PROOF OF A BASIC HYPERGEOMETRIC SUPERCONGRUENCE MODULO THE FIFTH POWER OF A CYCLOTOMIC POLYNOMIAL

VICTOR J. W. GUO AND MICHAEL J. SCHLOSSER

Abstract

By means of the q-Zeilberger algorithm, we prove a basic hypergeometric supercongruence modulo the fifth power of the cyclotomic polynomial $\Phi_{n}(q)$. This result appears to be quite unique, as in the existing literature so far no basic hypergeometric supercongruences modulo a power greater than the fourth of a cyclotomic polynomial have been proved. We also establish a couple of related results, including a parametric supercongruence.

1. Introduction

In 1997, Van Hamme [27] conjectured that 13 Ramanujan-type series including

$$
\sum_{k=0}^{\infty}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3}}=\frac{2}{\pi}
$$

admit nice p-adic analogues, such as

$$
\sum_{k=0}^{\frac{p-1}{2}}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3}} \equiv p(-1)^{\frac{p-1}{2}} \quad\left(\bmod p^{3}\right)
$$

where $(a)_{n}=a(a+1) \cdots(a+n-1)$ denotes the Pochhammer symbol and p is an odd prime. Up to present, all of the 13 supercongruences have been confirmed. See [21,24] for historic remarks on these supercongruences. Recently, q-analogues of congruences and supercongruences have caught the interests of many authors (see, for example, [1$20,23,25,26,29]$). In particular, the first author and Zudilin [16] devised a method, called 'creative microscoping', to prove quite a few q-supercongruences by introducing an additional parameter a. In [13], the authors of the present paper proved many additional q-supercongruences by the creative microscoping method. Supercongruences modulo a higher integer power of a prime, or, in the q-case, of a cyclotomic polynomial, are very special and usually difficult to prove. As far as we know, until now the result

$$
\begin{equation*}
\sum_{k=0}^{\frac{n-1}{2}}[4 k+1] \frac{\left(q ; q^{2}\right)_{k}^{4}}{\left(q^{2} ; q^{2}\right)_{k}^{4}} \equiv q^{\frac{1-n}{2}}[n]+\frac{\left(n^{2}-1\right)(1-q)^{2}}{24} q^{\frac{1-n}{2}}[n]^{3} \quad\left(\bmod [n] \Phi_{n}(q)^{3}\right) \tag{1}
\end{equation*}
$$

[^0]for an odd positive integer n, due to the first author and Wang [15], is the unique q supercongruence modulo $[n] \Phi_{n}(q)^{3}$ in the literature that was completely proved. (Several similar conjectural q-supercongruences are stated in [13] and in [16].) The purpose of this paper is to establish an even higher q-congruence, namely modulo a fifth power of a cyclotomic polynomial. Specifically, we prove the following three theorems. (The first two together confirm a conjecture by the authors [13, Conjecture 5.4]).

Theorem 1.1. Let $n>1$ be a positive odd integer. Then

$$
\begin{equation*}
\sum_{k=0}^{\frac{n+1}{2}}[4 k-1] \frac{\left(q^{-1} ; q^{2}\right)_{k}^{4}}{\left(q^{2} ; q^{2}\right)_{k}^{4}} q^{4 k} \equiv-\left(1+3 q+q^{2}\right)[n]^{4} \quad\left(\bmod [n]^{4} \Phi_{n}(q)\right) \tag{2a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n-1}[4 k-1] \frac{\left(q^{-1} ; q^{2}\right)_{k}^{4}}{\left(q^{2} ; q^{2}\right)_{k}^{4}} q^{4 k} \equiv-\left(1+3 q+q^{2}\right)[n]^{4} \quad\left(\bmod [n]^{4} \Phi_{n}(q)\right) \tag{2b}
\end{equation*}
$$

