is straightforward:

(A+B)(µv + h) = A(µv + h) +B(µv + h) (13)
= µAv +Ag + µBv +Bh (14)
= µ(A+B)v + (A+B)h, (15)

(λA)(µv + h) = λA(µv + h) (16)
= λ(µAv +Ah) (17)
= µ(λA)v + (λA)h. (18)

Therefore, it remains to prove that both (9) and (10) produce a bounded operator, so that ∥A+B∥ < ∞
and ∥λA∥ < ∞ for any A,B ∈ L(V,W ) and λ ∈ C. Indeed,

∥A+B∥ = sup
v∈V \{0}

∥(A+B)v∥W
∥v∥V

(19)

= sup
v∈V \{0}

∥Av +Bv∥W
∥v∥V

(20)

≤ sup
v∈V \{0}

(∥Av∥W
∥v∥V

+
∥Bv∥W
∥v∥V

)
(21)

= ∥A∥+ ∥B∥ (22)
< ∞, (23)
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where (21) follows from triangular inequality for ∥·∥W , and

∥λA∥ = sup
v∈V \{0}

∥(λA)v∥W
∥v∥V

(24)

= sup
v∈V \{0}

∥λ(Av)∥W
∥v∥V

(25)

= |λ| sup
v∈V \{0}

(∥Av∥W
∥v∥V

+
∥Bv∥W
∥v∥V

)
(26)

= |λ|∥A∥ (27)
< ∞, (28)

where (26) follows from scaling invariance of ∥·∥W . Therefore, L(V,W ) is a C-vector space.
Step 2. In order to prove that (8) is a norm on L(V,W ), we recall the four properties of norm in

Definition 1.2.

1. Since both ∥·∥V and ∥·∥W are norms, they are positively defined. Therefore, for every operator
A ∈ L(V,W ), ∥A∥ ≥ 0.

2. Scaling invariance of (8) follows from (24)–(27).

3. Triangular inequality for (8) follows from (19)–(22).

4. ∥Av∥W
∥v∥V = 0 if and only if ∥Av∥W = 0, which is fulfilled if Av = 0 ∀v ∈ V by definition of norm.

In turn, this is true if and only if A = 0.

Therefore, if V and W are normed with respect to certain norms ∥·∥V and ∥·∥W , the space L(V,W ) is
normed with respect to operator norm (8).

Step 3. Now let us recall Definition 1.5 and assume that W is Banach, i.e., complete with respect
to ∥·∥W , so that every Cauchy sequence in W is convergent. Let {An}n∈N be a Cauchy sequence in
L(V,W ), so that, recalling (5),

∀ε > 0, ∃N ∈ N such that ∀n,m > N : ∥An −Am∥ < ε. (29)

Then, for any v ∈ V \ {0}, we can construct an associated sequence {Anv}n∈N in W , and ∀n,m > N
we obtain

∥Anv −Amv∥W = ∥v∥V
∥Anv −Amv∥W

∥v∥V
(30)

≤ ∥v∥V sup
v∈V \{0}

∥Anv −Amv∥W
∥v∥V

(31)

= ∥v∥V sup
v∈V \{0}

∥(An −Am)v∥W
∥v∥V

(32)

= ∥v∥V ∥An −Am∥ (33)
< ∥v∥V ε. (34)

Therefore, since ε′ := ∥v∥V ε is arbitrary, the sequence {Anv}n∈N is Cauchy for any v ∈ V \ {0}. For
v = 0, it is a constant zero sequence, hence, trivially Cauchy. Since W is Banach, we conclude that
{Anv}n∈N is even convergent, and can associate with it a new map A : V → W acting on V as follows,

Av := lim
n→∞

(Anv), (35)
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for any v ∈ V . Now, it is necessary to show that map A is indeed a bounded operator and limit of
{An}n∈N. Its linearity is straightforward:

A(λv + h) = lim
n→∞

An(λv + h) (36)

= lim
n→∞

(λAnv +Anh) (37)

= λ lim
n→∞

Anv + lim
n→∞

Anh (38)

= λAv +Ah. (39)

In order to show its boundedness, for any v ∈ V \ {0}, we calculate:

∥Av∥W
∥v∥V

=
∥limn→∞(Anv)∥W

∥v∥V
(40)

= lim
n→∞

∥Anv∥W
∥v∥V

(41)

≤ lim
n→∞

sup
v∈V \{0}

∥Anv∥W
∥v∥V

(42)

= lim
n→∞

∥An∥. (43)

Recalling triangular inequality and scaling invariance from Definition 1.2 for norm, we can show that

∥C∥ = ∥C −D +D∥ (44)
≤ ∥C −D∥+ ∥D∥, (45)

∥D∥ = ∥C −D − C∥ (46)
≤ ∥C −D∥+ ∥C∥, (47)

for any C,D ∈ L(V,W ). Combining both inequalities, we find:

∥C −D∥ ≥
∣∣∣∥C∥ − ∥D∥

∣∣∣, (48)

for any C,D ∈ L(V,W ). Since we assumed that {An}n∈N is a Cauchy sequence, we combine (29) and
(48) with C = An and D = Am and obtain∣∣∣∥An∥ − ∥Am∥

∣∣∣ < ε. (49)

Therefore, {∥An∥}n∈N is a Cauchy sequence in R. Since the former is complete, {∥An∥}n∈N is also
convergent, and (43) is finite,

∥Av∥W
∥v∥V

< ∞. (50)

Since it is valid for any v ∈ V \ {0}, it remains valid if supremum of the left-hand side of (50) over
V \ {0} is taken, so that

∥A∥ < ∞, (51)

hence, proving that A ∈ L(V,W ). In order to prove that it is a limit of {An}n∈N, we fix some n ∈ N
and, in order to exploit (3), for any v ∈ V \ {0}, we calculate:

∥(An −A)v∥W
∥v∥V

=
∥Anv − limm→∞Amv∥W

∥v∥V
(52)

= lim
m→∞

∥(An −Am)v∥W
∥v∥V

(53)

≤ lim
m→∞

sup
v∈V \{0}

∥(An −Am)v∥W
∥v∥V

(54)

= lim
m→∞

∥An −Am∥. (55)
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Since {An}n∈N is a Cauchy sequence, we recall (29) and obtain

∥(An −A)v∥W
∥v∥V

< ε, (56)

if n > N . Since it is valid for any v ∈ V \ {0}, it remains valid if supremum of the left-hand side of
(56) over V \ {0} is taken, so that

∥An −A∥ < ε, (57)

Recalling (3) we find that limn→∞An = A, hence, concluding the proof.

We highlight a particular class of bounded operators that will be important in the following chapters,
namely, bounded operators that map elements of the normed space V to C, and provide the following
definition.

Definition 1.8. Given a normed space (V, ∥·∥V ), a bounded operator A : V → C is called (bounded)
linear functional on V , and the corresponding Banach space L(V,C) is known as dual space of V
and is denoted as V ∗.

Existence of the dual space for a given normed space allows one to introduce an extended notion
of convergence as proposed in the following definition

Definition 1.9. Given a normed space (V, ∥·∥V ) and v ∈ V , a sequence {vn}n∈N converges weakly
to v if

∀v∗ ∈ V ∗ : lim
n→∞

v∗(vn) = v∗(v). (58)

In this case, v is called weak limit of {vn}n∈N and is denoted as w-limn→∞vn = v and vn ⇀ v.

Exercise 1.2. Show that w-limn→∞vn = v is necessary but not sufficient for limn→∞vn = v.

We conclude with a particularly important result for bounded operators, which allows one to define
one only on a dense subset of a given normed space. Before to proceed with it, we provide the following
definition.

Definition 1.10. Given normed spaces (V, ∥·∥V ) and (W, ∥·∥W ) and an operator A : DA → W with
domain DA ⊂ V , an operator Â : V → W such that

∀d ∈ DA : Âd = Ad, (59)

is called extension of A.

Theorem 1.2 (Bounded linear transformation (BLT)). Let (V, ∥·∥V ) be a normed space, (W, ∥·∥W ) be
a Banach space, and A ∈ L(DA,W ) be a bounded operator with a domain DA being a dense subset of
V , i.e., DA = V . Then there exists a unique extension of A to a bounded operator Â ∈ L(V,W ), with
∥Â∥= ∥A∥.

Proof. In order to prove the theorem, we proceed with the following steps:

1. Construction of a well-defined extension Â : V → W of A.

2. Proof of linearity and boundedness of Â, i.e., Â ∈ L(V,W ).

3. Proof of uniqueness of Â and ∥Â∥= ∥A∥.
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Step 1. Since DA is a dense subset of V , for any element v ∈ V , there can be constructed a
sequence {dn}n∈N in DA that converges to v,

lim
n→∞

dn = v. (60)

In turn, ∀n,m ∈ N and dn ̸= dm,

∥Adn −Adm∥W = ∥dn − dm∥V
∥A(dn − dm)∥W
∥dn − dm∥V

≤ ∥dn − dm∥V sup
(dn−dm)∈DA\{0}

∥A(dn − dm)∥W
∥dn − dm∥V

(61)

= ∥dn − dm∥V ∥A∥. (62)

For dn = dm, trivially ∥Adn −Adm∥W ≤ ∥dn − dm∥V ∥A∥, therefore, (62) remains valid. On the other
hand, since {dn}n∈N is convergent in V , it is also a Cauchy sequence. Hence, recalling (5), there exists
N ∈ N such that ∀n,m > N and ∀ε > 0

∥dn − dm∥V < ε. (63)

Therefore, inequality (62) can be developed further,

∥Adn −Adm∥W < ε∥A∥.

Since A is bounded, ∥A∥ < ∞, and ε′ := ε∥A∥ is arbitrary. This means that {Adn}n∈N is a Cauchy
sequence in W , which is convergent due to the completeness of W as a Banach space. Therefore, we
can define an operator Â : V → W such that

Âv = lim
n→∞

Adn, (64)

∀v = limn→∞ dn ∈ V with dn ∈ DA ∀n ∈ N. In order to show that it is indeed an extension of A
in accordance with Definition 1.10, it is enough to notice that ∀d ∈ DA we can construct a trivial
constant sequence {dn}n∈N with dn = d ∀n ∈ N. In this case, limn→∞ dn = d, and

∀d ∈ DA : Âd = Ad. (65)

Therefore, it remains to show that Â is well-defined, i.e., for {dn}n∈N and {d̃n}n∈N both converging to
v ∈ V , {Adn}n∈N and {Ad̃n}n∈N have to converge to the same element Âv ∈ W . Recalling (3), there
exists N ∈ N and Ñ ∈ N such that ∀n > N , ∀ñ > Ñ , and ∀ε > 0

∥dn − v∥V <
ε

2
, (66)

∥d̃ñ − v∥V <
ε

2
. (67)

In turn, ∀n > max{N, Ñ} and dn ̸= d̃n,

∥Adn −Ad̃n∥W = ∥dn − d̃n∥V
∥A(dn − d̃n)∥W
∥dn − d̃n∥V

≤ ∥dn − d̃n∥V sup
(dn−d̃n)∈DA\{0}

∥A(dn − d̃n)∥W
∥dn − d̃n∥V

(68)

= ∥dn − d̃n∥V ∥A∥ (69)

≤
(
∥dn − v∥V + ∥d̃n − v∥V

)
∥A∥ (70)

< ε∥A∥, (71)
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where (70) follows from the triangular inequality for norm. In turn, for dn = d̃n, trivially ∥Adn −
Ad̃n∥W < ε∥A∥, and, hence, (71) remains valid. Since A is bounded, ∥A∥ < ∞, and ε′ := ε∥A∥ is
arbitrary. Therefore, recalling (3), we obtain

lim
n→∞

(Adn −Ad̃n) = 0, (72)

or, taking into account continuity of linear operations on W ,

lim
n→∞

(Adn) = lim
n→∞

(Ad̃n), (73)

and Â is well-defined.
Step 2. In order to prove that Â ∈ L(V,W ), it is necessary to demonstrate that Â is linear and

bounded. Proof of linearity of Â is similar to one provided in the proof of Theorem 1.1 and is left as
an exercise. Boundedness of Â can be proven by calculating its norm,

∥Â∥ = sup
v∈V \{0}

∥Âv∥W
∥v∥V

(74)

= sup
v∈V \{0}

dn∈DA∀n∈N
limn→∞ dn=v

∥limn→∞Adn∥W
∥v∥V

(75)

= sup
v∈V \{0}

dn∈DA∀n∈N
limn→∞ dn=v

limn→∞∥Adn∥W
∥v∥V

(76)

≤ sup
v∈V \{0}

dn∈DA∀n∈N
limn→∞ dn=v

∥A∥ limn→∞∥dn∥V
∥v∥V

(77)

≤ sup
v∈V \{0}

dn∈DA∀n∈N
limn→∞ dn=v

∥A∥∥limn→∞ dn∥V
∥v∥V

(78)

= ∥A∥ (79)
< ∞, (80)

where (75) uses the fact that every v ∈ V can be written as a limit of a sequence {dn}n∈N in DA, and
(76) and (78) exploit continuity of norms ∥·∥W and ∥·∥V , respectively.

Step 3. For demonstration of uniqueness of Â, we assume that there exists another extension B̂
of A, so that

∀d ∈ DA : B̂d = Ad. (81)

Let v ∈ V . Recalling (3), there exists N ∈ N such that ∀n > N and ∀ε > 0

∥dn − v∥V < ε. (82)

Therefore, if dn ̸= v,

∥B̂v −Adn∥W = ∥B̂(v − dn)∥W (83)

= ∥v − dn∥V
∥B̂(v − dn)∥W
∥v − dn∥V

(84)

≤ ∥v − dn∥V sup
(dn−v)∈V \{0}
dn∈DA∀n∈N
limn→∞ dn=v

∥B̂(v − dn)∥W
∥v − dn∥V

(85)

= ∥v − dn∥V ∥B̂∥ (86)
< ε∥B̂∥, (87)
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where (83) follows from (81). In turn, for dn = v, trivially ∥B̂v − B̂dn∥W < ε∥B̂∥, and, hence, (87)
remains valid. Since B̂ is an extension of A, it is bounded, as proven in Step 2 of this proof, so that
∥B̂∥ < ∞, and ε′′ := ε∥B̂∥ is arbitrary. Therefore, recalling (3),

lim
n→∞

(B̂v −Anv) = 0, (88)

or, equivalently,
B̂v = lim

n→∞
(Anv). (89)

However, recalling the definition (64) of the extension Â, we find

B̂v = Âv. (90)

Since it is valid for any v ∈ V , we find that B̂ = Â. Finally, we check the norm of A,

∥A∥ = sup
v∈DA\{0}

∥Av∥W
∥v∥V

(91)

= sup
v∈DA\{0}

∥Âv∥W
∥v∥V

(92)

≤ sup
v∈V \{0}

∥Âv∥W
∥v∥V

(93)

= ∥Â∥, (94)

where (92) follows from the definition of extension, and (93) follows from enlarging the set, on which
the supremum is calculated. On the other hand, (79) suggests that ∥A∥ ≥ ∥Â∥. Therefore, ∥A∥ = ∥Â∥,
and this concludes the proof.

1.3 Hilbert spaces

In this subchapter, we discuss Hilbert spaces, a particular class of Banach spaces, which is highly
important for applications of operator theory, e.g., in quantum mechanics. Similarly to introduction of
Banach spaces in subchapter 1.1, we introduce Hilbert spaces via several steps, starting with a C-vector
space H and equipping it with a particular kind of binary map on it.

Definition 1.11. Given a C-vector space H, a map ⟨·, ·⟩H : H × H → C is called a sesquilinear
form on H if it is antilinear on first argument and linear on the second argument, i.e.,

⟨λh+ g, v⟩H = λ⟨h, v⟩H + ⟨h, v⟩H, (95)
⟨v, λh+ g⟩H = λ⟨v, h⟩H + ⟨v, g⟩H, (96)

for any h, g, v ∈ H and λ ∈ C, where λ is the complex conjugate of λ.

Definition 1.12. A C-vector space H is called inner product space if it is equipped with a sesquilinear
form denoted ⟨·|·⟩H2 of properties:

1. ∀h ∈ H \ {0}, ⟨h|h⟩H > 0 (positive definiteness),

2. ∀h, g ∈ H, ⟨h|g⟩H = ⟨g|h⟩H (symmetry),

known as inner product.
2We stick to the notation ⟨·|·⟩H, which is typical for literature on quantum mechanics and roots from the so-called

Dirac bra-ket notation, which is discussed later. In mathematical literature, another convention (·, ·)H with linearity in
first argument and antilinearity in second argument can be found.
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Inner product has an important property, which is frequently used in proofs of results for Hilbert
spaces and is stated in the following lemma.

Lemma 1.1 (Cauchy-Schwarz inequality). Given an inner product space (H, ⟨·|·⟩H), its inner product
satisfies:

∀h, g ∈ H : |⟨h|g⟩|2 ≤ ⟨h|h⟩⟨g|g⟩. (97)

Proof. We leave it to the reader as an exercise.

Interestingly, inner product induces a norm on the corresponding vector space, as is shown in the
following theorem, guaranteeing, hence, that any inner product space is a normed space.

Theorem 1.3. An inner product space (H, ⟨·|·⟩H) is a normed space with a norm ∥·∥H defined as

∀h ∈ H : ∥h∥H :=
√

⟨h|h⟩H. (98)

Proof. In order to prove that (98) is a norm, we recall the four properties of norm in Definition 1.2.

1. Since the inner product ⟨·|·⟩H is positively defined by Definition 1.12, we have ∥·∥H ≥ 0.

2. For scaling invariance, let λ ∈ C and h ∈ H. Then

∥λh∥H =
√

⟨λh|λh⟩H (99)
= |λ|

√
⟨h|h⟩H (100)

= |λ|∥h∥H. (101)

3. Triangular inequality is obtained as follows:

∥h+ g∥H =
√
⟨h+ g|h+ g⟩H (102)

=
√

⟨h|h⟩H + ⟨h|g⟩H + ⟨g|h⟩H + ⟨g|g⟩H (103)

=

√
⟨h|h⟩H + ⟨h|g⟩H + ⟨h|g⟩H + ⟨g|g⟩H (104)

=
√
⟨h|h⟩H + 2Re[⟨h|g⟩H] + ⟨g|g⟩H (105)

≤
√
⟨h|h⟩H + 2|⟨h|g⟩H|+ ⟨g|g⟩H (106)

≤
√
⟨h|h⟩H + 2⟨h|h⟩H⟨g|g⟩H + ⟨g|g⟩H (107)

=

√(√
⟨h|h⟩H +

√
⟨g|g⟩H

)2
(108)

=
∣∣∣√⟨h|h⟩H +

√
⟨g|g⟩H

∣∣∣ (109)

=
∣∣∣∥h∥H + ∥g∥H

∣∣∣ (110)

= ∥h∥H + ∥g∥H, (111)

where (104) follows from the symmetry of inner product in Definition 1.12, (107) follows from
Lemma 1.1, and (111) follows from already proven positive definiteness of norm.

4. ∥h∥H = 0 if and only if ⟨h|h⟩H = 0. In turn, this implies h = 0 due to the positive definiteness
in Definition 1.12.

The converse, however, is not true, and the following theorem provides a condition on norm inducing
an inner product.
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Theorem 1.4 (Jordan, von Neumann). Given a normed space (H, ∥·∥H), the norm ∥·∥H induces an
inner product ⟨·|·⟩H on it if and only if

∀h, g ∈ H : ∥h+ g∥2H + ∥h− g∥2H = 2(∥h∥2H + ∥g∥2) (parallelogram identity), (112)

with

∀h, g ∈ H : ⟨h|g⟩H :=
1

4

(
∥h+g∥2H−∥h−g∥2H+i∥h−ig∥2H−i∥h+ig∥2H

)
(polarization identity). (113)

Proof. We proceed with proof of the theorem in both directions.
Step 1 (⇒). Let us assume that the norm ∥·∥H induces an inner product ⟨·|·⟩H defined by (98).

Then both (112) and (113) can be recovered by direct calculation which we leave to the reader as an
exercise.

Step 2 (⇐). Let us assume that the norm ∥·∥H fulfills (112). Then we consider a binary map
⟨·|·⟩H : H×H → C defined by (113) and verify the properties of inner product as given in Definition
1.11 and 1.12. First, let us show that symmetry and linearity on second argument of inner product
imply its anti-linearity:

⟨λh+ g|v⟩H = ⟨v|λh+ g⟩H (114)

= λ⟨v|h⟩H + ⟨v|g⟩H (115)
= λ⟨h|v⟩H + ⟨g|v⟩H. (116)

Therefore, in order to show that ⟨·|·⟩H is an inner product, it is enough to verify (96) and two properties
of Definition 1.12. For linearity in first argument, we first prove additivity:

⟨v|h+ g⟩H =
1

4

(
∥v + h+ g∥2H − ∥v − h− g∥2H + i∥v − ih− ig∥2H − i∥v + ih+ ig∥2H

)
(117)

=
1

4

(
∥v + h+ g∥2H + ∥v + h− g∥2H − ∥v + h− g∥2H − ∥v − h− g∥2H

+ i∥v − ih− ig∥2H + ∥v − ih+ ig∥2H − ∥v − ih+ ig∥2H − i∥v + ih+ ig∥2H
)

(118)

=
1

4

(
2(∥v + h∥2H + ∥g∥2)− 2(∥v − g∥2H + ∥h∥2)

+ 2i(∥v − ih∥2H + ∥g∥2)− 2i(∥v + ig∥2H + ∥h∥2)
)

(119)

=
1

4

(
2(∥v + h∥2H + ∥v∥2H + ∥g∥2)− 2(∥v − g∥2H + ∥v∥2H + ∥h∥2)

+ 2i(∥v − ih∥2H + ∥v∥2H + ∥ig∥2)− 2i(∥v + ig∥2H + ∥v∥2H + ∥ih∥2)
)

(120)

=
1

4

(
2∥v + h∥2H + ∥v + g∥2H + ∥v − g∥2H − 2∥v − g∥2H − ∥v + h∥2H − ∥v − h∥2)

+ i(2∥v − ih∥2H + ∥v + ig∥2H + ∥v − ig∥2H
− 2∥v + ig∥2H − ∥v + ih∥2H − ∥v − ih∥2)

)
(121)

=
1

4

(
∥v + h∥2H − ∥v − h∥2H + i∥v − ih∥2H − i∥v + ih∥2H

)
+

1

4

(
∥v + g∥2H − ∥v − g∥2H + i∥v − ig∥2H − i∥v + ig∥2H

)
(122)

= ⟨v|h⟩H + ⟨v|g⟩H, (123)

where (119) and (121) follow from the parallelogram identity (112). Scaling invariance can be proven
by induction, starting with the trivial case of λ = 0:

⟨h|0g⟩H = ⟨h|0⟩H (124)

=
1

4

(
∥h∥2H − ∥h∥2H + i∥h∥2H − i∥h∥2H

)
(125)

= 0 (126)
= 0⟨h|g⟩H, (127)
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and having by additivity

⟨h| − g⟩H =
1

4

(
∥h− g∥2H − ∥h+ g∥2H + i∥h+ ig∥2H − i∥h− ig∥2H

)
(128)

= −1

4

(
∥h+ g∥2H − ∥h− g∥2H + i∥h− ig∥2H − i∥h+ ig∥2H

)
(129)

= −⟨h|g⟩H. (130)

Therefore, supposing ⟨h| ± ng⟩H = ±n⟨h|g⟩H for some n ∈ N, we calculate:

⟨h| ± (n+ 1)g⟩H = ±⟨h|(n+ 1)g⟩H (131)
= ±⟨h|ng + g⟩H (132)
= ±(⟨h|ng⟩H + ⟨h|g⟩H) (133)
= ±(n+ 1)⟨h|g⟩H, (134)

proving, hence, scaling invariance in Z. In turn, for any n ∈ Z and m ∈ Z \ {0},

m
〈
h
∣∣∣ n
m
g
〉
H

= ⟨h|ng⟩H (135)

= n⟨h|g⟩H. (136)

Therefore, ⟨h| nmg⟩H = n
m⟨h|g⟩H, proving scaling invariance in Q. In order to prove scaling invariance

for λ ∈ R, we take into account that Q is a dense set of R, so that any λ ∈ R is a limit of some sequence
(λn)n in Q. Therefore, ∀ε > 0 there exists N ∈ N such that ∀n > N we have |λn − λ| < ε and can
calculate

|λn⟨h|g⟩H − ⟨h|λg⟩H| = |⟨h|(λn − λ)g⟩H| (137)

=
1

4

∣∣∣∥h+ (λn − λ)g∥2H − ∥h− (λn − λ)g∥2H

+ i∥h− i(λn − λ)g∥2H − i∥h+ i(λn − λ)g∥2H
∣∣∣ (138)

=
1

4

∣∣∣2∥h+ (λn − λ)g∥2H − ∥h+ (λn − λ)g∥2H − ∥h− (λn − λ)g∥2H
+ 2i∥h− i(λn − λ)g∥2H − i∥h− i(λn − λ)g∥2H
− i∥h+ i(λn − λ)g∥2H

∣∣∣ (139)

=
1

4

∣∣∣2∥h+ (λn − λ)g∥2H − ∥h∥2H − |λn − λ|∥g∥2H

+ 2i∥h− i(λn − λ)g∥2H − i∥h∥2H − i|λn − λ|∥g∥2H
∣∣∣ (140)

≤ 1

4

∣∣∣2(∥h∥H + |λn − λ|∥g∥H)2 − ∥h∥2H − |λn − λ|∥g∥2H

+ 2i(∥h∥H + |λn − λ|∥g∥H)2 − i∥h∥2H − i|λn − λ|∥g∥2H
∣∣∣ (141)

=
∣∣∣|λn − λ|∥h∥H∥g∥H + i|λn − λ|∥h∥H∥g∥H

∣∣∣ (142)

=
√
2|λn − λ|∥h∥H∥g∥H (143)

<
√
2ε∥h∥H∥g∥H, (144)

where (140) follows from parallelogram identity (112), while (141) exploits triangular inequality and
scaling invariance of the norm. Therefore, limn→∞ λn⟨h|g⟩H = ⟨h|λg⟩H. In turn, we have

λ⟨h|g⟩H = lim
n→∞

λn⟨h|g⟩H (145)

= ⟨h|λg⟩H, (146)
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hence, proving scaling invariance in R. Finally, in order to prove it for any complex λ ∈ C, we calculate:

⟨h|λg⟩H = ⟨h|(Re[λ] + iIm[λ])g⟩H (147)
= Re[λ]⟨h|g⟩H + Im[λ]⟨h|ig⟩H (148)

= Re[λ]⟨h|g⟩H +
Im[λ]

4

(
∥h+ ig∥2H − ∥h− ig∥2H + i∥h+ g∥2H − i∥h− g∥2H

)
(149)

= Re[λ]⟨h|g⟩H + i
Im[λ]

4

(
∥h+ g∥2H − ∥h− g∥2H + i∥h− ig∥2H − i∥h+ ig∥2H

)
(150)

= Re[λ]⟨h|g⟩H + iIm[λ]⟨h|g⟩H (151)
= λ⟨h|g⟩H. (152)

In order to verify the properties of Definition 1.12, we prove positive definiteness of ⟨·|·⟩H:

⟨h|h⟩H =
1

4

(
∥h+ h∥2H − ∥h− h∥2H + i∥h− ih∥2H − i∥h+ ih∥2H

)
(153)

= ∥h∥2H, (154)

using the positive definiteness of norm, and symmetry:

⟨g|h⟩H =
1

4

(
∥g + h∥2H − ∥g − h∥2H − i∥g − ih∥2H + i∥g + ih∥2H

)
(155)

=
1

4

(
∥h+ g∥2H − ∥h− g∥2H + i∥h− ig∥2H − i∥h+ ig∥2H

)
(156)

= ⟨h|g⟩H, (157)

and concluding that ⟨·|·⟩H is indeed an inner product on H.

