
DISSERTATION

Titel der Dissertation

“q, t-Fuß-Catalan numbers for finite reflection groups”

“q, t-Fuß-Catalan Zahlen für endliche Spiegelungsgruppen”

Verfasser

Christian Stump

angestrebter akademischer Grad

Doktor der Naturwissenschaften (Dr. rer. nat.)

Wien, im August 2008

Studienkennzahl lt. Studienblatt: A 091 405
Dissertationsgebiet lt. Studienblatt: Mathematik
Betreuer: Michael Schlosser
Gutachter: Christian Krattenthaler

Vic Reiner



Author’s address:

Institut für Mathematik, Universität Wien, Nordbergstraße 15,
A-1090 Wien, Austria.
E-Mail: christian.stump@univie.ac.at

English Abstract. In type A, the q, t-Catalan numbers and the q, t-
Fuß-Catalan numbers can be defined as a bigraded Hilbert series of a module
associated to the symmetric group Sn. We generalize this construction to (fi-
nite) complex reflection groups and exhibit many nice conjectured algebraic
and combinatorial properties of these symmetric polynomials in q and t with
non-negative integer coefficients.
We combinatorially define q-Fuß-Catalan numbers as the generating function
of a statistic on the extended Shi arrangement which seem to describe the spe-
cialization t = 1 in the q, t-Fuß-Catalan numbers.
The exhibited statistic yields a definition of Catalan paths of type B of which
we further investigate several properties. In particular, we define for types A
and B bijections between Catalan paths, non-crossing partitions and Coxeter
sortable elements which transfer arising questions concerning the q, t-Catalan
numbers from Catalan paths to non-crossing partitions and to Coxeter sortable
elements.
Finally, we present several ideas how the q, t-Fuß-Catalan numbers could be
related to some graded Hilbert series of modules arising in the context of ra-
tional Cherednik algebras and thereby generalize known connections.

Deutsche Zusammenfassung. Im Typ A können die q, t-Catalan Zahlen
und die q, t-Fuß-Catalan Zahlen als bigraduierte Hilbertreihe eines Moduls über
der symmetrischen Gruppe Sn definiert werden. Wir verallgemeinern diese
Konstruktion auf (endliche) komplexe Spiegelungsgruppen und beschreiben
einige vermutete algebraische und kombinatorische Eigenschaften dieser sym-
metrischen Polynome in q und tmit nicht-negativen ganzzahligen Koeffizienten.
Weiterhin definieren wir q-Fuß-Catalan Zahlen kombinatorisch als Erzeugenden-
funktion einer Statistik auf dem verallgemeinerten Shi-Gefüge. Diese scheinen
die Spezialisierung t = 1 der q, t-Fuß-Catalan Zahlen zu beschreiben.
Diese neue Statistik führt zu einer Definition von Catalan-Pfaden im Typ
B, welche wir auf weitere Eigenschaften hin untersuchen. Unter anderem
finden wir für die Typen A und B Bijektionen zwischen Catalan-Pfaden, nicht-
kreuzenden Partitionen und Coxeter-sortierbaren Elementen, die Fragestel-
lungen bzgl. der q, t-Catalan Zahlen von Catalan-Pfaden zu nicht-keuzenden
Partitionen und Coxeter-sortierbaren Elementen transferiert.
Schließlich präsentieren wir einige Ideen, wie die q, t-Fuß-Catalan Zahlen mit
Moduln, die im Kontext von rationalen Cherednik-Algebren auftreten, in Bezie-
hung stehen könnten. Dabei verallgemeinern wir bereits untersuchte Verbin-
dungen.
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Introduction

One of the most famous and most studied integer sequences in combinatorics is the
sequence of Catalan numbers. These are defined as

Catn :=
1

n+ 1

(
2n

n

)
and are named after the Belgian mathematician Eugène Charles Catalan who discovered
them while considering an elegant solution of the problem

“In how many ways is it possible to dissect a convex (n+ 2)-gon into triangles?”.

In his book “Enumerative Combinatorics Vol. 2”[97], R.P. Stanley lists more than 66
combinatorial interpretations of these numbers.

Several authors studied combinatorially defined q-extensions of the Catalan num-
bers. The two we mostly deal with are given by the generating function for the major
index, which was introduced by P.A. MacMahon in [82], and by the generating func-
tion for the area statistic, which was considered by J. Fürlinger and J. Hofbauer in
[52]. Both statistics are defined on Catalan paths of length n which are lattice paths
consisting of 2n steps from (0, 0) to (n, n) that stay above the diagonal x = y. These
paths are well-known to be counted by the n-th Catalan number Catn.

The notion of Catalan paths can be generalized to m-Catalan paths by considering
instead lattice paths from (0, 0) to (mn, n) that stay above the diagonal x = my. These
paths are counted by a generalization of the Catalan numbers which we call Fuß-Catalan
numbers and which are defined as

Cat(m)
n :=

1

mn+ 1

(
(m+ 1)n

n

)
.

The notion for a Catalan path to have a certain area naturally generalizes to m-Catalan
paths. Unfortunately, no such generalization is known for the major index, but MacMa-
hon’s q-Catalan numbers factorize nicely and this factorization gives rise to a natural
generalization of this generating function.

A. Postnikov connected Catalan paths in a very intuitive way to the reflection
group of type A and generalized them to all crystallographic reflection groups by in-
troducing non-nesting partitions [87, Remark 2]. V. Reiner then observed that there
exists a type-independent expression counting these non-nesting partitions, see [87].
C.A. Athanasiadis later also generalized the notion of m-Catalan paths as well as of
Reiner’s uniform expression by considering filtered chains of non-nesting partitions,
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2 INTRODUCTION

see [9]. The Fuß-Catalan numbers Cat(m)(W ) associated to a reflection group W are
defined as this uniform expression,

Cat(m)(W ) :=
l∏

i=1

di +mh

di
.

Here, l is the rank of W , d1 ≤ . . . ≤ dl are its degrees and h is its Coxeter number.
They reduce in type A to the classical Fuß-Catalan numbers,

Cat(m)(An−1) = Cat(m)
n .

This notion makes even sense for any (finite) complex reflection group W but if

W is not well-generated, Cat(m)(W ) may fail to be an integer. In full generality of
well-generated complex reflection groups, this product was first considered by D. Bessis
in [20] where he constructed objects called chains in the non-crossing partition lattice

and where he showed that these are counted by Cat(m)(W ). His work generalizes the
work of T. Brady and C. Watt [28, 30] for the classical groups.

The work on non-nesting partitions on the one hand and on non-crossing partitions
– which are certain elements in the reflection group – on the other hand suggests that
both are, at least in a numerical sense, deeply connected. These connections were nicely
described in D. Armstrong’s PhD thesis, see [7, Chapter 5.1.3]. Unfortunately, no bi-
jections between both are known so far, except for type A, and these connections are
still mysterious and not well understood.

One contribution of this thesis is to generalize the notion of the area statistic on
m-Catalan paths to all filtered chains of non-nesting partitions, or equivalently to posi-
tive regions in the extended Shi arrangement (Definition 2.18), and to exhibit bijections
between non-nesting and non-crossing partitions for types A and B which translate this
generalized statistic on non-nesting partitions to the length function (in the sense of
reflection groups) on non-crossing partitions (Theorem 2.48).

Recently, N. Reading introduced the notion of Coxeter sortable elements [84]. These
are also elements in the reflection group satisfying conditions different from non-crossing
partitions but which are in bijection with these. We also exhibit bijections between non-
nesting partitions and Coxeter sortable elements in types A and B having the same
properties as the bijections between non-nesting and non-crossing partitions (Theo-
rem 2.63). As Coxeter sortable elements in type A can be considered as 231-avoiding
permutations, this bijection leads to a new perception of bijections between Catalan
paths and 231-avoiding permutations, which were widely studied by several authors
[14, 33, 74, 85].

The second main contribution of this thesis is more of algebraic nature. It was
actually discovered first and the combinatorial part of the thesis should also be seen as
efforts in the combinatorial understanding of the algebraic objects which arise.

In type A, the q, t-Catalan numbers and their generalization, which we call q, t-
Fuß-Catalan numbers, appeared first in two seemingly unrelated fields of mathematics:
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M. Haiman defined them as bigraded Hilbert series of certain modules arising in the
representation theory of diagonal coinvariant rings [64], and A. Garsia and Haiman
defined them shortly later as a complicated rational function in q and t which arose in
the context of modified Macdonald polynomials [56]. Using the second definition, they
were able to prove that this rational function, which is by construction symmetric in q
and t, defines a q, t-extension of the Fuß-Catalan numbers in the sense that specializing
the variables q and t to 1 reduces this rational function to Cat(m)

n . Furthermore, they
were able to show that specializing t = q−1 and multiplying by the highest power of q
recovers MacMahon’s q-Fuß-Catalan numbers and specializing t = 1 recovers Fürlinger
and Hofbauer’s q-Fuß-Catalan numbers.
Finally, after 15 years of intensive research, Haiman proved the equivalence of both
definitions in a series of papers in which he proved the n!-conjecture and the (n+1)n−1-
conjecture [64, 65, 66, 68].

The definition as a bigraded Hilbert series implies that the q, t-Catalan numbers
and the q, t-Fuß-Catalan numbers are in fact polynomials with non-negative integer
coefficients. This yields the problem of finding a second statistic on Catalan paths
(which, by symmetry, has to be equally distributed with area) such that these polyno-
mials can be completely described combinatorially. In [61], J. Haglund found such a
statistic, which he called bounce, and together with Garsia, he proved in [56] for the
q, t-Catalan numbers that the complicated rational function is in fact equal to the gen-
erating function for the bistatistic (area, bounce) on Catalan paths. In [78], N. Loehr
generalized the definition of the bounce statistic and conjectured that the bistatistic
(area, bounce) also describes the q, t-Fuß-Catalan numbers. This conjecture is still open.

This first definition of the q, t-Catalan numbers describes them as the bigraded
Hilbert series of the alternating component of the diagonal coinvariant ring DRn which
is defined as

DRn := C[x,y]/I,
where C[x,y] := C[x1, y1, . . . , xn, yn] is the polynomial ring in two sets of variables on
which the symmetric group Sn acts diagonally and where I is the ideal generated by
all invariant polynomials without constant term.
Haiman proved that the dimension of the diagonal coinvariant ring is equal to (n+1)n−1,
see [66]. This expression can be written in terms of the reflection group of type An−1

as (h+ 1)l where h = n is the Coxeter number of type An−1 and l = n− 1 is its rank.
Furthermore, he considered the diagonal coinvariant ring DR(W ) for any classical re-
flection group W , but their dimensions seemed to be “too big”, see Figure 32 on page 88
for their actual dimensions. This phenomenon was solved for crystallographic reflection
groups by I. Gordon. In [58], he showed that there exists a surjection

DR(W )⊗ det� gr(L),(1)

where L is a module over the rational Cherednik algebra depending on a parameter
c = 1 + 1

h
and where gr(L) is its associated graded module.
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By work of Y. Berest, P. Etingof and V. Ginzburg [15], this module has, for the
more general parameter c = m+ 1

h
, dimension equal to (mh+ 1)l and its Hilbert series

is given by

H(gr(L); q) = ([mh+ 1]q)
l.

Furthermore, its invariant component has dimension Cat(m)(W ) and the Hilbert series
equals MacMahon’s q-Fuß-Catalan number,

H(e gr(L); q) = diag-Cat(m)(W ; q) :=
l∏

i=1

[di +mh]q
[di]q

.

As the surjection in (1) is not a bijection in general, this seemed to be the end of
the story concerning the diagonal coinvariant ring for other reflection groups.

The starting point of this thesis were several computer experiments with the com-
puter algebra systems singular [94] and Macaulay 2 [79] which were inspired by [67,
Problem 1.13(b)].

We considered only the alternating component of the diagonal coinvariant ring,

M := edet

(
DR(W )

)
= A/〈x,y〉A,

as well as its generalization

M (m) := Am/〈x,y〉Am,

which is, except for the sign-twist, equal to the alternating component of the space of
generalized diagonal coinvariants

DR(m)(W ) :=
(
Am−1/Am−1I

)
⊗ det⊗(m−1),

where A is the ideal generated by all alternating polynomials (for complex reflection
groups, we will usually use the terms determinantal component and determinantal poly-
nomials).

The computations suggested that this alternating component still has dimension
Cat(m)(W ) and this leads to the main definitions of this thesis (Definition 4.9 and

Definition 4.22): the q, t-Fuß-Catalan numbers Cat(m)(W ; q, t) are defined as the bigraded
Hilbert series of M (m),

Cat(m)(W ; q, t) := H(M (m); q, t).

Based on the computations, we conjecture that Cat(m)(W ; q, t) reduces in fact for

q = t = 1 to the Fuß-Catalan numbers and the specialization t = q−1 in Cat(m)(W ; q, t)

yields, up to a power of q, MacMahon’s q-Fuß-Catalan numbers diag-Cat(m)(W ; q) (Con-
jecture 4.10).

Following work of J. Alfano and E. Reiner [64], we prove both conjectures for the
dihedral groups (Corollary 4.16) and give an explicit expression for the q, t-Fuß-Catalan
numbers in this case (Theorem 4.17).
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Using descriptions of gr(L) from [15], we generalize Gordon’s surjection to all real
reflection groups and also to surjections between the space of generalized diagonal coin-
variants and gr(L) for the parameter c = m + 1

h
(Theorem 5.7). This implies that for

arbitrary m, both conjectures would be implied by (and in fact are both equivalent to)
the conjecture that the kernel of the constructed surjection does not contain a copy of
the trivial representation (Conjecture 5.9).

Like in type A, the definition of the q, t-Fuß-Catalan numbers implies that they are
symmetric polynomials in q and t with non-negative integer coefficients. This yields
again the problem of finding a combinatorial description. We also made some progress
concerning the first statistic but again we are only able to state a conjecture: the
specialization t = 1 in Cat(m)(W ; q, t) can be combinatorially described by the gener-
alization of the area statistic on filtered chains of non-nesting partitions or on positive
regions in the extended Shi arrangement which was mentioned above (Conjecture 4.12).

This thesis is organized as follows:

In Chapter 1, we give an overview of the theory of reflection groups. First, we
introduce real reflection groups and then we generalize the notions we need to complex
reflection groups. At the end of this chapter, we briefly introduce some basic repre-
sentation theory in general and in particular some representation theory concerning
reflection groups.

In Chapter 2, we first recall some classical combinatorial constructions, namely
Catalan paths, set partitions and pattern-avoiding permutations and their connections.
In Section 2.1, we introduce Fuß-Catalan numbers for well-generated complex reflec-
tion groups and as well a q-extension generalizing MacMahon’s q-Fuß-Catalan numbers
and show how these constructions reduce to the classical constructions in type A. In
Sections 2.2 and 2.3, we define non-nesting partitions and the closely related extended
Shi arrangement which generalize the notion of Catalan paths, and in Section 2.4, we
define the coheight statistic on regions in the extended Shi arrangement and show that
this statistic generalizes the area statistic on Catalan paths. In particular, this yields
a definition of Catalan paths of type B which can also be seen as lattice paths satis-
fying certain conditions, and we prove a recurrence and a generating function identity
for those. In Sections 2.5 and 2.6, we define non-crossing partitions and recall sev-
eral of their properties and we give a bijection between non-nesting and non-crossing
partitions in types A and B which simultaneously describes the area and the major
index on the appropriate Catalan paths in terms of non-crossing partitions. Finally,
in Sections 2.7–2.9, we define Coxeter sortable elements, construct in types A and B a
bijection between non-nesting partitions and Coxeter sortable elements with the same
properties, and we describe this bijection in type A in terms of known bijections.