Theorem 1.2. Let $n>1$ be a positive odd integer. Then

$$
\sum_{k=0}^{\frac{n+1}{2}}[4 k-1] \frac{\left(a q^{-1} ; q^{2}\right)_{k}\left(q^{-1} / a ; q^{2}\right)_{k}\left(q^{-1} ; q^{2}\right)_{k}^{2}}{\left(a q^{2} ; q^{2}\right)_{k}\left(q^{2} / a ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{k}^{2}} q^{4 k} \equiv 0 \quad\left(\bmod [n]^{2}\left(1-a q^{n}\right)\left(a-q^{n}\right)\right)
$$

and

$$
\sum_{k=0}^{n-1}[4 k-1] \frac{\left(a q^{-1} ; q^{2}\right)_{k}\left(q^{-1} / a ; q^{2}\right)_{k}\left(q^{-1} ; q^{2}\right)_{k}^{2}}{\left(a q^{2} ; q^{2}\right)_{k}\left(q^{2} / a ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{k}^{2}} q^{4 k} \equiv 0 \quad\left(\bmod [n]^{2}\left(1-a q^{n}\right)\left(a-q^{n}\right)\right)
$$

The $a=-1$ case of Theorem 1.2 admits an even stronger q-congruence.
Theorem 1.3. Let $n>1$ be a positive odd integer. Then

$$
\begin{equation*}
\sum_{k=0}^{\frac{n+1}{2}}[4 k-1] \frac{\left(q^{-2} ; q^{4}\right)_{k}^{2}}{\left(q^{4} ; q^{4}\right)_{k}^{2}} q^{4 k} \equiv-q^{n}\left(1-q+q^{2}\right)[n]_{q^{2}}^{2} \quad\left(\bmod [n]_{q^{2}}^{2} \Phi_{n}\left(q^{2}\right)\right) \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n-1}[4 k-1] \frac{\left(q^{-2} ; q^{4}\right)_{k}^{2}}{\left(q^{4} ; q^{4}\right)_{k}^{2}} q^{4 k} \equiv-\left(1-q+q^{2}\right)[n]_{q^{2}}^{2} \quad\left(\bmod [n]_{q^{2}}^{2} \Phi_{n}\left(q^{2}\right)\right) \tag{3b}
\end{equation*}
$$

In the above q-supercongruences and in what follows,

$$
(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)
$$

is the q-shifted factorial,

$$
[n]=[n]_{q}=1+q+\cdots+q^{n-1}
$$

is the q-number,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

is the q-binomial coefficient, and $\Phi_{n}(q)$ is the n-th cyclotomic polynomial of q. Note that the congruences in Theorem 1.1 modulo $[n] \Phi_{n}(q)^{2}$ and the congruences in Theorem 1.2 modulo $[n]\left(1-a q^{n}\right)\left(a-q^{n}\right)$ have already been proved by the authors in [13, eqs. (5.5) and (5.10)].

2. Proof of Theorem 1.1 by the Zeilberger algorithm

The Zeilberger algorithm (cf. [22]) can be used to find that the functions

$$
\begin{aligned}
& f(n, k)=(-1)^{k} \frac{(4 n-1)\left(-\frac{1}{2}\right)_{n}^{3}\left(-\frac{1}{2}\right)_{n+k}}{(1)_{n}^{3}(1)_{n-k}\left(-\frac{1}{2}\right)_{k}^{2}} \\
& g(n, k)=(-1)^{k-1} \frac{4\left(-\frac{1}{2}\right)_{n}^{3}\left(-\frac{1}{2}\right)_{n+k-1}}{(1)_{n-1}^{3}(1)_{n-k}\left(-\frac{1}{2}\right)_{k}^{2}}
\end{aligned}
$$

satisfy the relation

$$
(2 k-3) f(n, k-1)-(2 k-4) f(n, k)=g(n+1, k)-g(n, k) .
$$

Of course, given this relation, it is not difficult to verify by hand that it is satisfied by the above pair of doubly-indexed sequences $f(n, k)$ and $g(n, k)$.

Here we use the convention $1 /(1)_{m}=0$ for all negative integers m. We now define the q-analogues of $f(n, k)$ and $g(n, k)$ as follows:

$$
\begin{aligned}
& F(n, k)=(-1)^{k} q^{(k-2)(k-2 n+1)} \frac{[4 n-1]\left(q^{-1} ; q^{2}\right)_{n}^{3}\left(q^{-1} ; q^{2}\right)_{n+k}}{\left(q^{2} ; q^{2}\right)_{n}^{3}\left(q^{2} ; q^{2}\right)_{n-k}\left(q^{-1} ; q^{2}\right)_{k}^{2}} \\
& G(n, k)=\frac{(-1)^{k-1} q^{(k-2)(k-2 n+3)}\left(q^{-1} ; q^{2}\right)_{n}^{3}\left(q^{-1} ; q^{2}\right)_{n+k-1}}{(1-q)^{2}\left(q^{2} ; q^{2}\right)_{n-1}^{3}\left(q^{2} ; q^{2}\right)_{n-k}\left(q^{-1} ; q^{2}\right)_{k}^{2}}
\end{aligned}
$$

where we have used the convention that $1 /\left(q^{2} ; q^{2}\right)_{m}=0$ for $m=-1,-2, \ldots$ Then the functions $F(n, k)$ and $G(n, k)$ satisfy the relation

$$
\begin{equation*}
[2 k-3] F(n, k-1)-[2 k-4] F(n, k)=G(n+1, k)-G(n, k) \tag{4}
\end{equation*}
$$