Let us check several important examples of Banach and Hilbert spaces.

Exercise 1.3. A normed space (ℓp(N), ∥·∥p) is a space of all sequences a = (ai)i, for which the corre-
sponding so-called p-norm is finite, i.e.,

∥a∥ℓp(N), 1≤p<∞ =
( ∞∑
i=1

|ai|p
) 1

p
< ∞, (158)

∥a∥ℓp(N), p=∞ = sup
i∈N

|ai| < ∞. (159)

With respect to ∥·∥p, ℓp(N) are Banach spaces. However, only ℓ2(N) induces an inner product

∀a = (ai)i, b = (bi)i ∈ ℓ2(N) : ⟨a|b⟩ℓ2(N) =
∞∑
i=1

aibi, (160)

and, hence, is a Hilbert space. Prove this.

Exercise 1.4. Let (X,Σ, µ) be a σ-finite measure space and Lp(X, dµ) be the set of all measurable
functions f : X → C equipped with functions ∥·∥p : Lp(X, dµ) → R such that

∥f∥1≤p<∞ =
(∫

X
|f |pdµ

) 1
p
< ∞, (161)

∥f∥p=∞ = inf{C|µ({x||f(x)| > C}) = 0} < ∞. (162)

Normed spaces Lp(X, dµ) = Lp(X, dµ)/N (X, dµ) are quotient spaces of Lp(X, dµ) with respect to all
functions that are zero almost everywhere, N (X, dµ) = {f |f(x) = 0 a.e.}. The functions ∥·∥p :=
∥·∥L2(X,dµ) are norms in these spaces, and, with respect to them, Lp(X, dµ) are Banach spaces. How-
ever, only L2(X, dµ) induces an inner product

∀f, g ∈ L2(X, dµ) : ⟨f |g⟩L2(X,dµ) =

∫
X
fg dµ, (163)

and, hence, is a Hilbert space. Prove this.
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Now, we proceed with introduction of the notion of basis. We start with vector spaces that are not
necessarily equipped with a norm, and then proceed with Banach spaces.

Definition 1.13. Given a vector space V , a subset B ⊆ V is called Hamel basis if any finite subset
{ei}ni=1 ⊆ B is linearly independent, and V = span(B), where

span(B) =
{ n∑

i=1

λiei|λi ∈ C ∀1 ≤ i ≤ n, ei ∈ B ∀1 ≤ i ≤ n, n ≥ 1
}
. (164)

V is called finite-dimensional if it admits a final Hamel basis, and dim(V ) = |B|, otherwise it is called
infinite-dimensional.

Definition 1.14. Given a Banach space (V, ∥·∥V ), a sequence {ei}i∈N in V is called Schauder basis
if ∀f ∈ V there exists a unique sequence {λi}i∈N such that

f = lim
n→∞

n∑
i=1

λiei. (165)

In what follows, we denote this as f =
∑∞

i=1 λiei. If ∥ei∥V = 1 for all i ∈ N, the Schauder basis is
called normalized.

Definition 1.15. A Hilbert space H is called separable if it admits an orthonormal Schauder basis,
i.e., a normalized Schauder basis {ei}i∈N such that

∀i ̸= j : ⟨ei|ej⟩H = 0. (166)

Exercise 1.5. Show that, given a Hilbert space H that admits a Schauder basis {ei}i∈N, for any
h ∈ H, which by Definition 1.14 has a unique expansion h =

∑∞
i=1 aiei with respect to {ei}i∈N, we have

ai = ⟨ei|h⟩H.

Exercise 1.6. Prove that the Hilbert spaces ℓ2(N) and L2(X, dµ) are separable.

In what follows, we focus only on separable Hilbert spaces, hence, assuming that there always
exists an orthonormal Schauder basis.

Definition 1.16. Vectors h, g ∈ H are called orthogonal if

⟨h|g⟩H = 0. (167)

Let M ⊂ H be a linear subspace. Its orthogonal complement M⊥ is called a set of vectors in H,
which are orthogonal to any vector of M, i.e.,

M⊥ = {h ∈ H|∀g ∈ M : ⟨h|g⟩H = 0}. (168)

Lemma 1.2 (Pythagorean theorem). Let {hi}ni=1 ⊂ H be a set of pairwise orthogonal vectors. Then∥∥∥ n∑
i=1

hi

∥∥∥2
H
=

n∑
i=1

∥hi∥2H. (169)

Proof. Let {hi}ni=1 ⊂ H such that ∀i ̸= j : ⟨hi|hj⟩H = 0. Then we calculate:∥∥∥ n∑
i=1

hi

∥∥∥2
H

=
〈 n∑
i=1

hi

∣∣∣ n∑
j=1

hj

〉
H

(170)

=
n∑

i=1

⟨hi|hi⟩H +
∑
i ̸=j

⟨hi|hj⟩H (171)

=

n∑
i=1

⟨hi|hi⟩H (172)

=

n∑
i=1

∥hi∥2H. (173)
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Definition 1.17. Given Hilbert spaces V and W , a bijective map U : V → W is called unitary
operator if it preserves inner product:

∀h, g ∈ V : ⟨Uh|Ug⟩W = ⟨h|g⟩V . (174)

If such an operator exists, V and W are called unitarily equivalent.

Exercise 1.7. Prove that any surjective map U : V → W that preserves inner product is a unitary
operator.

Theorem 1.5. Any infinite-dimensional separable Hilbert space is unitarily equivalent to ℓ2(N).

Proof. Let us consider a separable Hilbert space H. By Definition 1.15, it admits an orthonormal
Schauder basis {ei}i∈N. Let us consider a map U : H → ℓ2(N) which maps any h ∈ H to a sequence
(⟨ei|h⟩)i∈N that indeed exists due to Definition 1.15 and Exercise 1.5. First, we have to verify that
(⟨ei|h⟩)i∈N ∈ ℓ2(N). Let us calculate its norm,

∥(⟨ei|h⟩)i∈N∥2ℓ2(N) =
∞∑
i=1

|⟨ei|h⟩|2 (175)

= lim
n→∞

n∑
i=1

|⟨ei|h⟩|2 (176)

= lim
n→∞

n∑
i=1

|⟨ei|h⟩|2∥ei∥2H (177)

= lim
n→∞

n∑
i=1

∥⟨ei|h⟩ei∥2H (178)

= lim
n→∞

∥∥∥ n∑
i=1

⟨ei|h⟩ei
∥∥∥2
H

(179)

=
∥∥∥ lim
n→∞

n∑
i=1

⟨ei|h⟩ei
∥∥∥2
H

(180)

=
∥∥∥ ∞∑
i=1

⟨ei|h⟩ei
∥∥∥2
H

(181)

= ∥h∥2 (182)
< ∞, (183)

where (177) uses orthonormality of the Schauder basis {ei}i∈N, (178) follows from scale invariance of
the norm, (179) follows from Lemma 1.2, and (179) exploits continuity of the norm. Therefore, indeed,
(⟨ei|h⟩)i∈N ∈ ℓ2(N). In order to prove that U is unitary, due to the result of Exercise 1.7, we have to
proceed with two steps and demonstrate that it is surjective and preserves inner product.

Step 1. In order to prove surjectivity of U , it is necessary to show that for any element of
ℓ2(N), there exists the corresponding element of H. Let (ai)i∈N ∈ ℓ2(N). Therefore, there exists
limn→∞

∑n
i=1 |ai|2, i.e., the sequence (

∑n
i=1 |ai|2)n∈N is convergent in R and, hence, is a Cauchy se-

quence. Therefore, for any ε > 0, there exists N ∈ N such that ∀n,m > N ,

∣∣∣ n∑
i=1

|ai|2 −
m∑
i=1

|ai|2
∣∣∣ =

max(n,m)∑
i=min(n,m)+1

|ai|2 (184)

< ε. (185)
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In turn, ∥∥∥ n∑
i=1

aiei −
m∑
i=1

aiei

∥∥∥2
H

=
∥∥∥ max(n,m)∑
i=min(n,m)+1

aiei

∥∥∥2
H

(186)

=

max(n,m)∑
i=min(n,m)+1

|ai|2∥ei∥2H (187)

=

max(n,m)∑
i=min(n,m)+1

|ai|2 (188)

< ε, (189)

where (187) follows from Lemma 1.2, and (188) follows from orthonormality of the Schauder basis
{ei}i∈N. Hence, (

∑n
i=1 aiei)n∈N is a Cauchy sequence in H. Since a Hilbert space is a Banach space,

every Cauchy sequence in it is convergent, and there exists a vector h ∈ H such that

h =

∞∑
i=1

aiei. (190)

On the other hand, Uh = (ai)i∈N, hence, for any sequence in ℓ2(N) there exists an associated vector
h ∈ H.

Step 2. In order to prove that U preserves the inner product, we calculate:

⟨h|g⟩H =
〈 ∞∑
i=1

⟨ei|h⟩Hei
∣∣∣ ∞∑
j=1

⟨ej |g⟩Hej
〉
H

(191)

=
∞∑
i=1

∞∑
j=1

⟨ei|h⟩H⟨ej |g⟩H⟨ei|ej⟩H (192)

=
∞∑
i=1

∞∑
j=1

⟨ei|h⟩H⟨ei|g⟩H (193)

=
〈
(⟨ei|h⟩H)i∈N

∣∣∣(⟨ej |g⟩H)j∈N〉
ℓ2(N)

(194)

= ⟨Uh|Ug⟩ℓ2(N), (195)

where (192) follows from continuity and sesquilinearity of inner product.

Lemma 1.3. Let M ⊆ H be a linear subspace. Then M⊥ is a closed linear subspace of H.

Proof. First, let us prove linearity of M⊥. Indeed, let f, g ∈ M⊥ and λ ∈ C. Then, for any h ∈ M,

⟨h|λf + g⟩H = λ⟨h|f⟩+ ⟨h|g⟩H (196)
= 0, (197)

Hence, H⊥ is a linear subspace of H. In order to show that it is closed, let us define maps fh : H → C,
which, for a certain fixed H ∈ H, maps any vector g ∈ H into its inner product with h, g 7→ ⟨g|h⟩H.
Then, since M⊥ consists of vectors orthogonal to all elements of M, we can write it as

M⊥ =
⋂

h∈M
preimfh

({0}), (198)

where preimfh
({0}) denotes the preimage of zero with respect to fh. The inner product is continuous,

therefore, the preimage of a closed set with respect to fh is a closed set. If we assume standard topology
on C, {0} is a closed set, hence, its preimage is closed as well. Since any intersection of closed sets is
again a closed set, we conclude that M⊥ is closed.
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Lemma 1.4. Let {e1, . . . , en} ⊂ H be an orthonormal subset of Hilbert space H, i.e., a subset of
normalized pairwise orthogonal vectors. Then every h ∈ H can be written as:

h = h∥ + h⊥, (199)

where h∥ =
∑n

i=1⟨ei|h⟩Hei, and ⟨ei|h⊥⟩H = 0 for any i ∈ {1, . . . , n}, and

∥h∥2H = ∥h∥∥2H + ∥h⊥∥2H. (200)

Moreover, for any h̃ ∈ span{e1, . . . , en},

∥h− h̃∥H ≥ ∥h⊥∥H, (201)

where the equality holds if and only if h̃ = h∥, so that h∥ is uniquely characterized as the closest to h
vector in span{e1, . . . , en}.

Proof. In order to prove the theorem, we prove first (199) and (200) and proceed with proving (201).
Step 1. Let h∥ :=

∑n
i=1⟨ei|h⟩Hei, and h⊥ := h− h∥. Then trivially h = h∥ + h⊥. In turn, for any

j ∈ {1, . . . , n}:

⟨ej |h⊥⟩H =
〈
ej

∣∣∣h−
n∑

i=1

⟨ei|h⟩Hei
〉
H

(202)

= ⟨ej |h⟩H −
n∑

i=1

⟨ei|h⟩H⟨ej |ei⟩H (203)

= ⟨ej |h⟩H − ⟨ej |h⟩H (204)
= 0. (205)

Therefore, by sesquilinearity of inner product, ⟨h⊥|h∥⟩H = 0, and h⊥ and h∥ are orthogonal. Hence,
applying Lemma 1.2, we verify (200).

Step 2. Let h̃ ∈ span{e1, . . . , en}, so that

h̃ =
n∑

i=1

ciei, (206)

where ci ∈ C for any i ∈ {1, . . . , n}. In turn,

∥h− h̃∥2H = ∥h∥ + h⊥ − h̃∥2H (207)

=
∥∥∥ n∑
i=1

⟨ei|h⟩2Hei + h⊥ −
n∑

i=1

ciei

∥∥∥2
H

(208)

=
∥∥∥ n∑
i=1

(
⟨ei|h⟩2H − ci

)
ei + h⊥

∥∥∥2
H

(209)

=
∥∥∥ n∑
i=1

(
⟨ei|h⟩2H − ci

)
ei

∥∥∥
H
+ ∥h⊥∥2H (210)

=

n∑
i=1

|⟨ei|h⟩H − ci|2 + ∥h⊥∥2H, (211)

where (209) follows from Lemma 1.2, while (210) uses Lemma 1.2 and the fact that vectors ei are
normalized. Therefore, due to positive definiteness of norm, ∥h − h̃∥H ≥ ∥h⊥∥H. In turn, equality
holds if and only if

∑n
i=1 |⟨ei|h⟩H − ci|2 = 0, i.e., |⟨ei|h⟩H − ci| = 0 for every i ∈ {1, . . . , n}. Hence, we

conclude that equality holds of and only if h̃ = h∥.
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Theorem 1.6 (Projection theorem). Let M ⊆ H be a closed linear subset of a Hilbert space H. Then
every h ∈ H can be written as

h = h∥ + h⊥, (212)

where h∥ ∈ M and h⊥ ∈ M⊥.

Proof. First, let us show that M itself is a Hilbert space. Obviously, M is an inner product space due
its linear structure and inner product induced by H. Therefore, it is enough to prove its completeness.
Let {mi}i∈N be a Cauchy sequence in M. Since H is complete, there exists

H ∋ h = lim
i→∞

mi. (213)

Let us assume that h /∈ M, i.e., h ∈ H \ M, which is an open subset of H due to closedness of M.
Then for any m ∈ H \ M there exists εm > 0 such that any h ∈ H is an element of H \ M ∋ h if
∥m− h∥H < εm. On the other hand, due to (213) and (3), there exists N ∈ N such that for all i > N ,

∥mi − h∥H < εm, (214)

meaning that mi ∈ H \M for all i > N , leading to a contradiction. Therefore, any Cauchy sequence
in M converges to an element of M, so that M is complete and, hence, a Hilbert space. Moreover, if
H is separable, so is M, and there exists an orthonormal basis {ei}i∈N: we leave the proof of this fact
to the reader as an exercise.

Given h ∈ H, we define h∥ =
∑∞

i=1 hiei ∈ M and h⊥ = h− h∥. Calculating

⟨ej |h⊥⟩H =
〈
ej

∣∣∣h−
∞∑
i=1

⟨ei|h⟩Hei
〉
H

(215)

= lim
n→∞

〈
ej

∣∣∣h−
n∑

i=1

⟨ei|h⟩Hei
〉
H

(216)

= 0, (217)

where the (216) follows from continuity of inner product, and (217) follows from Lemma 1.4. Therefore,
using sesquilinearity and continuity of inner product, we obtain ⟨h∥|h⊥⟩H, so that h⊥ ∈ M⊥.

Lemma 1.5. Let M ⊆ H be a linear subspace. Then M⊥⊥ = M.

Proof. We proceed with the proof in several steps.
Step 1. Let h ∈ M⊥. Then

∀g ∈ M : ⟨g|h⟩ = 0. (218)

Since M ⊆ M, we have that
∀g ∈ M : ⟨g|h⟩ = 0. (219)

Therefore, M⊥ ⊆ M⊥.
Step 2. Let h ∈ M⊥⊥. Then

∀g ∈ M⊥ : ⟨g|h⟩ = 0. (220)

Due to Step 1, M⊥ ⊆ M⊥, we have that

∀g ∈ M⊥
: ⟨g|h⟩ = 0. (221)

Hence, M⊥⊥ ⊆ M⊥⊥.
Step 3. Let h ∈ M. Then

∀g ∈ M⊥
: ⟨g|h⟩ = 0. (222)

Hence, M ⊆ M⊥⊥.
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Step 4. Let h ∈ M⊥⊥. Due to Theorem 1.6, there exists a decomposition h = m+n with m ∈ M
and n ∈ M⊥. Therefore, calculating

⟨n|h⟩H = ⟨n|m+ n⟩H (223)
= ⟨n|m⟩H + ⟨n|n⟩H (224)
= ∥n∥2H (225)
≡ 0, (226)

where (225) follows from the Definition 1.16 and (98), we obtain that n = 0. Therefore, M⊥⊥ ⊆ M
and, due to Step 3, M⊥⊥

= M. Therefore, due to Step 2, we conclude that M⊥⊥ ⊆ M. On the other
hand, Lemma 1.3 suggests that M⊥⊥ is a closed subspace of H. Therefore, since M ⊆ M⊥⊥, we have
M ⊆ M⊥⊥ and conclude that M⊥⊥ = M.

Definition 1.18. Let H be a separable Hilbert space, and M ⊆ H be its closed linear subspace. An
orthogonal projector onto M is called a map PM : H → M such that for any h ∈ H,

PMh = h∥. (227)

Lemma 1.6. Let PM be an orthogonal projector onto a closed linear subset M ⊆ H. Then PM is a
bounded idempotent (i.e., PM ◦ PM = PM) operator such that ∀h, g ∈ H:

⟨h|PMg⟩H = ⟨PMh|g⟩H. (228)

Proof. First, let us prove boundedness of PM by calculating its norm:

∥PM∥ = sup
h∈H\{0}

∥PMh∥H
∥h∥H

(229)

= sup
h∈H\{0}

∥h∥∥H
∥h∥H

(230)

= sup
h∈H\{0}

√
∥h∥2H − ∥h⊥∥2H

∥h∥H
(231)

= sup
h∈H\{0}

√
1−

∥h⊥∥2H
∥h∥2H

(232)

≤ 1 (233)
< ∞, (234)

where 231 follows from continuity of norm and Lemma 1.4. In turn, calculating the composition of
two operators PM we obtain:

(PM ◦ PM)h = PM(PMh) (235)

= PM

( ∞∑
i=1

⟨ei|h⟩Hei
)

(236)

=
∞∑
j=1

〈
ej

∣∣∣ ∞∑
i=1

⟨ei|h⟩Hei
〉
H
ej (237)

=

∞∑
i=1

∞∑
j=1

⟨ei|h⟩H⟨ej |ei⟩Hej (238)

=

∞∑
i=1

⟨ei|h⟩Hei (239)

= PMh, (240)
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where (238) follows from continuity of inner product, and (239) follows from the fact that ei are pairwise
orthogonal and normalized, proving hence idempotence of PM. Finally, we calculate:

⟨h|PMg⟩H =
〈
h
∣∣∣ ∞∑
i=1

⟨ei|g⟩Hei
〉
H

(241)

=
∞∑
i=1

⟨ei|g⟩H⟨h|ei⟩H (242)

=
∞∑
i=1

⟨ei|h⟩H⟨ei|g⟩H (243)

=
〈 ∞∑
i=1

⟨ei|h⟩Hei
∣∣∣g〉

H
(244)

= ⟨PMh|g⟩H, (245)

where (242) and (244) follows from continuity of inner product, concluding the proof.

Theorem 1.7 (Riesz representation theorem). Let H be a Hilbert space. Then its dual space is
equivalent to it3, H∗ = H, so that for every f ∈ H∗ there exists a unique h ∈ H such that

∀g ∈ H : f(g) = ⟨h|g⟩H. (246)

Proof. In order to prove the theorem, we prove first that an element of H∗ can be given in the form
(246) and proceed with proving its uniqueness.

Step 1. If f = 0 is a zero functional in H∗, we can trivially choose h = 0. Therefore, let us
assume that f ̸= 0 and consider a subset ker(f) = preimf({0}). Since f is linear, for all λ ∈ C and
m,n ∈ ker(f), we have:

f(λm+ n) = λf(m) + f(n) (247)
= 0, (248)

so that ker(f) is a linear subspace of H. Since f ∈ L(H,C), it is a bounded operator, so that
∥f∥ = C < ∞. In turn, for any h ∈ H

|f(h)| ≤ ∥f∥∥h∥H (249)
= C∥f∥H. (250)

Hence, f is Lipschitz continuous and, in turn, continuous. Since {0} is a closed set in standard topology
on C, we conclude that ker(f) is a closed linear subspace and, due to Theorem 1.6, we can expand any
h ∈ H as

h = h∥ + h⊥, (251)

where h∥ ∈ ker(f) and h⊥ ∈ ker(f)⊥.
If f ̸= 0, ker(f)⊥ is a proper subspace of H, and it is possible to find a normalized vector h̃ ∈ ker(f)⊥,

so that ∥h̃∥H = 1. Let h = f(h̃)h̃ ∈ ker(f)⊥ and define fh := ⟨h|·⟩H. Then, for any g ∈ H,

f
(
f(h̃)g − f(g)h̃

)
= f(h̃)f(g)− f(g)f(h̃) (252)

= 0, (253)
3This result is widely used in quantum physics and its applications in the form of so-called bra-ket notation, where

a vector g ∈ H is denoted by |g⟩ (dubbed ket-vector), while an element fh ∈ H∗ of the dual space is denoted by ⟨h|
(dubbed bra-vector) and associated with the vector h ∈ H. The inner product ⟨h|g⟩ is interpreted then as “action” of
bra-vector ⟨h| on ket-vector |g⟩.
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so that f(h̃)g − f(g)h̃ ∈ ker(f). Therefore, for any g ∈ H,

fh(g)− f(g) = ⟨h|g⟩H − f(g) (254)

= ⟨f(h̃)h̃|g⟩H − f(g) (255)
= ⟨h̃|f(h̃)g⟩H − f(g) (256)
= ⟨h̃|f(h̃)g⟩H − f(g)⟨h̃|h̃⟩H (257)
= ⟨h̃|f(h̃)g⟩H − ⟨h̃|f(g)h̃⟩H (258)
= ⟨h̃|f(h̃)g − f(g)h̃⟩H (259)
= 0. (260)

where (260) takes into account that h̃ ∈ ker(f)⊥. Hence, we conclude that fh = f.
Step 2. In order to prove that, for every f ∈ H∗, there is a unique associated h ∈ H, let us assume

that there exist h, h′ ∈ H such that fh = fh′ = f. Then, for any g ∈ H, we have fh(g) − fh′(g). On
the other hand,

fh(g)− fh′(g) = ⟨h|g⟩H − ⟨h′|g⟩H (261)
= ⟨h− h′|g⟩H (262)
≡ 0. (263)

Therefore, we conclude that h = h′.

2 Self-adjoint and closed operators

In this chapter, if other is not highlighted, we will study densely defined operators on separable Hilbert
space H, i.e., operators with a domain DA ⊆ H being a dense subset of H, i.e., DA = H (see, for
example, Theorem 1.2).

2.1 Adjoint, symmetric, and self-adjoint operators

Definition 2.1. Let A : DA → H be a densely defined operator on H. The adjoint operator
A∗ : DA∗ → H of A is defined as follows:

DA∗ = {h ∈ H|∃h̃ ∈ H : ⟨h|Ag⟩H = ⟨h̃|g⟩H ∀g ∈ DA}, (264)
A∗h = h̃. (265)

Lemma 2.1. Let ker(A) = {h ∈ DA|Ah = 0} and ran(A) = {Ah|h ∈ DA} be the kernel and range of
a densely defined operator A : DA → H, respectively. Then we have:

ker(A∗) = ran(A)⊥. (266)

Proof. Let h ∈ ker(A∗), i.e., A∗h = 0. Then, recalling (264), this is true if and only if

⟨h|Ag⟩H = 0, (267)

for any g ∈ DA. This means that h is orthogonal to Ag for any vector g in the domain of A. In
other words, h is orthogonal to any vector in the range of A, hence, h ∈ ran(A)⊥, and this proves the
lemma.

In Definition 1.10, we have defined an extension of a densely defined operator to the entire Banach
space. Now, we extend this definition to extension between arbitrary domains.

Definition 2.2. Let A : DA → H be an operator defined on some domain DA. An operator B : DB →
H is called extension of A if DA ⊆ DB and Ah = Bh for any h ∈ DA. We denote it as A ⊆ B.
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Lemma 2.2. Let A and B be densely defined operators in H, and A ⊆ B. Then B∗ ⊆ A∗.

Proof. Let h ∈ DB∗ . Then, recalling (264), the exists h̃ ∈ H such that

∀g ∈ DB : ⟨h|Bg⟩H = ⟨h̃|g⟩H. (268)

Since B is an extension of A, we have DA ⊆ DB, hence,

∀g ∈ DA : ⟨h|Bg⟩H = ⟨h|Ag⟩H = ⟨h̃|g⟩H. (269)

Therefore, DB∗ ⊆ DA∗ , and A∗h = B∗h = h̃ for any h ∈ DB∗ , hence, proving that A∗ is an extension
of B∗.

Definition 2.3. Let A : DA → H be a densely defined operator. It is called symmetric or Hermitian4

if for any h, g ∈ DA:
⟨h|Ag⟩H = ⟨Ah|g⟩H. (270)

Lemma 2.3. Let A : DA → H be a symmetric operator. Then A ⊆ A∗.

Proof. Let h ∈ DA, and h̃ = Ah. Then, by Definition 2.3, for any g ∈ DA:

⟨h|Ag⟩H = ⟨h̃|g⟩H, (271)

so that h ∈ DA∗ . Therefore, DA ⊆ DA∗ . Since A∗h = Ah = h̃, we have A ⊆ A∗.

Next definition provides a crucial class of operators, which is stronger than one of symmetric
operators.

Definition 2.4. Let A : DA → H be a densely defined operator. It is called self-adjoint if A∗ = A.

Lemma 2.4. A self-adjoint operator is maximal with respect to symmetric and self-adjoint extensions.

Proof. Let A be a self-adjoint operator, and B its symmetric extension, so that A ⊆ B. Due to Lemma
2.3, B ⊆ B∗. In turn, Lemma 2.2 suggests that B∗ ⊆ A∗, i.e., B ⊆ A∗ = A due to Definition 2.4.
Therefore, A is maximal with respect to symmetric extension and, since any self-adjoint operator is
symmetric, self-adjoint extension as well.

