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Abstract. We prove a two-parameter family of q-hypergeometric congruences modulo
the fourth power of a cyclotomic polynomial. Crucial ingredients in our proof are George
Andrews’ multiseries extension of the Watson transformation, and a Karlsson–Minton
type summation for very-well-poised basic hypergeometric series due to George Gasper.
The new family of q-congruences is then used to prove two conjectures posed earlier by
the authors.

1. Introduction

In 1914, Ramanujan [26] presented a number of fast approximations of 1/π, including
∞∑
k=0

(6k + 1)
(1
2
)3k

k!34k
=

4

π
, (1.1)

where (a)n = a(a+1) · · · (a+n−1) denotes the rising factorial. In 1997, Van Hamme [31]
proposed 13 interesting p-adic analogues of Ramanujan-type formulas, such as

(p−1)/2∑
k=0

(6k + 1)
(1
2
)3k

k!34k
≡ p(−1)(p−1)/2 (mod p4), (1.2)

where p > 3 is a prime. Van Hamme’s supercongruence (1.2) was first proved by Long [21].
It should be pointed out that all of the 13 supercongruences have been proved by different
techniques (see [25,29]). For some background on Ramanujan-type supercongruences, the
reader is referred to Zudilin’s paper [33].

In 2016, Long and Ramakrishna [22, Thm. 2] proved the following supercongruence:

p−1∑
k=0

(6k + 1)
(1
3
)6k

k!6
≡


−pΓp

(
1

3

)9

(mod p6), if p ≡ 1 (mod 6),

−10p4

27
Γp

(
1

3

)9

(mod p6), if p ≡ 5 (mod 6),

(1.3)
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where Γp(x) is the p-adic Gamma function. This result for p ≡ 1 (mod 6) confirms the
(D.2) supercongruence of Van Hamme, which asserts a congruence modulo p4.

During the past few years, many congruences and supercongruences were generalized
to the q-setting by various authors (see, for instance, [4–18, 23, 24, 28, 30]). In particular,
the authors [15, Thm. 2.3] proposed the following partial q-analogue of Long and Rama-
krishna’s supercongruence (1.3):

n−1∑
k=0

[6k + 1]
(q; q3)6k
(q3; q3)6k

q3k ≡

0 (mod [n]), if n ≡ 1 (mod 3),

0 (mod [n]Φn(q)), if n ≡ 2 (mod 3).
(1.4)

Here and throughout the paper, we adopt the standard q-notation (cf. [3]): For an inde-
terminate q, let

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1)
be the q-shifted factorial. For convenience, we compactly write

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n.

Moreover, [n] = [n]q = 1 + q + · · · + qn−1 denotes the q-integer and Φn(q) the n-th
cyclotomic polynomial in q, which may be defined as

Φn(q) =
∏

16k6n
gcd(n,k)=1

(q − ζk),

where ζ is an n-th primitive root of unity.
The authors [15, Conjectures 12.10 and 12.11] also proposed the following conjectures,

the first one generalizing the q-congruence (1.4) for n ≡ 2 (mod 3).

Conjecture 1. Let d > 3 and n be positive integers with n ≡ −1 (mod d). Then

M∑
k=0

[2dk + 1]
(q; qd)2dk
(qd; qd)2dk

qd(d−2)k ≡ 0 (mod [n]Φn(q)3),

where M = ((d− 1)n− 1)/d or n− 1.

Conjecture 2. Let d > 3 and n > 1 be integers with n ≡ 1 (mod d). Then

M∑
k=0

[2dk − 1]
(q−1; qd)2dk
(qd; qd)2dk

qd
2k ≡ 0 (mod [n]Φn(q)3),

where M = ((d− 1)n+ 1)/d or n− 1.

Note that Conjecture 1 does not hold for d = 2 while Conjecture 2 is still true for d = 2.
In fact, the first author and Wang [17] proved that

(n−1)/2∑
k=0

[4k + 1]
(q; q2)4k
(q2; q2)4k

≡ q(1−n)/2[n] +
(n2 − 1)(1− q)2

24
q(1−n)/2[n]3 (mod [n]Φn(q)3)
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for odd n, and the authors [14] showed that

(n+1)/2∑
k=0

[4k − 1]
(q−1; q2)4k
(q2; q2)4k

q4k ≡ −(1 + 3q + q2)[n]4 (mod [n]4Φn(q))

for odd n > 1.
The last two q-congruences are quite special, as they are rare examples of q-hyper-

geometric congruences that were rigorously shown to hold modulo a high (fourth and
even fifth) power of a cyclotomic polynomial. The main purpose of this paper is to
add a complete two-parameter family of q-hypergeometric congruences to the list of such
q-congruences (see Theorem 1).