Indeed, it is straightforward to obtain the following expressions:

$$
\begin{aligned}
\frac{F(n, k-1)}{G(n, k)} & =\frac{q^{2 n-4 k+6}(1-q)\left(1-q^{4 n-1}\right)\left(1-q^{2 k-3}\right)^{2}}{\left(1-q^{2 n-2 k+2}\right)\left(1-q^{2 n}\right)^{3}} \\
\frac{F(n, k)}{G(n, k)} & =-\frac{q^{4-2 k}(1-q)\left(1-q^{4 n-1}\right)\left(1-q^{2 n+2 k-3}\right)}{\left(1-q^{2 n}\right)^{3}} \\
\frac{G(n+1, k)}{G(n, k)} & =\frac{q^{4-2 k}\left(1-q^{2 n-1}\right)^{3}\left(1-q^{2 n+2 k-3}\right)}{\left(1-q^{2 n}\right)^{3}\left(1-q^{2 n-2 k+2}\right)}
\end{aligned}
$$

It is easy to verify the identity

$$
\begin{aligned}
& \frac{q^{2 n-4 k+6}\left(1-q^{4 n-1}\right)\left(1-q^{2 k-3}\right)^{3}}{\left(1-q^{2 n-2 k+2}\right)\left(1-q^{2 n}\right)^{3}}+\frac{q^{4-2 k}\left(1-q^{2 k-4}\right)\left(1-q^{4 n-1}\right)\left(1-q^{2 n+2 k-3}\right)}{\left(1-q^{2 n}\right)^{3}} \\
& \quad=\frac{q^{4-2 k}\left(1-q^{2 n-1}\right)^{3}\left(1-q^{2 n+2 k-3}\right)}{\left(1-q^{2 n}\right)^{3}\left(1-q^{2 n-2 k+2}\right)}-1,
\end{aligned}
$$

which is equivalent to (4). (Alternatively, we could have established (4) by only guessing $F(n, k)$ and invoking the q-Zeilberger algorithm [28].)

Let $m>1$ be an odd integer. Summing (4) over n from 0 to $(m+1) / 2$, we get

$$
\begin{align*}
{[2 k-3] \sum_{n=0}^{\frac{m+1}{2}} F(n, k-1)-[2 k-4] \sum_{n=0}^{\frac{m+1}{2}} F(n, k) } & =G\left(\frac{m+3}{2}, k\right)-G(0, k) \\
& =G\left(\frac{m+3}{2}, k\right) \tag{5}
\end{align*}
$$

We readily compute

$$
\begin{align*}
G\left(\frac{m+3}{2}, 1\right) & =\frac{q^{m-1}\left(q^{-1} ; q^{2}\right)_{(m+3) / 2}^{4}}{(1-q)^{2}\left(q^{2} ; q^{2}\right)_{(m+1) / 2}^{4}\left(1-q^{-1}\right)^{2}} \\
& =\frac{q^{m-3}[m]^{4}}{[m+1]^{4}(-q ; q)_{(m-1) / 2}^{8}}\left[\begin{array}{c}
m-1 \\
(m-1) / 2
\end{array}\right]^{4} \tag{6a}
\end{align*}
$$

and

$$
\begin{align*}
G\left(\frac{m+3}{2}, 2\right) & =-\frac{\left(q^{-1} ; q^{2}\right)_{(m+3) / 2}^{3}\left(q^{-1} ; q^{2}\right)_{(m+5) / 2}}{(1-q)^{2}\left(q^{2} ; q^{2}\right)_{(m+1) / 2}^{3}\left(q^{2} ; q^{2}\right)_{(m-1) / 2}\left(q^{-1} ; q^{2}\right)_{2}^{2}} \\
& =-\frac{q^{-2}[m]^{4}[m+2]}{[m+1]^{3}(-q ; q)_{(m-1) / 2}^{8}}\left[\begin{array}{c}
m-1 \\
(m-1) / 2
\end{array}\right]^{4} \tag{6b}
\end{align*}
$$