In Chapter 3, we describe the history of the q, t-Catalan numbers and the q, t-Fuß-
Catalan numbers in type A. In Section 3.1, we introduce the ring of symmetric func-
tions, its most important bases including Schur functions and Macdonald polynomials,
some combinatorics arising in this context, the nabla operator and plethystic notation.
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In Sections 3.2 and 3.3, we define the Garsia-Haiman module and the space of diagonal
coinvariants and finally in Section 3.4, we define the q, t-Fuß-Catalan numbers in type
A and recall its combinatorial properties.

In Chapter 4, we generalize the definition of q, t(-Fuß)-Catalan numbers first to all
real reflection groups and later to all complex reflection groups. Furthermore, we ex-
hibit several beautiful algebraic and combinatorial conjectures. In particular, we prove
the conjectures for the dihedral groups and for the cyclic groups G(k, 1, 1).

In Chapter 5, we describe the connection between q, t-Fuß-Catalan numbers and
rational Cherednik algebras.

In Appendix A, we list all our computer experiments. First we list the computations
of the dimension of M (m) for the classical groups of lower rank and for small m as well as
for several exceptional reflection groups using singular [94], second we list its bigraded
Hilbert series using Macaulay 2 [79]. Finally we list the computations of the coheight
statistic on positive regions in the extended Shi arrangement. For those, we used GAP

[53].



CHAPTER 1

Reflection groups

In this first chapter, we provide an introduction to the theory of finite reflection
groups.

We mainly focus on real reflection groups as we mostly deal with these. They are
discussed in the first part of this chapter mainly following the book “Reflection Groups
and Coxeter Groups” by J.E. Humphreys [71]. Further brilliant references for Coxeter
groups are [26] and [69]. For Coxeter’s original approach see [37].

The second part of this chapter deals with complex reflection groups which gener-
alize the notion of real reflection groups. We briefly state the facts we need in this
more general context. Complex reflection groups were classified by G.C. Shephard and
J.A. Todd in the famous paper “Finite unitary reflection groups” [92]. For further
information about complex reflection groups see e.g. [32, 36, 83, 91, 92].

At the end of this chapter, we give a brief overview of the representation theoretical
concepts we need. They are adapted from the book “Representation Theory, A first
course” by W. Fulton and J. Harris [51].

1.1. Real reflection groups

The main tool for studying finite groups generated by reflections in real vector spaces
of finite dimension is a well-chosen set of vectors called roots which are orthogonal to
reflecting hyperplanes. A subset of simple roots yields an efficient generating set for the
group, leading eventually to a very simple presentation by generators and relations as
a Coxeter group.

1.1.1. Reflections. Let V be a finite dimensional real vector space endowed with
a positive definite symmetric bilinear form 〈·, ·〉. A reflection in V is a linear operator
sα on V which sends some nonzero vector α to its negative while fixing pointwise the
hyperplane Hα orthogonal to α. There is a simple formula for this linear operator:

sα(λ) = λ− 2〈λ, α〉
〈α, α〉

α.

It is easy to see that this formula is correct: it is obviously correct for λ = α and for
λ ∈ Hα and V can be written as V = Rα⊕Hα.

The bilinearity of 〈·, ·〉 implies that sα is an orthogonal transformation, i.e.,

〈sα(λ), sα(µ)〉 = 〈λ, µ〉,
7
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Figure 1. The reflection groups of types I2(3) = A2 and I2(4) = B2.

and as s2
α = 1, sα has order 2 in the group O(V ) ⊆ GL(V ) of all orthogonal transfor-

mations of V .

Definition 1.1. A (finite) reflection group is a finite subgroup of O(V ) generated
by reflections.

As we only deal with finite reflection groups, we mostly suppress the term finite. For
information on affine reflection groups, which are certain infinite subgroups of GL(V )
generated by affine reflections, we refer to [71, Chapter 4].

Remark. Mostly, we denote reflection groups by the letter W . This letter is used
as “most” reflection groups turn out to be Weyl groups associated with semisimple Lie
algebras, see e.g. [27], [70] and [71].

The following examples of reflection groups are labelled by types according to the
classification of real reflection groups which will be carried out in Section 1.1.7:

Example 1.2 (I2(k), k ≥ 3). The first reflection group we deal with is the dihedral
group Dk. It is the group of order 2k consisting of all orthogonal transformations which
preserve the regular k-gon. Dk contains k rotations (through multiples of 2π/k) and
k reflections (about the diagonals of the regular k-gon, i.e. a line bisecting the k-gon,
joining two vertices or the midpoints of opposite sides if k is even, or joining a vertex
to the midpoint of the opposite side if k is odd). This group is generated by reflections
as a rotation through 2π/k can be achieved as a product of two reflections relative to
a pair of adjacent diagonals which meet at an angle of π/k. The regular 3- and 4-gons
as well as the appropriate reflecting diagonals are shown in Figure 1.

Example 1.3 (An−1, n ≥ 2). The second reflection group we want to look at is
the symmetric group Sn. Group-theoretically, this is the group of all bijections of the
set [n] := {1, . . . , n}. Its elements are called permutations. Sn can be thought of as
a subgroup of O(V ) for V = Rn by permuting the standard basis vectors ε1, . . . , εn.
Observe that the transposition tij which interchanges i and j then acts as the reflection
sεj−εi . Since Sn is generated by its transpositions, it is a reflection group and as it is
minimally generated by its simple transpositions ti,i+1, we denote this minimal set of
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generators of the reflection group by si for 1 ≤ i < n.
The action of Sn on Rn fixes pointwise the line spanned by ε1 + . . . + εn and these are
clearly the only fixed points. Furthermore, it leaves stable the orthogonal complement
which consists of the points with coordinates summing up to 0. Thus Sn also acts on
an (n− 1)-dimensional vector space as a group generated by reflections, fixing no point
except the origin. This accounts for the subscript in the label An−1. In Figure 1(a),
the reflection group of type A2 is shown (with the projection of R3 on the subspace of
points with coordinates summing up to 0).

Example 1.4 (Bn, n ≥ 2). Again, let the symmetric group Sn act on Rn as above.
Define further reflections ti := sεi for 1 ≤ i ≤ n and ti,−j := sεi+εj . These reflections
together with the transpositions tij generate the reflection group of type Bn. As a
group, it can be considered as the group of all bijections of the set {±1,±2, . . . ,±n}
satisfying φ(−i) = −φ(i). It is called group of signed permutations. In Figure 1(b), the
reflection group of type B2 is shown. Observe that this reflection group is minimally
generated by the reflections s0 := t1 and si = ti,i+1 for 1 ≤ i < n.

Example 1.5 (Dn, n ≥ 4). When we allow only those signed permutations that
change an even number of signs, we get another reflection group acting on Rn which is
a subgroup of index 2 in the reflection group of type Bn. This group is called group of
even signed permutations. The reflections in this group are given by all transpositions
tij and ti,−j and it is minimally generated by the reflections s0 := t1,−2 and si = ti,i+1

for 1 ≤ i < n.

1.1.2. Roots. To understand the group structure of a reflection group W , we first
explore the way in which W acts on the vector space V : each reflection sα ∈ W
determines a reflecting hyperplane Hα and a line Rα orthogonal to Hα. As for ω ∈ W ,

sωα = ωsαω
−1 ∈ W,

W permutes the collection of all lines Rα where sα ranges over the set of reflections
contained in W . For example, the dihedral group D4 preserves the collection of lines
through the following eight vectors in R2, see Figure 1(b):

±(1, 0),±(1, 1),±(0, 1),±(−1, 1).

Definition 1.6. A root system Φ is a finite set of nonzero vectors in V satisfying

(i) Φ ∩ Rα = {±α} for all α ∈ Φ,
(ii) the associated reflection group W (Φ) := 〈sα : α ∈ Φ〉 permutes Φ among itself,

i.e.,
sα(β) ∈ Φ

for all α, β ∈ Φ.

The elements in Φ are called roots.

Remark. The term “root” comes again from the historical connection with semisim-
ple Lie algebras.

The group W (Φ) is, by definition, generated by reflections and as one can embed
W (Φ) into the permutation group of Φ, it is finite. This shows that for any root system
Φ, W (Φ) is a reflection group. On the other hand, the above discussion shows that
every reflection group can be realized in this way, possibly for many different choices of
Φ.
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1.1.3. Positive roots and simple roots. Fix a root system Φ and the associated
reflection group W = W (Φ). While W is completely determined by the geometric
configuration of Φ, the size of Φ can be extremely large compared with the dimension
of V . For example, when W is the dihedral group, Φ may have just as many elements
as W , even though the dimension of V is 2.
This leads us to the notion of simple roots from which Φ can somehow be reconstituted:

Definition 1.7. A simple system in Φ is a subset ∆ ⊆ Φ, such that

(i) ∆ forms a vector space basis of the R-span of Φ in V and
(ii) any α ∈ Φ is a linear combination of ∆ with coefficients all of the same sign.

For the fact that every root system contains a simple system, see [71, Theorem 1.3].
The elements of the simple system are called simple roots and the associated reflections
are called simple reflections. A simple system yields a partition of Φ into positive roots
and negative roots:

Definition 1.8. A positive system in Φ is a subset Φ+ ⊆ Φ consisting of all α ∈ Φ
which are positive linear combinations of a simple system ∆, its elements are called
positive roots.

Remark. One could have started also with a positive system by saying that the
positive roots are these lying on one side of a generic hyperplane in V (i.e. a hyperplane
that does not contain a root) and then showing that every positive system contains a
unique simple system.

Example 1.9. In Figure 1(a), one possible choice of a simple and a positive system
is

∆ = {α1, α2} , Φ+ = {α1, α2, α1 + α2}.

and in Figure 1(b), one possible choice of a simple and positive system is

∆ = {α0, α1} , Φ+ = {α0, α1, α0 + α1, 2α0 + α1}.

From the previous remark one can deduce the following corollary:

Corollary 1.10. Any two positive systems respectively simple systems in Φ are
conjugate under the action of W .

As we have seen, a given choice of simple and positive roots is as good as another.
In types A, B and D, we fix the “natural” choices explored in Examples 1.3 – 1.5: in
type An−1, we have seen that the reflections are given by the transpositions tij = sεj−εi
and that it is minimally generated by si = ti,i+1 for 1 ≤ i < n. This yields the following
choice of simple and positive roots:

∆ =
{
εi+1 − εi : 1 ≤ i < n

}
, Φ+ =

{
εj − εi : 1 ≤ i < j ≤ n

}
.

In type Bn, the reflections are given by the transpositions tij, ti,−j and ti and the group
of signed permutations is minimally generated by s0 = t1 and si = ti,i+1 for 1 ≤ i < n,
the associated choice of simple and positive roots is

∆ =
{
εi+1 − εi, ε1 : 1 ≤ i < n

}
, Φ+ =

{
εj ± εi : 1 ≤ i < j ≤ n

}
∪
{
εi : 1 ≤ i ≤ n

}
,
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and in type Dn, the reflections are given by the transpositions tij and ti,−j and it is
minimally generated by s0 = t1,−2 and si = ti,i+1 for 1 ≤ i < n, the associated choice of
simple and positive roots is

∆ =
{
εi+1 − εi, ε1 + ε2 : 1 ≤ i < n

}
, Φ+ =

{
εj ± εi : 1 ≤ i < j ≤ n

}
.

Observe that the cardinality of any simple system equals the dimension of the R-span
of Φ in V , it is called rank of Φ and W and is denoted by l = l(Φ) = l(W ). For example,
the rank of the dihedral group Dm is 2 and the rank of the symmetric group Sn is n−1.
Furthermore, the number of positive roots is denoted by N = N(Φ) = N(W ).

The following theorem is classical, for a proof see [71, Theorem 1.5]:

Theorem 1.11. Let Φ be a root system and let ∆ ⊆ Φ be a simple system. Then
W (Φ) is generated by the simple reflections in ∆,

W (Φ) = 〈sα : α ∈ ∆〉.

1.1.4. Generators and relations. Now that we have seen that W can be gener-
ated by relatively few reflections, we now want to describe it as an abstract group in
terms of these generators subject to suitable relations. Obviously, we have the following
relations for the product of two simple reflections:

(sαsβ)m(α,β) = 1,

where m(α, β) denotes the order of sαsβ in W . It turns out that these relations com-
pletely determine W . For the sake of completeness, we state this presentation as a
theorem:

Theorem 1.12. Let ∆ ⊆ Φ be a simple system. Then W (Φ) is generated by {sα :
α ∈ ∆}, subject only to the relations

(sαsβ)m(α,β) = 1, α, β ∈ ∆.

This presentation leads to the following definition:

Definition 1.13. A finite group G generated by S ⊆ G subject only to the relations

(i) s2 = 1 for s ∈ S and
(ii) (st)m(s,t) = 1 for s, t ∈ S with s 6= t and for some m(s, t) ≥ 2

is called (finite) Coxeter group.

Remark. One could allow also infinite groups generated by a finite set S having
such a presentation with possibly m(s, t) =∞.

We have seen that finite reflection groups are (finite) Coxeter groups and it turns
out that the reverse also holds. The notion of reflection groups focuses on its action
on the vector space, while the notion of Coxeter groups rather focuses on its simple
presentation in terms of generators and relations.

1.1.5. The length function. By Theorem 1.11, every ω ∈ W can be written as
a product of simple reflections. This yields the definition of the length of elements in a
Coxeter group:
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Definition 1.14. Let ∆ ⊆ Φ be a simple system and let ω ∈ W . The length of
ω, denoted by lS(ω), is the smallest k for which ω can be written as a product of k
simple reflections. Such a shortest expression of ω in terms of simple reflections is called
reduced word for ω.

Remark. The subscript S is used to indicate that lS(ω) is the length of ω when ω
is expressed as a product of simple reflections. It is used to distinguish lS from lT , the
absolute length which we will introduce in Section 2.5.1.

Clearly, lS(ω) = 1 if and only if ω is a simple reflection. As every simple reflec-
tion has, considered as a linear operator, determinant −1, the product formula for
determinants implies

det(ω) = (−1)lS(ω).

The length function can also be expressed in terms of the action of W on the root
system: it is equal to the number of positive roots sent by ω to negative roots,

lS(ω) = |{Φ+ ∩ ω−1(−Φ+)}|.

1.1.6. The weak order on W . Next, we use the length function defined in the
previous section to obtain a partial order on W :

Definition 1.15. Define the (right) weak order on W by setting

ω ≤S τ :⇔ lS(τ) = lS(ω) + lS(ω−1τ)

for all ω, τ ∈ W , and denote this poset by Weak(W ).