Theorem 2.1. Let A : DA → H be a symmetric operator. If there exists z ∈ C such that ran(A+z) =
ran(A+ z) = H, where z := zid and z := zid, with id : d 7→ d for any d ∈ DA, then A is self-adjoint.

Proof. Let h ∈ DA∗ , so that A∗h = h̃ ∈ H, and z ∈ C. Since ran(A+ z) = H, we can find an element
g ∈ DA such that

(A+ z)g = h̃+ zh (272)
= (A∗ + z)h. (273)

Therefore, for any d ∈ DA, we can calculate

⟨h|(A+ z)d⟩H = ⟨(A+ z)∗h|d⟩H (274)
= ⟨A∗h+ zh|d⟩H (275)
= ⟨(A+ z)g|d⟩H (276)
= ⟨Ag|d⟩H + z⟨g|d⟩H (277)
= ⟨g|Ad⟩H + z⟨g|d⟩H (278)
= ⟨g|(A+ z)d⟩H. (279)

Hence, we conclude that h = g, so that DA∗ ⊆ DA and, in turn, A∗ ⊆ A. However, A is assumed to
be symmetric, so that A ⊆ A∗ due to Lemma 2.2. Hence, A = A∗, i.e., A is self-adjoint.

4The term ”symmetric” is usually used in mathematical literature, whereas ”Hermitian” can be usually found in
physical literature, first of all on quantum mechanics. In what follows, we stick to the term ”symmetric”.
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2.2 Closable, closed, and essentially self-adjoint operators

While densely defined bounded operators can be always straightforwardly extended to the entire Hilbert
space by virtue of Theorem 1.2, generally speaking, this is not true in the case of unbounded operators.
Relaxing requirements on the extension of an operator A : DA → H, instead of demanding convergence
of (Ahn)n∈N for any convergent sequence (hn)n∈N in DA, we can request only that A is well-defined if the
corresponding limits exist, i.e., for limn→∞ hn = limn→∞ h̃n, we demand limn→∞Ahn = limn→∞Ah̃n
if these limits exist. For this aim, we introduce new classes of operators.

Definition 2.5. Let A : DA → H be an operator. A subset Γ(A) ⊂ H×H is called a graph of A if

Γ(A) = {(h,Ah)|h ∈ DA}, (280)

and it is equipped with the graph norm

∀(h,Ah) ∈ Γ(A) : ∥(h,Ah)∥Γ(A) =
√
∥h∥2H + ∥Ah∥2H. (281)

Exercise 2.1. Prove that ∥·∥Γ(A) is induced by the inner product

∀h, h̃, g, g̃ ∈ H : ⟨(h, h̃)|(g, g̃)⟩H×H := ⟨h|g⟩H + ⟨h̃|g̃⟩H (282)

on H×H.

Definition 2.6. Let A : DA → H be an operator. It is called closed if Γ(A) is a closed subset of
H×H.

Exercise 2.2. Let A : DA → H be an operator. It is closed if and only if (Γ(A), ∥·∥Γ(A)) is complete.

Definition 2.7. Let A : DA → H be an operator. It is called closable if there exists a unique operator
A : DA → H such that Γ(A) = Γ(A). In this case, A is called closure if A.

Exercise 2.3. Let A : DA → H be an operator. It is closable if and only if, for any sequence hn in
DA such that limn→∞ hn = 0 and limn→∞Ahn = g, it follows g = 0.

Theorem 2.2. Let A : DA → H be a densely defined operator. Then its adjoint A∗ is a closed operator.
Furthermore, A is closable if and only if A∗ is densely defined and A = A∗∗.

Proof. We proceed in two steps.
Step 1. Let us define a unitary operator U : H×H → H×H such that ∀h, g ∈ H:

U(h, g) = (g,−h). (283)

From Definition 2.5, the graph of A∗ is given by

Γ(A∗) = {(h,A∗h)|h ∈ DA∗} (284)
= {(h, h̃)|⟨h|Ag⟩H = ⟨h̃|g⟩H ∀g ∈ DA}, (285)

where (285) follows from (264). Now let us consider (g, g̃) ∈ Γ(A) and (h, h̃) ∈ Γ(A∗) and calculate

⟨(h, h̃)|U(g, g̃)⟩H×H = ⟨(h, h̃)|(g̃,−g)⟩H×H (286)
= ⟨h|g̃⟩H − ⟨h̃|g⟩H (287)
= ⟨h|Ag⟩H − ⟨h|Ag⟩H (288)
= 0, (289)

where (288) follows from (285) and the fact that g̃ = Ag for any (g, g̃) ∈ Γ(A). Therefore,

Γ(A∗) = {(h, h̃)|⟨(h, h̃)|U(g, g̃)⟩H×H = 0 ∀(g, g̃) ∈ Γ(A)}. (290)
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Therefore, we conclude that the graph

Γ(A∗) = (UΓ(A))⊥, (291)

which, due to Lemma 1.3, is a closed subspace of H × H. Hence, by Definition 2.6, A∗ is a closed
operator.

Step 2. Due to Definition 2.7, we have to construct an operator A, whose graph is a closure of the
graph of A, so that Γ(A) = Γ(A). First, we notice that Γ(A) = Γ(A)⊥⊥ due to Lemma 1.5. On the
other hand,

Γ(A)⊥ = {(h, h̃)|⟨(h, h̃)|(g, g̃)⟩H×H = 0 ∀(g, g̃) ∈ Γ(A)} (292)
= {(h, h̃)|⟨(h, h̃)|(g,Ag)⟩H×H = 0 ∀g ∈ DA} (293)
= {(h, h̃)|⟨h̃|Ag⟩H = −⟨h|g⟩H ∀g ∈ DA} (294)
= {U(h, h̃)|⟨h|g⟩H = ⟨h̃|Ag⟩H ∀g ∈ DA} (295)
= UΓ(A∗). (296)

Therefore, Γ(A) = (UΓ(A∗))⊥. Now, we notice that for any linear subset M ⊆ H and any h ∈ M⊥,

⟨Uh|Ug⟩H = ⟨h|g⟩H (297)
= 0 ∀g ∈ M, (298)

since U is a unitary operator, so that UM⊥ ⊆ (UM)⊥. On the other hand, let h̃ ∈ (UM)⊥ and h ∈ H
such that h̃ = Uh. Then:

⟨h|g⟩H = ⟨Uh|Ug⟩H (299)
= ⟨h̃|Ug⟩H (300)
= 0 ∀g ∈ M, (301)

so that h ∈ M⊥ and (UM)⊥ ⊆ UM⊥. Therefore, (UM)⊥ = UM⊥, and we have (UΓ(A∗))⊥ =
UΓ(A∗)⊥, so that:

UΓ(A∗)⊥ = {U(h, h̃)|⟨(h, h̃)|(g, g̃)⟩H×H = 0 ∀(g, g̃) ∈ Γ(A∗)}, (302)
= {U(h, h̃)|⟨(h, h̃)|(g,A∗g)⟩H×H = 0 ∀g ∈ DA∗} (303)
= {U(h, h̃)|⟨h̃|A∗g⟩H = −⟨h|g⟩H ∀g ∈ DA∗} (304)
= {(h, h̃)|⟨h|A∗g⟩H = ⟨h̃|g⟩H ∀g ∈ DA∗} (305)
= Γ(A∗∗). (306)

Therefore, we conclude that A = A∗∗. In turn, (305) suggests that (0, h̃) ∈ Γ(A∗∗) if and only if
⟨h̃|g⟩H = 0 for any g ∈ DA∗ , i.e., h̃ ∈ D⊥

A∗ . On the other hand, from Exercise 2.3 it follows that
A is closable if and only if h̃ = 0, i.e., D⊥

A∗ = {0}. In turn, by Step 1 of the proof of Lemma 1.5,
DA∗

⊥
= {0}, so that DA∗ = H due to Theorem 1.6, i.e., A∗ is densely defined. On the other hand, if

DA∗ is dense, for any h ∈ D⊥
A∗ we can find a sequence (dn)n∈N in DA∗ such that limn→∞ dn = h. In

turn,
⟨dn|h⟩H = 0 ∀n ∈ N. (307)

Therefore, using the continuity of inner product, we find that

∥h∥H =
√
⟨h|h⟩H (308)

= 0, (309)

and h = 0 by the definition of norm. Therefore, we conclude that DA∗
⊥
= {0} if and only if DA∗ is

dense, and, in turn, A is closable if and only if A∗ is densely defined.
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Corollary 2.1. Let A : DA → H be a closable operator. Then A ⊆ A∗∗.

Proof. The proof follows straightforwardly from Theorem 2.2 that claims A∗∗ = A.

Theorem 2.3. Let A : DA → H be a symmetric operator. Then it is closable.

Proof. Since A is symmetric, by Lemma 2.3, DA ⊆ DA∗ . In turn, DA ⊆ DA∗ . Since symmetric
operators are densely defined, we have DA = H, so that H ⊆ DA∗ , which is true only if DA∗ = H, i.e.,
A∗ is densely defined. Therefore, by Theorem 2.2, A is closable.

Lemma 2.5. Let A : DA → H be a symmetric operator. Then A ⊆ A∗∗ ⊆ A∗.

Proof. Since A is symmetric, by Lemma 2.3, A ⊆ A∗ and, by Lemma 2.2, A∗∗ ⊆ A∗. On the other
hand, by Theorem 2.3, it is closable, so that A ⊆ A∗∗. Therefore, A ⊆ A∗∗ ⊆ A∗.

Definition 2.8. Let A : DA → H be a symmetric operator. It is called essentially self-adjoint if
its closure A is a self-adjoint operator, and DA is called core of A.

Corollary 2.2. If A is an essentially self-adjoint operator, A is its unique self-adjoint extension.

Lemma 2.6. Let A : DA → H be a densely defined operator. If A is injective and ran(A) = H, then
(A∗)−1 = (A−1)∗. If A is closable and A is injective, then A

−1
= A−1.

Proof. We proceed in two steps in order to prove both statements of the Lemma.
Step 1. Let us define two unitary operators U : H×H → H×H and V : H×H → H×H such

that ∀h, g ∈ H:

U(h, g) = (g,−h) (310)
V (h, g) = (g, h). (311)

Then, if A is injective,
Γ(A−1) = V Γ(A). (312)

Therefore, if ran(A) is dense in H, we have ran(A)⊥ = {0}. In turn, due to Lemma 2.1, this means
that ker(A∗) = {0}. Therefore, A∗ is injective, and we obtain

Γ((A∗)−1) = V Γ(A∗) (313)
= V (UΓ(A))⊥ (314)
= V UΓ(A)⊥ (315)
= UV Γ(A)⊥ (316)
= U(V Γ(A))⊥ (317)
= U(Γ(A−1))⊥ (318)
= Γ((A−1)∗), (319)

where (313) and (318) use (312), (314) and (319) follow from (291), (315) and (317) take into account
the fact that UM⊥ = (UM)⊥ for any M ⊆ H, which is proven in Step 2 of the proof of Theorem 2.2,
and (317) follows from the fact that for any h, g ∈ H:

V U(h, g) = V (g,−h) (320)
= (−h, g), (321)

and

UV (h, g) = U(g, h) (322)
= (h,−g), (323)
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so that

V UΓ(A)⊥ = {(h, h̃)|⟨(g, g̃)|(−h, h̃)⟩H×H = 0 ∀(g, g̃) ∈ Γ(A)} (324)
= {(h, h̃)|⟨g|h⟩H = ⟨g̃|h̃⟩H ∀(g, g̃) ∈ Γ(A)} (325)
= UV Γ(A)⊥. (326)

Therefore, we conclude that (A∗)−1 = (A−1)∗.
Step 2. If A is closable, and its closure A is injective, then

Γ(A
−1

) = V Γ(A) (327)
= V Γ(A) (328)
= Γ(A−1), (329)

and we conclude that A
−1

= A−1.

Lemma 2.7. Let A : DA → H be a self-adjoint injective operator. Then A−1 is also self-adjoint.

Proof. Since A is self-adjoint, i.e., A = A∗, Lemma 2.1 suggests that ran(A)⊥ = ker(A). Since A is
also injective, ker(A) = {0}, hence, ran(A)⊥ = {0}, and ran(A) is dense in H. Therefore, applying
Lemma 2.6, we conclude that A−1 = (A−1)∗, i.e., A−1 is self-adjoint.

Theorem 2.4. Let A : DA → H be a symmetric operator. It is essentially self-adjoint if and only if,
for some z ∈ C \ R,

ran(A+ z) = ran(A+ z) = H, (330)

or equivalently,
ker(A∗ + z) = ker(A∗ + z) = {0}. (331)

where z := zid and z := zid, with id : d 7→ d for any d ∈ DA.

Proof. First of all, (330) and (331) are equivalent by virtue of Lemma 2.1, hence, it is enough to prove
one of them. In what follows, we proceed in two steps for both directions.

Step 1 (⇐). Since A is symmetric, due to Theorem 2.3, it is also closable, and there exists A.
Therefore, it is necessary to prove that A is self-adjoint, hence, without loss of generality, we can
assume that A is closed. Let z = x+ iy ∈ C \ R, so that y ̸= 0. Then, for any h ∈ H, we calculate

∥(A+ z)h∥2H = ∥(A+ x)h+ iyh∥2H (332)
= ⟨(A+ x)h+ iyh|(A+ x)h+ iyh⟩H (333)
= ⟨(A+ x)h|(A+ x)h⟩H + iy⟨(A+ x)h|h⟩H − iy⟨h|(A+ x)h⟩H + y2⟨h|h⟩H (334)
= ∥(A+ x)h∥2H+y2∥h∥2H (335)
≥ y2∥h∥2H. (336)

Since y ̸= 0, we have that ker(A + z) is trivial. Therefore, (A + z) is an injective operator, and
there exists an inverse operator (A + z)−1 defined on ran(A + z). In turn, let h̃ = (A + z)h, so that
(A+ z)−1h̃ = h. Then, rewriting (336), we obtain

∥h̃∥2H ≥ y2∥(A+ z)−1h̃∥2H, (337)

and, in turn, for any h̃ ∈ ran(A+ z),

∥(A+ z)−1h̃∥H ≤ |y|−1∥h̃∥H, (338)

Therefore, we obtain ∥(A + z)−1∥ ≤ |y|−1, so that (A + z)−1 is bounded and, due to Lemma 2.6,
closed. Hence, its domain ran(A+ z) is a closed subset of H (exercise). This means that ran(A+ z) =
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ran(A+ z) = H. Replacing z by its complex conjugate z we conclude that ran(A + z) = H as well.
Therefore, applying Theorem 2.1, we conclude that A is self-adjoint.

Step 2 (⇒). Let A = A∗ and z = x+ iy ∈ C \ R, so that y ̸= 0. Then, for any h ∈ H, following
(332)–(336), we obtain

∥(A∗ + z)h∥2H ≥ y2∥h∥2H, (339)
∥(A∗ + z)h∥2H ≥ y2∥h∥2H. (340)

Since y ̸= 0, we have that ker(A∗ + z) = ker(A∗ + z) = {0}.

Corollary 2.3. Let A : DA → H be a symmetric operator, and d± := dim(K±) are its defect indices,
where

K+ := ran(A+ z)⊥ (341)
= ker(A∗ + z), (342)

K− := ran(A+ z)⊥ (343)
= ker(A∗ + z), (344)

where z := zid and z := zid, with id : d 7→ d for any d ∈ DA, for some z ∈ C \ R, which can be taken
as z = i without loss of generality. Then A has one self-adjoint extension, namely A, if d+ = d− = 0.

Now, we proceed by proving an important result suggesting that a closed unbounded operator
cannot be defined on the entire Hilbert space. We start by recalling the following useful theorem.

Theorem 2.5 (Baire’s category theorem). Let V be a Banach space5. Then V cannot be a countable
union of nowhere dense sets, i.e., sets whose closures have empty interiors.

Proof. Let {Vn}n∈N a cover of V , i.e., V =
⋃

n∈N Vn, such that each Vn is a closed set and does
not contain any open ball B(v, r) := {v′ ∈ V |∥v′ − v∥V < r}. Let us show that this leads to a
contradiction by constructing a Cauchy sequence, which does not belong to any Vn, and is convergent
due to completeness of Banach space. By construction, the complements V \Vn are open and non-empty
sets. Without loss of generality, let us assume n = 1: there exists v1 /∈ V1 such that B(v1, r1) ⊂ V \ V1

for some r1. On the other hand, by assumption, V2 cannot contain B(v1, r1). Therefore, there exists
v2 ∈ B(v1, r1) such that v2 /∈ V2. Since B(v1, r1)∩ (V \ V2) is an open and non-empty set, there exists
B(v2, r2) ⊂ B(v1, r1) ∩ (V \ V2) with r2 < r1. Therefore, by induction, we can construct a sequence
{B(vn, rn)}n∈N such that

B(vn+1, rn+1) ⊂ B(vn, rn) ∩ (V \ Vn+1). (345)

In every step, rn can be chosen arbitrarily small. Therefore, without loss of generality, we can assume
rn → 0. By construction, for any N ∈ N and n ≥ N , we have vn ∈ B(vN , rN ). Therefore, {vn}n∈N is
a Cauchy sequence and, hence, there exists v ∈ V such that limn→∞ vn = v. In turn, for any n ∈ N,
v ∈ B(vn, rn) ⊂ V \ Vn. Therefore, for any n ∈ N, v /∈ Vn, contradicting the assumption that {Vn}n∈N
is a cover of V .

Theorem 2.6 (Banach, Steinhaus / Uniform boundedness principle). Let (V, ∥·∥V ) be a Banach space,
(W, ∥·∥W ) be a normed space, and {Aα}α∈I be a family of operators such that Aα ∈ L(V,W ) for any
α ∈ I. If, for a given v ∈ V , ∥Aαv∥W ≤ C(v) < ∞ for any α ∈ I, then {Aα}α∈I is uniformly bounded,
i.e., ∃C > 0 such that ∥Aα∥ ≤ C < ∞ for any α ∈ I.

5Although Baire’s category theorem is formulated for any complete metric space, for the purpose of course, we focus
on Banach spaces as a particular case.
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Proof. Let us define a family of sets {Vn}n∈N such that

Vn =
⋂
α∈I

V (α)
n , (346)

V (α)
n := {v ∈ V |∥Aαv∥W ≤ n}, (347)

so that {Vn}n∈N defines a cover of V by assumption, V =
⋃

n∈N Vn. Since every Aα is bounded,

∥Aαv∥W ≤ ∥Aα∥∥v∥V , (348)

so that it is Lipschitz continuous and, hence, continuous. Therefore, taking into account continuity of
the norm, V (α)

n is closed for any α ∈ I, and, moreover, Vn is closed as an intersection of closed sets.
By Theorem 2.5, ∃n ∈ N such that Bε(v0) := {v ∈ V |∥v− v0∥V < ε} ⊂ Vn for some ε > 0 and v0 ∈ V .
In turn, let y ∈ V such that ∥y∥ < ε. Then we have:

∥Aαy∥V = ∥Aα(y + v0 − v0)∥W (349)
≤ ∥Aα(y + v0)∥W + ∥Aαv0∥W (350)
≤ n+ C(v0). (351)

In turn, assuming y = ε x
∥x∥V for any V ∋ x ̸= 0, we obtain:

∥Aαx∥W ≤ n+ C(v0)

ε
∥x∥V . (352)

Therefore, we conclude that ∥Aα∥ ≤ n+C(v0)
ε for any α ∈ I.

Theorem 2.7 (Closed graph theorem). Let A : H1 → H2 be an operator defined on the entire Hilbert
space H1. Then A is bounded if and only if it is closed.

Proof. In what follows, we proceed in two steps for both directions.
Step 1 (⇒). Suppose that A is bounded. Then it is closed if and only if its domain is closed.

Since A is defined on the entire Hilbert space H1, which is closed, we conclude that A is closed.
Step 2 (⇐). Let us assume that A is closed, hence, A∗ is well-defined6. In turn, let h̃ ∈ DA∗ ⊆ H2

such that ∥h̃∥H1 = 1 and define fh̃ ∈ H∗
1 such that fh̃h = ⟨A∗h̃|h⟩H1 , for any h ∈ H1. Then

|fh̃h| = |⟨A∗h̃|h⟩H1 | (353)

= |⟨h̃|Ah⟩H2 | (354)
≤ ∥h̃∥H2∥Ah∥H2 (355)
= ∥Ah∥H2 . (356)

Hence, applying Theorem 2.6, we have that there exists C > 0 such that ∥fh̃∥ < C. Therefore,
∥A∗h̃∥H1 < C, i.e., A∗ is bounded, and, in turn, A = A∗∗ is bounded.

Definition 2.9. We call Cayley transform the mapping

A 7→ Vz := (A+ z)(A+ z)−1 : ran(A+ z) → ran(A+ z), (357)

where z := zid and z := zid, with id : d 7→ d for any d ∈ DA, for some z ∈ C \ R,.

In what follows, for the sake of simplicity, we focus on the Cayley transform Vz=i := V .
6Definition 2.1 can be straightforwardly generalized to an operator mapping DA ⊆ H1 to H2 as an operator A∗ :

DA∗ → H1, where DA∗ = {h ∈ H2|∃h̃ ∈ H1 : ⟨h|Ag⟩H2 = ⟨h̃|g⟩H1∀g ∈ DA}, so that A∗h = h̃ for any h ∈ DA∗ .
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Lemma 2.8. Cayley transform (357) is a bijection between the set of symmetric operators A and the
set of operators V that preserve the norm, ∥V h∥H = ∥h∥H for any h ∈ DV , such that ran(id − V ) is
dense.

Proof. Since A is symmetric, for any h ∈ DA, we have

∥(A+ i id)h∥2H = ⟨(A+ i id)h|(A+ i id)h⟩H (358)
= ⟨Ah|Ah⟩H + i⟨Ah|h⟩H − i⟨h|Ah⟩H + ⟨h|h⟩H (359)
= ⟨Ah|Ah⟩H + ⟨h|h⟩H (360)
= ∥Ah∥2H + ∥h∥2H, (361)

and

∥(A− i id)h∥2H = ⟨(A− i id)h|(A− i id)h⟩H (362)
= ⟨Ah|Ah⟩H − i⟨Ah|h⟩H + i⟨h|Ah⟩H + ⟨h|h⟩H (363)
= ⟨Ah|Ah⟩H + ⟨h|h⟩H (364)
= ∥Ah∥2H + ∥h∥2H. (365)

Therefore, for any h̃ ∈ DV = ran(A+ i id), we obtain

∥V h̃∥H = ∥(A+ i id)h∥H (366)

=
√
∥Ah∥2H + ∥h∥2H (367)

= ∥(A− i id)h∥H (368)
= ∥h̃∥H, (369)

so that V indeed preserves the norm.

id + V = (A+ i id)(A+ i id)−1 + (A− i id)(A+ i id)−1 (370)
= 2A(A+ i id)−1, (371)

and

id− V = (A+ i id)(A+ i id)−1 − (A− i id)(A+ i id)−1 (372)
= 2i(A+ i id)−1. (373)

Since A is a densely defined operator by Definition 2.3, we conclude that ran(id− V ) is dense, and A
defines V via

A = i(id + V )(id− V )−1. (374)

Step 2. Let A be given by (374), where V is an operator that preserves norm on DV . Hence, for
any h̃ ∈ DV ,

⟨(id± V )h̃|(id∓ V )h̃⟩H = ⟨h̃|h̃⟩H ± ⟨V h̃|h̃⟩H ∓ ⟨h̃|V h̃⟩H − ⟨V h̃|V h̃⟩H (375)
= ±⟨V h̃|h̃⟩H ∓ ⟨h̃|V h̃⟩H (376)
= ±2iIm(⟨V h̃|h̃⟩H). (377)
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Now let us assume that h = (1− V )h̃ ∈ DA = ran(1− V ). Then we obtain:

⟨Ah|h⟩H = ⟨i(id + V )(id− V )−1h|h⟩H (378)
= ⟨i(id + V )h̃|(id− V )h̃⟩H (379)
= −i⟨(id + V )h̃|(id− V )h̃⟩H (380)
= 2Im(⟨V h̃|h̃⟩H) (381)
= i⟨(id− V )h̃|(id + V )h̃⟩H (382)
= ⟨(id− V )h̃|i(id + V )h̃⟩H (383)
= ⟨h|i(id + V )(id− V )−1h⟩H (384)
= ⟨h|Ah⟩H, (385)

hence, proving that A is symmetric.

Corollary 2.4. A symmetric operator A : DA → H is self-adjoint if and only if the corresponding
Cayley transform V is unitary, i.e., norm-preserving and DV = H.

Corollary 2.4 suggests that finding a self-adjoint extension of a symmetric operator A is equivalent
to finding a unitary extension of the corresponding Cayley transform V . Due to Theorem 1.6, this
means closing it and finding a unitary operator from D⊥

V to ran(V )⊥. Recalling Corollary 2.3, this
is true if and only if d+ = d−. This leads to the following recipe of construction of a self-adjoint
extension.

Corollary 2.5. Let A : DA → H be a closed symmetric operator with d+ = d−. Then a self-adjoint
extension of A can be constructed as an operator A′ : DA′ → H defined on

DA′ = DA + (id− V ′)K+, (386)

where V ′ is the Cayley transform of A′, and K+ is defined by (341)–(342), and acts on it as

A′h′ = Ah+ ig + iV ′g, (387)

where h ∈ DA and g ∈ ker(A∗ − i), with h̃ = h+ g.

Proof. First, we construct the domain of A′:

DA′ = ran(id− V ′) (388)
= ran(id− V ) + (id− V ′)K+ (389)
= DA + (id− V ′)K+ (390)
= {h′ ∈ H|h′ = h+ (id− V ′)g, h ∈ DA, g ∈ ker(A∗ − i id)}, (391)

where (389) uses Theorem 1.6 with respect to linear subspace ran(A+ i id)⊥ = ker(A∗− i id), which is
closed by Lemma 1.3, and its orthogonal complement ran(A+ i id), and the fact that V ⊆ V ′ following
from A ⊆ A′. In turn, for any h′ ∈ DA′ , we have

A′h′ = A′h+A′(id− V ′)g (392)
= Ah+ i(id + V ′)(id− V ′)−1(id− V ′)g (393)
= Ah+ i(id + V ′)g (394)
= Ah+ ig + V ′g, (395)

where h ∈ DA and g ∈ ker(A∗ − i id).
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2.3 Resolvents, spectra, and spectral theorem

We start by setting the playground for spectral theorem and providing necessary basic definitions.

Definition 2.10. Let A : DA → H be a densely defined operator. We call resolvent set of A:

ρ(A) = {z ∈ C|(A− z) is bijective, (A− z)−1 is bounded}. (396)

Definition 2.11. Let A : DA → H be a densely defined operator. We call spectrum of A the set
σ(A) := C \ ρ(A).