Combining (5) and (6), we have

$$
\begin{aligned}
\sum_{n=0}^{\frac{m+1}{2}} F(n, 0) & =\frac{[-2]}{[-1]} \sum_{n=0}^{\frac{m+1}{2}} F(n, 1)+\frac{1}{[-1]} G\left(\frac{m+3}{2}, 1\right) \\
& =\frac{1+q}{q} G\left(\frac{m+3}{2}, 2\right)-q G\left(\frac{m+3}{2}, 1\right) \\
& =-\frac{(1+q)[m]^{4}[m+1][m+2]+q^{m+1}[m]^{4}}{q^{3}[m+1]^{4}(-q ; q)_{(m-1) / 2}^{8}}\left[\begin{array}{c}
m-1 \\
(m-1) / 2
\end{array}\right]^{4},
\end{aligned}
$$

i.e.,

$$
\sum_{n=0}^{\frac{m+1}{2}}[4 n-1] \frac{\left(q^{-1} ; q^{2}\right)_{n}^{4}}{\left(q^{2} ; q^{2}\right)_{n}^{4}} q^{4 n}=-\frac{(1+q)[m]^{4}[m+1][m+2]+q^{m+1}[m]^{4}}{q[m+1]^{4}(-q ; q)_{(m-1) / 2}^{8}}\left[\begin{array}{c}
m-1 \tag{7}\\
(m-1) / 2
\end{array}\right]^{4}
$$

By [4, Lemma 2.1] (or [3, Lemma 2.1]), we have $(-q ; q)_{(m-1) / 2}^{2} \equiv q^{\left(m^{2}-1\right) / 8}\left(\bmod \Phi_{m}(q)\right)$. Moreover, it is easy to see that
$\left[\begin{array}{c}m-1 \\ (m-1) / 2\end{array}\right]=\prod_{k=1}^{(m-1) / 2} \frac{1-q^{m-k}}{1-q^{k}} \equiv \prod_{k=1}^{(m-1) / 2} \frac{1-q^{-k}}{1-q^{k}}=(-1)^{(m-1) / 2} q^{\left(1-m^{2}\right) / 8} \quad\left(\bmod \Phi_{m}(q)\right)$, and $[m]$ is relatively prime to $(-q ; q)_{(m-1) / 2}$. It follows from (7) that

$$
\sum_{n=0}^{\frac{m+1}{2}}[4 n-1] \frac{\left(q^{-1} ; q^{2}\right)_{n}^{4}}{\left(q^{2} ; q^{2}\right)_{n}^{4}} q^{4 n} \equiv-\left((1+q)^{2}+q\right)[m]^{4} \quad\left(\bmod [m]^{4} \Phi_{m}(q)\right)
$$

Concluding, the congruence (2a) holds.
Similarly, summing (4) over n from 0 to $m-1$, we get

$$
[2 k-3] \sum_{n=0}^{m-1} F(n, k-1)-[2 k-4] \sum_{n=0}^{m-1} F(n, k)=G(m, k),
$$

and so

$$
\begin{align*}
\sum_{n=0}^{m-1}[4 n-1] \frac{\left(q^{-1} ; q^{2}\right)_{n}^{4}}{\left(q^{2} ; q^{2}\right)_{n}^{4}} q^{4 n} & =\frac{1+q}{q} G(m, 2)-q G(m, 1) \\
& =-\frac{(1+q)[2 m-2][2 m-1]+q^{2 m-2}}{q(-q ; q)_{m-1}^{8}}\left[\begin{array}{c}
2 m-2 \\
m-1
\end{array}\right]^{4} \tag{8}
\end{align*}
$$

It is easy to see that

$$
\frac{1}{[m]}\left[\begin{array}{c}
2 m-2 \\
m-1
\end{array}\right]=\frac{1}{[m-1]}\left[\begin{array}{c}
2 m-2 \\
m-2
\end{array}\right] \equiv(-1)^{m-2} q^{2-\binom{m-1}{2}} \quad\left(\bmod \Phi_{m}(q)\right)
$$

and $(-q ; q)_{m-1} \equiv 1\left(\bmod \Phi_{m}(q)\right)$ (see, for example, [4]). The proof of $(2 \mathrm{~b})$ then follows easily from (8).

3. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2. It is easy to see by induction on N that

$$
\begin{align*}
& \sum_{k=0}^{N}[4 k-1] \frac{\left(a q^{-1} ; q^{2}\right)_{k}\left(q^{-1} / a ; q^{2}\right)_{k}\left(q^{-1} ; q^{2}\right)_{k}^{2}}{\left(a q^{2} ; q^{2}\right)_{k}\left(q^{2} / a ; q^{2}\right)_{k}\left(q^{2} ; q^{2}\right)_{k}^{2}} q^{4 k} \\
& \quad=\frac{\left(a q ; q^{2}\right)_{N}\left(q / a ; q^{2}\right)_{N}\left((a+1)^{2} q^{2 N+1}-a(1+q)\left(1+q^{4 N+1}\right)\right)}{q(a-q)(1-a q)\left(a q^{2} ; q^{2}\right)_{N}\left(q^{2} / a ; q^{2}\right)_{N}(-q ; q)_{N}^{4}}\left[\begin{array}{c}
2 N \\
N
\end{array}\right]^{2} \tag{9}
\end{align*}
$$

For $N=(n+1) / 2$ or $N=n-1$, we see that $\left(a q ; q^{2}\right)_{N}\left(q / a ; q^{2}\right)_{N}$ contains the factor $\left(1-a q^{n}\right)\left(1-q^{n} / a\right)$. Moreover,

$$
\frac{[(n+1) / 2]}{[n]}\left[\begin{array}{c}
n \\
(n-1) / 2
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
(n-1) / 2
\end{array}\right]
$$

is a polynomial in q. Since $[(n+1) / 2]$ and $[n]$ are relatively prime, we conclude that $\left[\begin{array}{c}n \\ (n-1) / 2\end{array}\right]$ is divisible by $[n]$. Therefore, $\left[\begin{array}{c}n+1 \\ (n+1) / 2\end{array}\right]=\left(1+q^{(n+1) / 2}\right)\left[\begin{array}{c}n \\ (n-1) / 2\end{array}\right]$ is also divisible by $[n]$. It is also well known that $\left[\begin{array}{c}2 n-2 \\ n-1\end{array}\right]$ is divisible by $[n]$. Moreover, it is easy to see that $[n]$ is relatively prime to $1+q^{m}$ for any non-negative integer m. The proof then follows from (9) by taking $N=(n+1) / 2$ and $N=n-1$.

Proof of Theorem 1.3. For $a=-1$, the identity (9) reduces to

$$
\begin{align*}
\sum_{k=0}^{N}[4 k-1] \frac{\left(q^{-2} ; q^{4}\right)_{k}^{2}}{\left(q^{4} ; q^{4}\right)_{k}^{2}} q^{4 k} & =-\frac{\left(-q ; q^{2}\right)_{N}^{2}\left(1+q^{4 N+1}\right)}{q(1+q)\left(-q^{2} ; q^{2}\right)_{N}^{2}(-q ; q)_{N}^{4}}\left[\begin{array}{c}
2 N \\
N
\end{array}\right]^{2} \\
& =-\frac{\left(1+q^{4 N+1}\right)}{q(1+q)\left(-q^{2} ; q^{2}\right)_{N}^{4}}\left[\begin{array}{c}
2 N \\
N
\end{array}\right]_{q^{2}}^{2} \tag{10}
\end{align*}
$$

Note that, in the proof of Theorem 1.2, we have proved that $\left[\begin{array}{c}2 N \\ N\end{array}\right]_{q^{2}}$ is divisible by $[n]_{q^{2}}$ for both $N=(n+1) / 2$ and $N=n-1$. Moreover, $[n]_{q^{2}}$ is relatively prime to $\left(-q^{2} ; q^{2}\right)_{m}$ for $m \geqslant 0$. Hence the right-hand side of (10) is congruent to 0 modulo $[n]_{q^{2}}^{2}$ for $N=(n+1) / 2$ or $N=n-1$. To further determine the right-hand side of (10) modulo $[n]_{q^{2}}^{2} \Phi_{n}\left(q^{2}\right)$, we need only to use the same congruences (with $q \mapsto q^{2}$) used in the proof of Theorem 1.1.