Remark. The right weak order and the analogously defined left weak order are
isomorphic but they do not coincide. The Bruhat order, also called strong order, removes
this “sidedness” by defining ω ≤B τ whenever ω is an arbitrary subword (not necessarily
a prefix) of a reduced expression for τ . See [25] for further information.

The poset Weak(W ) is in fact a lattice, i.e., for any two elements in Weak(W ) the
meet and join exist, see e.g. the book “Combinatorics of Coxeter groups” by A. Björner
and F. Brenti [26, Chapter 3.2]. There exists also a nice geometric interpretation of
Weak(W ) as the 1-skeleton of the permutahedron, for definitions and further properties
see [7, Section 2.3]

1.1.7. Classification. In this section we want to state the classification theorem
for reflection groups. The classification is done in terms of Coxeter graphs (or Dynkin
diagrams) which are labelled graphs and are obtained from a Coxeter group as follows:
the vertex set is given by the set of simple roots and two simple roots α and β are
joined by an edge, which is labelled by m(α, β), if m(α, β) ≥ 3. For more readability,
the label m(α, β) = 3 will be suppressed.

Note. Corollary 1.10 ensures that the Coxeter graph does not depend on the specific
choice of the simple system.

Definition 1.16. A reflection group W acting on V is called irreducible if one of
the two following equivalent statements holds:

(i) The Coxeter graph of W is connected,
(ii) W cannot be written as the product of two proper subgroups which act them-

selves on V by the restriction of the action of W on V as reflection groups.
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Figure 2. All connected Coxeter graphs.

Theorem 1.17. Every connected graph that is the Coxeter graph of some reflection
group is one of those shown in Figure 2 on page 13. To refer to the associated reflection
group, we label them by types indexed by the rank.

The proof of the classification theorem of irreducible reflection groups is done by
answering the question which labelled graphs can occur as Coxeter graphs.

Remark. We often denote an irreducible reflection group by its type, for example
Dk = I2(k) and Sn = An−1. The three infinite families of reflection groups which vary
in rank are An, Bn and Dn. They are often called classical reflection groups while the
other are called exceptional reflection groups.

Remark. In Section 1.1.11, we will discuss crystallographic reflection groups. In
the classification of semisimple Lie algebras, one studies crystallographic root systems
and it turns out that there exist two different crystallographic root systems denoted by
types Bn and Cn which yield the same reflection group Bn. This is the reason why a
type Cn is missing in the classification of reflection groups.

1.1.8. Polynomial invariants. The action of W on V – as of any subgroup of
GL(V ) – induces a natural action of W on the ring of polynomial functions on V in the
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following way: define the contragredient action of W on V ∗ = Hom(V,R) as

ω(ρ) := ρ ◦ ω−1.

This gives an action of W on the symmetric algebra S(V ∗) which is the algebra of
polynomial functions in V . After fixing a basis for V , S(V ∗) can be identified with

R[x] := R[x1, . . . , xn]

where the xi’s are the coordinate functions.

Example 1.18. In type An−1, this action is the well-known action of the symmetric
group on the coordinate functions,

σ(xi) = xσ(i) for σ ∈ Sn,
and in type B, this action is given by

σ(xi) =

{
xσ(i) ; σ(i) > 0

−x−σ(i) ; σ(i) < 0
for σ ∈ Bn.

The following definition can be stated for any subgroup G ⊆ GL(V ):

Definition 1.19. A polynomial p ∈ S(V ∗) is called invariant if

g(p) = p for all g ∈ G.
All such polynomials form a subring of S(V ∗) which is called ring of polynomial invariants
of G or invariant ring of G,

SG :=
{
p ∈ S(V ∗) : g(p) = p for all g ∈ G

}
.

A famous result by Shephard and Todd [92] and by C. Chevalley [36] from the 50’s
states that for a reflection group W of rank l, the ring of polynomial invariants SW

is itself a polynomial ring with homogeneous generators f1, . . . , fl, called fundamental
invariants, of uniquely determined degrees d1, . . . , dl,

SW = R[f1, . . . , fl].

This result leads to the following definition:

Definition 1.20. The degrees d1, . . . , dl of the fundamental invariants are called
degrees of W . Usually, the degrees are written in increasing order,

d1 ≤ . . . ≤ dl.

One property of the degrees is that the order of a reflection group W can be com-
puted as the product of its degrees d1, . . . , dl,

|W | = d1 · · · dl.

Note. In Figure 3, the degrees of all irreducible reflection groups are shown.

In the next section, we will present a way to determine the degrees of a reflection
group by computing the eigenvalues of a well-chosen element called Coxeter element.
Later, in Sections 1.1.11 and 1.1.12, we will present the notion for a reflection group
to be crystallographic and a way to compute the degrees for crystallographic reflection
groups combinatorially.



1.1. REAL REFLECTION GROUPS 15

Type d1, . . . , dl
An−1 2, 3, . . . , n
Bn 2, 4, . . . , 2n
Dn 2, 4, . . . , 2(n− 1), n
E8 2, 8, 12, 14, 18, 20, 24, 30
E7 2, 6, 8, 10, 12, 14, 18
E6 2, 5, 6, 8, 9, 12
F4 2, 6, 8, 12
H4 2, 12, 20, 30
H3 2, 6, 10
I2(k) 2, k

Figure 3. The degrees of the irreducible real reflection groups.

1.1.9. Coxeter elements and the Coxeter number.

Definition 1.21. For any set {s1, . . . , sl} of simple reflections in a reflection group
W and for any permutation σ of {1, . . . , l}, the product sσ(1) · · · sσ(l) is called standard
Coxeter element of W and any element that is conjugated to a standard Coxeter element
is called Coxeter element.

The fact that all Coxeter elements are conjugate in W follows from the fact that
all simple systems are conjugate (see Corollary 1.10) and that all reorderings of some
product of simple reflections are conjugate in W .

This leads to the second definition of this section:

Definition 1.22. The Coxeter number of W is defined to be the common order of
all Coxeter elements. We denote this number by h = h(Φ) = h(W ).

Example 1.23. For the dihedral group Dk, this number is very easy to compute as
the product of the two simple roots is a rotation through 2π/k and hence h = k. For
the symmetric group Sn, the product of the simple transpositions (i, i + 1), 1 ≤ i < n
is an n-cycle implying that the Coxeter number is equal to n.

The fact that all Coxeter elements are conjugate ensures that they have the same
characteristic polynomials and eigenvalues. If ζ is a primitive h-th root of unity in C,
these eigenvalues are of the form ζk for 0 ≤ k < h. These k for which ζk is in fact an
eigenvalue are called exponents of W , usually they are denoted in increasing order by

e1 ≤ . . . ≤ el.

One can show that the smallest exponent is equal to 1 and that the largest is equal to
h− 1 and furthermore that they sum up to the number of positive roots,

e1 + . . .+ el = N.

Another property of the exponents is their connection to the degrees:

e1 = d1 − 1, . . . , el = dl − 1.

Remark. In Figure 4, the numbers of positive roots and the Coxeter numbers of
all irreducible real reflection groups are shown.
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An−1 Bn Dn E8 E7 E6 F4 H4 H3 I2(k)

n(n− 1)/2 n2 n(n− 1) 120 63 36 24 60 15 k

n 2n 2(n− 1) 30 18 12 12 30 10 k

Figure 4. The numbers of positive roots and the Coxeter numbers of
the irreducible real reflection groups.

1.1.10. The Coxeter arrangement. Let Φ be a root system and let W be the
associated reflection group acting on the underlying vector space V . The collection of
the reflecting hyperplanes as well as the open sets into which V is dissected by these
hyperplanes are of interest themselves.

Definition 1.24. The Coxeter arrangement is the collection of the reflecting hyper-
planes in W ,

C(W ) :=
{
Hα : α ∈ Φ+

}
.

Furthermore, a chamber in C(W ) is a connected component of V \
⋃
α∈Φ+ Hα.

The chambers in C(W ) are in one-to-one correspondence with the possible choices
of a simple system ∆: after fixing a simple system ∆, the associated chamber is given
by

〈x, α〉 > 0, for all α ∈ ∆

and is called fundamental chamber.

Example 1.25. In Figure 1 on page 8, the fundamental chamber associated to the
given choice of the simple system ∆ is shaded.

The Coxeter arrangement provides a geometric interpretation of the length function
on W . We have seen in Section 1.1.5 that the length lS(ω) for some ω ∈ W is equal to
the number of positive roots sent by ω to negatives. The equivalent statement in the
Coxeter arrangement setting is

lS(ω) = height(ω(C0)),

where for any chamber C, the height of C is defined to be the number of hyperplanes
in C(W ) separating C from the fundamental chamber C0.

Remark. In Section 2.3, we introduce another arrangement containing the Coxeter
arrangement. The height statistic on that arrangement will later play an important role.

1.1.11. Crystallographic reflection groups. This notion is adapted from the
notion for arbitrary subgroups of the general linear group GL(V ): a subgroup G ⊆
GL(V ) is called crystallographic if it stabilizes the Z-span of a basis of V . As we are
interested in a very special class of subgroups of GL(V ), we give an equivalent definition
in terms of reflection groups respectively Coxeter groups:

Definition 1.26. Let Φ be a root system and let W = W (Φ) be the associated re-
flection group. Then both Φ and W are called crystallographic if the following equivalent
statements hold for simple roots α 6= β:

(i) 2 〈α,β〉〈β,β〉 ∈ Z,

(ii) m(α, β) ∈ {2, 3, 4, 6}.
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Figure 5. The root posets of types A4 and B3.

As mentioned in the beginning of Section 1.1.2, “most” reflection groups are Weyl
groups associated with semisimple Lie algebras. In fact, a reflection group is a Weyl
group if and only if it is crystallographic. As one can see in Figure 2, an irreducible
reflection group W is crystallographic if and only if W is of one of the following types:

An, Bn, Dn, E6, E7, E8, F4 and I2(6).

Remark. In the classification of semisimple Lie algebras, the reflection group I2(6)
is mostly denoted by G2.

For a crystallographic reflection group W with associated root system Φ, define the
root lattice Q = Q(Φ) as the Z-span of Φ in V . Note that this lattice is W -stable by
construction.

1.1.12. The root poset. For a crystallographic reflection group W , there exists
a very interesting combinatorial object called root poset:

Definition 1.27. Let Φ be a crystallographic root system and let ∆ ⊆ Φ+ ⊆ Φ be
a simple respectively positive system in Φ. Define a partial order on Φ+ by saying that
for α, β ∈ Φ+,

α < β :⇔ β − α is a non-negative integer linear combination of elements in ∆.

This partial order turns Φ+ into a poset, i.e. a partially ordered set, which is called
root poset associated to Φ and to W = W (Φ).

Example 1.28. In Figure 5, the root posets of type A4 and of type B3 are shown,
recall the given choice of simple and positive roots from Section 1.1.3.

The root poset is graded and the rank of a positive root is the sum of its coefficients
when expressed as an integer linear combination of simple roots. Much of the combi-
natorics of a crystallographic reflection group is reflected in its root poset:
If ki denotes the number of positive roots of rank i, it turns out that ki ≥ ki+1 and
(k1, . . . , kh−1) defines a partition of N . One can express the degrees of W = W (Φ)
in terms of this partition: the conjugate partition (k1, . . . , kl) ` N equals (e1, . . . , el),
where the ei’s are the exponents of W which were shown to be by one smaller than
the degrees. For a definition of partitions as well as of their conjugates, see Section 3.1.1.
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Figure 6. Armstrong’s suggestions for root posets of types I2(k) and H3.

A second combinatorial property which can be found in the root poset was proved
by F. Chapoton in [35, Proposition 1.1]:

Theorem 1.29 (Chapoton). Let W be a reflection group with exponents e1, . . . , el.
Then the number of reflections in W which do not occur in any reflection subgroup
generated by a subset of the simple reflections in W is equal to M(W ), where

M(W ) :=
nh

|W |

l∏
i=2

(ei − 1).

Remark. The reflection subgroups occurring in the previous theorem are called
standard parabolic subgroups.

In terms of the root poset, the theorem can be rephrased in the crystallographic
case:

Corollary 1.30. The number of positive roots α ∈ Φ+ for which all simple roots
are contained in its simple root expansion is equal to M(W ).

Beside the properties of W that can be combinatorially described in terms of the
root poset, we will see in Section 2.2 that the root poset carries even more combinatorial
information of a crystallographic reflection group.

1.1.13. On root posets for some non-crystallographic reflection groups.
Unfortunately it turns out that the analogous definition of a poset for the non-crystallographic
reflection groups does not have those nice properties and so far, no definition for such
a poset is known.

In his thesis [7] Armstrong suggests, how these root posets should look like in types
I2(k) and H3, such that the root poset has the discussed properties. We reproduce
these posets in Figure 6.

In Section 4.3, we will present another conjectured property of the root poset and
see that this conjecture also supports Armstrong’s suggestion.
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1.1.14. Some statistics on classical reflection groups. In the last part of
this section, we want to introduce certain statistics on the classical reflection groups
presented in Examples 1.3–1.5.

Remark. The term statistic does not have a mathematically strict meaning, it is
widely used in the literature when one associates to each element in a set S a non-
negative integer weight by a “combinatorial rule”. An example of a statistic on a
reflection group W is the length function lS introduced in Section 1.1.5.

Define a statistic called inversion number on finite words in a totally ordered alphabet
by

inv(w) :=
∣∣{i < j : wi > wj

}∣∣
for any word w = w1w2 · · ·wk.

The inversion number can be used to compute the length function on permutations,
signed permutations and even signed permutations. To do so, we introduce the one-line
notation of a given ω: identify ω with the sequence [ω1, . . . , ωn], where ωi := ω(i). Then
we have

An−1 : lS(ω) = inv([ω1, . . . , ωn]),

Bn : lS(ω) = inv([ω1, . . . , ωn])−
∑

i∈Neg(ω)

ωi,

Dn : lS(ω) = inv([ω1, . . . , ωn])−
∑

i∈Neg(ω)

ωi − neg(ω),

where Neg(ω) := {i ∈ [n] : ωi < 0} and neg(ω) := |Neg(ω)|. Type A is classical and
was proved by MacMahon, see e.g. [82], whereas types B and D were proved in [31]
by Brenti.

Next, we define the major index on words in a totally ordered alphabet. Let w =
w1w2 · · ·wk be a finite word, its descent set Des(w) is the set of all integers i such that
wi > wi+1, des(w) denotes the cardinality of Des(w), and the major index of w is defined
as

maj(w) :=
∑

i∈Des(w)

i.

Remark. The term “major index” was first used by D. Foata to indicate its origin,
as MacMahon was a major in the British Army in the early 20th century, as well as the
idea of counting positions of certain “major” elements. MacMahon himself used the
term greater index.

We want to use this statistic to define a major index on the classical reflection
groups:



20 1. REFLECTION GROUPS

Definition 1.31. Let ω be an element in the reflection group of a classical type
with one-line notation [ω1, . . . , ωn]. The major index of ω is then defined as

An−1 : maj(ω) := maj([ω1, . . . , ωn]),

Bn : maj(ω) := 2 maj([ω1, . . . , ωn]) + neg(ω),

Dn : maj(ω) := maj([ω1, . . . , ωn])−
∑

i∈Neg(ω)

ωi − neg(ω).