Definition 2.12. Let A : DA → H be a densely defined operator. An element z ∈ σ(A) is called
eigenvalue of A if ker(A−z) ̸= {0}, so that there exists an element h ∈ ker(A−z) called eigenvector
such that

Ah = zh. (397)

Definition 2.13. Let A : DA → H be a densely defined operator. The map RA : ρ(A) → L(H) is
called resolvent of A if

RA(z) = (A− z)−1. (398)

Lemma 2.9 (First resolvent formula). Let A : DA → H be an operator. Then, for any z, z′ ∈ ρ(A),
its resolvent RA(z) satisfies:

RA(z)−RA(z
′) = (z − z′)RA(z)RA(z

′) = (z − z′)RA(z
′)RA(z). (399)

Proof. Let us consider:

RA(z)− (z − z′)RA(z)RA(z
′) = (A− z)−1 − (z − z′)(A− z)−1(A− z′)−1 (400)

= (A− z)−1
(
id−(z − z′)(A− z′)−1

)
(401)

= (A− z)−1
(
id+(A− z)(A− z′)−1 − (A− z′)(A− z′)−1

)
(402)

= (A− z′)−1 (403)
= RA(z

′), (404)

so that RA(z)−RA(z
′) = (z − z′)RA(z)RA(z

′). The second equality follows by permutation of z and
z′.

Theorem 2.8. Let A : DA → H be a symmetric operator. Then it is self-adjoint if and only if
σ(A) ⊆ R.

Proof. We proceed in two steps for each direction.
Step 1. (⇐) Let σ(A) ⊆ R. Then C \R ⊆ ρ(A). Hence, from Definition 2.10, ran(A− z) = H for

any z ∈ C \ R. Therefore, applying Theorem 2.1, we conclude that A is self-adjoint.
Step 2. (⇒) Let A be self-adjoint and z ∈ C \ R, so that z = x + iy with y ̸= 0. Following

(332)–(336), we have that ker(A− z) is trivial, so that (A− z) is injective, and there exists (A− z)−1 :
ran(A − z) → DA. Therefore, due to Definition 2.13, for any z ∈ C \ R, the resolvent RA(z) exists,
meaning that C \ R ⊆ ρ(A). Hence, recalling Definition 2.11, we conclude that σ(A) ⊆ R.

Now we proceed with derivation of spectral theorem, which we construct step by step. We start by
introducing a new notion of measure that assigns to every element of the σ-algebra a bounded operator
on H as its “volume” instead of an element of R or C.

Definition 2.14. Let H be a Hilbert space, and B be a Borel σ-algebra on R. A map P : B → L(H)
is called projection-valued measure (PVM) if is satisfies:

1. For any Ω ∈ B, P (Ω)∗ = P (Ω).
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2. For any Ω ∈ B, P (Ω) ◦ P (Ω) = P (Ω).

3. P (R) = id.

4. If Ω is a pairwisely disjoint union, i.e., Ω =
⋃

iΩi with Ωi ∩ Ωj = ∅ for any i ̸= j, then

∀h ∈ H :
∑
i

P (Ωi)h = P (Ω)h. (405)

Corollary 2.6. Let P : B → L(H) be a PVM with respect to a Borel σ-algebra B on R and a Hilbert
space H. Then P satisfies the following properties:

1. P (∅) = 0.

2. For any Ω ∈ B, P (R \ Ω) = id− P (Ω).

3. For any Ω1,Ω2 ∈ B, P (Ω1 ∪ Ω2) = P (Ω1) + P (Ω2)− P (Ω1 ∩ Ω2).

4. For any Ω1,Ω2 ∈ B, P (Ω1 ∩ Ω2) = P (Ω1) ◦ P (Ω2).

Proof. We proceed in four steps in order to prove every statement of the Corollary.
Step 1. Let h ∈ H. Then we have:

P (∅)h = P (∅ ∪ ∅)h (406)
= P (∅)h+ P (∅)h, (407)

where we have used (405) in the Property 4 in Definition 2.14 and the fact that ∅∩∅ = ∅ and ∅∪∅ = ∅.
In turn, this means that

P (∅)h = 0. (408)

Since h is arbitrary, we conclude that P (∅) = 0.
Step 2. We notice that, for any Ω ∈ B,

P (R) = P ((R \ Ω) ∪ Ω) (409)
= P (R \ Ω) + P (Ω), (410)

where we have used (405) in the Property 4 in Definition 2.14. Since P (R) = id due to the Property
3 in Definition 2.14, we conclude that

P (R \ Ω) = id− P (Ω). (411)

Step 3. Let Ω1,Ω2 ∈ B. Then we have:

P (Ω1) = P ((Ω1 ∩ Ω2) ∪ (Ω1 \ Ω2)) (412)
= P (Ω1 ∩ Ω2) + P (Ω1 \ Ω2), (413)

and

P (Ω2) = P ((Ω1 ∩ Ω2) ∪ (Ω2 \ Ω1)) (414)
= P (Ω1 ∩ Ω2) + P (Ω2 \ Ω1), (415)

where we have used (405) in the Property 4 in Definition 2.14 and the fact that (A∩B)∩ (A \B) = ∅.
On the other hand, we notice that:

P (Ω1 ∪ Ω2) = P ((Ω1 \ Ω2) ∪ (Ω2 \ Ω1) ∪ (Ω1 ∩ Ω2)) (416)
= P (Ω1 \ Ω2) + P (Ω2 \ Ω1) + P (Ω1 ∩ Ω2), (417)
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where we have used (405) in the Property 4 in Definition 2.14. Then, taking into account (413) and
(415), we conclude that

P (Ω1 ∪ Ω2) = P (Ω1) + P (Ω2)− P (Ω1 ∩ Ω2). (418)

Step 4. First, let us consider a pair of disjoint Borel sets Ω1,Ω2 ∈ B, so that Ω1 ∩ Ω2 = ∅. Then
we have:

P (Ω1) + P (Ω2) = P (Ω1 ∪ Ω2) (419)
= P (Ω1 ∪ Ω2) ◦ P (Ω1 ∪ Ω2) (420)

=
(
P (Ω1) + P (Ω2)

)
◦
(
P (Ω1) + P (Ω2)

)
(421)

= P (Ω1) ◦ P (Ω1) + P (Ω2) ◦ P (Ω1) + P (Ω1) ◦ P (Ω2) + P (Ω2) ◦ P (Ω2) (422)
= P (Ω1) + P (Ω2) ◦ P (Ω1) + P (Ω1) ◦ P (Ω2) + P (Ω2), (423)

where (419) and (421) use (405) in the Property 4 in Definition 2.14, and (420) and (423) use the
Property 2 in Definition 2.14. Therefore, we find that

P (Ω2) ◦ P (Ω1) = −P (Ω1) ◦ P (Ω2). (424)

In turn, taking a composition with P (Ω2) on both sides, we obtain:

P (Ω2) ◦ P (Ω1) ◦ P (Ω2) = −P (Ω1) ◦ P (Ω2) ◦ P (Ω2). (425)

Taking into account Property 2 in Definition 2.14 and the fact that

P (Ω2) ◦ P (Ω1) ◦ P (Ω2) = −P (Ω2) ◦ P (Ω2) ◦ P (Ω1) (426)
= −P (Ω2) ◦ P (Ω1), (427)

due to (424), we rewrite (425) as

P (Ω2) ◦ P (Ω1) = P (Ω1) ◦ P (Ω2). (428)

Comparing (424) and (428), we conclude that

P (Ω1) ◦ P (Ω2) = ∅, (429)

for disjoint Ω1 and Ω2. Now, let us assume that Ω1 ∩ Ω2 ̸= ∅. Then, applying (413) and (415), we
obtain:

P (Ω1) ◦ P (Ω2) =
(
P (Ω1 ∩ Ω2) + P (Ω1 \ Ω2)

)
◦
(
P (Ω1 ∩ Ω2) + P (Ω2 \ Ω1)

)
(430)

= P (Ω1 ∩ Ω2) ◦ P (Ω1 ∩ Ω2) + P (Ω1 \ Ω2) ◦ P (Ω1 ∩ Ω2)

+ P (Ω1 ∩ Ω2) ◦ P (Ω2 \ Ω1) + P (Ω1 \ Ω2) ◦ P (Ω2 \ Ω1) (431)
= P (Ω1 ∩ Ω2), (432)

where we have taken into account that (Ω1 \ Ω2) ∩ (Ω2 \ Ω1) =, (Ω1 \ Ω2) ∩ (Ω1 ∩ Ω2) = ∅ and
(Ω2 \ Ω1) ∩ (Ω1 ∩ Ω2) = ∅, and applied (429).

Definition 2.15. Given a Borel σ-algebra B on R, a Hilbert space H, and the corresponding PVM
P : B → L(H), for any h, g ∈ H, we define the associated complex measure µh,g : B → C as follows:

µh,g(Ω) = ⟨h|P (Ω)g⟩H, (433)

and a real-valued measure µh := µh,h.

Exercise 2.4. Prove that µh,g fulfills the properties of a complex-valued measure.
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A natural step further is to develop integration over PVMs: following the construction of Lebesgue
integral, we start by considering simple functions.

Definition 2.16. Let S be a space of simple functions f : R → C, i.e., f ∈ S if it can be decomposed
as

f =
n∑

i=1

fiχΩi (434)

for some n ∈ N, {fi}ni=1 ⊂ C, and {Ωi}ni=1 ⊂ B, where χΩi is the characteristic function of Ωi ∈ B
and B is a Borel σ-algebra on R. Then, given a Hilbert sapce H we define an integral over PVM
P : B → L(H) as a map

∫
dP : S → L(H) such that for any f ∈ S∫

fdP :=

n∑
i=1

fiP (Ωi). (435)

Theorem 2.9.
∫
dP is a bounded operator with a unit norm.

Proof. Let f ∈ S and h ∈ H. Then we obtain:

∥∥∥(∫ fdP
)
h
∥∥∥ =

√〈(∫
fdP

)
h
∣∣∣(∫ fdP

)
h
〉
H

(436)

=

√√√√〈 n∑
i=1

fiP (Ωi)h
∣∣∣ n∑
i=1

fiP (Ωi)h
〉
H

(437)

=

√√√√〈h∣∣∣ n∑
i,j=1

fifjP (Ωi)P (Ωj)h
〉
H

(438)

=

√√√√〈h∣∣∣ n∑
i=1

|fi|2P (Ωi)h
〉
H

(439)

=

√√√√ n∑
i=1

|fi|2
〈
h
∣∣∣P (Ωi)h

〉
H

(440)

≤ ∥f∥∞∥h∥H. (441)

Therefore, we obtain:

∥∥∥∫ dP
∥∥∥ = sup

f∈S

∥∥∥∫ fdP
∥∥∥

∥f∥S
(442)

= sup
f∈S

sup
h∈H

∥∥∥(∫ fdP
)
h
∥∥∥

∥f∥S∥h∥H
(443)

= 1. (444)

Once the integral over PVMs is defined for simple functions, we can immediately define it for any
bounded Borel-measurable function f : R → C via the following Corollary.

Corollary 2.7. Let B be a Borel σ-algebra on R, H be a Hilbert space, and P : B → L(H) be a PVM.
The integral

∫
dP over it (as given in Definition 2.16) can be uniquely extended to the set B(R,C) of

bounded Borel-measurable functions.
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Proof. First, we notice that S = B(R,C), so that S is a dense subset of the space of bounded Borel-
measurable functions. Due to Theorem 2.9,

∫
dP is a bounded operator, hence, it can be uniquely

extended to B(R,C) by virtue of the BLT theorem (Theorem 1.2).

Definition 2.17. Let f : R → C be a Borel-measurable function. Then we define a linear map∫
fdP : D∫

fdP → H such that

D∫
fdP =

{
h ∈ H

∣∣∣∣∣
∫

|f |2dµh < ∞

}
, (445)

(∫
fdP

)
h = lim

n→∞

(∫
fndP

)
h, (446)

where fn = χΩnf , with Ωn := {x ∈ R||f(x)| < n}, so that {fn}n∈N and (
∫
fndP )h are Cauchy

sequences in L2(R, dµh) and H, respectively.

Lemma 2.10. Let P : B → L(H) be a PVM with respect to a Borel σ-algebra on R and Hilbert space
H. Then

∫
fdP satisfies (∫

fdP

)∗

=

∫
fdP, (447)

and is a normal operator, i.e., for any h ∈ D(
∫
fdP )∗ = D∫

fdP :∥∥∥∥∥
(∫

fdP

)∗

h

∥∥∥∥∥
H

=

∥∥∥∥∥
(∫

fdP

)
h

∥∥∥∥∥
H

. (448)

Proof. First, for any h′ ∈ D∫
fdP , let {fn}n∈N be the Cauchy sequence in L2(R, dµh′) as given in

Definition 2.17, so that limn→∞ fn = f . Then, for every fn and for any h ∈ D∫
fndP and g ∈ D(

∫
fndP )∗ ,

we can calculate 〈(∫
fndP

)∗
g
∣∣∣h〉

H
=

〈
g
∣∣∣(∫ fndP

)
h
〉
H

(449)

=
〈
g
∣∣∣ lim
n′→∞

(∫
fn,n′dP

)
h
〉
H

(450)

= lim
n′→∞

〈
g
∣∣∣(∫ fn,n′dP

)
h
〉
H

(451)

= lim
n′→∞

〈(∫
fn,n′dP

)
g
∣∣∣h〉

H
(452)

=
〈

lim
n′→∞

(∫
fn,n′dP

)
g
∣∣∣h〉

H
(453)

=
〈(∫

fndP
)
g
∣∣∣h〉

H
, (454)

where {fn,n′}n′∈N is a Cauchy sequence of simple functions such that limn′→∞ fn,n′ = fn, whereas
(451) and (453) follow from continuity of inner product, and (453) follows from sesquilinearity of
inner product applied to simple functions fn,n′ with respect to (435). This proves (447) for bounded
Borel-measurable functions and, in turn,〈

g
∣∣∣(∫ fdP

)
h
〉
H
=
〈(∫

fdP
)
g
∣∣∣h〉

H
, (455)

for any h, g ∈ D∫
fdP = D∫

fdP by continuity. On the other hand, in order to show that D(
∫
fndP )∗ ⊆

(D∫
fndP let h ∈ D(

∫
fdP )∗ , so that there exists h̃ ∈ H such that〈

h
∣∣∣(∫ fdP

)
g
〉
H
= ⟨h̃|g⟩H, (456)
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for any g ∈ D∫
fdP . Therefore, for any g ∈ H, we can calculate〈(∫

fndP
)∗

h
∣∣∣g〉

H
=

〈
h
∣∣∣(∫ fndP

)
g
〉
H

(457)

=
〈
h
∣∣∣(∫ fdP

)
P (Ωn)g

〉
H

(458)

= ⟨h̃|P (Ωn)g⟩H (459)
= ⟨P (Ωn)h̃|g⟩H, (460)

where (458) follows from
∫
fndP =

(∫
fdP

)
P (Ωn) by construction. Since g is arbitrary, we conclude

that
(∫

fndP
)∗

h = P (Ωn)h̃. Let us recall that, for any simple function f ′ ∈ S and h′ ∈ H,

∥∥∥(∫ f ′dP
)
h′
∥∥∥2 =

〈(∫
f ′dP

)
h′
∣∣∣(∫ f ′dP

)
h′
〉
H

(461)

=
〈 n∑
i=1

f ′
iP (Ωi)h

∣∣∣ n∑
i=1

f ′
iP (Ωi)h

′
〉
H

(462)

=
〈
h′
∣∣∣ n∑
i,j=1

f ′
if

′
jP (Ωi)P (Ωj)h

′
〉
H

(463)

=
〈
h′
∣∣∣ n∑
i=1

|f ′
i |2P (Ωi)h

′
〉
H

(464)

=
n∑

i=1

|f ′
i |2
〈
h′
∣∣∣P (Ωi)h

′
〉
H

(465)

=
n∑

i=1

|f ′
i |2µh′(Ωi) (466)

=

∫
|f ′|2dµh′ , (467)

which is straightforwardly extended to bounded Borel-measurable functions via BLT theorem (Theorem
1.2). Therefore, we have

lim
n→∞

∫
R
|fn|2dµh = lim

n→∞

∥∥∥∥∥
(∫

fndP
)
h

∥∥∥∥∥
2

H

(468)

= lim
n→∞

∥P (Ωn)h̃∥2H (469)

= ∥h̃∥2H. (470)

Hence, by monotone convergence, we have that f ∈ L2(R, dµh), and h ∈ D∫
fdP . Therefore, D(

∫
fdP )∗ =
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D∫
fdP . Moreover, we have ∥∥∥∥∥

(∫
fdP

)
h

∥∥∥∥∥
2

H

= lim
n→∞

∥∥∥∥∥
(∫

fndP
)
h

∥∥∥∥∥
2

H

(471)

= lim
n→∞

∫
R
|fn|2dµh (472)

= lim
n→∞

∫
R
|fn|2dµh (473)

= lim
n→∞

∥∥∥∥∥
(∫

fndP
)
h

∥∥∥∥∥
2

H

(474)

=

∥∥∥∥∥
(∫

fdP
)
h

∥∥∥∥∥
2

H

, (475)

concluding the proof.

Now, Lemma 2.10 allows us to prove the inverted version of spectral theorem, which guarantees
existence of a self-adjoint operator associated with any PVM.

Theorem 2.10 (Inverse spectral theorem). Let P : B → L(H) be a PVM with respect to a Borel
σ-algebra on R and Hilbert space H. Then there exists a self-adjoint operator AP : DAP

→ H such that

AP =

∫
ıRdP, (476)

where ıR : R ↪−→ C is inclusion of R into C, so that ıR(λ) = λ for any λ ∈ R.

Proof. In order to prove self-adjointness of AP , we notice that:

A∗
P =

(∫
ıRdP

)∗

(477)

=

∫
ıRdP (478)

=

∫
ıRdP (479)

= AP , (480)

where (478) follows from Lemma 2.10. Hence, AP is self-adjoint.

On the other hand, spectral theorem suggests a recipe to construct a PVM out of a given self-adjoint
operator. Before to proceed with it, we provide the following definition.

Definition 2.18. Let A : DA → H be a self-adjoint operator. It is called spectrally decomposable
if there exists a PVM P : B → L(H) with respect to the Borel σ-algebra B on R and Hilbert space H
such that

A =

∫
ıRdP. (481)

Given a Borel-measurable function f : R → C, we define an operator

f(A) :=

∫
(f ◦ ıR)dP. (482)

Exercise 2.5. Given a spectrally decomposable operator A : DA → H and a Borel-measurable real-
valued function f : R → R, show that f(A) is self-adjoint.
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Theorem 2.11 (Spectral theorem). Any self-adjoint operator A : DA → H is spectrally decomposable
with respect to some corresponding PVM PA.

Proof. The proof of spectral theorem has constructive nature. In what follows, we proceed in two
major steps:

Step 1. Given a self-adjoint operator A : DA → H, we construct the corresponding complex-valued
measure µh,g for any h, g ∈ H.

Step 2. Recalling Definition 2.15, we aim at inverting it and construct the PVM PA from the
complex-valued measure µh,g.

In order to proceed with Step 1 of the proof of spectral theorem, we need to recall several useful
facts from measure theory and complex analysis.

Definition 2.19. Let µ be a finite Borel measure on R. We call its Borel transform the map:

z 7→ F (z) =

∫
R

1

λ− z
dµ(λ). (483)

The following Lemma provide a recipe of reconstruction of a finite Borel measure out of its Borel
transform.

Lemma 2.11 (Stieltjes inversion formula). Let µ be a finite Borel measure on R. Then it can be
reconstructed from its Borel transform (483) as:

µ((−∞, λ′]) = lim
δ→0+

lim
ε→0+

1

π

∫ λ′+δ

−∞
dt ImF (t+ iε), (484)

where λ′ ∈ R.

Proof. Let F (z) be given by (483). First, we notice that its imaginary part can be given in the following
way,

Im[F (z)] = Im

[∫
R

1

λ− z
dµ(λ)

]
(485)

=

∫
R
Im
[ 1

λ− z

]
dµ(λ) (486)

=

∫
R

Im[z]

|λ− z|2
dµ(λ). (487)

Now, let us assume that z = t+ iε, with t ∈ R and ε ∈ R+, and calculate the integral

lim
ε→0+

1

π

∫ t2

t1

dt Im
[
F (t+ iε)

]
= lim

ε→0+

1

π

∫ t2

t1

dt

∫
R

ε

(λ− t)2 + ε2
dµ(λ) (488)

=

∫
R

lim
ε→0+

(
1

π

∫ t2

t1

dt
ε

(λ− t)2 + ε2

)
dµ(λ) (489)

=

∫
R

lim
ε→0+

(
1

π

[
arctan

( t2 − λ

ε

)
− arctan

( t1 − λ

ε

)])
dµ(λ) (490)

=

∫
R

1

2

(
χ(t1,t2)(λ) + χ[t1,t2](λ)

)
dµ(λ), (491)

where (489) uses Fubini theorem, and (491) follows from the fact that the function inside the limit in
(490) converges to the function

1

2

(
χ(t1,t2)(λ) + χ[t1,t2](λ)

)
=


0, λ ∈ (−∞, t1) ∪ (t2,∞),
1
2 , λ = t1,2,

1, λ ∈ (t1, t2).

(492)
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Now, taking the limit t1 → −∞ and setting t2 = λ′ − δ with δ → 0+, in order to guarantee right
continuity of µ, we obtain:

lim
δ→0+

lim
ε→0+

1

π

∫ λ′−δ

−∞
dt Im[F (t+ iε)] = lim

δ→0+

∫
R

1

2

(
χ(−∞,λ′−δ)(λ) + χ(−∞,λ′−δ](λ)

)
dµ(λ) (493)

= µ((−∞, λ′]), (494)

where we use the fact that limδ→0+ χ(−∞,λ′−δ) = χ(−∞,λ′] = limδ→0+ χ(−∞,λ′−δ].

Now, let us show that a finite Borel measure can be constructed via the Stieltjes inversion formula in
Lemma 2.11 for any complex function once it satisfies certain properties on boundedness and symmetry
with respect to the real line.

Lemma 2.12. Let F (z) be a Herglotz (Nevanlinna) function, i.e., a holomorphic function mapping
the upper complex half-plane into itself. If there exists 0 ≤ M < ∞ such that for any z ∈ C+:

|F (z)| ≤ M

Im(z)
, (495)

then there exists a Borel measure µ such that µ(R) ≤ M , and F (z) is its Borel transform.

Proof. First, we take into account that F (z) is a holomorphic function, so that, using Cauchy’s integral
formula, we can represent it as

F (z) =
1

2πi

∫
γ

F (ζ)

ζ − z
dζ, (496)

for any contour γ containing z. Assuming R > 0 and ε > 0, and decomposing z = x+ iy with x, y ∈ R,
we choose the contour

γ = {x+ iε+ λ|λ ∈ [−R,R]} ∪ {x+ iε+Reiφ|φ ∈ [0, π]}. (497)

Choosing 0 < ε < y < R, we have that z lies inside γ, while the point z+2iε lies outside it. Therefore,
using (496) and Cauchy’s integral theorem, we can write

F (z) =
1

2πi

∫
γ

( 1

ζ − z
− 1

ζ − z − 2iε

)
F (ζ) dζ. (498)

Taking into account (497), we can further represent it as

F (z) =
1

π

∫ R

−R

y − ε

λ2 + (y − ε)2
F (x+ iε+ λ) dλ

+
i

π

∫ 0

π

y − ε

R2e2iφ + (y − ε)2
F (x+ iε+Reiφ)Reiφ dφ. (499)

Under the limit R → ∞, the second integral in (499) vanishes, so that

F (z) =
1

π

∫ ∞

−∞

y − ε

(λ− x)2 + (y − ε)2
F (iε+ λ) dλ, (500)

where the change λ 7→ λ + x of variable has been performed. Decomposing F (z) into its real and
imaginary parts as F (z) = r(z) + iw(z), we focus on the latter and apply the bound (495),

1

π

∫ ∞

−∞

y(y − ε)

(λ− x)2 + (y − ε)2
w(iε+ λ) dλ ≤ M. (501)

Taking the limit y → ∞, we obtain

1

π

∫ ∞

−∞
w(iε+ λ)dλ ≤ M. (502)
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On the other hand, denoting y−ε
(λ−x)2+(y−ε)2

:= ϕε(λ), we have a bound

|ϕε(λ)− ϕ0(λ)| ≤ C(x, y, ε)ε, (503)

where C(x, y, ε) is a constant. Therefore, taking µε(λ) =
1
π

∫ λ
−∞w(iε+ λ′)dλ′, we have

w(z) = lim
ε→0+

∫ ∞

−∞
ϕ0(λ)dµε(λ). (504)

In turn, (502) suggests that µε(R) ≤ M . Since it holds for any suitable ε, there exists a subsequence
µn that converges vaguely to some measure µ such that µ(R) ≤ M , i.e.,∫ ∞

−∞
fdµn →

∫ ∞

−∞
fdµ, (505)

for any continuous f with compact support7. Moreover, (505) holds for any continuous f vanishing at
infinity, therefore, we can write8

w(z) =

∫ ∞

−∞
ϕ0(λ)dµ(λ). (506)

Since ϕ0(λ) = Im
(

1
λ−z

)
, we conclude that

Im(F (z)) = Im
(∫ ∞

−∞
ϕ0(λ)dµ(λ)

)
. (507)

Therefore, F (z) and Borel transform of µ differ only by a real constant, which, due to the bound (495),
is zero.

Now, we exploit the fact that the resolvent of a self-adjoint operator defines a Herglotz (Nevanlinna)
function that satisfies (495), so that a family of real-valued measurer can be associated with it via
Lemma 2.11 and Lemma 2.12.

Theorem 2.12. Let A : DA → H be a self-adjoint operator, and h ∈ DA. If RA(z) is resolvent of A,
there exists a measure µh such that

Fh(z) = ⟨h|RA(z)h⟩H (508)

is its Borel transform.

Proof. Let Fh(z) = ⟨h|RA(z)h⟩H, which is holomorphic for z ∈ ρ(A) by definition. First, we notice
that

RA(z)
∗ = ((A− z)−1)∗ (509)

= ((A− z)∗)−1 (510)
= (A− z)−1 (511)
= RA(z), (512)

where (510) follows from Lemma 2.6 since RA(z) is bijective, and its range is dense in H. This translates
into the following property Fh(y):

Fh(z) = ⟨h|RA(z)h⟩H (513)
= ⟨h|RA(z)

∗h⟩H (514)
= ⟨RA(z)h|h⟩H (515)
= Fh(z). (516)

7Proof of the corresponding lemma from measure theory can be found in Lemma A.35 in [1] (Lemma A.26 in the first
edition of [1]).