4. Immediate consequences

Notice that for $n=p^{r}$ being an odd prime power, $\Phi_{p^{r}}(q)=[p]_{q^{p^{r-1}}}$ holds. This observation was used in [15] to extend (1) to a supercongruence modulo $\left[p^{r}\right][p]_{q^{p-1}}^{3}$. In the same vein we immediately deduce from Theorem 1.1 the following result:

Corollary 4.1. Let p be an odd prime and r a positive integer. Then

$$
\begin{equation*}
\sum_{k=0}^{\frac{p^{r}+1}{2}}[4 k-1] \frac{\left(q^{-1} ; q^{2}\right)_{k}^{4}}{\left(q^{2} ; q^{2}\right)_{k}^{4}} q^{4 k} \equiv-\left(1+3 q+q^{2}\right)\left[p^{r}\right]^{4} \quad\left(\bmod \left[p^{r}\right]^{4}[p]_{q^{p^{r-1}}}\right) \tag{11a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-1}[4 k-1] \frac{\left(q^{-1} ; q^{2}\right)_{k}^{4}}{\left(q^{2} ; q^{2}\right)_{k}^{4}} q^{4 k} \equiv-\left(1+3 q+q^{2}\right)\left[p^{r}\right]^{4} \quad\left(\bmod \left[p^{r}\right]^{4}[p]_{q^{p^{r-1}}}\right) \tag{11b}
\end{equation*}
$$

The $q \rightarrow 1$ limiting cases of these two identities yield the following supercongruences:

Corollary 4.2. Let p be an odd prime and r a positive integer. Then

$$
\begin{equation*}
\sum_{k=0}^{\frac{p^{r}-1}{2}} \frac{4 k+3}{16(k+1)^{4} 256^{k}}\binom{2 k}{k}^{4} \equiv 1-5 p^{4 r} \quad\left(\bmod p^{4 r+1}\right) \tag{12a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-2} \frac{4 k+3}{16(k+1)^{4} 256^{k}}\binom{2 k}{k}^{4} \equiv 1-5 p^{4 r} \quad\left(\bmod p^{4 r+1}\right) \tag{12b}
\end{equation*}
$$

Similarly, we deduce from Theorem 1.3 the following result:
Corollary 4.3. Let p be an odd prime and r a positive integer. Then

$$
\begin{equation*}
\sum_{k=0}^{\frac{p^{r}+1}{2}}[4 k-1] \frac{\left(q^{-2} ; q^{4}\right)_{k}^{2}}{\left(q^{4} ; q^{4}\right)_{k}^{2}} q^{4 k} \equiv-q^{p^{r}}\left(1-q+q^{2}\right)\left[p^{r}\right]_{q^{2}}^{2} \quad\left(\bmod \left[p^{r}\right]_{q^{2}}^{2}[p]_{q^{2 p^{r-1}}}\right) \tag{13a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-1}[4 k-1] \frac{\left(q^{-2} ; q^{4}\right)_{k}^{2}}{\left(q^{4} ; q^{4}\right)_{k}^{2}} q^{4 k} \equiv-\left(1-q+q^{2}\right)\left[p^{r}\right]_{q^{2}}^{2} \quad\left(\bmod \left[p^{r}\right]_{q^{2}}^{2}[p]_{q^{2 p^{r-1}}}\right) \tag{13b}
\end{equation*}
$$

The $q \rightarrow 1$ limiting cases of these two identities yield the following supercongruences:
Corollary 4.4. Let p be an odd prime and r a positive integer. Then

$$
\begin{equation*}
\sum_{k=0}^{\frac{p^{r}-1}{2}} \frac{4 k+3}{4(k+1)^{2} 16^{k}}\binom{2 k}{k}^{2} \equiv 1-p^{2 r} \quad\left(\bmod p^{2 r+1}\right) \tag{14a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p^{r}-2} \frac{4 k+3}{4(k+1)^{2} 16^{k}}\binom{2 k}{k}^{2} \equiv 1-p^{2 r} \quad\left(\bmod p^{2 r+1}\right) \tag{14b}
\end{equation*}
$$

The supercongruences in Corollaries 4.2 and 4.4 are remarkable since they are valid for arbitrarily high prime powers. Swisher [24] had empirically observed several similar but different hypergeometric supercongruences and stated them without proof.