Remark. For permutations, this definition appeared in [82]. For signed permu-
tations, the major index was introduced by R.M. Adin and Y. Roichman in [1]. For
even signed permutations, the major index was introduced in a slightly different way
by R. Biagioli in [23], the definition we use was introduced by Biagioli and F. Caselli
in [24]. In [1] and [23], the major index for types B and D was called f-major index
and in [24], the major index for type D was called d-major index. This was done to
distinguish between different “major-like” statistics they were studying.

In [1, 24, 82], the following result was proved for classical reflection groups:

Theorem 1.32. Let W be one of the reflection groups An, Bn or Dn. The major
index on W is equally distributed with the length function lS,∑

ω∈W

qmaj(ω) =
∑
ω∈W

qlS(ω).

For later convenience, we define also

iDes(ω) := Des(ω−1), ides(ω) := des(ω−1) and imaj(ω) := maj(ω−1),

the later is called inverse major index. In type A, the inverse major index is discussed in
detail by Foata and G.-N. Han in [43, Chapters 11 and 12]. In these lecture notes, they
bijectively prove many equalities concerning the major index and the inverse major
index. For example, they give a bijective proof of the following equality, which is
originally due to Foata and M.-P. Schützenberger [44],∑

σ∈Sn

qmaj(σ)tinv(σ) =
∑
σ∈Sn

qimaj(σ)tinv(σ) =
∑
σ∈Sn

qimaj(σ)tmaj(σ).

1.2. Complex reflection groups

As mentioned at the beginning of this chapter, we now want to generalize the concept
of reflection groups to a certain class of finite subgroups of U(V ), where now V is a
complex vector space and where U(V ) ⊆ GL(V ) is the group of unitary matrices.

1.2.1. Reflections. A complex reflection in a finite dimensional complex vector
space V is a linear operator s ∈ U(V ) which has finite order and where its fixed-point
space has codimension 1. In the literature also the terms pseudo-reflection, unitary
reflection or just reflection are used.

Definition 1.33. A complex reflection group is a finite subgroup of U(V ) generated
by complex reflections.

Note. The complexification of a real vector space turns all real reflection groups
into complex reflection groups.
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1.2.2. Classification. The classification of complex reflection groups was done in
the famous paper “Finite unitary reflection groups” by Shephard and Todd [92].

As for real reflection groups, see Definition 1.16, a complex reflection group W is
called irreducible if W cannot be written as the product of two proper subgroups which
are both complex reflection groups.

Theorem 1.34 (Shephard, Todd). Let W be an irreducible complex reflection group.
Then W is either equal to G(k, p, l) with p dividing k or one of 34 exceptional types.
Here, the group G(k, p, l) is the group of all monomial (l × l)-matrices with entries
being k-th root of unity, and with the additional property that the product of the non-
zero entries is an (k/p)-th root of unity. It has order kll!/p.

As we will not use this construction, we do not go into details here, nor do we
present all the 34 exceptional types. For more information see [92].

Example 1.35. Let ζ be a primitive k-th root of unity. The cyclic group Ck = 〈ζ〉
acts on z ∈ C by ζ(z) := ζz. This representation is given by the complex reflection
group G(k, 1, 1).

Example 1.36. The real reflection groups An−1, Bn, Dn and I2(k) appear in the
classification of complex reflection groups as follows:

• G(1, 1, n) = An−1 = Sn,
• G(2, 1, n) = Bn,
• G(2, 2, n) = Dn and
• G(k, k, 2) = I2(k).

1.2.3. Polynomial invariants. As in Definition 1.19, we define in the complex
case the ring of polynomial invariants, SG for a subgroup G ⊆ GL(V ).

In [92], Shephard and Todd proved the following famous result using the classifi-
cation of complex reflection groups. Soon afterwards, Chevalley gave a uniform proof
[36].

Theorem 1.37 (Shephard, Todd; Chevalley). Let G ⊆ GL(V ) be a finite subgroup
of the general linear group. Then G is a complex reflection group if and only if its ring
of invariants is a polynomial ring,

SG = C[f1, . . . , fl],

where f1, . . . , fl are the fundamental invariants of uniquely determined homogeneous de-
grees d1, . . . , dl which are called degrees of G.

1.2.4. Degrees and codegrees. It turns out that there is an equivalent way to
define the degrees using the coinvariant algebra S/〈f〉, where 〈f〉 = 〈f1, . . . , fl〉 = SW+ is
the ideal in S generated by all invariants without constant term. Both Shephard and
Todd [92] and Chevalley [36] showed that S/〈f〉 carries the regular representation of
W , see Section 1.3 for the definition of the regular representation and the represen-
tation theory needed. By [51, Corollary 2.18], S/〈f〉 contains exactly k copies of any
irreducible W -representation U of dimension k. In particular S/〈f〉 contains l copies of
V . The U -exponents e1(U), . . . , ek(U) are the degrees of the homogeneous components
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d1, . . . , dl d∗1, . . . , d
∗
l

G(k, p, l), p < k k, 2k, . . . , (l − 1)k, kl/p (l − 1)k, . . . k, 0
G(k, p, l), p = k k, 2k, . . . , (l − 1)k, kl/p (l − 1)k − l, (l − 2)k, . . . , k, 0

Figure 7. The degrees and codegrees of the complex reflection group G(k, p, l).

of S/〈f〉 in which these k copies of U occur.
It is known, see e.g. [83], that the degrees of W are uniquely determined by saying
that the V -exponents are equal to d1 − 1, . . . , dl − 1.

This characterization has the advantage that one can define also codegrees of W ,

d∗1 ≥ . . . ≥ d∗l ,

by saying that the V ∗-exponents are d∗1 + 1, . . . , d∗l + 1.

The degrees and the codegrees determine the number of reflections in a reflection
group W and the number of reflecting hyperplanes in V :

N := (d1 − 1) + . . .+ (dl − 1) = |{s ∈ W : s reflection in W}|,
N∗ := (d∗1 + 1) + . . .+ (d∗l + 1) = |{H ⊆ V : H reflecting hyperplane in V }|,

see e.g. [32, Section 1.A].

For real reflection groups, V and V ∗ are isomorphic as W -modules. This implies
that the V -exponents and the V ∗-exponents coincide and therefore N = N∗.

Note. In Figure 7, the degrees and the codegrees of the complex reflection groups
G(k, p, l) are shown.

1.2.5. Well-generated complex reflection group. By case-by-case inspection
it can be observed that every complex reflection group can be generated either by l or
by l + 1 complex reflections. This observation together with the notion of degrees and
codegrees in the previous section leads to the following definition:

Definition 1.38. A complex reflection group W is well-generated if it satisfies the
following equivalent conditions:

(i) W can be generated by l reflections,
(ii) the degrees d1 ≤ . . . ≤ dl and the codegrees d∗1 ≥ . . . ≥ d∗l of W satisfy

di + d∗i = dl.

Remark. The equivalence of (i) and (ii) in the previous definition was proved by
P. Orlik and L. Solomon in [83] using the Shephard-Todd classification of complex
reflection groups.

The fact that all real reflection groups are well-generated follows directly from The-
orem 1.11. To verify the second equivalent condition, recall from the previous section
that the V -exponents and the V ∗-exponents are the same and therefore d∗i = dl+1−i−2,
and deduce from Figure 3 on page 15 that

di + d∗i = di + dl+1−i − 2 = dl.
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As we will see in the next section, the notion of well-generation allows us to construct
a Coxeter element for all those groups.

1.2.6. Coxeter elements and the Coxeter number. An element c in a well-
generated complex reflection group W is called regular if it has an eigenvector lying in
the complement V reg of the reflecting hyperplanes of W and furthermore ξ-regular if this
eigenvector may be taken to have eigenvalue ξ. In this case, the multiplicative order d of
ξ is called a regular number for W . G.I. Lehrer and T.A. Springer [77] first observed the
following theorem using the Shephard-Todd classification, it was later proved uniformly
by Lehrer and J. Michel [76].

Theorem 1.39 (Lehrer, Springer; Lehrer, Michel). For any complex reflection
group, d is a regular number if and only if d divides as many degrees as it divides
codegrees.

Together with the definition of well-generation, it follows immediately that for a
well-generated reflection group, h := dn is always a regular number. This means that
there exists a regular element c with eigenvalue ξh, a primitive h-th root of unity. In
[95], Springer showed that for any ξ, all ξ-regular elements are W -conjugate and hence c
is unique up to conjugacy. Any element in this conjugacy class is called Coxeter element.

From Sections 1.2.4–1.2.6, one can deduce for well-generated reflection groups that

N +N∗ =
∑

(di + d∗i ) =
∑

dl = lh.

1.3. Basic representation theory

In this section, we want to give a brief introduction to the representation theoretical
concepts we need in the context of reflection groups. In particular, we restrict ourselves
to representations on complex vector spaces. For a detailed introduction to representa-
tion theory of finite groups, see [51].

A representation of a finite group G is an action of G on a finite-dimensional com-
plex vector space V , i.e. a homomorphism ρ : G → GL(V ) of G into the group of
automorphisms of V . This action turns V into a G-module. If there is little ambiguity
about the action, V itself is called a representation of G and we identify g ∈ G and
ρ(g) : V → V .

Example 1.40 (Trivial representation). The most basic representation is the trivial
representation C of G defined by

gz := z for all z ∈ C.

Example 1.41 (Reflection representation). For any reflection group W , the reflec-
tion representation is the representation of W on its underlying vector space V .

If V and V ′ are representations of G, the direct sum V ⊕ V ′ and the tensor product
V ⊗ V ′ are also representations, where for the later,

g(v ⊗ w) := gv ⊗ gw.
Sometimes, we write V ⊗k for the k-th tensor product of V .
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Example 1.42 (Determinantal representation). For the reflection representation of
a complex reflection group W , there exist two more one-dimensional representation of
W which we call determinantal representation2 and inverse determinantal representation
and which we denote by det respectively det−1. They is defined by

ωz := det(ω)z for all z ∈ det,

ωz := det−1(ω)z for all z ∈ det .

For real reflection groups, we have seen in Section 1.1.5 that det(ω) = (−1)lS(ω). In
particular, the determinantal and the inverse determinantal representation coincide
and the square of the determinantal representation equals the trivial representation,

det⊗2 = det⊗ det = C.
For this reason, the determinantal representation associated to a real reflection repre-
sentation is usually called sign representation or alternating representation.

Remark. In the definition of the determinantal representation and of the inverse
determinantal representation, we do not use the fact that we have a reflection repre-
sentation of a reflection group W . Both representations can also be considered for any
representation of any finite group G.

If V ′ ⊆ V is fixed by the action of G than the action of G on V ′ is called subrepre-
sentation of the action of G on V . A representation V is called irreducible if V has no
proper subrepresentations.

The following theorem is taken from [51, Corollary 1.6]:

Theorem 1.43. Any representation is a direct sum of irreducible representations.

Let V ∗ := Hom(V,C) be the dual of V . The dual representation is defined by the
action ρ∗ : G→ GL(V ∗) given by

ρ∗(g) := tρ(g−1) : V ∗ → V ∗.

Remark. The dual representation is the representation induced by the contragre-
dient action which was defined in Section 1.1.8. It is also called contragredient represen-
tation.

This action on V ∗ induces an action of W on the space of polynomial functions on
V which we also call reflection representation.

The regular representation of G is the group algebra C[G], the space of complex-valued
functions on G, where an element g ∈ G acts on the function v by

gv(h) := v(g−1h) for h ∈ G.
As we have used it in the previous section, we state the following fact about the regular
representation, see [51, Corollary 2.18]:

Theorem 1.44. Every irreducible representation V of G appears in the regular
representation dim(V ) times.

2The name determinantal representation was suggested by Vic Reiner [88].
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1.3.1. Characters.

Definition 1.45. Let V be a representation ofG. The character of V is the complex-
valued function χV on G defined as

χV (g) := Tr(g),

the trace of g on V .

As χV (hgh−1) = χV (g), χV is constant on the conjugacy classes of G, such functions
are called class functions. Denote the set of all class functions by Cclass(G).

Note. The value of χV on the identity equals the dimension of V , χV (1) = dimV ,
and furthermore,

χV⊕V ′ = χV + χV ′ , χV⊗V ′ = χV .χV ′ .

Define an Hermitian inner product on Cclass(G) by

〈α, β〉 :=
1

|G|
∑
g∈G

α(g)β(g).

The following theorem is taken from [51, Theorem 2.12]:

Theorem 1.46. With respect to this inner product, the set

{χV : V irreducible}
forms an orthonormal basis of Cclass(G), i.e., for two irreducible representations V and
V ′, we have

〈χV , χV ′〉 =

{
1 ; V ∼= V ′

0 ; otherwise.

This implies that the multiplicity of an irreducible representation V λ in any repre-
sentation V is equal to 〈χV λ , χV 〉. Denote this multiplicity by mult(V λ, V ).

Remark. Theorem 1.46 is equivalent to the fact that the number of irreducible
representations of G is equal to the number of conjugacy classes in G. For G = Sn, there
exists an explicit bijection between conjugacy classes of the symmetric group, which are
indexed by partitions, and irreducible representations using Young tableaux. We will
study the representation theory of the symmetric group in the context of symmetric
functions in Section 3.1.

1.3.2. Idempotents. Let W be a reflection group and let S = S(V ∗) be the
reflection representation. Define the trivial idempotent e by

e :=
1

|W |
∑
ω∈W

ω ∈ End(S),

the determinantal idempotent edet by

edet :=
1

|W |
∑
ω∈W

det(ω)ω ∈ End(S).

We call a polynomial p ∈ S determinantal if

ω(p) = det−1(ω) p for all ω ∈ W.
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The ring of determinantal polynomials is defined by

Sdet :=
{
p ∈ S : ω(p) = det(ω) p for all ω ∈ W

}
.

Then e is a projection from S onto SW and edet is a projection from S onto Sdet.

Remark. One can also define the inverse determinantal idempotent edet−1 and the

ring Sdet−1
of inverse determinantal polynomials in the obvious way. Again, for real

reflection groups, the determinantal and the inverse determinantal idempotent coincide,
as do determinantal and inverse determinantal polynomials. In this case, the terms sign
idempotent and alternating polynomials are usually used.



CHAPTER 2

Fuß-Catalan numbers and combinatorics

As defined in the introduction, the n-th Catalan number is given by

Catn :=
1

n+ 1

(
2n

n

)
.

Simple computations show that the Catalan numbers satisfy the recurrence relation

Catn+1 =
n∑
k=0

Catk Catn−k, Cat0 = 1.

In Example 2.1, we describe certain lattice paths which are counted by the Ballot
numbers

k − n
n+ k

(
k + n

n

)
.

For the special case k = n+ 1, these lattice paths reduce to the Catalan paths defined
in the introduction.

In this chapter, we want to see how the Catalan numbers Catn – as well as the
Fuß-Catalan numbers Cat(m)

n – are attached to the reflection group Sn = An−1 and
how they generalize to other reflection groups. Furthermore, we want to present several
classes of objects related to Fuß-Catalan numbers and some, partially new, interesting
combinatorics concerning them. Namely we will study non-crossing partitions, Coxeter
sortable elements, non-nesting partitions (and the closely related Shi arrangement).