8Proof of the corresponding lemma from measure theory can be found in Lemma A.36 in [1] (Lemma A.27 in the first
edition of [1]).
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In order to check whether Fh(z) is a Herglotz (Nevanlinna) function, we have to investigate behaviour
of its imaginary part,

Im[Fh(z)] = −i(Fh(z)− Fh(z)) (517)
= −i(Fh(z)− Fh(z)) (518)

= −i
(
⟨h|RA(z)h⟩H − ⟨h|RA(z)h⟩H

)
(519)

= −i⟨h|(RA(z)−RA(z))h⟩H (520)
= −i(z − z)⟨h|RA(z)RA(z)h⟩H (521)
= Im[z]⟨h|RA(z)RA(z)h⟩H (522)
= Im[z]⟨RA(z)

∗h|RA(z)h⟩H (523)
= Im[z]⟨RA(z)h|RA(z)h⟩H (524)
= Im[z]∥RA(z)h∥H, (525)

where (521) follows from the first resolvent formula (Lemma 2.9). Since norm is a non-negative function
by definition, Fh(z) maps the upper complex half-plane into itself and is indeed a Herglotz (Nevanlinna)
function. Moreover, we find that

|Fh(z)| ≤ ∥h∥H∥RA(z)h∥H (526)
≤ ∥h∥2H∥RA(z)∥ (527)

≤
∥h∥2H
|Im(z)|

, (528)

where (526) follows from Cauchy-Schwarz inequality in Lemma 1.1, (527) follows from the definition
of operator norm, and (528) follows from (338) in the proof of Theorem 2.4, so that ∥(A − z)−1∥ ≤
|Im[z]|−1. Therefore, by virtue of Lemma 2.12, there exists a measure µh such that ⟨h|RA(z)h⟩H is its
Borel transform, so that µh can be constructed from RA(z) connected via Stieltjes inversion formula
(Lemma 2.11).

Once the real-valued measure µh is constructed out of RA(z), it can be immediately extended to
the complex-valued measure µh,g.

Corollary 2.8. For any h, g ∈ H, there exists a complex measure µh,g such that

⟨h|RA(z)g⟩H =

∫
R

1

λ− z
dµh,g(λ). (529)

Proof. First, we notice that sA(h, g) := ⟨h|RA(z)g⟩H is a sesquilinear form that has an associated
quadratic form qA(h) := ⟨h|RA(z)h⟩H. Therefore, it can be decomposed into a sum of quadratic forms
via generalization of the polarization identity (113) to arbitrary sesquilinear forms (exercise):

sA(h, g) =
1

4

(
qA(h+ g)− qA(h− g) + iqA(h− ig)− iqA(h+ ig)

)
. (530)

This allows us to translate polarization identity to the measure by defining

µh,g(Ω) :=
1

4

(
µh+g(Ω)− µh−g(Ω) + iµh−ig(Ω)− iµh+ig(Ω)

)
, (531)

recovering (530) and, in turn, (529).

This concludes Step 1 of the proof of spectral theorem, and we proceed with Step 2 by associating
a PVM with the constructed complex-valued measure. First, we prove that it can be associated with
some family of self-adjoint operators.
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Lemma 2.13. For the complex-valued measure µh,g, there exists a family of self-adjoint operators
PA(Ω) such that

0 ≤ ⟨h|PA(Ω)h⟩H ≤ ∥h∥2H, (532)
and

⟨h|PA(Ω)g⟩H =

∫
R
χΩ(λ)dµh,g(λ). (533)

Proof. Let us define a sesquilinear form sΩ such that for any h, g ∈ H,

sΩ(h, g) =

∫
R
χΩ(λ)dµh,g(λ), (534)

and the associated quadratic form

qΩ(h) = sΩ(h, h) (535)

=

∫
R
χΩ(λ)dµh(λ). (536)

Since qΩ(h) = µh(Ω) ≥ 0, we can use the generalization of Cauchy-Schwarz inequality to sesquilinear
forms:

|sΩ(h, g)| ≤
√
qΩ(h)

√
qΩ(g) (537)

=
√
µh(Ω)

√
µg(Ω) (538)

≤
√

µh(R)
√
µg(R) (539)

≤ ∥h∥H∥g∥H. (540)

Therefore, sΩ is bounded. By fixing one of its arguments, for example, as sΩ(·, g) for some g ∈ H, it
can be seen as bounded linear functional on H. Therefore, by Riesz representation theorem (Theorem
1.7), there exists a vector g′ such that

sΩ(h, g) = ⟨h|g′⟩H, (541)

and, in turn, there exists a bounded operator PA(Ω) with ∥PA(Ω)∥ = C such that h′ = PA(Ω)h, where

|sΩ(h, g)| ≤ C∥h∥H∥g∥H, (542)

so that C = 1 due to (540). Therefore, we have that 0 ≤ ⟨h|PA(Ω)h⟩H ≤ ∥h∥2H and

sΩ(h, g) = ⟨h|PA(Ω)g⟩. (543)

Moreover, since µh,g = µg,h, the sesquilinear form sΩ(h, g) is symmetric, i.e., sΩ(h, g) = sΩ(g, h), so
that PA(Ω) are self-adjoint.

Theorem 2.13. The family of operators PA(Ω) forms a PVM.

Proof. In order to prove that PA(Ω) indeed form a PVM, we proceed in four steps corresponding to
each property of PVM due to Definition 2.14.

Step 1. Self-adjointness of PA(Ω) follows immediately from Lemma 2.13.
Step 2. In order to show that PA(Ω) ◦ PA(Ω) = PA(Ω), we assume that z, z′ ∈ ρ(A) and h, g ∈ H

and calculate the following integral:∫
R

1

λ− z′
dµRA(z)h,g(λ) = ⟨RA(z)h|RA(z

′)g⟩H (544)

= ⟨h|RA(z)RA(z
′)g⟩H (545)

=
1

z − z′

(
⟨h|RA(z)g⟩H − ⟨h|RA(z

′)g⟩H
)

(546)

=
1

z − z′

∫
R

( 1

λ− z
− 1

λ− z′

)
dµh,g(λ) (547)

=

∫
R

dµh,g(λ)

(λ− z)(λ− z′)
, (548)
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where (546) follows from the first resolvent formula (Lemma 2.9). Hence, we conclude that dµRA(z)h,g(λ) =
(λ− z)−1dµh,g(λ). On the other hand, we have∫

R

1

λ− z
dµh,PA(Ω)g(λ) = ⟨h|RA(z)PA(Ω)g⟩H (549)

= ⟨RA(z)h|PA(Ω)g⟩H (550)

=

∫
R
χΩ(λ)dµRA(z)h,g(λ) (551)

=

∫
R

χΩ(λ)

λ− z
dµh,g(λ), (552)

where (550) follows from (512). Therefore, we have that dµh,PA(Ω)g(λ) = χΩ(λ)dµh,g(λ). This allows
us to calculate the following inner product,

⟨h|PA(Ω1)PA(Ω2)g⟩H =

∫
R
χΩ2(λ)dµh,PA(Ω1)g(λ) (553)

=

∫
R
χΩ2(λ)χΩ1(λ)dµh,g(λ) (554)

=

∫
R
χΩ1∩Ω2(λ)dµh,g(λ) (555)

= ⟨h|PA(Ω1 ∩ Ω2)g⟩H, (556)

where (555) uses the fact that χΩ1(λ)χΩ2(λ) = χΩ1∩Ω2(λ). Therefore, we conclude that PA(Ω1) ◦
PA(Ω2) = PA(Ω1 ∩ Ω2). In particular, for Ω1 = Ω2 := Ω, we have PA(Ω) ◦ PA(Ω) = PA(Ω).

Step 3. Let h ∈ ker(PA(R)), so that

µh(R) = ⟨h|PA(R)h⟩H (557)
= 0. (558)

Therefore, due to Lemma 2.12, we have that ⟨h|RA(z)h⟩H = 0. In turn, using (525) we find that
∥RA(z)h∥H = 0 and, in turn, RA(z)h = 0 due to the definition of norm. In turn, this implies h = 0,
meaning that the kernel of PA(R) is trivial, and PA(R) = id.

Step 4. Let Ω = ∪i∈NΩi with Ωi ∩ Ωj = ∅ for i ̸= j. First, let us consider a finite sum of PA(Ωi)
and calculate the following inner product:〈

h
∣∣∣( n∑

i=1

PA(Ωi)
)
h
〉
H

=

n∑
i=1

⟨h|PA(Ωi)h⟩H (559)

=
n∑

i=1

µh(Ωi). (560)

Due to σ-additivity of the measure µh, we can consider the limit n → ∞, so that

lim
n→∞

n∑
i=1

µh(Ωi) = µh(Ω), (561)

and, in turn,

lim
n→∞

n∑
i=1

⟨h|PA(Ωi)h⟩H = µh(Ω). (562)

On the other hand, by definition, µh(Ω) = ⟨h|PA(Ω)h⟩H. Therefore, we conclude that

lim
n→∞

n∑
i=1

⟨h|PA(Ωi)h⟩H = ⟨h|PA(Ω)h⟩H, (563)
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and the family of operators PA(Ω) is weakly σ-additive, i.e., with respect to weak convergence in the
sense of Definition 1.9. In order to prove strong σ-additivity required by Definition 2.14, we notice
that

lim
n→∞

∥∥∥ n∑
i=1

P (Ωi)h
∥∥∥2 = lim

n→∞

〈( n∑
i=1

PA(Ωi))h
∣∣∣( n∑

j=1

PA(Ωj)
)
h
〉
H

(564)

= lim
n→∞

〈
h
∣∣∣( n∑

i=1

n∑
j=1

PA(Ωi)PA(Ωj)
)
h
〉
H

(565)

= lim
n→∞

〈
h
∣∣∣( n∑

i=1

PA(Ωi)
)
h
〉
H

(566)

= lim
n→∞

n∑
i=1

⟨h|PA(Ωi)h⟩H (567)

= ⟨h|PA(Ω)h⟩H (568)
= ⟨h|PA(Ω)PA(Ω)h⟩H (569)
= ⟨PA(Ω)h|PA(Ω)h⟩H (570)
= ∥P (Ω)h∥2. (571)

This allows us to calculate the norm

lim
n→∞

∥∥∥P (Ω)h−
( n∑
i=1

P (Ωi)
)
h
∥∥∥2
H

= lim
n→∞

〈
P (Ω)h−

( n∑
i=1

P (Ωi)
)
h
∣∣∣P (Ω)h−

( n∑
i=1

P (Ωi)
)
h
〉
H
(572)

= lim
n→∞

(
∥P (Ω)h∥2H − 2Re

(〈
P (Ω)h

∣∣∣( n∑
i=1

P (Ωi)
)
h
〉
H

)
+

∥∥∥( n∑
i=1

P (Ωi)
)
h
∥∥∥2
H

)
(573)

= 2∥P (Ω)h∥2H − 2 lim
n→∞

Re
(〈

P (Ω)h
∣∣∣( n∑

i=1

P (Ωi)
)
h
〉
H

)
(574)

= 2∥P (Ω)h∥2H − 2 lim
n→∞

Re
(〈

h
∣∣∣P (Ω)

( n∑
i=1

P (Ωi)
)
h
〉
H

)
(575)

= 2∥P (Ω)h∥2H − 2 lim
n→∞

Re
(〈

h
∣∣∣( n∑

i=1

P (Ω)P (Ωi)
)
h
〉
H

)
(576)

= 2∥P (Ω)h∥2H − 2 lim
n→∞

Re
(〈

h
∣∣∣( n∑

i=1

P (Ωi)
)
h
〉
H

)
(577)

= 2∥P (Ω)h∥2H − 2Re
(
⟨h|P (Ω)h⟩H

)
(578)

= 2∥P (Ω)h∥2H − 2Re
(
⟨h|P (Ω)P (Ω)h⟩H

)
(579)

= 2∥P (Ω)h∥2H − 2Re
(
⟨P (Ω)h|P (Ω)h⟩H

)
(580)

= 2∥P (Ω)h∥2H − 2Re
(
∥P (Ω)h∥2H

)
(581)

= 0, (582)

where (577) follows from the fact that Ω ∩ Ωi = Ωi, hence, proving strong σ-additivity of PA(Ω) and,
in turn, concluding that PA(Ω) indeed form a PVM.
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3 Schrödinger operators

3.1 Axiomatic construction of quantum mechanics

In this chapter, we focus on applications of the theory we have developed so far. Our aim is to address
non-relativistic quantum mechanics — a physical theory that seeks to explain phenomena at
a microscopic scale under velocities much smaller compared with the speed of light. In particular,
microscopic scale usually implies the scale up to atomic one, opposed to motion of objects that we
observe at the everyday life scale (e.g., a thrown ball), which is described by classical mechanics.

The ultimate goal of any physical theory is to describe the behaviour of the corresponding physical
system, including description of its state. This requires setting the playground — a certain configu-
ration space, so that the possible states of the system can be associated to elements thereof. For a
given physical system with N degrees of freedom, classical mechanics in its Lagrangian formulation
associates its states to elements of a N -dimensional smooth manifold Q. Locally they can be described
by N quantities {qi}Ni=1 providing information on its spatial configuration, i.e., position. In simple
cases, the configuration space can be safely reduced to RN , for example, R3 for a single free particle.
Hamiltonian formulation of classical mechanics operates instead with the symplectic cotangent bundle
T ∗Q (known as phase space), thus, requiring locally additional N quantities {pi}Ni=1 in order to de-
scribe the momentum of the particle, which replaces velocity in Lagrangian mechanics. Similarly to
Lagrangian formulation, in simple cases, the phase space can be reduced to R2N , for example, R6 for a
single free particle. In quantum mechanics, a complex separable Hilbert space is used to describe the
states of a physical system. This is stipulated by the first Axiom9.

Axiom 1

The configuration space of a physical system is a complex separable Hilbert space H =
L2(RN , dµ), with physical state being represented by normalized elements f ∈ H, i.e., ∥f∥H = 1.

Apart from determining the state of the system, a physical theory has to provide information on its
observables — physical properties or quantities of the system that can be measured in an experiment.
In classical mechanics, any observable a is described by a real-valued function on the corresponding
configuration space. In quantum mechanics, these are substituted by self-adjoint operators, as Axiom
2 suggests.

Axiom 2

An observable a corresponds to a self-adjoint operator A : DA → H.

In classical mechanics, any property of the physical system exists independently on our actions as
observers and can be revealed by measuring the corresponding observable. For example, the position
of a thrown ball or the colour of the Prof. Bertlmann’s sock10 can be determined with an arbitrary
precision which is limited only by sensitivity of our eyes. Imprecision of the measurement and the
corresponding lack of knowledge on the observable of interest requires framework of probability theory.
However, in classical mechanics, nothing prevents one to reduce it by improving the experimental
technique and, in turn, perfectly learn the corresponding physical property. Quantum mechanics
instead is incompatible with local pre-defined physical properties of a system and has an intrinsic

9Strictly speaking, a physical state in quantum mechanics is associated to a ray in Hilbert space, i.e., an equivalence
class under the equivalence relation h ∼ h′ if h′ = λh for some λ ∈ C, with h, h′ ∈ H. This definition reflects U(1)-
invariance of probabilistic predictions of quantum mechanics (physicists mention it as independence on overall phase of
the quantum state). Nevertheless, for the sake of simplicity, we stick to the formulation of Axiom 1 in terms of normalized
elements of H.

10This is a reference to Bertlmann’s socks, a famous example named after Prof. Reinhold Bertlmann of the University
of Vienna and provided by John Bell in his 1980 paper “Bertlmann’s socks and the nature of reality” in order to illustrate
the difference between classical and quantum mechanics.

Operator Theory 46/78



University of Vienna

probabilistic nature which cannot be avoided in a measurement11. It is reflected by Axiom 3 which
constraints information on a physical system that can be obtained in a measurement.

Axiom 3

If the physical system is in the state f ∈ DA, the expectation value for a measurement of a is
given by

Ef (A) = ⟨f |Af⟩. (583)

The obtained axiomatic construction deals so far with the properties of a physical system which
are independent of time. However, one of ultimate goals of a physical theory is ability of prediction of
dynamical behaviour of the physical system, i.e., its evolution in time. For example, knowing where
and when a ball has been thrown, we can predict its trajectory using classical mechanics. Quantum
mechanics, for this purpose, introduces a family of unitary operators sharing certain properties stipu-
lated by Axiom 4. Moreover, it provides a fundamental connection between the energy of the system
and its time evolution.

Axiom 4

The time evolution of the physical system is given by strongly continuous one-parameter unitary
group U(t) with t ∈ R, i.e., a group of unitary operators such that

U(0) = id, (584)
U(t+ s) = U(t)U(s), (585)

lim
t→t0

U(t)f = U(t0)f, ∀f ∈ H. (586)

The energy of the system corresponds to the generator of U(t).

The generator H of U(t) mentioned in Axiom 4 is called Hamiltonian and can be defined by

Hf = lim
t→0

i

t

(
U(t)f − f

)
, (587)

DH =
{
f ∈ H

∣∣∣∃ lim
t→0

i

t

(
U(t)f − f

)}
. (588)

In turn, the dynamics of the state of a physical system is governed by a parameterized family of
elements {f(t)}t∈R of the Hilbert space H: under assumption f(0) ∈ DH , it is provided via differential
equation known as Schrödinger equation:

iℏ
d

dt
f(t) = Hf(t), (589)

where ℏ is the Planck constant. One of the central problems in quantum mechanics is to predict time
evolution of the state of a given system by solving Schrödinger equation, which requires characterization
of H.

Focusing on a single particle as a physical system of interest, its canonical observables, i.e., its
position and momentum, correspond12 to multiplication (position) vector-valued operator x⃗ such that

xi : Dxi → L2(RN , dµ), (590)
(xif)(x) = xif(x), (591)

11Explanation of the probabilistic nature of quantum mechanics constitutes one of the main subjects of quantum
foundations — a subfield of quantum theory in the intersection of physics and philosophy. In particular, there exist
interpretations of quantum mechanics aiming at introduction of determinism, for example, Bohmian mechanics, which
allows for pre-defined physical properties by abandoning the principle of locality, i.e., allowing for instantaneous action
at a distance.

12This correspondence is guaranteed by Stone-von Neumann theorem, a treatment whereof, however, goes beyond
scope of this course.
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and differential (momentum) vector-valued operator p⃗ such that

pi : Dpi → L2(RN , dµ), (592)

(pif)(x) = −iℏ
∂

∂xi
f(x), (593)

where i ∈ {1, . . . , N} corresponds to the i-th component of the corresponding vector in certain or-
thonormal basis on RN . In terms of these operators, the Hamiltonian operator can be represented in
the following form,

H =
1

2m
p⃗2 + V (⃗x). (594)

where the first term represents kinetic energy of the particle, with m being its mass, and the second
terms corresponds to its potential energy (the “functions” of operators p⃗ and x⃗ have to be treated
with respect to Definition 2.18 as soon as they are proven to be self-adjoint). Therefore, analysis of
dynamics of a quantum particle requires analysis of self-adjointness and spectrum of the differential
operator which we define in what follows.

Definition 3.1. We call Schrödinger operator an operator

H = − ℏ2

2m
∆+ V, (595)

where ∆ : D∆ → L2(RN , dµ) is a differential operator defined as

(∆f)(x) =
n∑

i=1

∂2

∂x2
f(x), (596)

and V : DV → L2(RN , dµ) is a multiplication operator defined as

(Vf)(x) = V (x)f(x), (597)

where V : RN → R is a measurable function.

The rest of the course we dedicate to examination of Schrödinger operators using the theory de-
veloped in Sections 1 and 2.

3.2 Momentum operator

Before to proceed with Schrödinger operators, we consider first the momentum operator p⃗ in order to
get insights into properties of a differential operator. For the sake of simplicity, we fix N = 1 and focus
on a compact interval I ⊆ R as a toy model of physical space — this is the case, e.g., for a quantum
particle moving along the bottom of a well. Without loss of generality, we assume I = [0, 2π] and fix
the corresponding Hilbert space as H = L2(0, 2π). Therefore, we consider the momentum operator p
defined as

p : Dp → L2(0, 2π), (598)

(pf)(x) = −iℏ
d

dx
f(x). (599)

First, it is necessary to define the domain of p. Since the function has to be differentiable, and we
would expect it to vanish on boundaries, we define an operator p0 : Dp0 → L2(0, 2π) as a candidate
such that

(p0f)(x) = −iℏ
d

dx
f(x), (600)

Dp0 = {f ∈ C1[0, 2π]|f(0) = f(2π) = 0}. (601)

We have immediately the following fact.
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Lemma 3.1. The operator p0 is symmetric.

Proof. Let f, g ∈ Dp0 . Then a straightforward calculation shows:

⟨g|p0f⟩L2(0,2π) =

∫ 2π

0
dx g(x)

(
−iℏ

d

dx

)
f(x) (602)

= −
∫ 2π

0
dx f(x)

(
−iℏ

d

dx

)
g(x) + (−iℏ)g(x)f(x)

∣∣2π
0

(603)

=

∫ 2π

0
dx f(x)

(
−iℏ

d

dx

)
g(x) (604)

= ⟨p0g|f⟩L2(0,2π). (605)

Since p0 is symmetric, Lemma 2.3 suggests that p0 ⊆ p∗0. Therefore, in order to check whether p0
is self-adjoint, we have to determine Dp∗0

and analyse the behaviour of p∗0 outside Dp0 . First, let us
define p∗0 more precisely,

p∗0 : Dp∗0
→ L2(0, 2π) (606)

(p∗0f)(x) = −iℏ
d

dx
f(x). (607)

By Definition 2.1, for any g ∈ Dp∗0
, there exists g̃ ∈ L2(0, 2π) such that ⟨g|p0f⟩L2(0,2π) = ⟨g̃|f⟩L2(0,2π),

i.e., ∫ 2π

0
dx g(x)

(
−iℏ

d

dx

)
f(x) =

∫ 2π

0
dx g̃(x)f(x). (608)

Using integration by parts, we find∫ 2π

0
dx g(x)

(
−iℏ

d

dx

)
f(x) = −

∫ 2π

0
dx

∫ x

0
dt g̃(t)

d

dx
f(x) +

∫ x

0
dt g̃(t)f(x)

∣∣∣2π
0
, (609)

or, equivalently, ∫ 2π

0
dx
(
g(x)− i

ℏ

∫ x

0
dt g̃(t)

) d

dx
f(x) = 0. (610)

This means that 〈
g(x)− i

∫ x

0
dt g̃(t)

∣∣∣f ′
〉
H
= 0, (611)

so that g(x)− i
ℏ
∫ x
0 dt g̃(t) ∈ {f ′|f ∈ Dp0}⊥, where f ′ indicates derivative of f . In order to characterize

this set, we need several new tools.

Definition 3.2. Let I ⊂ R. A function g : I → C is called absolutely continuous if there exists an
integrable function g̃ : I → C such that

g(x) = g(a) +

∫ x

a
dt g̃(t), (612)

for any local compact subset [a, x] ⊆ I. The set of all absolutely continuous functions on I is denoted
by AC(I) ⊂ L2(I).

Definition 3.3. Let I ⊂ R be open. A measurable function g : I → C is called p-locally integrable
for 1 ≤ p ≤ ∞ if ∫

Ω
|g(x)|pdx < ∞, (613)

for any local compact subset Ω ⊂ I. The set of all p-locally integrable functions on I is denoted by
Lp
loc(I).
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Definition 3.4. Let I ⊂ R be open, and g ∈ L1
loc(I). It is called weakly differentiable if there exists

g̃ ∈ L1
loc(I) called weak derivative of g such that∫

I
dx g(x)f ′(x)dx = −

∫
I
dx g̃(x)f(x), (614)

for any f ∈ C∞(I) such that f vanishes on limits of integration. The set of all weakly differentiable
functions on I is denoted by W 1(I) ⊂ L1

loc(I). By induction, W k(I) ⊂ L1
loc(I) is the set of all locally

integrable functions f such that weak derivatives of f of order α for any α ≤ k exist, i.e., functions
g̃ ∈ L1

loc(I) such that ∫
I
dx g(x)f (α)(x)dx = (−1)α

∫
I
dx g̃(x)f(x), (615)

where f (α) denotes derivative of f of order α.

We are interested in integrable functions which admit integrable weak derivatives. This motivates
introduction of a new subspace of Lp in the following Definition.

Definition 3.5. Let I ⊂ R be open, k ∈ N, and 1 ≤ p ≤ ∞. We call the (k, p)−Sobolev space the
space of functions

W k,p(I) = {f ∈ Lp(I) ∩W k(I)|f (α) ∈ Lp(I), ∀α ≤ k}. (616)

For p = 2, the Sobolev spaces are denoted Hk(I) := W k,2(I).

Exercise 3.1. Prove that Hk(I) is a Hilbert space.

Exercise 3.2. Prove that {f ∈ AC(I)|f ′ ∈ L2(I)} ⊆ H1(I).

Now we are ready to characterize the set {f ′|f ∈ Dp0}⊥ defining the domain of p∗0. First, let us
provide several useful results.

Lemma 3.2. Let {f ′|f ∈ Dp0} be the set of derivatives of functions from the domain of p0. Then

{f ′|f ∈ Dp0} =

{
h ∈ C[0, 2π]

∣∣∣∣∣
∫ 2π

0
dt h(t) = 0

}
. (617)

Proof. Let f ′ ∈ {f ′|f ∈ Dp0}. Then, by (601),∫ 2π

0
dx f ′(x) = f(x)

∣∣2π
0

(618)

= 0, (619)

so that f ′ ∈ {h ∈ C[0, 2π]|
∫ 2π
0 dt h(t) = 0}. On the other hand, let h ∈ {h ∈ C[0, 2π]|

∫ 2π
0 dt h(t) = 0}.

Since h ∈ C[0, 2π], we have:

h̃(x) :=

∫ x

0
dt h(t) ∈ C1[0, 2π]. (620)

Moreover, h̃(0) = h̃(2π) = 0, so that h̃(x) ∈ Dp0 and, in turn, h ∈ {f ′|f ∈ Dp0}. This proves the
statement of the Lemma.

Lemma 3.3. Let {f ′|f ∈ Dp0} be the set of derivatives of functions from the domain of p0. Then

{f ′|f ∈ Dp0} = {1}⊥, (621)

where 1 ∈ L2(0, 2π) is a constant function such that 1(x) = 1 for any x ∈ [0, 2π].
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Proof. From Lemma 3.2 we have:

{f ′|f ∈ Dp0} = {h ∈ C[0, 2π]|⟨1|h⟩L2(0,2π) = 0}. (622)

Taking the closure, we obtain:

{f ′|f ∈ Dp0} = {h ∈ C[0, 2π]|⟨1|h⟩L2(0,2π) = 0} (623)

= {h ∈ C[0, 2π]|⟨1|h⟩L2(0,2π) = 0} (624)

= {h ∈ L2(0, 2π)|⟨1|h⟩L2(0,2π) = 0} (625)

= {1}⊥. (626)

Theorem 3.1. p∗0 is defined on (1,2)-Sobolev space, so that Dp∗0
= H1(0, 2π) ̸= Dp0, and p0 is not

self-adjoint.