We shall also prove that Conjectures 1 and 2 are true. Our proof relies on the following
result:

Theorem 1. Let d, r, n be integers satisfying d > 3, r 6 d − 2 (in particular, r may be
negative), and n > d− r, such that d and r are coprime, and n ≡ −r (mod d). Then

n−1∑
k=0

[2dk + r]
(qr; qd)2dk
(qd; qd)2dk

qd(d−1−r)k ≡ 0 (mod Φn(q)4). (1.5)

This result is similar in nature to the two-parameter result in [8, Thm. 1.1] which,
however, only concerned a q-congruence modulo Φn(q)2.

Note that the q-congruence (1.5) is still true when the sum is over k from 0 to ((d −
1)n − r)/d, since (qr; qd)k/(q

d; qd)k ≡ 0 (mod Φn(q)) for ((d − 1)n − r)/d < k 6 n − 1.
(Also, we must have ((d− 1)n− r)/d ≤ n− 1 since n > d− r.) Thus, Theorem 1 implies
that Conjectures 1 and 2 hold modulo Φn(q)4.

To prove that Conjectures 1 and 2 also hold modulo [n] (which in conjunction with
Theorem 1 would fully establish the validity of the conjectures), we need to prove the
following result.

Theorem 2. Let d > 3 and n be positive integers with gcd(d, n) = 1. Then

n−1∑
k=0

[2dk + 1]
(q; qd)2dk
(qd; qd)2dk

qd(d−2)k ≡ 0 (mod Φn(q)), (1.6)

and

n−1∑
k=0

[2dk − 1]
(q−1; qd)2dk
(qd; qd)2dk

qd
2k ≡ 0 (mod Φn(q)). (1.7)

We shall prove Theorem 1 in Section 2 by making a careful use of Andrews’ multiseries
generalization (2.2) of the Watson transformation [1, Theorem 4], combined with a special
case of Gasper’s very-well-poised Karlsson–Minton type summation [2, Eq. (5.13)]. We
point out that Andrews’ transformation plays an important role in combinatorics and
number theory. For example, this transformation was utilized by Zudilin [32] to solve
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a problem of Asmus Schmidt. It was used by Krattenthaler and Rivoal [20] to provide
an alternative proof of a result by Zudilin that relates a very-well-poised hypergeometric
series with a Vasilenko–Vasilev-type multiple integral, the latter serving as a tool in the
study of the arithmetic behaviour of values of the Riemann zeta function at integers.
Andrews’ transformation was also used by the first author, Jouhet and Zeng [11] to prove
some q-congruences involving q-binomial coefficients. The couple Hessami Pilehrood [19]
used this transformation to give a short proof of a theorem of Zagier. Recently, the
present authors [13,16] applied Andrews’ transformation to establish some q-congruences
for truncated basic hypergeometric series. We shall prove Theorem 2 in Section 3. The
proof of Conjectures 1 and 2 will be given in Section 4. We conclude this short paper
by Section 5, where we state an open problem involving a q-hypergeometric congruence
modulo the fifth power of a cyclotomic polynomial.

2. Proof of Theorem 1

We first give a simple q-congruence modulo Φn(q)2, which was already used in [16].

Lemma 1. Let α, r be integers and n a positive integer. Then

(qr−αn, qr+αn; qd)k ≡ (qr; qd)2k (mod Φn(q)2). (2.1)

Proof. For any integer j, it is easy to check that

(1− qαn−dj+d−r)(1− qαn+dj−d+r) + (1− qdj−d+r)2qαn−dj+d−r = (1− qαn)2

and 1− qαn ≡ 0 (mod Φn(q)), and so

(1− qαn−dj+d−r)(1− qαn+dj−d+r) ≡ −(1− qdj−d+r)2qαn−dj+d−r (mod Φn(q)2).