We start with 4 basic occurrences of the Catalan numbers. They can be found in
[97, 6.19 (h), (pp), (uu), (ff)]:

Example 2.1 (Catalan paths). The so-called “Ballot problem” was one of the first
(if not the first) lattice path enumeration problem. It was posed by M.J. Bertrand in
the late 19th century when he asked for the number of lattice paths from (1, 0) to (k, n),
where k and n are non-negative integers with k > n, that never touch the line x = y
[19]. In the same journal, D. André offered a direct proof using a method which was
later enhanced and became famous as André’s reflection principle [3]. A nice survey of
the history of this principle was described in detail by M. Renault in [90]. The special
case k = n + 1 yields Catalan paths of length n which were defined to be lattice path
in Z2 from (0, 0) to (n, n) consisting of n north steps of the form (0, 1) and n east steps
of the form (1, 0) with the additional property that the path never goes below the line
x = y. Denote the set of all Catalan paths of length n by Dn (the notion should not
cause confusion with the dihedral group which was denoted by the same letter).

27
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Figure 8. A Catalan path and a 2-Catalan path, both of length 8.

As we need them later, we give three alternative descriptions of Catalan paths:

• a Catalan path can be encoded by a word D consisting of n N ’s and n E’s
where any prefix of D does not contain more E’s than N ’s,
• a Catalan path can be identified with a partition, i.e. a weakly decreasing

sequence of non-negative integers, fitting inside the partition (n−1, . . . , 2, 1, 0)
(see Section 3.1.1 for the definition) and
• a Catalan path can be identified with a sequence (a1, . . . , an) of non-negative

integers with a1 = 0 and ai+1 ≤ ai + 1.

In Figure 8(a), a Catalan path of length 8 is shown. It is encoded by the word

NNENNEENENNENEEE,

the associated partition is given by

λ = (5, 4, 4, 3, 1, 1, 0) ⊆ (7, 6, 5, 4, 3, 2, 1, 0)

and the associated sequence by

a = (0, 1, 1, 2, 1, 1, 2, 2).

Observe that λ and a are complementary, i.e., for 0 ≤ i < n we have ai+1 + λn−i = i.

From the solution of the Ballot problem, it follows immediately that Catalan paths
of length n are counted by the n-th Catalan number,

|Dn| = Catn .

Recall the definition of m-Catalan paths of length n from the introduction and denote

the set of all m-Catalan paths of length n by D(m)
n . As Catalan paths, m-Catalan paths

can also be described as words respectively as partitions and sequences:

• an m-Catalan path can be encoded by a word D consisting of n N ’s and nm
E’s where the number of E’s in any prefix of D is smaller than or equal to m
times the number of N ’s,
• an m-Catalan path can be identified with a partition fitting inside the partition

((n− 1)m, . . . , 2m,m) and
• an m-Catalan path can be identified with a sequence (a1, . . . , an) of non-

negative integers with a1 = 0 and ai+1 ≤ ai +m.
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In Figure 8(b), a 2-Catalan path of length 8 is shown. It is encoded by the word

NNEEENNEEEENEEENNEEENEEE,

the associated partition is given by

λ = (13, 10, 10, 7, 3, 3, 0, 0) ⊆ (14, 12, 10, 8, 6, 4, 2, 0)

and the associated sequence by

a = (0, 2, 1, 3, 1, 0, 2, 1).

For m-Catalan paths, λ and a are complementary in the sense that ai+1 + λn−i = mi.

The number of m-Catalan paths is given by the Fuß-Catalan numbers Cat(m)
n ,∣∣D(m)

n

∣∣ = Cat(m)
n :=

1

mn+ 1

(
(m+ 1)n

n

)
.

This can for example be shown using the cycle lemma introduced by A. Dvoretzky and
T. Motzkin in [39].

Remark. Often, Catalan paths are called Dyck paths – this is why we denote the
set of Catalan paths of length n by Dn – but as we will generalize them in a “Catalan
way”, we prefer to use the former term.

Example 2.2 (Non-crossing set partitions). Let [n] be the set of the first n integers.
A set partition of [n] is a partition of [n] into non-empty pairwise disjoint subsets, called
blocks, B1, . . . , Bk with

⋃
Bi = [n]. A set partition {B1, . . . , Bk} is non-crossing if

a < b < c < d with a, c ∈ Bi and b, d ∈ Bj implies Bi = Bj.

The set of all non-crossing set partitions of [n] is denoted by NC(n). Often, a set
partition B is visualized by drawing the numbers 1 to n in a row and then drawing arcs
on top of two adjacent elements in a block of B. Then the condition for a set partition
to have two crossing blocks is visualized as follows:

1 . . . a < b < c < d . . . n

There exists a nice and simple bijection between non-crossing set partitions and
Catalan paths via non-nesting set partitions:

Example 2.3 (Non-nesting set partitions). A set partition {B1, . . . , Bk} is non-
nesting if

a < b < c < d with a, d ∈ Bi and b, c ∈ Bj implies Bi = Bj.

The set of all non-nesting set partitions of [n] is denoted by NN(n). The condition for
a set partition to have two nesting blocks is visualized as follows:

1 . . . a < b < c < d . . . n
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Figure 9. The bijection between Catalan paths and non-nesting set
partitions. The shown path is mapped to the partition
{{1, 3}, {2, 4, 5, 7, 8}, {6}}

The intuitive map that locally converts each nesting into a crossing defines a bijection
between non-crossing and non-nesting set partitions and the map indicated in Figure 9
is a bijection between Catalan paths and non-nesting set partitions (see e.g. [7, Section
5.1.2]). We will see in Note 2.2 that the later bijection has a very simple description in
terms of root posets.

Note. The notion of non-crossing set partitions depends only on the cyclic order
on [n], i.e., the permutation given by the long cycle (1, 2, . . . , n) acts on the set of
non-crossing partitions. The same does not hold for non-nesting partitions.

Example 2.4 (3-pattern-avoiding permutations). Recall that for a permutation
σ ∈ Sn, the one-line notation of σ is the presentation of σ as the list [σ1, . . . , σn] where
σi := σ(i). A subword of σ is a subsequence [σi1 , . . . , σik ] with i1 < . . . < ik of σ. For
τ ∈ Sk, σ is called τ -avoiding if σ does not contain a subword of length k having the same
relative order as τ . By Sn(τ), we denote the set of of τ -avoiding permutations in Sn.
In [72], D.E. Knuth proved for any τ ∈ S3 that the number of τ -avoiding permutations
in Sn is equal to Catn. Is Section 2.9, we will give a bijection between non-crossing set
partitions and 3-pattern avoiding permutations, i.e. τ -pattern-avoiding permutations
for any τ ∈ S3.

Later in this chapter, we will see that the four examples can be seen as the type
A instances of more general constructions called non-nesting partitions, non-crossing
partitions and Coxeter sortable elements which can be attached to certain classes of
reflection groups. To be precise, we will define non-nesting partitions, as well as Shi
arrangements which are closely related, for all crystallographic reflection groups, non-
crossing partitions for all well-generated complex reflection group and Coxeter sortable
elements for all real reflection groups. Furthermore, we will present existing generaliza-
tions of those constructions.

Before getting to the objects mentioned, we define Fuß-Catalan numbers for well-
generated complex reflection groups and present a first q-extension of these numbers.
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An−1 Bn Dn I2(k) H3 H4 F4 E6 E7 E8

1
n+1

(
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−
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2n−2
n−1

)
k + 2 32 280 105 833 4160 25080

Figure 10. Cat(W ) for all irreducible real reflection groups.

2.1. Fuß-Catalan numbers for well-generated complex reflection groups

Recall the definition of a well-generated complex reflection group as well as of its
rank, its degrees and its Coxeter number from Section 1.2.

Definition 2.5. Let W be a well-generated complex reflection group and let m be
a non-negative integer. Define the Fuß-Catalan numbers Cat(m)(W ) as

Cat(m)(W ) :=
l∏

i=1

di +mh

di
=

1

|W |

l∏
i=1

(di +mh),

where l is the rank of W , d1 ≤ . . . ≤ dl are its degrees and h is its Coxeter number.
The second equality follows from the fact that d1 · · · dl = W which was discussed in
Section 1.1.8.

Remark. Of course, Cat(m)(W ) could be defined in the same way for any complex

reflection group W but if W is not well-generated, Cat(m)(W ) may fail to be an integer,
see [20].

As we will often refer to the case m = 1, we define Cat(W ) by

Cat(W ) := Cat(1)(W )

and refer to Cat(W ) as the Catalan numbers associated to W . In Figure 2.1, the Catalan
numbers Cat(W ) are shown for all irreducible real reflection groups.

Remark. We actually use the term Fuß-Catalan to refer to the additional parame-
ter m as it has commonly been used in the literature for m-Catalan numbers of general
type, see e.g. [7], [45], [46]. In the literature concerning only type A, the names higher
or generalized Catalan numbers were more usual.

Note. As shown in Figure 3 on page 15, the degrees of W = An−1 are given by
{2, 3, . . . , n} and therefore,

Cat(m)(An−1) = Cat(m)
n .

The definition of the Catalan numbers Cat(W ) attached to reflection groups ap-
peared first in [87] where Reiner proved for the classical reflection groups case-by-case
that the number of non-crossing partitions (see Section 2.5) is equal to the number
of non-nesting partitions (see Section 2.2) and equal to the number of regions in the
positive chamber of the Shi arrangement (see Section 2.3). The later were counted
case-by-case by Athanasiadis in [9] and Reiner found this uniform formula for all types.
The first object which was defined for any well-generated complex reflection group and
is counted by Cat(m)(W ) is the number of chains in the non-crossing partition lattice.
In full generality, these were introduced by Bessis in [20], where he called them weak
chains in the dual braid monoid.
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2.1.1. A first q-extension of Cat(m)(W ). In type A, the first q-extension of

Cat(m)
n we want to draw attention to is given by

diag-Cat(m)
n (q) :=

1

[mn+ 1]q

[
(m+ 1)n

n

]
q

,

where [k]q := 1 + q + . . . + qk−1 is the usual q-extension of an integer k, [k]q! :=
[1]q[2]q · · · [k]q is the q-factorial of k and [ kl ]q := [k]q!/[l]q![k − l]q! is the q-binomial
coefficient.

Remark. The reason why we choose the term “diag-Cat” for this q-extension of
the Fuß-Catalan numbers will become clear in Section 4.3.

For m = 1, MacMahon showed in [82] that this generalization is equal to the
generating function for the major index on Catalan paths: recall from Example 2.1,
that a Catalan path can be encoded by a word in the alphabet {N,E} and set N < E.
For a Catalan path D of length n, the major index of D is defined as

maj(D) :=
∑

i∈Des(D)

(2n− i).

Then ∑
D∈Dn

qmaj(D) = diag-Cat(1)
n (q) =

1

[n+ 1]q

[
2n
n

]
q

.

Remark. When only dealing with Catalan paths, the major index of a given path
D is usually defined as

∑
i∈Des(D) i. The involution c on Catalan paths sending a path

to the path obtained by reversing the associated word in {N,E} and then interchanging
the N -th and E-th gives the same generating function. As c can equivalently described
by the involution which conjugates the associated partition, we call c(D) the conjugate
of D. In Section 2.4.2, we will introduce Catalan paths of type Bn and we will see that
in this context, the given definition is more convenient.

A valley of a Catalan path D is a lattice point (i, j) in D for which the previous step
is an east step and the next step is a north step. By definition, the descents of a Catalan
word are in one-to-one correspondence with the valleys in the Catalan path. We denote
the number of valleys of a Catalan path D by des(D) and furthermore, we define the
sets SetX(D) and SetY (D) to be the set of x-coordinates and the set of y-coordinates
of the valleys of D.

Example 2.6. Let D := NE NNE NEE NE NE ∈ D6. As indicated by the
blanks, the descent set of D is given by Des(D) = {2, 5, 8, 10} and its major index is
given by (12− 2) + (12− 5) + (12− 8) + (12− 10) = 10 + 7 + 4 + 2 = 23. Its associated
lattice path is shown in Figure 11 on page 33. Furthermore, the valleys of D - indicated
in the picture by dots - have coordinates (1, 1), (2, 3), (4, 4) and (5, 5) and

SetX(D) = {1, 2, 4, 5} , SetY (D) = {1, 3, 4, 5}.

Remark. D. Callan called these sets the “ascent-descent code” of D, see [33, Sec-
tion 3].
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Figure 11. A Catalan path of length 6 with descent set {2, 5, 8, 10} and
major index (12−2)+(12−5)+(12−8)+(12−10) = 10+7+4+2 = 23.

We will often use the following obvious proposition:

Proposition 2.7. A Catalan path D is uniquely determined by SetX(D) and SetY (D)
and furthermore

maj(D) =
∑

i∈SetX(D)

(n− i) +
∑

j∈SetY (D)

(n− j).

Using the involution c on Catalan paths, we derive the following proposition:

Proposition 2.8. The sequence of coefficients of the q-Catalan numbers diag-Cat(1)
n (q)

is symmetric, i.e.,
diag-Cat(1)

n (q) = qn(n−1) diag-Cat(1)
n (q−1).

For m > 1, no statistic on D(m)
n that describes this q-extension of the Fuß-Catalan

numbers is known, this yields the following open problem:

Open Problem. Find a statistic maj on D(m)
n such that∑

D∈D(m)
n

qmaj(D) = diag-Cat(m)
n (q).

At the workshop “Braid groups, clusters and free probability” which was held at
the American Institute of Mathematics in 2005, Athanasiadis suggested to generalize
this q-extension of Cat(m)

n as

diag-Cat(m)(W ; q) :=
l∏

i=1

[di +mh]q
[di]q

.

Furthermore, he, and independently S. Garoufalidis, conjectured for well-generated
complex reflection groups that it is a polynomial with non-negative coefficients, see [6,
Problem 2.1].

For real reflection groups, these extensions of the Fuß-Catalan numbers seem to
have first appeared in a paper by Berest, Etingof and Ginzburg [15] where they are
obtained as certain Hilbert series. Their work implies that for real reflection groups
this extension is in fact a polynomial with non-negative integer coefficients. For well-
generated complex reflection groups, this is still true, but so far it has only been verified



34 2. FUSS-CATALAN NUMBERS AND COMBINATORICS

by appeal to the classification. In Section 4.3, we will present a conjecture which would
imply the non-negativity in general and in Chapter 5, we will present the connection of
the conjecture to the work of Berest, Etingof and Ginzburg.

2.2. Non-nesting partitions

First, we observe that a Catalan path D can be identified with the collection of cells
bi,j which lie strictly below D and strictly above the line x = y, where for 0 ≤ i < j < n
the cell bi,j ⊆ R2 is given by

bi,j :=
{

(x, y) ∈ R2 : i < x < i+ 1, j < y < j + 1
}
.

Example 2.9. The Catalan path shown in Figure 11 on page 33 can be identified
with the collection of cells given by {b12, b23}.