Proof. First, let us show that any function from Dp∗0
is absolutely continuous.

g(x)− i

ℏ

∫ x

0
dt g̃(t) ∈ {f ′|f ∈ Dp0}⊥ (627)

= {f ′|f ∈ Dp0}⊥ (628)
= {f ′|f ∈ Dp0}⊥⊥⊥ (629)

= {f ′|f ∈ Dp0}
⊥

(630)
= {1}⊥⊥ (631)
= {1} (632)
= span(1). (633)

Therefore, any g(x) − i
ℏ
∫ x
0 dt g̃(t) is a constant function x 7→ g(0) ∈ C. Hence, we conclude that

g(x) = g(0)+ i
ℏ
∫ x
0 dt g̃(t), so that, recalling Definition 3.2, g ∈ AC[0, 2π], and, in turn, Dp∗0

⊆ AC[0, 2π].
Moreover, recalling that p∗0 maps its domain to L2(0, 2π), we conclude that Dp∗0

⊆ H1(0, 2π) using
Exercise 3.2. On the other hand, we take into account that all integrations by parts in Lemma 3.1 are
of the form ∫

I
dx g(x)f ′(x)dx = −

∫
I
dx g′(x)f(x), (634)

for arbitrary f ∈ C1(0, 2π) vanishing on limits of integration. Since C∞(0, 2π) ⊂ C1(0, 2π), it is also
valid for arbitrary f ∈ C∞(0, 2π) vanishing on limits of integration. Recalling Definition 3.4, this is
the condition of weak derivative. Hence, due to Definition 3.5, we conclude that Dp∗0

= H1(0, 2π), so
that Dp0 ̸= Dp∗0

, and p0 is not self-adjoint.

Since p0 is symmetric yet not a self-adjoint operator, we can question its self-adjoint extensions.
First, we check whether it is essentially self-adjoint that would guarantee a unique self-adjoint extension
due to Corollary 2.2.

Theorem 3.2. p0 is not essentially self-adjoint.

Proof. Due to Definition 2.8, we have to check whether p0 is a self-adjoint operator. First, due to
Theorem 2.2, we have p0 = p∗∗0 . Recalling Definition 2.1, p∗∗0 is defined in such a way that any g ∈ Dp∗∗0
satisfies

⟨g|p∗0f⟩L2(0,2π) = ⟨p∗∗0 g|f⟩L2(0,2π). (635)
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for any f ∈ Dp∗0
= H1(0, 2π). On the other hand, since p0 is symmetric due to Lemma 3.1, Lemma 2.5

suggests that p0 ⊆ p∗∗0 ⊆ p∗0, so that, for any g ∈ Dp∗∗0
,

⟨p∗∗0 g|f⟩L2(0,2π) = ⟨p∗0g|f⟩L2(0,2π), (636)

by Definition 1.10. Therefore, we obtain:

⟨g|p∗0f⟩L2(0,2π) = ⟨p∗0g|f⟩L2(0,2π), (637)

for any g ∈ Dp∗∗0
and f ∈ Dp∗0

. Calculation of the inner products on L2(0, 2π) results in:∫ 2π

0
dx g(x)

(
−iℏ

d

dx

)
f(x) =

∫ 2π

0
dx f(x)

(
−iℏ

d

dx

)
g(x), (638)

and, performing integration by parts, we obtain:

g(2π)f(2π)− g(0)f(0) = 0. (639)

Since there are no constraints on values of f ∈ Dp∗0
= H1(0, 2π) on boundaries, we conclude that

g(0) = g(0) = g(2π) = g(2π) = 0, so that

Dp∗∗0
= {f ∈ H1(0, 2π)|f(0) = f(2π) = 0} (640)
̸= Dp∗0

. (641)

Therefore, we have p0 ̸= p∗0. On the other hand, we notice that p0
∗ = p∗∗∗0 = p∗0. Moreover, due

to Theorem 2.2, we have p∗0 = p∗0. Therefore, we conclude that p0 ⊆ p0
∗, and p0 is not essentially

self-adjoint.

This means that the choice (601) of the domain of p0 is not optimal to define the momentum
operator. In order to overcome this problem, we can slightly weaken the boundary conditions by
defining p̃0 : Dp̃0 → L2(0, 2π) as a candidate for momentum operator such that

(p̃0f)(x) = −iℏ
d

dx
f(x), (642)

Dp̃0 = {f ∈ C1[0, 2π]|f(0) = f(2π)}, (643)

i.e., treating I = [0, 2π] as a circle and, hence, extending previous candidate operator, p0 ⊂ p̃0. First,
we notice that Lemma 3.1 remains valid for p̃0 as well.

Lemma 3.4. The operator p̃0 is symmetric.

Proof. Let f, g ∈ Dp̃0 . Then a straightforward calculation shows:

⟨g|p̃0f⟩L2(0,2π) =

∫ 2π

0
dx g(x)

(
−iℏ

d

dx

)
f(x) (644)

= −
∫ 2π

0
dx f(x)

(
−iℏ

d

dx

)
g(x) + (−iℏ)g(x)f(x)

∣∣2π
0

(645)

= −
∫ 2π

0
dx f(x)

(
−iℏ

d

dx

)
g(x) + (−iℏ)g(2π)f(2π)− (−iℏ)g(0)f(0) (646)

= −
∫ 2π

0
dx f(x)

(
−iℏ

d

dx

)
g(x) + (−iℏ)g(0)f(0)− (−iℏ)g(0)f(0) (647)

=

∫ 2π

0
dx f(x)

(
−iℏ

d

dx

)
g(x) (648)

= ⟨p̃0g|f⟩L2(0,2π). (649)
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In order to check whether p̃0 is self-adjoint, we recall Definition 2.1 suggesting that any g ∈ Dp̃∗0
and f ∈ Dp̃0 satisfy ⟨g|p̃0f⟩L2(0,2π) = ⟨p̃∗0g|f⟩L2(0,2π). On the other hand, we notice that p̃∗0 ⊂ p∗0 due
to Lemma 2.2. Therefore, for any g ∈ Dp̃∗0

and f ∈ Dp̃0 , we have:

⟨g|p̃0f⟩L2(0,2π) = ⟨p∗0g|f⟩L2(0,2π). (650)

Calculation of the inner products on L2(0, 2π) results in:∫ 2π

0
dx g(x)

(
−iℏ

d

dx

)
f(x) =

∫ 2π

0
dx f(x)

(
−iℏ

d

dx

)
g(x), (651)

and, performing integration by parts, we find:∫ 2π

0
dx g(x)

(
−iℏ

d

dx

)
f(x) =

∫ 2π

0
dx g(x)

(
−iℏ

d

dx

)
f(x) + iℏg(x)f(x)

∣∣∣2π
0
, (652)

which straightforwardly is equivalent to:

g(2π)f(2π) = g(0)f(0). (653)

Since f ∈ Dp̃0 , we take into account that f(0) = f(2π), meaning that g(0) = g(2π). On the other hand,
Theorem 3.1 suggests that Dp∗0

= H1(0, 2π), thus, we already know that Dp̃∗0
⊂ H1(0, 2π). Therefore,

we conclude that
Dp̃∗0

= {f ∈ H1(0, 2π)|f(0) = f(2π)}, (654)

obviously suggesting that Dp̃∗0
̸= Dp̃0 and p̃0 is not self-adjoint. However, we have the following result.

Theorem 3.3. p̃0 is an essentially self-adjoint operator.

Proof. Due to Definition 2.8, we have to check whether p̃0 is a self-adjoint operator. First, due to
Theorem 2.2, we have p̃0 = p̃∗∗0 . Recalling Definition 2.1, p̃∗∗0 is defined in such a way that any g ∈ Dp̃∗∗0
satisfies

⟨g|p̃∗0f⟩L2(0,2π) = ⟨p̃∗∗0 g|f⟩L2(0,2π). (655)

for any f ∈ Dp̃∗0
= H1(0, 2π). On the other hand, since p̃0 is symmetric due to Lemma 3.4, Lemma 2.5

suggests that p̃0 ⊆ p̃∗∗0 ⊆ p̃∗0, so that, for any g ∈ Dp̃∗∗0
,

⟨p̃∗∗0 g|f⟩L2(0,2π) = ⟨p̃∗0g|f⟩L2(0,2π), (656)

by Definition 1.10. Therefore, we obtain:

⟨g|p̃∗0f⟩L2(0,2π) = ⟨p̃∗0g|f⟩L2(0,2π), (657)

for any g ∈ Dp̃∗∗0
and f ∈ Dp̃∗0

. Calculation of the inner products on L2(0, 2π) results in:∫ 2π

0
dx g(x)

(
−iℏ

d

dx

)
f(x) =

∫ 2π

0
dx f(x)

(
−iℏ

d

dx

)
g(x), (658)

and, performing integration by parts, we obtain:

g(2π)f(2π)− g(0)f(0) = 0. (659)

Since f ∈ Dp̃∗0
, we have f(0) = f(2π), so that we obtain a condition on g:

g(2π) = g(0). (660)

Therefore, we conclude that

Dp̃∗∗0
= {f ∈ H1(0, 2π)|f(0) = f(2π)} (661)
= Dp̃∗0

. (662)

and p̃0 = p̃∗0. This means that p̃0 ⊆ p̃∗0 and p̃∗0 ⊆ p̃0. Hence, applying Lemma 2.2 and taking into
account again that p̃∗∗0 = p̃0, we find that p̃0 ⊆ p̃0

∗
and p̃0

∗ ⊆ p̃0. Therefore, we have that p̃0
∗
= p̃0,

and p̃0 is essentially self-adjoint.
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Therefore, we conclude that p̃∗0 can be considered as the momentum operator p on L2(0, 2π), which
we define as:

p : H1
c (0, 2π) → L2(0, 2π), (663)

(pf)(x) = −iℏ
d

dx
f(x), (664)

where H1
c (0, 2π) := {f ∈ H1(0, 2π)|f(0) = f(2π)}.

Exercise 3.3. Solving the equation pu = zu, show that the eigenvalues of p are given by n ∈ Z with
the corresponding eigenvectors un(x) =

1√
2πℏ

e
i
ℏnx forming an orthonormal basis on L2(0, 2π).

Before to conclude the discussion of momentum operator, we notice that the momentum operator
p can be constructed for L2(I) on any closed interval I in the way guaranteed by Theorem 3.3, and
the eigenvalue problem in Exercise 3.3 can be in principle solved. From the physical point of view,
this allows one to model dynamics of a particle moving along the bottom of a well of arbitrary length.
However, a naive transition to the case of a free particle by considering a “well with infinitely separated
walls”, i.e., L2(R) leads to a problem with the eigenvalue equation for the momentum operator which
has no solution in L2(R). An additional structure known as rigged Hilbert space (or Gelfand triple) is
introduced in order to overcome this problem by extending the standard Hilbert space L2 of quantum
mechanics. Before to define it for RN , we introduce the following notation:

∂αf :=
∂|α|f

∂xα1
1 . . . ∂xαn

n
, (665)

xα := xα1
1 . . . xαn

n , (666)
|α| := α1 + . . .+ αn, (667)

where α ∈ NN
0 , with NN

0 := ×NN0 := ×N (N ∪ {0}). First, we define a new space S(RN ) ⊂ C∞(RN )
of smooth functions, which (including their derivatives) decay rapidly.

Definition 3.6. We call the Schwartz space the space of functions

S(RN ) = {f ∈ C∞(RN )| sup
x

|xα(∂βf)(x)| < ∞, ∀α, β ∈ NN
0 }. (668)

Exercise 3.4. Prove that S(RN ) is a dense subset of Lp(RN ) for 1 ≤ p < ∞.

Definition 3.7. The triple of spaces

S(RN ) ⊂ L2(RN ) ⊂ S∗(RN ) (669)

is called rigged Hilbert space or Gelfand triple.

In particular, it allows one to associate continuous spectrum with elements of S∗(RN ) — Schwartz
distributions, which are treated as so-called generalized eigenvectors. Treatment of eigenvectors as
Schwartz distributions allows one to solve rigorously the eigenvalue problem for position and momentum
operators for a free particle. However, the famous Schwartz impossibility result suggests that Schwartz
distributions do not form an algebra, so that no multiplication operation can be defined on S∗(RN ).
We return to this problem in Section 4.

3.3 Free Schrödinger operator

The free Schrödinger operator is a particular case of Schrödinger operator provided in Definition 3.1
with V = 0,

H0 = − ℏ2

2m
∆. (670)

From the physical point of view, this operator defines the energy of a free particle, which does not
experience action of any external potential. In order to study its properties, we introduce an important
tool which will simplify the analysis.
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Definition 3.8. We call the Fourier operator an operator F : S(RN ) → S(RN ) which acts on
f ∈ S(RN ) in the following way:

(Ff)(p) =
1

(2π)N/2

∫
RN

dNx e−ipxf(x). (671)

First, we recall several useful properties of Fourier operator that we will need in calculations.

Lemma 3.5. Let f ∈ S(RN ) and α ∈ NN
0 . Then:

(F(∂αf))(p) = (ip)α(Ff)(p), (672)
(F(xαf(x)))(p) = i|α|∂α(Ff)(p). (673)

Proof. Let |α| = 1, so that ∂α = ∂
∂xj

for arbitrary j. Then we calculate:

(
F
( ∂

∂xj
f(x)

))
(p) =

1

(2π)N/2

∫
RN

dNx e−ipx ∂

∂xj
f(x) (674)

= − 1

(2π)N/2

∫
RN

dNx
( ∂

∂xj
e−ipx

)
f(x) (675)

= ipj
1

(2π)N/2

∫
RN

dNx e−ipxf(x) (676)

= ipj(Ff)(p), (677)

where (676) follows from integration by parts. In turn, the generalization to arbitrary α follows by
induction. On the other hand, for |α| = 1, we calculate:(

F
(
xjf(x)

))
(p) =

1

(2π)N/2

∫
RN

dNx e−ipxxjf(x) (678)

= i
1

(2π)N/2

∫
RN

dNx
( ∂

∂pj
e−ipx

)
f(x) (679)

= i
∂

∂pj

1

(2π)N/2

∫
RN

dNx e−ipxf(x) (680)

= i
∂

∂pj
(Ff)(p), (681)

where (680) follows from the fact that
∣∣∣ ∂
∂pj

e−ipxf(x)
∣∣∣ ≤ xjf(x) := g(x), and g(x) is integrable since

f(x) ∈ S(RN ). In turn, the generalization to arbitrary α follows by induction.

Lemma 3.6. Let f ∈ S(RN ), a ∈ Rn, and λ > 0. Then:

(Ff(x+ a))(p) = eiap(Ff(x))(p), (682)

(Ff(λx))(p) =
1

λN
(Ff(x))

(p
λ

)
. (683)

Proof. First, we calculate:

(Ff(x+ a))(p) =
1

(2π)N/2

∫
RN

dNx e−ipxf(x+ a) (684)

=
1

(2π)N/2

∫
RN

dNy e−ip(y−a)f(y) (685)

= eiap
1

(2π)N/2

∫
RN

dNy e−ipyf(y) (686)

= eiap(Ff(x))(p), (687)
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where (685) uses change of variable y := x− a. On the other hand, we calculate:

(Ff(λx))(p) =
1

(2π)N/2

∫
RN

dNx e−ipxf(λx) (688)

=
1

(2πλ2)N/2

∫
RN

dNy e−
ipy
λ f(y) (689)

=
1

λN
(Ff(x))

(p
λ

)
, (690)

where (685) uses change of variable y := λx.

Lemma 3.7. Let z ∈ C such that Re[z] > 0. Then:

(Fe−zx2/2)(p) =
1

zN/2
e−zp2/2. (691)

Proof. First, we notice that e−zx2/2 =
∏N

j=1 e
−zx2

j/2. Therefore, without loss of generality, it is enough
to provide the proof for a single coordinate xj := x. Let ϕz(x) = e−zx2/2. Then a straightforward
calculation reveals:

ϕ′
z(x) + zxϕz(x) = 0. (692)

In turn, applying Fourier operator and taking into account Lemma 3.5, we obtain an ordinary differ-
ential equation:

i(p(Fϕz)(p) + z(Fϕ′
z)(p)) = 0. (693)

Solving it, we find:
(Fϕz)(p) = (Fϕz)(0)ϕ1/z(p), (694)

where

(Fϕz)(0) =
1√
2π

∫
R
dx e−zx2/2 (695)

=
1√
z

(696)

for z > 0. However, since ϕz is holomorphic with respect to z and measurable with respect to y, and
|ϕz(x)| ≤ e−Re[z]x2/2 ≤ e−x2/2 := g(x), with g(x) being integrable for any compact subset V ⊂ U ,
where U := {z ∈ C|Re[z] > 0}, we conclude that the integral in (695) is holomorphic for Re[z] > 0.
Therefore, (696) holds for any z ∈ U as soon as the branch cut of the root

√
z is chosen along the

negative real axis.

Theorem 3.4. Let F : S(RN ) → S(RN ) be the Fourier operator. It is a bijection, and there exists the
inverse F−1 : S(RN ) → S(RN ) defined as:

(F−1g)(x) =
1

(2π)N/2

∫
RN

dNp eipxf(p). (697)
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Proof. Let ϕε(p) = e−εp2/2, so that limε→0 ϕε(p) = 1. We calculate:

(F−1(Ff))(x) =
1

(2π)N/2

∫
RN

dNp eipx(Ff)(p) (698)

=
1

(2π)N/2

∫
RN

dNp lim
ε→0

ϕε(x)e
ipx(Ff)(p) (699)

= lim
ε→0

1

(2π)N/2

∫
RN

dNp ϕε(p)e
ipx(Ff)(p) (700)

= lim
ε→0

1

(2π)N

∫
RN

dNp ϕε(p)e
ipx

∫
RN

dNy e−ipyf(y) (701)

= lim
ε→0

1

(2π)N

∫
RN

dNy f(y)

∫
RN

dNp e−ip(y−x)ϕε(p) (702)

= lim
ε→0

1

(2π)N

∫
RN

dNz f(z + x)

∫
RN

dNp e−ipzϕε(p) (703)

= lim
ε→0

1

(2π)N/2

∫
RN

dNz f(z + x)(F(ϕε(p))(z) (704)

= lim
ε→0

1

(2πε)N/2

∫
RN

dNz f(z + x)ϕ1/ε(z) (705)

= lim
ε→0

1

(2π)N/2

∫
RN

dN z̃ f(
√
εz̃ + x)ϕ1(z̃) (706)

=
f(x)

(2π)N/2

∫
RN

dN z̃ ϕ1(z̃) (707)

= f(x), (708)

where (700) and (707) follow from dominated convergence theorem, (702) uses Fubini theorem, (703)
applies the change of variable z := y−x, (705) and (708) use Lemma 3.7, and (706) applies the change
of variable z̃ := z/

√
ε.

Now, we prove that Fourier operator F can be defined on the entire Hilbert space L2(RN ). For
this purpose, we derive the following useful identity.

Lemma 3.8 (Plancherel’s identity). Let f ∈ S(RN ). Then:∫
RN

dNp |(Ff)(p)|2 =
∫
RN

dNx |f(x)|2. (709)

Proof. We calculate:∫
RN

dNp |(Ff)(p)|2 =
1

(2π)N/2

∫
RN

dNp

∫
RN

dNx eipxf(x)(Ff)(p) (710)

=
1

(2π)N/2

∫
RN

dNx f(x)

∫
RN

dNp eipx(Ff)(p) (711)

=

∫
RN

dNp

∫
RN

dNx |f(x)|2, (712)

where (711) follows from Fubini’s theorem. and (712) uses Theorem 3.4.

Theorem 3.5. Fourier operator F : S(RN ) → S(RN ) is bounded with ∥F∥ = 1.
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Proof. We calculate the norm of Fourier operator:

∥F∥ = sup
f∈S(RN )

√√√√∥Ff∥2S(RN )

∥f∥2S(RN )

(713)

= sup
f∈S(RN )

√∫
RN dNp |(Ff)(p)|2∫
RN dNx |f(x)|2

(714)

= 1, (715)

where (714) follows from Lemma 3.8.

We conclude that Fourier operator is densely defined (see Exercise 3.4) on L2(RN ) and bounded.
Therefore, we can uniquely extend it to the operator F : L2(RN ) → L2(RN ) defined on the entire
Hilbert space by virtue of Theorem 1.2 (BLT theorem). Moreover, since F−1 extends uniquely as well,
and Lemma 3.8 remains valid due to continuity of norm, we conclude that F defined on the entire
Hilbert space L2(RN ) is a unitary operator.

Now, we proceed with analysis of the free Schrödinger operator (670). In order to find a suit-
able domain, recalling Definition 3.5, we notice that Lemma 3.5 can be connected to the notion of
(inhomohogenous) Sobolev space, which we can represent as

Hk(RN ) = {f ∈ L2(RN )||p|k(Ff)(p) ∈ L2(RN )}. (716)

In turn, for any f ∈ Hk(RN ) and α ∈ Nn
0 such that |α| ≤ k, we can use Fourier operator in order to

define
∂αf := F−1

(
(ip)α(Ff)(p))

)
. (717)

Therefore, for any f ∈ H2(RN ), we can represent the action of free Schrödinger operator (670) in the
following form, exploiting unitarity of Fourier operator F ,

H0f =
ℏ2

2m
F−1(p2(Ff)(p))(x). (718)

In other words, assuming its domain DH0 = H2(RN ), free Schrödinger operator is unitarily equivalent
to the maximally defined multiplication operator:

(F−1 ◦H0 ◦ F)f̃(p) =
ℏ2

2m
p2f̃(p), (719)

for any f̃ ∈ Dp2 , with Dp2 = {f̃ ∈ L2(RN )|p2f̃ ∈ L2(RN )}. On the other hand, we can state the
following result for multiplication operators.

Theorem 3.6. Let A(x) : RN → R be a real measurable function, and A : DA → L2(RN ) be a real
multiplication operator such that

DA = {f ∈ L2(RN )|Af ∈ L2(RN )}, (720)
(Af)(x) = A(x)f(x), (721)

for any f ∈ DA. Then A is self-adjoint.

Proof. First, we notice that DA is dense since any f ∈ L2(RN ) can be constructed as a limit of a
sequence {fn = χΩnf ∈ DA}n∈N, where Ωn = {x ∈ RN ||A(x)| ≤ n}. Therefore, we can check whether
A is a symmetric operator. Indeed, for any h, g ∈ DA, we have:

⟨h|Ag⟩L2(RN ) =

∫
RN

dNx h(x)A(x)g(x) (722)

=

∫
RN

dNx A(x)h(x)g(x) (723)

= ⟨Ah|g⟩L2(RN ). (724)
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On the other hand, if h ∈ DA∗ , then there exists h̃ ∈ L2(RN ) such that

⟨h|Ag⟩L2(RN ) = ⟨h̃|g⟩L2(RN ), (725)

for any h ∈ DA. Calculating the inner product in L2(RN ), we obtain∫
dNx (A(x)h(x)− h̃(x))g(x) = 0. (726)

Using Ωn ↗ RN , we can write∫
dNx χΩn(x)(A(x)h(x)− h̃(x))g(x) = 0, (727)

for any g ∈ L2(RN ), so that χΩn(A(x)h(x)− h̃(x)) ∈ L2(RN ) vanishes. Moreover, since n is arbitrary,
we conclude that A(x)h(x) = h̃(x) ∈ L2(RN ), so that A∗ = A.

Theorem 3.6 guarantees self-adjointness of the operator (719), which is unitarily equivalent to the
free Schrödinger operator. Therefore, we conclude that the energy of a free particle can be associated
to the operator

H0 : H2(RN ) → L2(RN ), (728)

(H0f)(x) = − ℏ2

2m
∆f(x). (729)

In turn, possible values of the energy of a free particle are defined by the spectrum of H0, which is
characterized by the following Theorem.

Theorem 3.7. The spectrum of H0 is characterized by σ(H0) = [0,∞).

Proof. First, we notice that, since H0 is self-adjoint, due to Theorem 2.11 (spectral theorem) there
exists a PVM PH0 such that

H0 =

∫
λ dPH0(λ), (730)

which, in turn, defines a real measure µh = ⟨h|PH0h⟩L2(RN ) for any h ∈ L2(RN ). Moreover, Theorem
2.12 suggests that µh can be connected to the resolvent RH0(z) of H0 via Borel transform,

⟨h|RH0(z)h⟩L2(RN ) =

∫
R

dµh(λ)

λ− z
. (731)

On the other hand, the inner product ⟨h|RH0(z)h⟩L2(RN ) can be calculated directly using the properties
of H0:

⟨h|RH0(z)h⟩L2(RN ) = ⟨Fh|Rp2(z)Fh⟩L2(RN ) (732)

=

∫
RN

dNp
|(Fh)(p)|2

p2 − z
(733)

=

∫ ∞

0
dr

rN−1

r2 − z

∫
Sn−1

dN−1ω |(Fh)(rω)|2 (734)

=

∫
R

χ[0,∞)r
N−1

r2 − z

∫
Sn−1

dN−1ω |(Fh)(rω)|2, (735)

where (732) follows from Lemma 3.8, and (733) uses Definition 2.18 providing the spectral decom-
position of the multiplication operator p2 and Definition 2.13. Finally, performing change of variable
λ :=

√
p, we obtain:

⟨h|RH0(z)h⟩L2(RN ) =
1

2

∫
R
dλ

χ[0,∞)λ
N/2−1

λ− z

∫
Sn−1

dN−1ω |(Fh)(
√
λω)|2, (736)

Operator Theory 59/78



University of Vienna

concluding that

dµh =
dλ

2

χ[0,∞)λ
N/2−1

λ− z

∫
Sn−1

dN−1ω |(Fh)(
√
λω)|2, (737)

which is absolutely continuous with respect to Lebesgue measure and supported on [0,∞), which
corresponds to the spectrum of H0.

Theorem 3.7 suggests that H0 has a continuous spectrum, which covers the entire real half-line.
This means that a free quantum particle can take any positive value of energy.

3.4 Schrödinger operators with a potential

Being at the basis of quantum mechanics, free Schrödinger operator (670) represents a highly impor-
tant example of Schrödinger operators introduced in Definition 3.1. Nevertheless, in most practical
applications, the physical system is subject to a certain potential, which is modelled by a non-trivial
multiplication operator V. However, analysis of the corresponding Schrödinger operator

H = H0 + V, (738)

is, generally speaking, a complicated problem. In quantum mechanics, apart from several particular
models, e.g., harmonic oscillator (described by V (x) = kx2/2, where k is the force constant) and
hydrogen atom (described by V (r) = −e/r in R3, where e is the charge of electron in Gaussian units,
and spherical coordinates are used), (738) is analyzed using approximation methods (e.g., asymptotic
series) by treating V as a so-called perturbation of the free Schrödinger operator. This implies that
the former is “smaller” in a certain sense than H0. In order to formalize this, we provide first a new
definition that extends the notion of boundedness proposed in Definition 1.7 and introduces the notion
of relative boundedness.

Definition 3.9. Let A : DA → H and B : DB → H be operators. B is called A-bounded if DA ⊆ DB

and there exist a, b ≥ 0 such that for any h ∈ DA

∥Bh∥H ≤ a∥Ah∥H + b∥h∥H, (739)

and the value
BA = inf

∃b≥0: ∀h∈H
∥Bh∥H≤a∥Ah∥H+b∥h∥H

(a) (740)

is called A-bound of B.

Lemma 3.9. Let A : DA → H be a closed operator with ρ(A) ̸= ∅, and B : DB → H be closable. Then
B is A-bounded if and only if BRA(z) is a bounded operator for some z ∈ ρ(A). The A-bound of B is
given by:

BA ≤ inf
z∈ρ(A)

∥BRA(z)∥. (741)

Proof. In what follows, we proceed in two steps for both directions.
Step 1 (⇒). Let B be a closable A-bounded operator. Then, by Definition 3.9, DA ⊆ DB. On the

other hand, let A be a closed operator, and z ∈ ρ(A). Then BRA(z) is a closed operator (exercise!)
defined on entire Hilbert space H. Recalling Theorem 2.7, we conclude that BRA(z) is bounded.