The proof then follows easily from the above q-congruence. �

We will make use of a powerful transformation formula due to Andrews [1, Theorem 4],
which can be stated as follows:∑

k>0

(a, q
√
a,−q

√
a, b1, c1, . . . , bm, cm, q

−N ; q)k
(q,
√
a,−
√
a, aq/b1, aq/c1, . . . , aq/bm, aq/cm, aqN+1; q)k

(
amqm+N

b1c1 · · · bmcm

)k

=
(aq, aq/bmcm; q)N
(aq/bm, aq/cm; q)N

∑
j1,...,jm−1>0

(aq/b1c1; q)j1 · · · (aq/bm−1cm−1; q)jm−1

(q; q)j1 · · · (q; q)jm−1

×
(b2, c2; q)j1 . . . (bm, cm; q)j1+···+jm−1

(aq/b1, aq/c1; q)j1 . . . (aq/bm−1, aq/cm−1; q)j1+···+jm−1

×
(q−N ; q)j1+···+jm−1

(bmcmq−N/a; q)j1+···+jm−1

(aq)jm−2+···+(m−2)j1qj1+···+jm−1

(b2c2)j1 · · · (bm−1cm−1)j1+···+jm−2
. (2.2)
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This transformation actually constitutes a multiseries generalization of Watson’s 8φ7

transformation formula (see [3, Appendix (III.18)]) which we state here in standard no-
tation for basic hypergeometric series [3, Section 1]:

8φ7

[
a, qa

1
2 , −qa 1

2 , b, c, d, e, q−n

a
1
2 , −a 1

2 , aq/b, aq/c, aq/d, aq/e, aqn+1
; q,

a2qn+2

bcde

]

=
(aq, aq/de; q)n
(aq/d, aq/e; q)n

4φ3

[
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

]
. (2.3)

Next, we recall the following very-well-poised Karlsson–Minton type summation by
Gasper [2, Eq. (5.13)] (see also [3, Ex. 2.33 (i)]).

∞∑
k=0

(a, q
√
a,−q

√
a, b, a/b, d, e1, aq

n1+1/e1, . . . , em, aq
nm+1/em; q)k

(q,
√
a,−
√
a, aq/b, bq, aq/d, aq/e1, e1q−n1 , . . . , aq/em, emq−nm ; q)k

(
q1−ν

d

)k
=

(q, aq, aq/bd, bq/d; q)∞
(bq, aq/b, aq/d, q/d; q)∞

m∏
j=1

(aq/bej, bq/ej; q)nj

(aq/ej, q/ej; q)nj

, (2.4)

where n1, . . . , nm are nonnegative integers, ν = n1 + · · ·+ nm, and |q1−ν/d| < 1 when the
series does not terminate. For an elliptic extension of the terminating d = q−ν case of
(2.4), see [27, Eq. (1.7)].

In particular, we note that for d = bq the right-hand side of (2.4) vanishes. Putting in
addition b = q−N we obtain the following terminating summation:

N∑
k=0

(a, q
√
a,−q

√
a, e1, aq

n1+1/e1, . . . , em, aq
nm+1/em, q

−N ; q)k
(q,
√
a,−
√
a, aq/e1, e1q−n1 , . . . , aq/em, emq−nm , aqN+1; q)k

q(N−ν)k = 0, (2.5)

valid for N > ν = n1 + · · ·+ nm.
By suitably combining (2.2) with (2.5), we obtain the following multiseries summation

formula:

Lemma 2. Let m > 2. Let q, a and e1, . . . , em+1 be arbitrary parameters with em+1 = e1,
and let n1, . . . , nm and N be nonnegative integers such that N > n1 + · · ·+ nm. Then

0 =
∑

j1,...,jm−1>0

(e1q
−n1/e2; q)j1 · · · (em−1q−nm−1/em; q)jm−1

(q; q)j1 · · · (q; q)jm−1

×
(aqn2+1/e2, e3; q)j1 . . . (aq

nm+1/em, em+1; q)j1+···+jm−1

(e1q−n1 , aq/e2; q)j1 . . . (em−1q
−nm−1 , aq/em; q)j1+···+jm−1

×
(q−N ; q)j1+···+jm−1

(e1qnm−N+1/em; q)j1+···+jm−1

(aq)jm−2+···+(m−2)j1qj1+···+jm−1

(aqn2+1e3/e2)j1 · · · (aqnm−1+1em/em−1)j1+···+jm−2
. (2.6)

Proof. By specializing the parameters in the multisum transformation (2.2) by bi 7→
aqni+1/ei, ci 7→ ei+1, for 1 ≤ i ≤ m (where em+1 = e1), and dividing both sides of
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the identity by the prefactor of the multisum, we obtain that the series on the right-hand
side of (2.6) equals

(emq
−nm , aq/e1; q)N

(aq, emq−nm/e1; q)N

×
N∑
k=0

(a, q
√
a,−q

√
a, e1, aq

n1+1/e1, . . . , em, aq
nm+1/em, q

−N ; q)k
(q,
√
a,−
√
a, aq/e1, e1q−n1 , . . . , aq/em, emq−nm , aqN+1; q)k

q(N−ν)k,

with ν = n1 + · · · + nm. Now the last sum vanishes by the special case of Gasper’s
summation stated in (2.5). �

We collected enough ingredients and are ready to prove Theorem 1.