To see how this construction can be interpreted in terms of the root poset Φ+ of type
An−1, observe that for 1 ≤ i < j ≤ n, the map sending the positive root εj − εi ∈ Φ+

to the cell bn−j,n−i defines a bijection between order ideals in Φ+ and Catalan paths of
length n, where an order ideal is a subset I ⊆ Φ+ with the property that β ≤ α ∈ I
implies β ∈ I. It is denoted by I E Φ+.

Example (continued) 2.10. The order ideal associated to the Catalan path in
Figure 11 on page 33 is given by {ε5 − ε4, ε4 − ε3}.

We use this interpretation of Catalan paths as the motivation to define non-nesting
partitions as follows:

Definition 2.11. Let W be a crystallographic reflection group with root poset Φ+.
The non-nesting partition lattice NN(W ) := {I E Φ+} is the collection of all order ideals
in Φ+ ordered by inclusion.

Remark. Originally, NN(W ) was defined by Postnikov as antichains in the root
poset, i.e. subsets of pairwise non-comparable elements, see [87, Remark 2]. Sending
an order ideal to its maximal elements gives a natural bijection between order ideals
and antichains.

Note. The bijection between non-nesting set partitions of [n] and Catalan paths
of length n described in Example 2.3 can be formulated in terms of the root poset Φ+

of type An−1 as putting the integers i and j into the same block if the root αj − αi in
contained in the associated antichain in Φ+. In the previous examples, we have seen the
Catalan path shown in Figure 11 on page 33 is associated to the antichain {ε5−ε4, ε4−ε3}
and is thereby mapped to the non-nesting set partition {{1}, {2}, {3, 4, 5}, {6}} of [6].

The following theorem is due to Postnikov, see [87, Remark 2]:

Theorem 2.12 (Postnikov). Let W be a crystallographic reflection group. Then

|NN(W )| = Cat(W ).

In [12], Athanasiadis generalized the construction of non-nesting partitions as fol-
lows: let I be an increasing chain of order ideals

I1 ⊆ . . . ⊆ Im ⊆ Φ+.
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We call I a filtered chain of length m if

(Ii + Ij) ∩ Φ+ ⊆ Ii+j

holds for all i, j ≥ 1 with i+ j ≤ m, and

(Ji + Jj) ∩ Φ+ ⊆ Ji+j

holds for all i, j ≥ 1, where Ji = Φ+ \ Ii and Ji = Jm for i > m.

Definition 2.13. Let W be a crystallographic reflection group with root poset Φ+.
The lattice of filtered chains of non-nesting partitions is defined as

NN (m)(W ) := {I : I is a filtered chain of length m in Φ+},
ordered componentwise by inclusion.

This construction was introduced to generalize Theorem 2.12 to Fuß-Catalan num-
bers:

Theorem 2.14 (Athanasiadis). The number of filtered chains in Φ+ is equal to the
m’s Fuß-Catalan number of the given type,∣∣NN (m)(W )

∣∣ = Cat(m)(W ).

In the next section, we will introduce the extended Shi arrangement, which is closely
related to NN (m)(W ) and which is actually the key to understand the notion of filtered
chains defined by Athanasiadis on NN(W ).

2.3. The extended Shi arrangement

Recall from Section 1.1.10 the definition of the Coxeter arrangement. J.-Y. Shi [93]
constructed a hyperplane arrangement which contains the Coxeter arrangement. The
following definition generalizes this construction and is due to Athanasiadis [11].

Definition 2.15. Let W be a crystallographic reflection group. The extended Shi
arrangement Shi(m)(W ) is the collection of hyperplanes in the underlying vector space
V given by the affine equations (α, x) = k for α ∈ Φ+ and integers k with

−m < k ≤ m.

Furthermore, a connected component of the complement of the hyperplanes in Shi(m)(W )

is called region of Shi(m)(W ) and a positive region is a region which lies in the funda-
mental chamber of the Coxeter arrangement.

The following result concerning the total number of regions of Shi(m)(W ) as well as

the number of bounded regions of Shi(m)(W ) had been conjectured by P. Edelman and
Reiner [40, Conjecture 3.3], and by Athanasiadis [10, Question 6.2] and was proved
uniformly by M. Yoshinaga in [99, Theorem 1.2].
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Theorem 2.16 (Yoshinaga). Let W be a crystallographic reflection group and let

m be a positive integer. Then the number of regions of Shi(m)(W ) is equal to

(mh+ 1)l,

where l is the rank of W and h is the Coxeter number. Furthermore, the number of
bounded regions of Shi(m)(W ) is equal to

(mh− 1)l.

In [11], Athanasiadis counted the number of positive regions by showing that these
are in one-to-one correspondence with filtered chains in Φ+: define a map from positive
regions of Shi(m)(W ) to filtered chains in Φ+ by mapping some positive region R to the
filtered chain I1 ⊆ . . . ⊆ Im ⊆ Φ+ such that for x ∈ R,

(α, x) < i, if α ∈ Ii
(α, x) > i, if α ∈ Ji = Φ+ \ Ii.

Furthermore, he was also able to count the number of bounded positive regions by
considering the characteristic polynomial of Shi(m)(W ), see [11].

Theorem 2.17 (Athanasiadis). The map described above is a bijection between

positive regions of Shi(m)(W ) and filtered chains in Φ+. In particular,∣∣{positive regions of Shi(m)(W )
}∣∣ = Cat(m)(W ).

Furthermore, the number of bounded positive regions of Shi(m)(W ) is given by

∣∣{bounded positive regions of Shi(m)(W )
}∣∣ =

l∏
i=1

d∗i +mh

d∗i
,

where, as usual, l is the rank of W and h is its Coxeter number, but now d∗1 ≤ . . . ≤ d∗l
are its codegrees introduced in Section 1.2.4.

Remark. The formula counting bounded positive regions in Shi(m)(W ) is of interest
itself and appears different contexts, see [7, Section 3.7]. There, Armstrong called this

product positive Fuß-Catalan numbers and denoted it by Cat
(m)
+ (W ).

2.4. q-Fuß-Catalan numbers for crystallographic reflection groups

In this section, we want to introduce another q-extension of Cat(m)(W ). This is done
in terms of a statistic on regions in the extended Shi arrangement. We will see, how
this definition generalizes the well-understood case of W = An−1. After that, we will
also see, how the situation looks like in type B. Beside the fact that this construction
generalizes type A in a nice way, the more sophisticated reason for our definition will
come up in Section 4.3.

Let W be a crystallographic reflection group. Fix the positive region R0 to be the
region given by {

x : 0 < (α, x) < 1 for all α ∈ Φ+
}
.
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Figure 12. The extended Shi arrangement Shi(2)(A2).

The height of a region of Shi(m)(W ) is defined to be the number of hyperplanes in

Shi(m)(Φ) that separate R from R0 and the coheight of a region R, denoted by coh(R),
is defined as

coh(R) := mN − height(R),

where N is the number of positive roots.

Remark. In terms of affine reflection groups, R0 is called fundamental alcove.

Definition 2.18. The q-Fuß-Catalan number associated to W is defined to be the
generating function for the coheight statistic on positive regions in Shi(m)(Φ),

Cat(m)(W ; q) :=
∑
R

qcoh(R).

Remark. The poset of all regions defined by the covering relation R ≺ R′ if and
only if height(R′) = height(R) + 1 and both share an edge is isomorphic to the poset
NN (k)(W ) and we could equivalently define coh as the rank-function on NN (k)(W ).

Example 2.19. Let W = A2 and m = 2. In Figure 12 on page 37, the extended
Shi arrangement of the given type is shown. The positive roots are denoted by α1, α2

and α3 := α1 + α2, the fundamental chamber is shaded and we labelled every region in
the fundamental chamber by its coheight. This gives

Cat(2)(W ; q) = 1 + 2q + 3q3 + 2q3 + 2q4 + q5 + q6.

Proposition 2.20. Let I1 ⊆ . . . ⊆ Im ⊆ Φ+ be a filtered chain and let R be the
associated region. Then the bijection given above implies that

coh(R) =
∑

1≤i≤m

|Ii|.
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Figure 13. The dissection of a 2-Catalan path of length 8 into three
2-Catalan paths of lengths 1, 3 and 3 respectively.

2.4.1. Type A. We now turn to the case of W = An−1. By Proposition 2.20 and
the discussion in Section 2.2, the coheight statistic on a non-nesting partition I E Φ+ is
equal to the number of cells bij which lie below the Coxeter path associated to I. This
statistic was first studied by Fürlinger and Hofbauer in [52] and is probably the most
studied statistic on Catalan paths. It is called area statistic.

The goal of this section is to shows that the coheight statistic also generalizes the

area statistic on D(m)
n , which is analogously defined to be the number of cells which lie

below a given m-Catalan path and strictly above the line x = my, where now m ≥ 1.
Before stating the theorem, we define q-Fuß-Catalan number of type An−1 as

Cat(m)
n (q) :=

∑
D∈D(m)

n

qarea(D)

and derive a recurrence for Cat(m)
n (q).

C. Krattenthaler studied lattice paths with linear boundary with respect to a statis-
tic which can be reformulated in terms of the area statistic, see [73].

Theorem 2.21.

Cat
(m)
n+1(q) =

∑
k1+...+km+1=n

qn(k) Cat
(m)
k1

(q) . . .Cat
(m)
km+1(q), Cat

(m)
0 (q) = 1,

where n(k) = n(k1, . . . , km+1) :=
∑

(m+ 1− i)ki.

Proof. Dissect an m-Catalan path D of length n+1 into (m+1) m-Catalan paths
D0, . . . , Dm, with lengths summing up to n, at every first east step of D from level i to
level i− 1 for 1 ≤ i ≤ m, where the level of a lattice point is meant to be the horizontal
distance to the diagonal x = my. Furthermore, delete the very first north step of D.
See Figure 13 for an example. This gives the proposed recurrence. �
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Figure 14. A filtered chain of order ideals in the root poset and the
associated 2-Catalan path.

Example 2.22. Consider the 2-Catalan path D of length 8 in Figure 13. The east
steps of D from level 1 to level 0 and from level 2 to level ” are highlighted and the
start and end points of the three 2-Catalan paths are marked. This gives

D0 = NEE, D1 = NNEEEENEE and D2 = NNEEENEEE.

Theorem 2.23. Let W = An−1. Then

Cat(m)(W ; q) = Cat(m)
n (q)

Proof. Recall that an m-Catalan path of length n can be encoded as a sequence
(a1, . . . , an) of integers such that a1 = 0 and ai+1 ≤ ai + m. Define the sum of an
m-Catalan path and an m′-Catalan path both of length n to be the m + m′-Catalan
path obtained by adding the associated sequences componentwise,

(a1, . . . , an) + (a′1, . . . , a
′
n) = (a1 + a′1, . . . , an + a′n).

This yields a map from filtered chains of length m in Φ+ to m-Catalan paths which
sends the coheight of a given filtered chain to the area of the associated m-Catalan
path by just summing the Catalan paths associated to the ideals in the filtered chain,
see Figure 14 for an example. To show that this map is in fact a bijection between
filtered chains of length m and m-Catalan paths take two filtered chains I1 ⊆ . . . ⊆ Im
and I ′1 ⊆ . . . ⊆ I ′m which map to the same path and assume they are not equal, i.e.,
there exists an εj − εi contained in Ii and not contained in I ′i. Therefore there exists
εi− εi′ and j > 0, such that (εj − εi) + (εi− εi′) = εj − εi′ is contained in I ′i+j and is not
contained in Ii+j. As both chains are filtered, we get εi− εi′ ∈ I ′j but εi− εi′ /∈ Ij. This
gives rise to an infinite sequence (εj − εi, εi− εi1 , εi1 − εi2 , . . .) of positive roots, which is
a contradiction.
As it is known that both sets have the same cardinality, the statement follows. �

2.4.2. Type B. Following the idea of identifying order ideals in the root poset
with lattice paths in Z2 such that the number of elements in an order ideal matches
somehow with the number of cells confined by the path together with other restrictions,
we want to define Catalan paths of type B together with an area-statistic and moreover,
we want to establish an analogous recurrence as obtained for Catalan paths of type A.
Furthermore, we will describe why we were not able to construct neither type B Catalan
paths for higher m, nor type D Catalan paths.

Definition 2.24. A Catalan path of type Bn is a lattice paths of 2n steps, either
north or east, that starts at (0, 0) and stays above the diagonal x = y. For such a path
D, we define area(D) to be the number of cells bij as defined above which lie below D,
but now with the additional property that 1 ≤ i < j ≤ 2n+ 1− i.
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Figure 15. All type B Catalan paths of length 2.

In analogy to type A, we define q-Catalan numbers for type B in the following way:

Definition 2.25.

CatBn(q) :=
∑

qarea(D),

where the sum ranges over all Catalan paths of type Bn.

Example 2.26. In Figure 15, we list all Catalan paths of type B2. The cells which
contribute to the area are shaded. Therefore, we have

CatB2(q) = q4 + q3 + q2 + 2q + 1.

Corollary 2.27. For W = Bn, the construction implies

Cat(1)(W, q) = CatBn(q).

q-Catalan numbers of type B satisfy the following recurrence involving q-Catalan
numbers of type A:

Theorem 2.28.

CatBn(q) = Catn(q) +
n−1∑
k=0

q2k+1 CatBk(q) Catn−k(q), CatB0(q) = 1.

Proof. Let D be a Catalan path of type Bn. Then either D has as many east as
north steps, which means it is equal to a type A Catalan path of length n, or there
exists a last point (k, k + 1) where the path touches the diagonal x + 1 = y and stays
strictly above afterwards. Now, we have an initial type A Catalan path of length k+ 1,
except that the last step is a north step instead of an east step, see Figure 16 for an
example. After this north step, a Catalan path of type Bn−k−1 starts. This gives

CatBn(q) = Catn(q) +
n−1∑
k=0

qCatk+1(q)q2(n−k−1) CatBn−k−1
(q)

= Catn(q) +
n−1∑
k=0

q2k+1 CatBk(q) Catn−k(q)

�

Example 2.29. Figure 16 shows a Catalan path of type B6. It starts with a type
A like Catalan path D of length 3, followed by a Catalan path D′ of type B3,

D = NENNEN, D′ = NNENNE.
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Figure 16. A Catalan path of type B6.

Corollary 2.30. CatBn(q) satisfies the following generating function identity:∑
n≥0

xnq−n(n−1)(1− qx)

(−x; q−1)2n+1

CatBn(q) = 1.

Proof. The recurrence in Theorem 2.28 can be written as

(1 + q2n+1) CatBn(q)−
n∑
k=0

q2k+1 CatBk(q) Catn−k(q) = Catn(q).

Multiplying both sides of the equality by xnq−n(n−1)/(−x; q−1)2n+1 and summing over
all n gives the proposed generating function identity. �

Remark. It is not possible to construct Catalan paths of type B for higher m
as lattice paths, at least not in the manner of defining an area generating function
equal to the specialization t = 1 of q, t-Fuß-Catalan numbers which we will define in
Section 4.2: if one wants to define lattice paths consisting of north and east steps
with a certain boundary (like in type A the linear boundary x = y) for which the

area generating function describes the t = 1 specialization in Cat(m)(W ; q, t), one can
always equivalently transform this problem into the problem of counting order ideals
by cardinality in certain posets. Beside other properties, these posets have to be locally
graded, i.e., for any elements a ≤ b, all paths from a to b have to have the same length.
Now consider the following poset:

tt
tt

tt

tt

@
@
@
@
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B
B
B
B
BB

This poset is the unique poset P such that Cat(2)(B2; q, 1) =
∑

IEP q
|I|. As this poset

is not locally graded, the construction fails in this case. This is likely to be the reason
why we were – so far – not able to find a recurrence in type B for higher m.
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Obviously, these posets also have to be planar. As the root poset of type Dn is not
planar for n ≥ 4, this construction also fails for type D.