References

[1] O. Gorodetsky, q-Congruences, with applications to supercongruences and the cyclic sieving phenomenon, preprint, May 2018; arXiv:1805.01254.
[2] J. Guillera, WZ pairs and q-analogues of Ramanujan series for $1 / \pi$, J. Difference Equ. Appl. 24 (2018), 1871-1879.
[3] V.J.W. Guo, A q-analogue of the (J.2) supercongruence of Van Hamme, J. Math. Anal. Appl. 466 (2018), 776-788.
[4] V.J.W. Guo, A q-analogue of the (I.2) supercongruence of Van Hamme, Int. J. Number Theory 15 (2019), 29-36.
[5] V.J.W. Guo, Proof of a q-congruence conjectured by Tauraso, Int. J. Number Theory 15 (2019), 37-41.
[6] V.J.W. Guo, q-Analogues of the (E.2) and (F.2) supercongruences of Van Hamme, Ramanujan J. (2018), https://doi.org/10.1007/s11139-018-0021-z
[7] V.J.W. Guo, q-Analogues of two "divergent" Ramanujan-type supercongruences, Ramanujan J., https://doi.org/10.1007/s11139-019-00161-0
[8] V.J.W. Guo, A q-analogue of a curious supercongruence of Guillera and Zudilin, J. Difference Equ. Appl. 25 (2019), 342-350.
[9] V.J.W. Guo, Factors of some truncated basic hypergeometric series, J. Math. Anal Appl. 476 (2019), 851-859.
[10] V.J.W. Guo, Some q-congruences with parameters, Acta Arith., to appear.
[11] V.J.W. Guo and H.-X. Ni, A q-congruence involving the Jacobi symbol, Int. J. Number Theory, to appear.
[12] V.J.W. Guo and M.J. Schlosser, Some new q-congruences for truncated basic hypergeometric series, Symmetry 11(2) (2019):268.
[13] V.J.W. Guo and M.J. Schlosser, Some q-supercongruences from transformation formulas for basic hypergeometric series, preprint, December 2018; arXiv:1812.06324.
[14] V.J.W. Guo and S.-D. Wang, Factors of sums and alternating sums of products of q-binomial coefficients and powers of q-integers, Taiwan. J. Math. 23 (2019), 11-27.
[15] V.J.W. Guo and S.-D. Wang, Some congruences involving fourth powers of central q-binomial coefficients, Proc. Roy. Soc. Edinburgh Sect. A, https://doi.org/10.1017/prm.2018.96
[16] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329-358.
[17] V.J.W. Guo and W. Zudilin, On a q-deformation of modular forms, J. Math. Anal Appl. 475 (2019), 1636-1646.
[18] J. Liu, H. Pan, and Y. Zhang, A generalization of Morley's congruence, Adv. Difference Equ. (2015) 2015:254.
[19] J.-C. Liu and F. Petrov, Congruences on sums of q-binomial coefficients, preprint, February 2019; arXiv:1902.03851.
[20] H.-X. Ni and H. Pan, Divisibility of some binomial sums, preprint, August 2018; arXiv:1808.03213.
[21] R. Osburn and W. Zudilin, On the (K.2) supercongruence of Van Hamme, J. Math. Anal. Appl. 433 (2016), 706-711.
[22] M. Petkovšek, H.S. Wilf, and D. Zeilberger, $A=B$, A K Peters, Ltd., Wellesley, MA, 1996.
[23] A. Straub, Supercongruences for polynomial analogs of the Apéry numbers, Proc. Amer. Math. Soc. 147 (2019), 1023-1036.
[24] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. (2015) 2:18.
[25] R. Tauraso, q-Analogs of some congruences involving Catalan numbers, Adv. Appl. Math. 48 (2009), 603-614.
[26] R. Tauraso, Some q-analogs of congruences for central binomial sums, Colloq. Math. 133 (2013), 133-143.
[27] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York, 1997, pp. 223-236.
[28] H.S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and " q ") multisum/integral identities, Invent. Math. 108 (1992), 575-633.
[29] W. Zudilin, Congruences for q-binomial coefficients, Ann. Comb., to appear.

School of Mathematical Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu, People's Republic of China

E-mail address: jwguo@hytc.edu.cn
Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

E-mail address: michael.schlosser@univie.ac.at

[^0]: 2010 Mathematics Subject Classification. Primary 33D15; Secondary 11A07, 11F33.
 Key words and phrases. basic hypergeometric series, q-series, supercongruences, identities.
 The first author was partially supported by the National Natural Science Foundation of China (grant 11771175).