Proof of Theorem 1. The left-hand side of (1.5) can be written as the following multiple
of a terminating 2d+4φ2d+3 series:

1− qr

1− q

((d−1)n−r)/d∑
k=0

(qr, qd+
r
2 ,−qd+ r

2 , qr, . . . , qr, qd+(d−1)n, qr−(d−1)n; qd)k

(qd, q
r
2 ,−q r

2 , qd, . . . , qd, qr−(d−1)n, qd+(d−1)n; qd)k
qd(d−1−r)k.

Here, the qr, . . . , qr in the numerator refers to 2d − 1 instances of qr, and similarly, the
qd, . . . , qd in the denominator to 2d − 1 instances of qd. Now, by the m = d case of
Andrews’ transformation (2.2), we can write the above expression as

(1− qr)(qd+r, q−(d−1)n; qd)((d−1)n−r)/d
(1− q)(qd, qr−(d−1)n; qd)((d−1)n−r)/d

∑
j1,...,jd−1>0

(qd−r; qd)j1 · · · (qd−r; qd)jd−1

(qd; qd)j1 · · · (qd; qd)jd−1

×
(qr, qr; qd)j1 . . . (q

r, qr; qd)j1+···+jd−2
(qr, qd+(d−1)n; qd)j1+···+jd−1

(qd, qd; qd)j1 . . . (q
d, qd; qd)j1+···+jd−1

×
(qr−(d−1)n; qd)j1+···+jd−1

(qd+r; qd)j1+···+jd−1

q(d+r)(jd−2+···+(d−2)j1)qd(j1+···+jd−1)

q2rj1 · · · q2r(j1+···+jd−2)
. (2.7)

It is easy to see that the q-shifted factorial (qd+r; qd)((d−1)n−r)/d contains the factor 1−
q(d−1)n which is a multiple of 1−qn. Similarly, the q-shifted factorial (q−(d−1)n; qd)((d−1)n−r)/d
contains the factor 1−q−(d−1)n (again being a multiple of 1−qn) since ((d−1)n−r)/d > 1
holds due to the conditions d > 3, r 6 d − 2, and n > d − r. This means that
the q-factorial (qd+r, q−(d−1)n; qd)((d−1)n−r)/d in the numerator of the fraction before the
multisummation is divisible by Φn(q)2. Moreover, it is easily seen that the q-factorial
(qd, qr−(d−1)n; qd)((d−1)n−r)/d in the denominator is coprime with Φn(q).

Note that the non-zero terms in the multisummation in (2.7) are those indexed by
(j1, . . . , jd−1) that satisfy j1 + · · ·+ jd−1 6 ((d− 1)n− r)/d because of the appearance of
the factor (qr−(d−1)n; qd)j1+···+jd−1

in the numerator. None of the factors appearing in the
denominator of the multisummation of (2.7) contain a factor of the form 1 − qαn (and
are therefore coprime with Φn(q)), except for (qd+r; qd)j1+···+jd−1

when j1 + · · · + jd−1 =
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((d− 1)n− r)/d. (In this case, the factor 1− q(d−1)n appears in the numerator.) Writing
n = ad − r (with a > 1), we have j1 + · · · + jd−1 = a(d − 1) − r. Since r ≤ d − 2, there
must be an i with ji > a. Then (qd−r; qd)ji contains the factor 1 − qd−r+d(a−1) = 1 − qn
which is a multiple of Φn(q). So the denominator of the reduced form of the multisum in
(2.7) is coprime with Φn(q). What remains is to show that the multisum in (2.7), without
the prefactor, is divisible by Φn(q)2, i.e. vanishes modulo Φn(q)2.

By repeated applications of Lemma 1, the mulitsum in (2.7), without the prefactor, is
modulo Φn(q)2 congruent to

∑
j1,...,jd−1>0

(qd−r; qd)j1 · · · (qd−r; qd)jd−1

(qd; qd)j1 · · · (qd; qd)jd−1

×
(qr−(d−2)n, qr+(d−2)n; qd)j1 . . . (q

r−n, qr+n; qd)j1+···+jd−2
(qr, qd+(d−1)n; qd)j1+···+jd−1

(qd+(d−1)n, qd−(d−1)n; qd)j1 . . . (q
d+2n, qd−2n; qd)j1+···+jd−2

(qd+n, qd−n; qd)j1+···+jd−1

×
(qr−(d−1)n; qd)j1+···+jd−1

(qd+r; qd)j1+···+jd−1

q(d+r)(jd−2+···+(d−2)j1)qd(j1+···+jd−1)

q2rj1 · · · q2r(j1+···+jd−2)
.