In the remaining part of this section, we want to exhibit a major index on Catalan
paths of type Bn for which, in analogy to type A, the generating function is equal to
diag-Cat(1)(Bn; q).
It is well-known that for the major index on lattice paths consisting on n north and n
east steps without any further restrictions we have∑

qmaj(L) =

[
2n
n

]
q

,

where the major index is defined with respect to the order E < N by

maj(L) :=
∑

i∈Des(L)

(2n− i),

see e.g. [4] and [82].

We now define a major index of a Catalan path D of type Bn in the following way:

maj(D) := 2 ·
(

neg(D) +
∑

i∈Des(D)

(2n− i)
)
.

Here, neg(D) is defined to be the number of east steps in D and Des(D) is, as for
Catalan paths of type A, the descent set with respect to the order N < E.

Example 2.31. The Catalan path D of type B6 shown in Figure 16 is encoded by
the word

NE NNE NNNE NNE.

This gives neg(D) = 4, Des(D) = {2, 5, 9} and therefore,

maj(D) = 2(4 + (12− 2) + (12− 5) + (12− 9)) = 2(4 + 10 + 7 + 3) = 48.

Note. Equivalently, we could have defined the major index on Catalan paths of
type B as maj(D) := 2 maj(w), where w is the reverse of the Catalan word of D. In
the previous example, we would have w = E NNE NNNE NNE N and therefore,
Des(w) = {1, 4, 8, 11}, 2 maj(w) = 2(1 + 4 + 8 + 11) = 48 = maj(D).

Definition 2.32.

diag-CatBn(q) :=
∑

qmaj(D),

where the sum ranges over all Catalan paths of type Bn.

Proposition 2.33. The generating function for the major index on Catalan paths
of type Bn is equal to diag-Cat(1)(Bn; q),

diag-CatBn(q) = diag-Cat(1)(Bn; q).

Proof. Define a bijection between lattice paths form (0, 0) to (n, n) to Catalan
paths of type Bn by replacing the first east step from level i to level i − 1 by a north
step for all i < 0 for which such an east step exists. For example, the lattice path shown
in Figure 17 is mapped to the Catalan path shown in Figure 16. This transformation
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Figure 17. The lattice path from (0, 0) to (6, 6) which is mapped to to
Catalan path of type B6 shown in Figure 16.

does not affect the major index with respect to the ordering E < N . For a lattice path
L and its image D, we then have maj(D) = 2 maj(L) and therefore

diag-CatBn(q) =

[
2n
n

]
q2
.

This can easily be seen to be equal to diag-Cat(1)(W ; q). �

Example (continued) 2.34. The major index of the lattice path L shown in
Figure 17 is given by

maj(L) = (12− 1) + (12− 4) + (12− 8) + (12− 11) = 11 + 8 + 4 + 1 = 24.

As we have seen in Example 2.31, this gives maj(D) = 2 maj(L).

The following proposition is the analogue of Proposition 2.8:

Proposition 2.35. The sequence of coefficients of the q-Catalan numbers diag-CatBn(q)
is symmetric, i.e.,

diag-CatBn(q) = q2n2

diag-CatBn(q−1).

Proof. As we have seen, we have diag-CatBn(q) =
∑
q2 maj(D), where the sum

ranges over all lattice paths from (0, 0) to (n, n) without any restrictions. The statement
follows by applying the same involution as in type A to such a lattice path. �

2.5. Non-crossing partitions

We start with the case of W being a real reflection group. In Section 1.1.5, the
length of an element ω in W was defined as the length of a reduced word of ω expressed
in terms of simple reflections and in Section 1.1.6 this length function was used to define
a partial order on W that turns W into a lattice. In order to introduce the notion of
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Figure 18. Weak(A2) and Abs(A2).

non-crossing partitions, we first present another length function on W and the analo-
gous partial order on W .

We basically follow Armstrong’s PhD thesis [7] which contains a very comprehensive
outline of what is known on Fuß-Catalan combinatorics.

2.5.1. The absolute order on W . The definition of the absolute length is adapted
from the analogous definition of the ordinary length of some element in a real reflection
group:

Definition 2.36. Let Φ be a root system and let

T := {sα : α ∈ Φ+} ⊆ W = W (Φ)

be the set of reflections in W . The absolute length of a given ω ∈ W , denoted by lT (ω),
is the smallest k for which ω can be written as a product of k reflections.

As S, the set of simple reflections, is contained in T , it immediately follows

lT (ω) ≤ lS(ω) for all ω ∈ W.
Using lT , define again a partial order on W by

ω ≤T τ :⇔ lT (τ) = lT (ω) + lT (ω−1τ),

and denote the resulting poset by Abs(W ). As Weak(W ), this poset is graded with
rank function lT and unique minimal element 1 ∈ W but it is not a lattice as in general
it does not have a unique maximal element. Figure 18 shows the Hasse diagrams of
Weak(A2) and Abs(A2).

Note. By construction, the Coxeter elements of W have maximal absolute order
or, equivalently, all Coxeter elements are among the top elements in Abs(W ).

For the classical reflection groups, the absolute length can be combinatorially com-
puted using the cycle notation: a cycle (i1, i2, . . . , ik) is a list of integers in {±1, . . . ,±n}
with distinct absolute values except for ik which can possibly be equal to −i1. We
can regard a cycle as a signed permutation as follows: if ik 6= −i1 we obtain a
signed permutation consisting of the cycles i1 7→ i2 7→ . . . 7→ ik 7→ i1 and its neg-
ative analogue. If ik = −i1 we obtain a signed permutation consisting of the cycle
i1 7→ i2 7→ . . . 7→ ik 7→ −i1 7→ −i2 7→ . . . 7→ −ik 7→ i1. In both cases, all remaining
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integers are fixed points. Any signed permutation is a product of cycles and express-
ing a given σ in this way is called cycle notation of σ. For even signed permutations
and ordinary permutations, the cycle notation is defined analogously. Often the cycles
consisting only of single elements are not written. We illustrate the cycle notation by
some examples:

[4, 2, 6, 5, 1, 3] = (1, 4, 5)(3, 6),

[4, 2,−6, 5, 1,−3] = (1, 4, 5)(3,−6),

[4, 2,−6, 5, 1, 3] = (1, 4, 5)(3,−6,−3) = (1, 4, 5)(6, 3,−6),

[4, 2, 6, 5,−1,−3] = (1, 4, 5,−1)(3, 6,−3).

Define the length of a cycle c = (i1, . . . , ik) to be k − 1 and denote it by l(c). Then
the absolute length of a signed permutation σ is equal to the sum of the lengths of the
cycles in its cycle notation σ = c1 · · · ck, in symbols

lT (σ) = l(c1) + . . .+ l(ck).

Example 2.37. As the absolute length is by definition equal to the rank function
in the Hasse diagram, the equality can be seen for type A3 in Figure 19.

2.5.2. Fixed space and moved space. Following Brady and Watt [28], define
the fixed space and the moved space of an element ω ∈ W as

Fix(ω) := ker(ω − id) and Mov(ω) := im(ω − id).

They proved the following statement which gives a geometric interpretation of the
absolute length lT and of the poset Abs(W ):

Theorem 2.38 (Brady, Watt). Let ω, τ ∈ W such that ω and τ have a common
larger element. Then

• lT (ω) = dim Mov(ω),
• ω ≤T τ ⇔ Mov(ω) ⊆ Mov(τ).

This theorem implies that every interval in Abs(W ) can be interpreted via the map
ω 7→ Mov(ω) as a poset of subspaces of V .

2.5.3. Non-crossing partitions. Together with the fact that the Coxeter ele-
ments of W all have maximal absolute length, Theorem 2.38 yields the definition of
non-crossing partitions. It goes back mainly to Brady and Watt [28, 29].

Definition 2.39. Let c be a Coxeter element in W . The non-crossing partition
lattice NC(W, c) is defined as the interval in Abs(W ) between 1 and c,

NC(W, c) := [1, c]T =
{
ω ∈ W : 1 ≤T ω ≤T c

}
.

Example 2.40. In Figure 19, Abs(A3) is shown with the interval [1, c]T for c being
the long cycle (1, 2, 3, 4) highlighted.

This definition seems to depend on the choice of the Coxeter element c, but as all
Coxeter elements form a conjugacy class in W and since conjugation by a group element
is an automorphism on Abs(W ) it follows that for Coxeter elements c and c′,

NC(W, c) ∼= NC(W, c′).

In [30], Brady and Watt proved that NC(W, c) is in fact a (bounded, graded) lattice.
Furthermore, Armstrong showed in [7] that it is self-dual and locally self-dual.
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Figure 19. Abs(A3) with NC(A3, (1, 2, 3, 4)) highlighted.

2.5.4. Non-crossing partitions of type A. We now want to describe, how non-
crossing set partitions can be seen as the type A instance of non-crossing partitions.
Write NC(An−1) for NC(An−1, c) where c = (1, 2, . . . , n). Then

σ ≤T c⇔ all cycles in σ are increasing and pairwise non-crossing,

where a cycle (i1, . . . , ik) is called increasing if, after a possible cyclic shift, i1 < . . . < ik,
and where two cycles (i1, . . . , ik) and (j1, . . . , jk′) are called non-crossing if the asso-
ciated blocks {i1, . . . , ik} and {j1, . . . , jk′} do not cross in the sense of Example 2.2.
This equivalence yields a bijection between non-crossing set partitions and NC(An−1):
map some {B1, . . . , Bk} to the permutation having a cycle for each Bi with the given
elements in increasing order. Furthermore, the ordering of non-crossing set partitions
by refinement turns NC(n) into a lattice with 1̂ = [n] and 0̂ = {{1}, {2}, . . . , {n}} and
we have

NC(n) ∼= NC(An−1).

2.5.5. Non-crossing partitions of types B and D. There exists also a descrip-
tion of non-crossing partitions of types B and D in terms of set partitions. They were
introduced in type B by Reiner in [87] and in type D by Athanasiadis and Reiner in
[13]. As we only need the description in type B, we relax the description in type D.
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Definition 2.41. A type Bn set partition is a set partition B of the set {±1,±2, . . . ,±n}
satisfying the following two conditions:

(i) if B is a block in B then −B is also a block in B,
(ii) there exists at most one block B in B for which B = −B.

Order the set {±1,±2, . . . ,±n} by

−1 < −2 < . . . < −n < 1 < 2 < . . . < n.

A type Bn set partition {B1, . . . , Bk} is called non-crossing if

a < b < c < d such that a, c ∈ Bi, b, d ∈ Bj implies i = j.

The lattice of all non-crossing set partitions of type Bn ordered by refinement is denoted
by NCB(n).

Note. One can visualize non-crossing set partitions of type Bn in the same way as
non-crossing set partitions of type An−1. This visualization shows immediately that the
property of being non-crossing implies (ii) in the definition of type Bn set partitions.

This yields a bijection between NCB(n) and NC(Bn), where NC(Bn) is defined to be
NC(Bn, c) for c = (1, 2, . . . , n,−1). Map some {B1, . . . , Bk} to the permutation having
a cycle for each Bi with the given elements in increasing order. We have

NCB(n) ∼= NC(Bn).

2.5.6. Non-crossing partitions for well-generated complex reflection groups.
Recently, Bessis observed that one can generalize non-crossing partitions to any well-
generated complex reflection group W [20, 21]. One can define the total order on W in
exactly the same way as for real reflection groups,

ω ≤T τ :⇔ lT (τ) = lT (ω) + lT (ω−1τ),

and, as discussed in Section 1.2, the Coxeter elements are among the top elements in
the resulting poset Abs(W ).

Definition 2.42. Let W be a well-generated complex reflection group. Then the
non-crossing partition lattice NC(W ) is defined as the interval in Abs(W ) between 1 and
c,

NC(W, c) := [1, c]T =
{
ω ∈ W : 1 ≤T ω ≤T c

}
,

where c ∈ W is any Coxeter element.

In [21], Bessis proved the following theorem, which generalizes the case where W is
a real reflection group, see Section 2.5.3.

Theorem 2.43 (Bessis). Let W be a well-generated complex reflection group and let
c be a Coxeter element. Then NC(W, c) is a bounded, graded lattice which is self-dual
and locally self-dual.

Remark. The lattice property of NC(W, c) was proved only using the classification
of well-generated complex reflection groups.

Remark. The Coxeter element c acts on NC(W, c) by conjugation. This action
generalizes the action of the long cycle (1, 2, . . . , n) on NC(n) described in the beginning
of this chapter.



48 2. FUSS-CATALAN NUMBERS AND COMBINATORICS

2.5.7. Generalized non-crossing partitions. The notion of non-crossing parti-
tions can be generalized in the following sense. This was done by Armstrong for real
reflection groups and in full generality by Bessis in [21]:

Definition 2.44. Let W be a well-generated complex reflection group, c be a
Coxeter element and m be a non-negative integer. The generalized non-crossing partition
lattice NC(m)(W, c) is defined as the set of all chains in NC(W, c) having m elements,

NC(m)(W, c) :=
{

(ω1 ≤T . . . ≤T ωm) : ωi ∈ NC(W, c)
}
,

and which are ordered by

(ω1 ≤T . . . ≤T ωm) ≤ (τ1 ≤T . . . ≤T τm) :⇔ ω−1
i ωi+1 ≥T τ−1

i τi+1 for 0 ≤ i ≤ m,

where ωm+1 and τm+1 are both set to be equal to c.

Remark. For real reflection groups, the generalized non-crossing partition lattice
was introduced by Armstrong in [7], where he gave them the name m-divisible non-
crossing partitions.

2.5.8. Enumeration of non-crossing partitions. The generalized non-crossing
partitions were counted by Armstrong for real reflection groups in [7] and for well-
generated complex reflection groups by Bessis in [21]:

Theorem 2.45 (Armstrong; Bessis). Let W be a well-generated complex reflection
group and let c be a Coxeter element. Then the number of generalized non-crossing
partitions equals the Fuß-Catalan number,∣∣NC(m)(W, c)

∣∣ = Cat(m)(W ).

2.5.9. The cyclic sieving phenomenon. In [89], Reiner, D. Stanton and D. White
described the following enumerative phenomenon:

Definition 2.46. Let C be a cyclic group of order n acting on a finite set X and let
X(q) be a polynomial in Z[q]. Then the triple

(
X,X(q), C) exhibits the cyclic sieving

phenomenon (or short CSP) if for every a ∈ C and any ζ being a complex root of unity
having the same multiplicative order as a, one has

X(ζ) =
∣∣{x ∈ X : a(x) = x

}∣∣.
In particular, the definition implies that |X| = X(1). So one can think of X(q) as

a generating function for the set X. In [22], Bessis and Reiner proved a cyclic sieving
phenomenon for non-crossing partitions:

Theorem 2.47 (Bessis, Reiner). Let W be a well-generated complex reflection group
and let c be a Coxeter element in W acting on NC(W, c) by conjugation. Then the triple(

NC(W, c), diag-Cat(1)(W ), 〈c〉
)

exhibits the cyclic sieving phenomenon.