Step 2 (⇐). Let h ∈ DA and z ∈ ρ(A), for which BRA(z) is bounded. Then

∥Bh∥H = ∥BRA(z)(A− z)h∥H (742)
≤ ∥BRA(z)∥∥(A− z)h∥H (743)
:= a∥(A− z)h∥H (744)
≤ a∥Ah∥H + a|z|∥h∥H. (745)
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By Definition 3.9, the A-bound of B is given by the lower bound on a such that (745) is satisfied. On
the other hand, Lemma 2.9 suggests that, if BRA(z) is bounded for some z ∈ ρ(A), it is bounded for
any z ∈ ρ(A). Therefore,

BA ≤ inf
z∈ρ(A)

a (746)

= inf
z∈ρ(A)

∥BRA(z)∥. (747)

Definition 3.10. Let A : DA → H be a symmetric operator. It is called bounded from below if the
exists γ ∈ R such that

⟨h|Ah⟩H ≥ γ∥h∥2H (748)

for any h ∈ DA.

Lemma 3.10. Let A : DA → H be a self-adjoint operator, and B : DB → H be A-bounded. Then the
A-bound of B is given by

BA = lim
λ→∞

∥BRA(±iλ)∥, (749)

or, if A is bounded from below, equivalently,

BA = lim
λ→∞

∥BRA(−λ)∥. (750)

Proof. We proceed in two steps.
Step 1. First, we notice that A is a self-adjoint operator, so that C \ R ⊆ ρ(A) due to Theorem

2.8, and the resolvent RA(±iλ) is well-defined for any λ > 0. Let h ∈ H and g = BRA(±iλ)h for some
λ > 0. Since B is A-bounded, by Definition 3.9, there exist a, b ≥ 0 such that:

∥BRA(±iλ)h∥H ≤ a∥ARA(±iλ)h∥H + b∥RA(±iλ)h∥H (751)

= a
∥∥∥(∫ λ′

±iλ+ λ′dP (λ′)
)
h
∥∥∥
H
+ b
∥∥∥(∫ 1

±iλ+ λ′dP (λ′)
)
h∥H (752)

≤
(
a sup
λ′∈σ(A)

∣∣∣ λ′

±iλ+ λ′

∣∣∣+ b sup
λ′∈σ(A)

∣∣∣ 1

±iλ+ λ′

∣∣∣)∥h∥H (753)

≤
(
a+

b

λ

)
∥h∥H, (754)

where (752) uses Definition 2.18 and Theorem 2.11 (spectral theorem) and (753) follows from (441).
Therefore, taking into account the expression (739) for the relative bound, we conclude that

lim supλ∥BRA(±iλ)∥ ≤ BA. (755)

On the other hand, Lemma 3.9 suggests that BA ≤ infλ∥BRA(±iλ)∥. Therefore, we conclude that
(749) is true.

Step 2. If A is bounded from below by γ, Theorem 2.11 (spectral theorem) suggests that for any
λ > 0, −λ ∈ ρ(A) if −λ < γ, and the resolvent RA(−λ) is well-defined for the corresponding values of
λ. Let h ∈ H and g = BRA(−λ)h for some −λ < γ. Since B is A-bounded, by Definition 3.9, there
exist a, b ≥ 0 such that:

∥BRA(−λ)h∥H ≤ a∥ARA(−λ)h∥H + b∥RA(−λ)h∥H (756)

= a
∥∥∥(∫ λ′

λ+ λ′dP (λ′)
)
h
∥∥∥
H
+ b
∥∥∥(∫ 1

λ+ λ′dP (λ′)
)
h∥H (757)

≤
(
a sup
λ′∈σ(A)

∣∣∣ λ′

λ+ λ′

∣∣∣+ b sup
λ′∈σ(A)

∣∣∣ 1

λ+ λ′

∣∣∣)∥h∥H (758)

≤
(
amax

(
1,

|γ|
λ+ γ

)
+

b

λ+ γ

)
∥h∥H, (759)
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where (757) uses Definition 2.18 and Theorem 2.11 (spectral theorem), (758) follows from (441), and
(759) takes into account that the lower bound of the spectrum of A is given by γ due to Definition
3.10. Therefore, we conclude that (750) is true.

Definition 3.9 allows us to formalize “smallness” of the operator V in (738) with respect to free
Schrödinger operator H0 as smallness of its H0-bound VH0 . Self-adjointness of the Schrödinger oper-
ator (738) in this case is guaranteed by the following important result based on Lemma 3.10.

Theorem 3.8 (Kato-Rellich theorem). Let A : DA → H be (essentially) self-adjoint operator, and
B : DB → H be a symmetric A-bounded operator with BA < 1. Then A + B with DA+B = DA is
(essentially) self-adjoint. If A is bounded from below by γ, then A+B is bounded from below by

γ −max
(
a|γ|+ b,

b

1− a

)
. (760)

Proof. We proceed in two steps.
Step 1. We start by noticing that if B is A-bounded due to Definition 3.9, then the graph norm

of A (as introduced in Definition 2.5) dominates the one of B as well as A+B. Therefore, DA ⊆ DB

and DA ⊆ DA+B. Therefore, without loss of generality, we can assume that the (essentially self-adjoint
by assumption of the Theorem) operator A is closed and, thus, self-adjoint. On the other hand, since
BA < 1, Lemma 3.10 suggests that there exists λ > 0 such that ∥BRA(∓iλ)∥ < 1. Since BRA(∓iλ)
is bounded, there exists a Neumann series which converges to RBRA(∓iλ)(z

′) for any z′ ∈ C such that
|z′| > ∥BRA(∓iλ)∥, so that z′ ∈ ρ(BRA(∓iλ))13. Therefore, we conclude that −1 ∈ ρ(BRA(∓iλ)).
Hence, by Definition 2.10, the operator BRA(∓iλ) + id is bijective, so that

ran(BRA(∓iλ) + id) = H, (761)

since RA(∓iλ) is defined on entire H. On the other hand, we have

A+B ± iλ id = (BRA(∓iλ) + id)(A± iλ id). (762)

Therefore, we conclude that
ran(A+B ± iλ id) = H. (763)

Recalling the sufficient criterion of self-adjointness provided by Theorem 2.1, we find that the operator
A+B is self-adjoint.

Step 2. Let us assume that A is bounded from below by γ. Then Theorem 2.11 (spectral theorem)
suggests that for any λ > 0, −λ ∈ ρ(A) if −λ < γ, and the resolvent RA(−λ) is well-defined for the
corresponding values of λ. On the other hand, since BA < 1, Lemma 3.10 suggests that there exists
λ > 0 such that ∥BRA(−λ)∥ < 1. Taking into account the estimation given by (759), we choose such
λ that

amax
(
1,

|γ|
λ+ γ

)
+

b

λ+ γ
< 1. (764)

Solving (764) with respect to λ, we obtain

−λ < γ −max
(
a|γ|+ b,

b

1− a

)
. (765)

Therefore, −λ ∈ ρ(A+B) if it satisfies (765), hence, proving the estimate (760).

As an example of application of Theorem 3.8 to Schrödinger operators (738), we consider a compact
interval I = [0, 2π] as a toy model of physical space, which has been already used to analyze the
momentum operator (598)–(599). Recalling its physical interpretation (a quantum particle moving

13See Theorem 2.16 in [1] (Theorem 2.15 in the first edition of [1]).
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along the bottom of a well), let us consider a self-adjoint free Schrödinger operator H0 : DH0 →
L2(0, 2π) with

DH0 = {f ∈ H2[0, 2π]|f(0) = f(2π) = 0}, (766)

and the multiplication operator V : DV → L2(0, 2π) with respect to some real-valued measurable
function V (x). Since any f ∈ DH0 is continuous and bounded, we conclude that DH0 ⊂ DV if
V (x) ∈ L2(0, 2π), and V is H0-bounded.

Exercise 3.5. Show that any f ∈ DH0 satisfies

∥f∥2∞ ≤ ε

2
∥f ′′∥2L2(0,2π) +

1

2ε
∥f∥2L2(0,2π) (767)

for any ε > 0.

Since (767) is satisfied for any ε > 0, recalling Definition 3.9, we find that any V with respect to
V (x) ∈ L2(0, 2π) is H0-bounded, and, moreover, VH0 = 0. This allows us to treat V as a perturbation
of H0, and Theorem 3.8 suggests that the corresponding Schrödinger operator (738) is self-adjoint,
hence, representing a physical observable.

4 Applications of nonstandard analysis to operator theory

Nonstandard analysis (NSA) was invented by the logician Abraham Robinson in 1960s. In a nutshell,
NSA seeks to provide a rigorous treatment of calculus and classical analysis and use infinitesimal and
infinite quantities as numbers, hence, avoiding the ε − δ language and referring to the original views
of Newton and Leibniz. Interestingly, the NSA-like view on infinitesimals can be found in a plenty of
beginner texts on physics (e.g., classical mechanics and electrodynamics) that use differentials inter-
preting them as "very small" quantities. While NSA is not the only approach to non-Archimedean
mathematics (among alternative approaches one can name, e.g., Colombeau’s algebras and p-adic num-
ber system), it has been extensively studied after its introduction and found a plethora of applications
in mathematics (e.g., in stochastics and combinatorics) as well as physics. In what follows, we briefly
focus on applications of NSA in operator theory and Schrödinger operators.

4.1 Non-Archimedean fields and construction of hyperreals

We start the discussion on applications of NSA to operator theory by introduction of its fundamental
objects, the fields of hyperreal numbers which include infinitely small (infinitesimal) and large (infinite)
elements. Obviously, they do not carry the Archimedean property satisfied by the field R of real
numbers, which can be stated in the following way: for any x, y ∈ R, there exists a positive integer
number n such that nx > y. Therefore, in order to describe the properties of hyperreals, we have to
formalize first the notion of non-Archimedean fields, which is provided by the following Definitions.

Definition 4.1. Let (K,+, ·) be a field. It is called ordered if there exists a set K+ ⊂ K such that it
is closed under the binary operations of K,

∀x, y ∈ K+ : x+ y ∈ K+, x · y ∈ K+, (768)

and K = K+ ⊔ {0} ⊔ K−, where K− = {x ∈ K| − x ∈ K+} and ⊔ denotes disjoint union. The
corresponding order relation is defined as:

∀x, y ∈ K : x < y ⇔ y − x ∈ K+. (769)

Definition 4.2. Let K be an ordered field. An element ξ ∈ K is called:

• infinitesimal if |ξ| < 1
n for any n ∈ N,
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• finite if there exists n ∈ N such that |ξ| < n,

• infinite if |ξ| > n for any n ∈ N.

Definition 4.3. Let K be an ordered field. It is called non-Archimedean if there exists an infinite
ξ ∈ K.

In any non-Archimedean field, it is possible to introduce an equivalence relation with respect to its
elements separated by an infinitesimal.

Definition 4.4. Let K be a non-Archimedean field. Elements ξ, ζ ∈ K are called infinitely close if
ξ − ζ is infinitesimal, denoted ξ ∼ ζ.

Exercise 4.1. Prove that ∼ is an equivalence relation.

Definition 4.5. Let K be a non-Archimedean field, and ξ ∈ K. The monad of ξ is the set of all
elements of K infinitely close to it,

mon(ξ) = {ζ ∈ K|ζ ∼ ξ}, (770)

and the galaxy of ξ is the set
gal(ξ) = {ζ ∈ K|ζ − ξ is finite}. (771)

Theorem 4.1. Let K ⊇ R be an ordered field, and ξ ∈ K is finite. Then there exists a unique r ∈ R
such that ξ ∼ r. It defines the function st : gal(0) → R called standard part such that st(ξ) = r.

Proof. Let ξ ∈ K be finite, and

A = {a ∈ R|a < ξ}. (772)

Since ξ is finite, there exist s, s′ ∈ R such that s < ξ < s′. Therefore, A ̸= ∅ and is bounded by s′

from above. Taking into account completeness of R, we conclude that there exists a least upper bound
r ∈ R of A. Now, let δ ∈ R+. Since r is an upper bound of A, we have r + δ /∈ A, and ξ ≤ r + δ.
On the other hand, if ξ ≤ r − δ, then r − δ is an upper bound of A contradicting the fact that r is a
least upper bound of A. Hence, we conclude that r − δ < ξ ≤ r + δ and, in turn, |ξ − r| ≤ δ for any
δ ∈ R+. Hence, ξ − r is infinitesimal, so that ξ ∼ r by Definition 4.4. Uniqueness of r follows from
transitivity of ∼ as equivalence relation (Exercise 4.1): let r′ ∈ R such that ξ ∼ r′. Therefore, r ∼ r′,
so that r = r′ since both are elements of R.

Corollary 4.1. Let K ⊃ R be an ordered field. Then it is non-Archimedean.

Proof. Let ξ ∈ K \ R. If ξ is infinite, then K is non-Archimedean by Definition 4.3. Otherwise, if ξ is
finite, we define an element ζ ∈ K such that

ζ = (ξ − st(ξ))−1, (773)

which is infinite. Therefore, K is non-Archimedean by Definition 4.3.

Now we proceed with explicit construction of a hyperreal field out of R. The usual way to construct a
hyperreal field in NSA is the ultrapower construction which starts with a ring (RN,+, ·) of sequences
on R. In turn, one defines equivalence classes on RN such that each class consists of sequences that are
equal "almost everywhere". In order to formalize this "almost everywhere"-agreement of sequences,
one needs to define what are "large" subsets of N, so that agreement of sequences on these subsets
can be interpreted as an "almost everywhere"-agreement. Intuitively, any set that contains a large set
should be large itself, an intersection of two large sets should be large as well, and a complement of
a large set should be "small". These conditions are fulfilled by involving the notion of ultrafilter, the
definition whereof requires to provide first the definition of filter.
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Definition 4.6. Let X be a non-empty set. A non-empty set F ⊆ 2X is called filter if it satisfies the
following conditions.

1. Let A ∈ F and B ∈ F . Then A ∩B ∈ F .

2. Let A ∈ F and A ⊆ B. Then B ∈ F .

3. ∅ /∈ F .

If F ̸= 2X , it is called proper filter.

Definition 4.7. Let U ⊂ 2S be a proper filter on a set S. It is called ultrafilter if, for any A ∈ 2S,
either A ∈ U or Ac ∈ U .

Lemma 4.1. Let U ⊂ 2S be a proper filter on a set S. It is an ultrafilter if and only if it cannot be
extended to a larger proper filter on S.

Proof. We proceed with proof of the theorem in both directions.
Step 1 (⇒). Let U ⊂ 2S be an ultrafilter on S, which can be extended to a collection UA ⊂ 2S

such that it includes some A ⊆ S which does not belong to U . By Definition 4.7, Ac ∈ U , hence, both
A,Ac ∈ UA. However, A ∩Ac = ∅, violating property 3 of Definition 4.6. Therefore, UA is not a filter,
and, since A is arbitrary, U cannot be extended to a larger proper filter on S.

Step 2. (⇐). Let F ⊂ 2S be a filter on S, which is not an ultrafilter. Therefore, recalling
Definition 4.7, ∃A ⊆ S such that A /∈ F and Ac /∈ F . Now, let B, B̃ ∈ F be elements of the filter
such that B ∩ A = ∅ and B̃ ∩ Ac = ∅. Therefore, B ⊆ Ac and B̃ ⊆ A. By property 2 of Definition
4.6 this means that A ∈ F as well as Ac ∈ F . This contradicts the fact that A does not belong to the
filter, and we conclude that, for any B ∈ F , A ∩ B ̸= ∅ or Ac ∩ B ̸= ∅. This means that A ∪ F or
Ac ∪ F fulfill finite intersection property : for any finite nonempty collection {Fi}ni=1, n ∈ N of subsets
Fi ∈ A ∪ F or subsets Fi ∈ Ac ∪ F , the condition

n⋂
i=1

Fi ̸= ∅ (774)

is satisfied. Then, denoting C = A ∪ F or C = Ac ∪ F , respectively, we build a collection of sets

FC = {F ⊆ S|F ⊇ F1 ∩ · · · ∩ Fn for some n ∈ N and some Ci ∈ C, i = . . . , n}. (775)

First, it is obvious that C ∈ FC . On the other hand, (774) suggests that ∅ /∈ FC . Now, let A,A′ ∈ FC ,
so that, for some n, n′ ∈ N there exist collections {Ci}ni=1 and {C ′

i}n
′

i=1 of sets in C such that A ⊇
C1 ∩ . . .∩Cn and A′ ⊇ C ′

1 ∩ . . .∩C ′
n′ . Therefore, A∩A′ ⊇ C1 ∩ . . .∩Cn ∩C ′

1 ∩ . . .∩C ′
n′ and, in turn,

A ∩ A′ ∈ FC . Finally, let A ⊆ B for some B ⊆ S. This means that B ⊃ C1 ∩ . . . ∩ Cn and, hence,
B ∈ FC . Therefore, recalling Definition 4.6, we conclude that FC is a filter, which properly includes
A ∪ F or Ac ∪ F , so that F cannot be maximal.

Exercise 4.2. Let S be an infinite set. Show that the Fréchet filter

Fco = {A ⊆ S|Ac is finite} (776)

formed by cofinite subsets of S is a proper filter but not an ultrafilter.

Definition 4.8. Let U ⊂ 2S be an ultrafilter on a set S. It is called non-principal ultrafilter if
there exists no a ∈ S such that U = Ua, where

Ua = {A ⊆ S|a ∈ A}. (777)

Ua is called principal filter generated by a ∈ S.
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Theorem 4.2. Let S be an infinite set. Then there exists a non-principal ultrafilter U ⊂ 2S.

Proof. Since S is an infinite set, the Frechét filter (776) can be constructed on it. In turn, the Frechét
filter Fco carries the finite intersection property, i.e., for any finite nonempty collection {Fi}ni=1, n ∈ N
of subsets Fi ∈ Fco, the condition

n⋂
i=1

Fi ̸= ∅ (778)

is satisfied. Let us define a collection of filters

C = {F ⊂ 2S |Fco ⊆ F , F is a filter}, (779)

which is partially ordered by inclusion, and let Ct ⊆ C be a totally ordered subcollection. This means
that, for any F1,F2 ∈ Ct, we have A1, A2 ∈ F1 or A1, A2 ∈ F2 for any A1 ∈ F1 and A2 ∈ F2.
Therefore, A1 ∩A2 ∈ F1 ∪F2 by property 1 of Definition 4.6. In turn, A1 ∩A2 ∈

⋃
F∈Ct F ⊆

⋃
F∈C F .

Moreover, any A ∈
⋃

F∈C F belongs to some filter F ′ ∈ Ct, so that any B ⊇ A fulfills B ∈ F ′ due to
property 2 of Definition 4.6 and, in turn, B ∈

⋃
F∈C F . Finally, since ∅ /∈ F for any F ∈ Ct, we have

that ∅ /∈
⋃

F∈C F and conclude that, for any totally ordered subcollection Ct ⊆ C,
⋃

F∈C F is a filter
by Definition 4.6 and an element of C. Therefore, any Ct has an upper bound in C, so that C has a
maximal element U ∈ C by Zorn’s lemma14. Now, let A ⊂ S such that A /∈ U , and suppose that U can
be extended to a filter FA, so that A ∈ FA. Therefore, Fco ⊆ U ⊂ FA, and FA ∈ C, contradicting the
fact that U is a maximal element of C. Hence, U is a maximal filter and, by Lemma 4.1, an ultrafilter
on S, and the Frechét filter Fco is included in it. On the other hand, for any a ∈ S, S \ {a} ∈ Fco and,
thus, S \ {a} ∈ U . Therefore, for any a ∈ S, U includes subsets of S which do not contain a, so that,
recalling Definition 4.8, U is a non-principal ultrafilter.

Theorem 4.2 is an important tool which guarantees that there exists a non-principal ultrafilter U
on N, which can be used to construct hyperreals as a quotient set of RN by introducing the following
relation.

Definition 4.9. Let U ⊂ 2N be a non-principal ultrafilter on N, and {rn}n∈N ∈ RN and {r′n}n∈N ∈ RN

be sequences on R. They agree almost everywhere modulo U or agree U-eventually if

{n ∈ N|rn = r′n} ∈ U , (780)

denoted {rn} ≡ {r′n}.

Exercise 4.3. Prove that ≡ is an equivalence relation and congruence on (RN,+, ·).

Definition 4.10. A hyperreal field ∗R is a quotient set RN/ ≡.

Therefore, a hyperreal field ∗R constructed in this manner consists of equivalence classes [an] =
{{bn}n∈N ∈ RN : {bn} ≡ {an}}. It is naturally equipped with well-defined binary operations

+ : [an], [bn] 7→ [an] + [bn] = [an + bn], (781)
· : [an], [bn] 7→ [an] · [bn] = [an · bn]. (782)

Indeed, let us take sequences {rn}n∈N, {r′n}n∈N, {sn}n∈N, {s′n}n∈N ∈ RN such that {rn} ≡ {r′n} and
{sn} ≡ {s′n}. Then, considering {rn + sn}n∈N and {r′n + s′n}n∈N, we find that {n ∈ N|rn + sn =
r′n + s′n} ⊆ {n ∈ N|rn = r′n} ∩ {n ∈ N|sn = s′n} ∈ U due to property 1 of Definition 4.6. Similarly, for
{rn·sn}n∈N and {r′n·s′n}n∈N, we have {n ∈ N|rn·sn = r′n·s′n} ⊆ {n ∈ N|rn = r′n}∩{n ∈ N|sn = s′n} ∈ U .
Similarly, it is possible to equip ∗R with a partial order relation

[an] < [bn] ⇔ {n ∈ N|an < bn} ∈ U . (783)
14Recall that Zorn’s lemma is equivalent to the axiom of choice and states the following: any partially ordered set

C such that any its totally ordered subset Ct ⊆ C has an upper bound in C, necessarily contains at least one maximal
element.
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Indeed, considering again the sequences {rn}n∈N, {r′n}n∈N, {sn}n∈N, {s′n}n∈N ∈ RN, we find {n ∈ N|rn <
sn} ⊇ {n ∈ N|rn = r′n} ∩ {n ∈ N|sn = s′n} ∩ {n ∈ N|r′n = s′n} and {n ∈ N|r′n < s′n} ⊇ {n ∈
N|rn = r′n} ∩ {n ∈ N|sn = s′n} ∩ {n ∈ N|rn = sn}. Therefore, {n ∈ N|rn < sn} ∈ U if and only if
{n ∈ N|r′n < s′n} ∈ U .

The field R of real numbers is naturally embedded to ∗R by the mapping ∗ : R ↪−→ ∗R that acts as

∗ : r 7→ ∗r = [{rn|∀n ∈ N : rn = r}n∈N] := [r]. (784)

In order to provide examples of nonstandard numbers, i.e. elements of ∗R\R, we consider two sequences

{εn}n∈N =
{ 1

n

}
n∈N

, (785)

{ωn}n∈N = {n}n∈N. (786)

First, we notice that
{
n ∈ N

∣∣∣0 < 1
n

}
= N ∈ U and

{
n ∈ N

∣∣∣ 1n < r
}

∈ U for any r ∈ R since it is a
cofinite set, hence, an element of the Frechét filter Fco which, in turn, is contained in U (see the proof
of Theorem 4.2). Hence, we conclude that ∗0 < [εn] <

∗r for any r ∈ R, so that, recalling Definition
4.2, [εn] ∈ ∗R is a positive infinitesimal number. In the same manner, {n ∈ N|r < n

}
∈ U for any

r ∈ R as a cofinite set, so that ∗r < [ωn] for any r ∈ R and, hence, [ωn] ∈ ∗R is a positive infinite
number. Moreover, it is straightforward to demonstrate that [ωn] = [εn]

−1.
Finally, we prove that the constructed hyperreal field in indeed an ordered field.

Theorem 4.3. (∗R,+, ·, <) is an ordered field with zero ∗0 and unity ∗1.

Proof. From the above construction, it is obvious that ∗R is a commutative ring with with zero ∗0 = [0],
unity ∗1 = [1], and inverse such that, for any [rn] ∈ ∗R with respect to the corresponding {rn}n∈N ∈ RN,
−[rn] = [−rn] with respect to {−rn}n∈N ∈ RN. Therefore, it is necessary to prove that any [rn] ̸= ∗0
has a multiplicative, and < is a total ordering on ∗R. For the former, we notice that [rn] ̸= ∗0 means
that {n ∈ N|rn = 0} /∈ U and N := {n ∈ N|rn ̸= 0} ∈ U . Defining a new sequence {sn}n∈N such that

sn =

{
1
rn
, if n ∈ N,

0, if n /∈ N,
(787)

we have that {n ∈ N|rn · sn = 1} = N ∈ U , so that [rn · sn] = ∗1. Recalling (782), we conclude that

[rn] · [sn] = ∗1, (788)

so that we can define the multiplicative inverse [sn] = [rn]
−1, and ∗R is a field. For < being total

ordering on ∗R, we notice that, for any [rn], [sn] ∈ ∗R,

N = {n ∈ N|rn < sn} ⊔ {n ∈ N|rn = sn} ⊔ {n ∈ N|rn > sn} (789)
:= N<

rn,sn ⊔ N=
rn,sn ⊔ N>

rn,sn . (790)

Combining properties 1 and 3 of Definition 4.6 and Definition 4.7, we have that exactly one of the sets
N<
rn,sn , N=

rn,sn , and N>
rn,sn belongs to the ultrafilter U . In turn, this means that for any [rn], [sn] ∈ ∗R,

exactly one of the relations [rn] < [sn], [rn] = [sn], and [rn] > [sn] is true. Therefore, recalling
Definition 4.1, we define ∗R+ := {[rn] ∈ ∗R|[rn] < 0}, so that ∗R = ∗R+ ⊔ {∗0} ⊔ ∗R−} with ∗R− =
{[rn] ∈ ∗R| − [rn] ∈ ∗R+}. In turn, let [rn], [sn] ∈ ∗R+. We have that

{n ∈ N|rn > 0} ∩ {n ∈ N|sn > 0} ⊆ {n ∈ N|rn + sn > 0}, (791)
{n ∈ N|rn > 0} ∩ {n ∈ N|sn > 0} ⊆ {n ∈ N|rn · sn > 0}, (792)

so that [rn] + [sn] ∈ ∗R+ and [rn] · [sn] ∈ ∗R+. Hence, due to Definition 4.1, ∗R is an ordered field.

Operator Theory 67/78



University of Vienna

It is possible to show that the set of non-principal ultrafilters on N is as big as the power set 22
N

of power set of N. Therefore, a natural question arises: how the choice of the underlying ultrafilter U
affects the properties of hyperreal fields introduced via the ultrapower construction, first of all, whether
∗R is unique? Generally speaking, it is neither provable nor disprovable within the ZFC set theory.
However, if the continuum hypothesis is accepted, one can prove that the hyperreal fields constructed
under different ultrafilters U are isomorphic, so that the choice of U is irrelevant in this case.