However, this sum vanishes due to the m = d, q 7→ qd, a 7→ qr, e1 7→ qd+(d−1)n, ei 7→
qr+(d−i+1)n, n1 = 0, ni 7→ (n + r − d)/d, 2 6 i 6 d, N = ((d − 1)n − r)/d, case of
Lemma 2. �

3. Proof of Theorem 2

We first give the following result, which is a generalization of [15, Lemma 3.1].

Lemma 3. Let d, m and n be positive integers with m 6 n− 1 and dm ≡ −1 (mod n).
Then, for 0 6 k 6 m, we have

(aq; qd)m−k
(qd/a; qd)m−k

≡ (−a)m−2k
(aq; qd)k

(qd/a; qd)k
qm(dm−d+2)/2+(d−1)k (mod Φn(q)).

Proof. In view of qn ≡ 1 (mod Φn(q)), we have

(aq; qd)m
(qd/a; qd)m

=
(1− aq)(1− aqd+1) · · · (1− aqdm−d+1)

(1− qd/a)(1− q2d/a) · · · (1− qdm/a)

≡ (1− aq)(1− aqd+1) · · · (1− aqdm−d+1)

(1− qd−dm−1/a)(1− q2d−dm−1/a) · · · (1− q−1/a)

= (−a)mqm(dm−d+2)/2 (mod Φn(q)). (3.1)
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Furthermore, modulo Φn(q), we get

(aq; qd)m−k
(qd/a; qd)m−k

=
(aq; qd)m

(qd/a; qd)m

(1− qdm−dk+d/a)(1− qdm−dk+2d/a) · · · (1− qdm/a)

(1− aqdm−dk+1)(1− aqdm−dk+d+1) · · · (1− aqdm−d+1)

≡ (aq; qd)m
(qd/a; qd)m

(1− qd−dk−1/a)(1− q2d−dk−1/a) · · · (1− q−1/a)

(1− aq−dk)(1− aqd−dk) · · · (1− aq−d)

=
(aq; qd)m

(qd/a; qd)m

(aq; qd)k
(qd/a; qd)k

a−2kq(d−1)k,

which together with (3.1) establishes the assertion. �

Similarly, we have the following q-congruence.

Lemma 4. Let d, m and n be positive integers with m 6 n − 1 and dm ≡ 1 (mod n).
Then, for 0 6 k 6 m, we have

(aq−1; qd)m−k
(qd/a; qd)m−k

≡ (−a)m−2k
(aq−1; qd)k
(qd/a; qd)k

qm(dm−d−2)/2+(d+1)k (mod Φn(q)).

The proof of Lemma 4 is completely analogous to that of Lemma 3 and thus omitted.

Proof of Theorem 2. Since gcd(d, n) = 1, there exists a positive integer m 6 n − 1 such
that dm ≡ −1 (mod n). By the a = 1 case of Lemma 3 one sees that, for 0 6 k 6 m, the
k-th and (m− k)-th terms on the left-hand side of (1.6) cancel each other modulo Φn(q),
i.e.,

[2d(m− k) + 1]
(q; qd)2dm−k
(qd; qd)2dm−k

qd(d−2)(m−k) ≡ −[2dk + 1]
(q; qd)2dk
(qd; qd)2dk

qd(d−2)k (mod Φn(q)).

This proves that
m∑
k=0

[2dk + 1]
(q; qd)2dk
(qd; qd)2dk

qd(d−2)k ≡ 0 (mod Φn(q)). (3.2)

Moreover, since dm ≡ −1 (mod n), the expression (q; qd)k contains a factor of the form
1 − qαn for m < k 6 n − 1, and is therefore congruent to 0 modulo Φn(q). At the same
time the expression (qd; qd)k is relatively prime to Φn(q) for m < k 6 n − 1. Therefore,
each summand in (1.6) with k in the range m < k 6 n − 1 is congruent to 0 modulo
Φn(q). This together with (3.2) establishes the q-congruence (1.6).