The ∗-map can be further generalized to a map associating to standard mathematical objects (such
as subsets of RN and functions f : RN → R for some N ∈ N) their nonstandard extensions on ∗R. For
example, for a given subset A ⊆ R, we can define its nonstandard extension as ∗A = {[an] ∈ ∗R|{n ∈
N|an ∈ A} ∈ U}. However, in order to guarantee that such extended nonstandard objects do not
lose the properties carried by the original standard objects, it is necessary to involve the machinery of
mathematical logic, first of all, model theory that provides the transfer principle for such generalized
∗-map. The former can be informally stated as the following: given standard mathematical objects
A1, . . . , An, their elementary property P (A1, . . . , An) is true if and only if P (∗A1, . . . ,

∗An) is true. In
order to simplify introduction of nonstandard objects, the usual ultrapower construction in NSA can
be translated into a more intuitive approach called Λ-limit, which parallels construction of the field of
real numbers R via Cauchy limits on the field Q of rational numbers.

Definition 4.11. We call index set an infinite set Λ ⊃ R such that

Λ =
⋃

n∈N0

Λn(R) (793)

such that Λ0(R) = R and Λn+1(R) = Λn(R) ∪ 2Λn(R).

We can single out finite sets from the index set Λ generating a family L = Pfin(Λ) ⊂ 2Λ. It is
naturally equipped with a partial order relation ⊂ making L a directed set. In turn, we can introduce
a set F(L,R) of functions (nets) φ : L → R equipped with natural pointwise binary operations +
and · and partial order relation. For the nets, we can introduce the standard Cauchy limit extending
Definition 3, so that, for any φ ∈ F(L,R),

L = lim
λ→Λ

φ(λ) (794)

if and only if for any ε > 0 there exists λ0 ∈ L such that for any λ ⊃ λ0

|φ(λ)− L| < ε. (795)

Therefore, the index set Λ can be seen as a "point at infinity" with respect to L. This suggests a
construction of a hyperreal field considering limits of nets on L. However, the Cauchy limit does not
necessarily exist for arbitrary net φ ∈ F(L,R), and we need some additional structure provided iby the
following Exercise.

Exercise 4.4. Let U be a non-principal ultrafilter on L. Then15

IU =
{
φ ∈ F(L,R)

∣∣∣∃U ∈ U : φ(λ) = 0 ∀λ ∈ U
}

(796)

is a maximal ideal on the ring F(L,R), so that the quotient set F(L,R)/IU is a field.

The quotient set F(L,R)/IU with elements [φ]U ∈ F(L,R)/IU , which are equivalence classes with
respect to the corresponding net φ ∈ F(L,R), can be associated to a hyperreal field, whose elements
are called Euclidean numbers16 in order to highlight the used approach to their construction.

15Generalizing Definition 4.9 to nets, the condition (796) can be seen as requirement for φ to agree with a zero net
U-eventually.

16The name "Euclidean numbers" reflects their origin as an extension of ordinal numbers which satisfies the five common
notions of Euclid’s Elements (in particular, the principle "The whole is greater than the part" which is incompatible
with Cantor’s theory of cardinality). For more details, the reader can refer to arXiv:1702.04163.
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Definition 4.12. A field E ⊃ R is called field of Euclidean numbers if there exists an isomorphism

J : F(L,R)/IU → E (797)

such that for any r ∈ R and the corresponding constant net φr(λ) = r it fulfills J([φr]U ) = r.

The isomorphism J allows us to define a new notion of limit of nets on L, which we denote by
vertical arrow in order to distinguish it from the usual Cauchy limit.

Definition 4.13. Let φ ∈ F(L,R) be a net. Then its Λ-limit is

lim
λ↑Λ

φ(λ) = J([φ]U ). (798)

Importantly, Λ-limit and the standard Cauchy limit can be connected, as suggested by the following
Exercise.

Exercise 4.5. Let φ ∈ F(L,R) be a net such that it admits the Cauchy limit. Then

lim
λ→Λ

φ(λ) = st
(
lim
λ↑Λ

φ(λ)
)
. (799)

Having a proper definition of the hyperreal field E and Λ-limit of nets on R, we can use the former
to construct extensions of standard mathematical objects, starting with extensions of subsets of RN

for some N ∈ N.

Definition 4.14. Let N ∈ N, and A ⊆ RN be a subset of RN . Then an extension ∗A ⊆ EN of A is
the set

∗A =
{
lim
λ↑Λ

xλ

∣∣∣xλ ∈ A, ∀λ ∈ L
}
. (800)

In a similar manner, if there is a net of sets Aλ ⊆ RN , we can consider nets {xλ}λ∈Λ of their
elements such that each xλ belongs to the corresponding Aλ and use the corresponding Λ-limits in
order to associate to it a set

⟨Aλ⟩λ∈Λ =
{
lim
λ↑Λ

xλ

∣∣∣xλ ∈ Aλ, ∀λ ∈ L
}
. (801)

This allows us to provide several important definitions via the Λ-limit. First, we define a nonstandard
extension of a function.

Definition 4.15. Let f : RN → R. Then its extension is a function ∗f : EN → E such that

∗f(x) = lim
λ↑Λ

f(xλ), (802)

for any x = limλ↑Λ xλ.

Next, we consider the sets which are nonstandard counterparts of finite sets and, therefore, share
many useful properties with them.

Definition 4.16. Let N ∈ N. A set F ⊂ EN is called hyperfinite if there exists a net {Fλ}λ∈L of
finite sets such that

F =
{
lim
λ↑Λ

xλ

∣∣∣xλ ∈ Fλ

}
. (803)

One of the crucial properties that, exploiting their nature as nonstandard counterpart of finite sets,
the elements of a hyperfinite set can be "summed" by defining a Λ-limit of sums over corresponding
finite sets.
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Definition 4.17. Let N ∈ N, and F ⊂ EN be a hyperfinite set. Then the hyperfinite sum of its
elements is ∑

x∈F
x = lim

λ↑Λ

∑
x∈Fλ

x. (804)

We can use the notion of hyperfinite set in order to define the following hyperfinite space, which
can be intuitively interpreted as a grid of infinitesimally separated elements, and construct functions
on it.

Definition 4.18. Let N ∈ N. A hyperfinite set Γ such that RN ⊂ Γ ⊂ EN is called hyperfinite grid.
Furthermore, for any Ω ⊂ RN , we define

Ω◦ := ∗Ω ∩ Γ. (805)

Definition 4.19. Let Γ be a hyperfinite grid with the corresponding net {Γλ}λ∈L of finite subsets of
RN for some n ∈ N. The space F(Γ,E) is called space of grid functions if, for any u ∈ F(Γ,E),

u(x) = lim
λ↑Λ

u(xλ), (806)

for any net {xλ}λ∈L with xλ ∈ Γλ such that x = limλ↑Λ xλ ∈ Γ.

It is known that, given a function f : F → R on a finite set F ⊆ RN for some n ∈ N, can be written
in terms of characteristic functions χa of each element a ∈ F as a sum

f(x) =
∑
a∈F

f(a)χa(x). (807)

This property can be straightforwardly translate to grid functions as suggested by the following Exer-
cise.

Exercise 4.6. Prove that any grid function u : Γ → E can be represented as a hyperfinite sum

u(x) =
∑
a∈Γ

u(a)χa(x), (808)

where χa(x) is a characteristic function of {a}.

This allows us to straightforwardly restrict extensions of standard functions to the given hyperfinite
grid. In particular, for a given function f : Df → R, where Df ⊆ RN we can define the corresponding
grid function f◦ : D◦

f → E by restricting ∗f to Γ as

f◦(x) =
∑

a∈∗Df∩Γ
f(a)χa(x), (809)

i.e., setting f◦ to zero in the points of Γ which do not belong to the extension of Df .

4.2 Space of ultrafunctions

We have concluded previous section with important definitions of hyperfinite grid Γ and the corre-
sponding abstract functional space F(Γ,E). Now, our aim is to construct a space of grid functions
suitable for the purposes of operator theory, thus, substituting the standard Hilbert space. In par-
ticular, for its applications to non-relativistic quantum mechanics, we need a space which contains
L2-functions as well as Schwartz distributions. For the sake of simplicity, we consider the real line R
and build the new space out of two components:

1) a suitable hyperfinite grid Γ constructed, due to Definition 4.16, via a net of finite subsets {Γλ}λ∈L
of R in such a way that max(Γ) = −min(Γ) = ω, where ω = limλ↑Λ ωλ with ωλ = max(Γλ),
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2) a suitable standard functional space V (R) ⊃ C0(R).

We construct a family {Vλ(R)}λ∈L of finite-dimensional subspaces of V (R) such that, for any finite-
dimensional subspace F ⊂ V (R), there exists λ such that F ⊂ Vλ(R), so that

V (R) =
⋃
λ∈L

Vλ(R). (810)

The corresponding space V ◦(Γ) of grid functions, which we call ultrafunctions, is equipped with
several ad hoc properties provided by the following axiomatic definition.

Definition 4.20. A space of ultrafunctions V ◦(Γ) generated by a functional space V (R) and mod-
eled on the family of its finite subspaces {Vλ(R)}λ∈L is a space of grid functions u : Γ → R that satisfy
the axioms given below17.

We seek to equip the space of ultrafunctions with a structure of algebra. First, it is necessary to
ensure that algebra of ultrafunctions extends the algebra of real functions, with identity 1◦, where
1 ∈ V (R) is a constant function such that 1(x) = 1 for any x ∈ R.

Axiom 1: Extension axiom

For every function f : R → R, there exists a unique ultrafunction f◦ ∈ V ◦(Γ) such that for any
x ∈ R:

f◦(x) = f(x). (811)

On the other hand, we aim at a space V ◦(Γ) which does not simply consists of extensions of
real functions to the hyperfinite grid but contains new objects as well. An example is given by a
characteristic function χa for any a ∈ Γ \ R. Therefore, we require the following Axiom, which also
implies that any ultrafunction u ∈ V ◦(Γ) can be represented as the hyperfinite sum (808).

Axiom 2: χa-axiom

For any element a ∈ Γ, the corresponding characteristic function χa ∈ V ◦(Γ).

Finally, we formalize the construction of V ◦(Γ) via the family of finite-dimensional subspaces
{Vλ(R)}λ∈L of the original functional space V (R).

Axiom 3: Approximation axiom

A function u : Γ → E is an ultrafunction, so that u ∈ V ◦(Γ), if and only if there is a net of
functions uλ ∈ Vλ(R) such that

u(x) = lim
λ↑Λ

uλ(xλ), (812)

for every x = limλ↑Λ xλ ∈ Γ, where xλ ∈ Γλ.

Next, we equip the space of ultrafunctions with suitable definitions of integral and derivative. First,
in order to provide a definition of integral on V ◦(Γ), we require the functional space V (R) to fulfill
Vc(R) ⊂ L1(R) ⊂ Vc(R), where Vc(R) ⊂ V (R) is the subspace of functions with a compact support,
and the closure is taken in L1-topology.

Definition 4.21. Let u ∈ V ◦(Γ). The pointwise integral
∮
: V ◦(Γ) → E is defined as follows:∮

u(x)dx = lim
λ↑Λ

∫ ωλ

−ωλ

uλ(x)dx. (813)

17This definition can be straightforwardly generalized to RN for arbitrary N ∈ N by considering a hyperfinite grid
RN ⊂ Γ ⊂ EN and a space ⊗N

i=1V (R) ⊂ V (RN ) with a family {⊗N
i=1Vλ(R)}λ∈L of its finite-dimensional subspaces.
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The following result demonstrates the origin of the name "pointwise" for the integral since it can
be associated to a hyperfinite sum with respect to the values of the ultrafunction in each point of the
hyperfinite grid.

Lemma 4.2. Let u ∈ V ◦(Γ). Then ∮
u(x)dx =

∑
a∈Γ

u(a)d(a), (814)

where d(a) =
∮
χa(x)dx.

Proof. Let a = limλ↑Λ aλ ∈ Γ, where aλ ∈ Γλ. We consider a net {σaλ}λ∈L with σaλ ∈ Vλ(R) such that

lim
λ↑Λ

σaλ(xλ) = χa(x), (815)

for any x = limλ↑Λ xλ. Therefore, for any u ∈ V ◦(Γ), which is generated by a net of functions {uλ}λ∈L
due to Axiom 3,

uλ(x) =
∑

aλ∈Γλ

uλ(aλ)σaλ(x). (816)

Defining a function d(aλ) :=
∫ ωλ

−ωλ
σaλ(x)dx, we have:∫ ωλ

−ωλ

uλ(x)dx =

∫ ωλ

−ωλ

( ∑
aλ∈Γλ

uλ(aλ)σaλ(x)
)
dx (817)

=
∑

aλ∈Γλ

uλ(aλ)

∫ ωλ

−ωλ

σaλ(x)dx (818)

=
∑

aλ∈Γλ

uλ(aλ)d(aλ). (819)

Therefore, we conclude that ∮
u(x)dx = lim

λ↑Λ

∫ ωλ

−ωλ

uλ(x)dx (820)

= lim
λ↑Λ

∑
aλ∈Γλ

uλ(aλ)d(aλ) (821)

=
∑
a∈Γ

u(a)d(a). (822)

The function d(a) can, hence, be seen as a "measure" of a point a ∈ Γ of the hyperfinite grid. This
contrasts with the Lebesgue integral, which, for any a ∈ R, provides

∫
χa(x)dx = 0. In general, we

have the following result connecting pointwise and Lebesgue integrals.

Lemma 4.3. Let f ∈ L1(R). Then ∮
f◦(x)dx ∼

∫
f(x)dx. (823)

Proof. First, we notice that Vc(R) is dense in L1(R). Therefore, there exists a net {fλ}λ∈L of functions
fλ ∈ Vλ(R) such that

lim
λ→Λ

∫ ωλ

−ωλ

|fλ − f | = 0. (824)
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In turn, we have:∣∣∣∮ f◦(x)dx−
∫

f(x)dx
∣∣∣ =

∣∣∣lim
λ↑Λ

∫ ωλ

−ωλ

fλ(x)dx− lim
λ→Λ

∫ ωλ

−ωλ

fλ(x)
∣∣∣ (825)

=
∣∣∣ lim
λ→Λ

∫ ωλ

−ωλ

fλ(x)dx− lim
λ→Λ

∫ ωλ

−ωλ

fλ(x)
∣∣∣ (826)

= 0, (827)

where (826) follows from Exercise 4.5.

Therefore, we conclude the introduction of the pointwise integral on the space of ultrafunctions
with the following Axiom.

Axiom 4: Integral axiom

For any a ∈ Γ, the pointwise integral fulfills the property:

d(a) :=

∮
χa(x)dx > 0. (828)

In particular, it allows us to equip the space of ultrafunctions V ◦(Γ) with the scalar product

⟨u, ũ⟩V ◦(Γ) :=

∮
u(x)ũ(x)dx (829)

=
∑
a∈Γ

u(a)ũ(a)d(a), (830)

and norm

∥u∥V ◦(Γ) :=

√∮
|u(x)|2dx (831)

=

√∑
a∈Γ

|u(a)|2d(a), (832)

respectively.

Exercise 4.7. Prove that (830) and (832) fulfill the definitions of scalar product and norm.

Importantly, we can define an ultrafunction that plays the role of the counterpart of (Dirac) δ-
distribution and, in contrast to the latter, can undergo operations (e.g., product or square root) and
generate an orthonormal basis of the space of ultrafunctions.

Definition 4.22. Let a ∈ Γ. An ultrafunction δa ∈ V ◦(Γ) such that

δa(x) =
χa(x)

d(a)
(833)

is called (Dirac) delta ultrafunction.

Indeed, it is straightforward to check that, for any u ∈ V ◦(Γ),∮
u(x)δa(x)dx =

∑
x∈Γ

u(x)
χa(x)

d(a)
d(x) (834)

= u(a). (835)
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On the other hand, (Dirac) delta ultrafunctions are orthogonal with respect to the scalar product
(830). For any a, b ∈ Γ, we have:

⟨δa, δb⟩V ◦(Γ) =

∮
δa(x)δb(x)dx (836)

=
1

d(a)d(b)

∮
χa(x)χb(x)dx (837)

=
1

d(a)d(b)

∑
x∈Γ

χa(x)χb(x)d(x) (838)

=
δab
d(a)

, (839)

where δab = 1 if a = b, and δab = 0 otherwise. Therefore, it is possible to introduce an orthonormal
basis {

√
d(a)δa}a∈Γ on V ◦(Γ).

Lemma 4.4. Let a ∈ Γ, {aλ}λ∈L a net of elements aλ ∈ Γλ such that a = limλ↑Λ aλ, and {σaλ}λ∈L
be a net of functions such that limλ↑Λ σaλ(xλ) = χa(x) and d(aλ) =

∫ ωλ

−ωλ
σaλ(x)dx. Then, for any

u ∈ V ◦(Γ),

u(a) = lim
λ↑Λ

∫ ωλ

−ωλ

uλ(x)δaλ(x)dx, (840)

where
δaλ(x) =

σaλ(x)

d(aλ)
. (841)

Proof. First, we notice that

uλ(aλ) =
∑

bλ∈Γλ

uλ(bλ)σbλ(aλ) (842)

=
∑

bλ∈Γλ

uλ(bλ)σaλ(bλ) (843)

=
∑

bλ∈Γλ

uλ(bλ)δaλ(bλ)d(bλ) (844)

=

∫ ωλ

−ωλ

uλ(bλ)δaλ(x)dx, (845)

where (842) and (842) follow from σb(a) = δab. Finally, taking the Λ-limit on both sided, we obtain
(840).

Finally, in order to equip V ◦(Γ) with a notion of derivative, we provide further restriction on the
functional space V (R), namely, we require V (R) ⊂ BVloc(R), where the latter is the space of locally
bounded functions. This allows us to include the notion of the weak derivative into it.

Definition 4.23. Let u ∈ V ◦(Γ). The generalized derivative D : V ◦(Γ) → V ◦(Γ) is defined as
follows:

Du(a) = lim
λ↑Λ

⟨∂uλ, δaλ⟩V (R), (846)

for any a = limλ↑Λ aλ with aλ ∈ Γλ, where ∂ : V (R) → V (R) is a derivative on V (R), and the net δaλ
is given by (841).
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In particular, for any f ∈ C1 ∩ V (R) and ∂f ∈ V (R),

Df◦(a) = lim
λ↑Λ

⟨∂f, δaλ⟩V (R) (847)

= lim
λ↑Λ

∫ ωλ

−ωλ

∂f(x)δaλ(x)dx (848)

= lim
λ↑Λ

∂f(aλ) (849)

= (∂f)◦(a), (850)

due to Lemma 4.4, so that the generalized derivative coincides with an extension of the usual derivative
in this case. In order to guarantee locality of the generalized derivative, we conclude with the following
Axiom.

Axiom 5: Generalized derivative axiom

For any a ∈ Γ and u ∈ V ◦(Γ), the generalized derivative fulfills the properties:

supp(Dχa(x)) ⊂ mon(a), (851)

and, for some c ∈ E,
Du = 0 ⇔ u = c1◦. (852)

This axiom weakens properties of usual derivative, first of all, Leibniz rule: indeed, for any f, g ∈
C1(R), one has ∂(f · g) = ∂(f) · g + f · ∂(g). It is not necessarily fulfilled by the generalized derivative
D, which is the price paid for having the algebra structure for the space of ultrafunctions and, as an
important consequence, overcoming the Schwartz impossiblity result18. In order to show that Schwartz
distributions are natually embedded into the space of ultrafunctions, first, we isolate ultrafunctions
which can be associated to a distribution by introducing the following straightforward Definition.

Definition 4.24. Let u ∈ V ◦(Γ) be an ultrafunction. It is called distribution-like if there exists a
distribution T ∈ D∗(R) such that for any infinitely differentiable function φ ∈ D(R) with a compact
support19, ∮

u(x)φ◦(x)dx = T (φ). (853)

Theorem 4.4. For any T ∈ D∗(R), there exists an associated distribution-like ultrafunction uT ∈
V ◦(Γ).

Proof. Let D◦(Γ) ⊂ V ◦(Γ) be the space of ultrafunctions constructed from D(R) via Definition 4.20,
and PD◦(Γ) : V ◦(Γ) → D◦(Γ) be an orthogonal projector onto it. Then, for any v ∈ V ◦(Γ), we
consider v∥ = PD◦(Γ)v. By Axiom 3, we can find a net {v∥,λ}λ∈L of functions v∥,λ ∈ Vλ(R) such that
v∥(x) = limλ↑Λ v∥,λ(xλ) for any x = limλ↑Λ xλ, and we construct an ultrafunction uT ∈ V ◦(Γ) such
that ∮

uT (x)v(x)dx = lim
λ↑Λ

T (v∥,λ). (854)

Then, for any φ ∈ D(R), we have ∮
uT (x)φ

◦(x)dx = lim
λ↑Λ

T (φ) (855)

= T (φ). (856)
18Weakening Leibniz rule is not the only way to embed Schwartz distributions to a differential algebra: e.g.,

Colombeau’s algebra achieve this by restricting agreement of the algebra’s product with the pointwise product to C∞(R)
instead of continuous functions.

19Notice that D(R) is a dense subspace of Schwartz space (668), so that D∗(R) naturally includes the space S∗(R)
introduced in Definition 669.
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The association provided by Theorem 4.4 can be made into bijection by considering a quotient set
of the set of distribution-like ultrafunctions with respect to equivalence classes

[u]D∗ =

{
v ∈ V ◦(Γ)

∣∣∣∣∣∀φ ∈ D(R) :
∮
(u(x)− v(x))φ◦(x)dx = 0

}
, (857)

and the resulting bijection associates a Schwartz distribution T ∈ D∗(R) to a unique equivalence class
[u]D∗ such that u ∈ V ◦(Γ) fulfills (853). In turn, Definition 4.24 suggests embedding of L2-functions
into the space of ultrafunctions: given f ∈ L2(R), we associate to an ultrafunction f◦ such that∮

f◦(x)v(x)dx = lim
λ↑Λ

∫
f(x)vλ(x)dx, (858)

for any v ∈ V ◦(Γ) with the corresponding net {vλ}λ∈L.

4.3 Operators on ultrafunctions and quantum mechanics

Having introduced the space of ultrafunctions V ◦(Γ) and analyzed some of its properties, we proceed
by its applications to quantum mechanics. First, we provide the following useful definitions.

Definition 4.25. A mathematical entity is called internal if it is a Λ-limit of some other entities.

Our goal is to construct a system of axioms of non-relativistic quantum mechanics using the space
of ultrafunctions instead of the Hilbert space L2(R). Therefore, we define a complex version of the
former.

Definition 4.26. The space of complex-valued ultrafunctions H◦(Γ) is defined as a complexifi-
cation

H◦(Γ) = V ◦(Γ)⊕ iV ◦(Γ) (859)

of the space of ultrafunctions V ◦(Γ).

Definition 4.26 implies that H◦(Γ) is constructed by considering a complexification H(R) = V (R)⊕
iV (R) of the original functional space V (R) and constructing a family of finite-dimensional spaces
{Hλ(R)}λ∈L = {Vλ(R)⊕ iVλ(R)}λ∈L. Now, we can use the space H◦(Γ) as a configurational space of
quantum mechanics, modifying thereby the first Axiom of quantum mechanics.

Axiom 1’

The configuration space of a physical system is a space of complex-valued ultrafunctions H◦(R),
with physical state being represented by normalized elements u ∈ H◦(R), i.e., ∥u∥H◦(R) = 1.

In order to start, we focus on an internal operator A : H◦(Γ) → H◦(Γ). It can be constructed via
the Λ-limit with respect to a family of operators Aλ : Hλ(R) → Hλ(R), so that

Au = lim
λ↑Λ

Aλuλ, (860)

for any u(x) = limλ↑Λ uλ(xλ) with uλ ∈ Hλ and any x = xλ. Since every Hλ is finite-dimensional,
Aλ are self-adjoint operators if and only if they are symmetric. This property transfers to A as well
as it acts on a hyperfinite-dimensional space. In particular, the spectrum of A consists in this case of
eigenvalues only, and

σ(A) =
{
lim
λ↑Λ

µλ ∈ E
∣∣∣∀λ ∈ L : µλ ∈ σ(Aλ)

}
, (861)

Operator Theory 76/78



University of Vienna

being a discrete spectrum in the sense of NSA. Its corresponding eigenfunctions are given via Λ-limits
with respect to the corresponding eigenfunctions of Aλ and form an orthonormal basis of H◦(R).
Therefore, in contrast to the operator theory on Hilbert spaces, operator theory on space of ultrafunc-
tions does not require distinction between symmetric and self-adjoint operators. We have proven the
following Theorem for operators on space of ultrafunctions.

Theorem 4.5. Let A : H◦ → H◦ be an internal symmetric operator. Then it is self-adjoint.

This leads to the following modification of Axiom 2 of quantum mechanics.

Axiom 2’

An observable a corresponds to a symmetric operator A : H◦(R) → H◦(R).

In particular, we can reintroduce Schrödinger operators by modifying Definition 3.1 in the following
way.

Definition 4.27. We call Schrödinger operator H◦ : H◦(Γ) → H◦(Γ) an operator

H◦ = − ℏ2

2m
D2 + V, (862)

where V : H◦(Γ) → H◦(Γ) is a multiplication operator defined as

(Vu)(x) = V (x)u(x), (863)

where V : Γ → E is an internal function.

Schrödinger operators that are defined in this manner remain self-adjoint and carry a hyperfinite
(hence, discrete in the sense of NSA) spectrum. Moreover, space of ultrafunctions allows one to define
Schrödinger operators with a singular potential, for example, modeled by the (Dirac) delta ultrafunction

V (x) = τδa(x), (864)

with τ ∈ E and a ∈ Γ, which does not have counterpart in the standard L2-space.
Axiom 3 of quantum mechanics can be modified in the following way taking into account discreteness

of the spectrum of the operators that correspond to observables.

Axiom 3’

The only possible outcomes of a measurement of a form a set {st(µj)}, where µj ∈ σ(A) are the
eigenvalues of A. If the physical system is in the state u ∈ H◦(R), an outcome st(µj) can be
obtained with a probability

Pj = |⟨u|uj⟩H◦(R)|2, (865)

where uj is the eigenfunction corresponding to the eigenvalues µj .

For example, considering position operator x : H◦(R) → H◦(R) that acts as

xu(x) = xu(x), (866)

for any H◦(R), it is straightforward to show that its eigenfunctions with respect to the corresponding
eigenvalue x ∈ σ(x) are (Dirac) delta ultrafunctions δx. In turn, Axiom 3’ suggests that a measurement
of position of a quantum particle reveals a value x̄ ∈ {st(x)|x ∈ σ(x)} = R, recovering the result from
the standard approach to quantum mechanics.

While the dynamical Axiom 4 remains unchanged up to substitution of the Hilbert space by H◦(R),
quantum mechanics on ultrafunctions requires an extra Axiom, which separates physical states from
non-physical ones.
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Axiom 5’

In a laboratory, only the states associated to a finite expectation value of the physically relevant
quantities can be realized. These states are called physical states, the rest of the states is called
ideal states.
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