Similarly, we can use Lemma 4 to prove (1.7). The proof of the theorem is complete. �

4. Proof of Conjectures 1 and 2

As mentioned in the introduction, we only need to show that Conjectures 1 and 2 are
also true modulo [n]. We first give a detailed proof of the q-congruences modulo [n] in
Conjecture 1.
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Proof of Conjecture 1. We need to show that

((d−1)n−1)/d∑
k=0

[2dk + 1]
(q; qd)2dk
(qd; qd)2dk

qd(d−2)k ≡ 0 (mod [n]), (4.1)

and

n−1∑
k=0

[2dk + 1]
(q; qd)2dk
(qd; qd)2dk

qd(d−2)k ≡ 0 (mod [n]). (4.2)

Let ζ 6= 1 be an n-th root of unity, not necessarily primitive. Clearly, ζ is a primitive
root of unity of degree s with s | n and s > 1. Let cq(k) denote the k-th term on the
left-hand side of (4.1) or (4.2), i.e.,

cq(k) = [2dk + 1]
(q; qd)2dk
(qd; qd)2dk

qd(d−2)k.

The q-congruences (3.2) and (1.6) with n 7→ s imply that

m∑
k=0

cζ(k) =
s−1∑
k=0

cζ(k) = 0,

where dm ≡ −1 (mod s) and 1 6 m 6 s− 1. Observing that

cζ(`s+ k)

cζ(`s)
= lim

q→ζ

cq(`s+ k)

cq(`s)
= cζ(k), (4.3)

we have
n−1∑
k=0

cζ(k) =

n/s−1∑
`=0

s−1∑
k=0

cζ(`s+ k) =

n/s−1∑
`=0

cζ(`s)
s−1∑
k=0

cζ(k) = 0, (4.4)

and
((d−1)n−1)/d∑

k=0

cζ(k) =
N−1∑
`=0

cζ(`s)
s−1∑
k=0

cζ(k) + cζ(Ns)
m∑
k=0

cζ(k) = 0,

where

N =
(d− 1)n− dm− 1

ds
.

(It is easy to check that N is a positive integer.) This means that the sums
∑n−1

k=0 cq(k)

and
∑((d−1)n−1)/d

k=0 cq(k) are both divisible by the cyclotomic polynomial Φs(q). Since this
is true for any divisor s > 1 of n, we deduce that they are divisible by∏

s|n, s>1

Φs(q) = [n],

thus establishing the q-congruences (4.1) and (4.2). �

Similarly, we can prove Conjecture 2.
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Proof of Conjecture 2. This time we need to show that

((d−1)n+1)/d∑
k=0

[2dk − 1]
(q−1; qd)2dk
(qd; qd)2dk

qd
2k ≡ 0 (mod [n]),

and

n−1∑
k=0

[2dk − 1]
(q−1; qd)2dk
(qd; qd)2dk

qd
2k ≡ 0 (mod [n]).

Again, let ζ be a primitive root of unity of degree s with s | n and s > 1, and let

cq(k) = [2dk − 1]
(q−1; qd)2dk
(qd; qd)2dk

qd
2k.

Just like before, we have
m∑
k=0

cζ(k) =
s−1∑
k=0

cζ(k) = 0,

where dm ≡ 1 (mod s) and 1 6 m 6 s− 1. Furthermore, we also have (4.3), (4.4), and

((d−1)n+1)/d∑
k=0

cζ(k) =
N−1∑
`=0

cζ(`s)
s−1∑
k=0

cζ(k) + cζ(Ns)
m∑
k=0

cζ(k) = 0,

where N = (d−1)n−dm+1
ds

this time. The rest is exactly the same as in the proof of Conjec-
ture 1 and is omitted here. �

5. An open problem

Recently, the first author [9, Theorem 5.4] proved that

M∑
k=0

[4k − 1]q2 [4k − 1]2
(q−2; q4)4k
(q4; q4)4k

q4k ≡ 0 (mod [n]q2Φn(q2)2),

where n is odd and M = (n+1)/2 or n−1. We take this opportunity to propose a unified
generalization of [9, Conjectures 6.3 and 6.4], involving a remarkable q-hypergeometric
congruence modulo the fifth power of a cyclotomic polynomial:

Conjecture 3. Let n > 1 be an odd integer. Then

M∑
k=0

[4k − 1]q2 [4k − 1]2
(q−2; q4)4k
(q4; q4)4k

q4k ≡ (2q + 2q−1 − 1)[n]4q2 (mod [n]4q2Φn(q2)),

where M = (n+ 1)/2 or n− 1.
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