This theorem was conjectured by Reiner, see [6, Problem 2.1]. It was then gener-
alized by Armstrong in [7] where he constructed a natural cyclic group action of order
mh on NC(m) and conjectured that the triple(

NC(m)(W, c), diag-Cat(m)(W ), 〈c〉
)

exhibits the cyclic sieving phenomenon. This conjecture is still open.
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2.6. q-Catalan numbers for non-crossing partitions in types A and B

In this section, we want to describe the q-Catalan numbers Cat(1)(W ; q) as well as

the q-Catalan numbers diag-Cat(1)(W ; q) in terms of non-crossing partitions, when W
is either of type A or of type B. We have already seen in the previous sections that

Cat(1)(W ; q) =
∑

qarea(D),

diag-Cat(1)(W ; q) =
∑

qmaj(D),

where the sums range over all Catalan paths of the given type and where area and maj
are the appropriate statistics.

Let rev be the involution on signed permutations which reverses the negative ele-
ments in the one-line notation, e.g. rev([2,−4, 3,−1]) = [2,−1, 3,−4]. Fix NC(W ) as
described for type A in Section 2.5.4 and for type B in Section 2.5.5. We will bijectively
prove the following theorem:

Theorem 2.48. Let W be the reflection group An−1 or Bn. Then the q-Catalan
numbers Cat(1)(W ; q) and diag-Cat(1)(W ; q) can be interpreted in terms of non-crossing
partitions as follows:

Cat(1)(W ; q) =
∑

σ∈rev(NC(W ))

qlS(σ),(2)

diag-Cat(1)(W ; q) =
∑

σ∈rev(NC(W ))

qmaj(σ)+imaj(σ).(3)

Remark. The analogous statement is false in type D: by computer experiments it
is easy to show that for any Coxeter element c ∈ D4,

Cat(1)(D4; q) 6=
∑

σ∈rev(NC(D4,c))

qlS(σ).

2.6.1. The bijection in type A. Define a map φn : NN(An−1) → NC(An−1) as
indicated in Figure 20 on page 50: write the numbers 1 to n below the root poset
of type An−1 from right to left and then associate to a given order ideal I E Φ+ the
permutation obtained by the shown “shelling” of I. In terms of the root poset Φ+,
φn can be described as follows: for 1 ≤ i < j ≤ n, set [i, j] to be the positive root
εj − εi. For an order ideal I = {[i1, j1], . . . , [imax, jmax]} E Φ+, let [a1, b1], . . . , [ak, bk]
with a1 < . . . < ak be the maximal elements in I. The list of maximal elements in I
decompose into blocks, such that [ai−1, bi−1] is the last element in one block and [ai, bi]
is the first element in the next block if and only if bi−1 ≤ ai. To I, we associate a
permutation σ(I) having a cycle for each block, where the cycle starts with the first ai
in the block followed by all ai’s that are equal to bi−1’s and which ends with the last bi
in the block.
Furthermore, set I ′ E Φ+ to be the order ideal given by

I ′ :=
{

[i+ 1, j − 1] : [i, j] ∈ I and j − i > 2
}
.

Then φn can be described as

φn(I) := σ(I) ◦ φn(I ′).
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Figure 20. The bijection φ9 sending the shown non-nesting partition to
the non-crossing partition σ = (1, 7, 9)(2, 3, 4, 5) = [7, 3, 4, 5, 2, 6, 9, 8, 1].

Example 2.49. The ideal shown in Figure 20 is given by

I =

{
[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9],

[1, 3], [2, 4], [3, 5], [4, 6], [5, 7], [7, 9], [1, 4], [2, 5], [3, 6]

}
,

its maximal elements are {[1, 4], [2, 5], [3, 6], [5, 7], [7, 9]} and I ′ = {[2, 3], [3, 4], [4, 5]}.
This gives φ9(I) = (1, 7, 9) ◦ φ9(I ′) and as all elements in I ′ are minimal, we have
φ9(I ′) = (2, 3, 4, 5) and thereby

φ9(I) = (1, 7, 9)(2, 3, 4, 5).

From the construction, it is clear that φn is in fact a bijection between NN(An−1)
and NC(An−1).

As we have seen in Section 1.1.14, lS(σ) = inv(σ) for σ ∈ Sn. Therefore, the
following proposition proves Eq. (2) in Theorem 2.48 for type A:

Proposition 2.50. φn maps the coheight statistic on NN(n) to the inversion num-
ber on NC(An−1), i.e., for I ∈ NN(An−1), we have

|I| = inv([σ1σ2 · · ·σn]),

where [σ1σ2 · · ·σn] is the one-line notation of φn(I).

Proof. For simplicity, we assume that a given I contains only one “shell” or,
equivalently, φn(I) is a 1-cycle, say (i1, . . . , ik), the general case is solved by applying
the same argument several times. The number of elements in I is equal to 2(ik − i1)−
1− (k− 2) = 2(ik − i1)− k + 1. It is easy to see that this is also equal to the inversion
number of the cycle (i1, . . . , ik). �

Example (continued) 2.51. Let I and σ = φ9(I) as in Example 2.49. Then the
“first shell” contains 14 elements which is equal to the inversion number of the associated
cycle (1, 7, 9) = [7, 2, 3, 4, 5, 6, 9, 8, 1], the “second shell” contains 3 elements which is
equal to the inversion number of the associated cycle (2, 3, 4, 5) = [1, 3, 4, 5, 2, 6, 7, 8, 9].
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The following theorem together with Proposition 2.8 proves Eq. (3) in Theorem 2.48
for type A:

Theorem 2.52. Let I E Φ+ be an order ideal in the root poset of type An−1 and let
N =

(
n
2

)
be the number of positive roots. Then

maj(I) + maj(φn(I)) + imaj(φn(I)) = 2N = n(n− 1).

Before proving the theorem, we get back to the ongoing example:

Example (continued) 2.53. The descent set of the ideal I considered in Exam-
ple 2.49 and the descent set and the inverse descent set of σ = φ9(I) are given by

Des(I) = {5, 8, 11, 13}, Des(σ) = {1, 4, 7, 8}, iDes(σ) = {1, 2, 6, 8}

and therefore,

maj(I) = (18− 5) + (18− 8) + (18− 11) + (18− 13) = 35,

maj(σ) + imaj(σ) = (1 + 4 + 7 + 8) + (1 + 2 + 6 + 8) = 20 + 17,

maj(I) + maj(σ) + imaj(σ) = 35 + 37 = 72 = 9 · 8 = n(n− 1).

We prove the theorem in several steps:

Lemma 2.54. Let σ ∈ NC(n). Then des(σ) = ides(σ).

Proof. We first prove the lemma for the case that σ has only one cycle: let σ =
(i1, . . . , ik). As σ is in NC(n), we have i1 < . . . < ik. Therefore, we can describe the
descent set and the inverse descent set of σ:

Des(σ) = {il : l < k, il + 1 < il+1} ∪ {ik − 1},
iDes(σ) = {il − 1 : 1 < l, il−1 + 1 < il} ∪ {i1}.

The case that σ has more than one cycle follows from the fact that σ is non-crossing
and therefore the descent set and the inverse descent set of σ are given by the above
rule for each cycle. �

Lemma 2.55. Let I ∈ NN(n). Then

des(I) + des(φn(I)) = n− 1.

Proof. Let σ := φn(I) and let min respectively max be the minimal respectively
maximal element not mapped by σ to itself. Set a to be the number of valleys of
I between positions min and max. Then the proof of the previous lemma implies
des(σ) = max−min− a. By definition, des(I) equals the total number of valleys of I
and therefore, des(I) = a+min− 1 + n−max. This completes the proof. �

Define a lifting ∆ from NN(n) to NN(n + 1) by taking an order ideal I ∈ NN(n)
and embed it into NN(n+ 1) by adding the whole “bottom row”, see Figure 21 for an
example.

Lemma 2.56. Let I ∈ NN(n) and σ := φn(I). Furthermore, set I ′ := ∆(I) and
σ′ := φn+1(∆(I)). Then

maj(I) + maj(σ) + imaj(σ) + 2n = maj(I ′) + maj(σ′) + imaj(σ′).
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Figure 21. The lifting ∆(I) of the non-nesting partition I shown in
Figure 20 and its image φ10(∆(I)) = (1, 10)(2, 6, 7)(8, 9) =
[10, 6, 3, 4, 5, 7, 2, 9, 8, 1].

Proof. Observe that

Des(σ′) = iDes(σ) ∪ {n} , iDes(σ′) = {i+ 1 : i ∈ Des(σ)} ∪ {1}

and therefore,

maj(σ′)− imaj(σ) = n , imaj(σ′)−maj(σ) = des(σ) + 1.(4)

On the other hand, we have

maj(I ′)−maj(I) = des(I) = des(I ′).(5)

The Lemma follows by (4), (5) and Lemma 2.55. �

Example (continued) 2.57. In our ongoing example, we have already seen that

maj(I) + maj(σ) + imaj(σ) + 2n = 72 + 18 = 90 = n(n+ 1).

On the other hand, we have

Des(I ′) = {6, 9, 12, 14},Des(σ′) = {1, 2, 6, 8, 9}, iDes(σ) = {1, 2, 5, 8, 9}.

This gives

maj(I ′) = (20− 6) + (20− 9) + (20− 12) + (20− 14) = 39,

maj(σ′) + imaj(σ′) = (1 + 2 + 6 + 8 + 9) + (1 + 2 + 5 + 8 + 9) = 26 + 25,

maj(I ′) + maj(σ′) + imaj(σ′) = 39 + 51 = 90 = n(n+ 1).

Proof of Theorem 2.52. We prove the Theorem by induction on n. Let I ∈
NN(n) and I ′ ∈ NN(n′) and let D and D′ be the associated Catalan paths in Dn and
Dn′ respectively. Then the concatenation of I and I ′ is given by the concatenation
DD′ ∈ Dn+n′ . The proof consists of two parts:

(i) first, we prove that if the theorem holds for elements I ∈ NN(n) and I ′ ∈
NN(n′) then it holds for the concatenation II ′ of I and I ′ which lies in NN(n+
n′), and

(ii) second, we prove that if the theorem holds for I ∈ NN(n) then it holds also
for ∆(I) ∈ NN(n+ 1).

As the case n = 1 is obvious, the theorem then follows.
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Figure 22. (a) shows the bijection φ4 sending the given non-nesting
partition I to the non-crossing partition φ4(I) = (1, 4,−1)(2, 3) =
[4, 3, 2,−1], (b) shows its lift ∆(I), as shown, the image of this lift is
φ5(∆(I)) = (1, 4,−1)(2, 3)(5,−5) = [4, 3, 2,−1,−5].

(i) set σ := φn(I), σ′ := φn′(I
′) and τ := φn+n′(II

′). Then we have

maj(II ′) + maj(τ) + imaj(τ) = maj(I) + maj(I ′) + 2n(des(I ′) + 1)

+ maj(σ) + maj(σ′) + n des(σ′)

+ imaj(σ) + imaj(σ′) + n ides(σ′).

By Lemma 2.54 and Lemma 2.55, the right-hand side of this equation is equal
to maj(I)+maj(σ)+imaj(σ)+maj(I ′)+maj(σ′)+imaj(σ′)+2nn′. By induction,
this reduces to n(n− 1) + n′(n′ − 1) + 2nn′ = (n+ n′)(n+ n′ − 1).

(ii) this is an immediate consequence of Lemma 2.56.

�

2.6.2. The bijection in type B. The bijection φn : NN(An−1) −→ NC(An−1)
can be adapted to type Bn as follows: write the numbers 1 to n below the root poset of
type Bn from right to left as shown in Figure 22 and map a given order ideal I E Φ+

in the same way to a signed permutation as in type An−1 with the additional rule that
if a “shell” ends at the “right boundary” of Φ+ then add the negative of the first ele-
ment of the given cycle to its end. This map defines a bijection between NN(Bn) and
rev(NC(Bn)). To prove Theorem 2.48 in type B we only have to modify the lifting ∆
from NN(Bn) to NN(Bn+1) which is now defined by adding two “bottom rows”, see
Figure 22 for an example, and slightly different induction steps.

Recall from Section 1.1.14 that in type Bn, lS(σ) = inv([σ1σ2 · · ·σn])−
∑

i∈Neg σ(i).

Therefore, the following proposition proves Eq. (2) in Theorem 2.48 for type B:

Proposition 2.58. For I ∈ NN(Bn), we have

|I| = inv([σ1σ2 · · ·σn])−
∑

i∈Neg(σ)

σi,

where σ := φn(I) and [σ1σ2 · · ·σn] is its one-line notation.
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Proof. The proof follows exactly the same idea as the proof in type A. �

The following theorem together with Proposition 2.35 proves Eq. (3) in Theorem 2.48
for type B:

Theorem 2.59. Let I E Φ+ be an order ideal in the root poset of type Bn and let
N = n2 be the number of positive roots. Then

maj(I) + maj(φn(I)) + imaj(φn(I)) = 2N = 2n2.

Proof. We prove the theorem as in type A by induction. As in type A, the case
n = 1 is obvious, therefore the theorem follows by proving the following 3 cases:

(i) first, we prove that if the theorem holds for elements I ∈ NN(An−1) and
I ′ ∈ NN(Bn′) then it holds for the concatenation II ′ ∈ NN(Bn+n′),

(ii) second, we prove that if the theorem holds for elements I ∈ NN(An−1) and
I ′ ∈ NN(Bn′) then it holds for the order ideal J ∈ NN(Bn+n′) obtained by
replacing the last east step in the Catalan word associated to I by a north step
and then concatenating it with I ′, and

(iii) third, we prove that if the theorem holds for I ∈ NN(Bn) then it holds also
for ∆(I) ∈ NN(Bn+1).

Set σ := φn(I), σ′ := φn′(I
′) and τ := φn+n′(II

′).

(i) The proof of (i) is the same as in type An−1 with n replaced by 2n:

maj(II ′) + maj(τ) + imaj(τ) = maj(I) + maj(I ′) + 4n(des(I ′) + 1)

+ maj(σ) + maj(σ′) + 2n des(σ′)

+ imaj(σ) + imaj(σ′) + 2n ides(σ′).

By Lemma 2.54 and Lemma 2.55, the right-hand side of this equation is equal
to maj(I)+maj(σ)+imaj(σ)+maj(I ′)+maj(σ′)+imaj(σ′)+4nn′. By induction,
this reduces to 2n2 + 2n′2 + 4nn′ = 2(n+ n′)2.

(ii)

maj(II ′) + maj(τ) + imaj(τ) = maj(I) + maj(I ′) + 4n(des(I ′) + 1)

+ maj(σ) + maj(σ′) + 2n des(σ′) + 1

+ imaj(σ) + imaj(σ′) + 2n ides(σ′) + 1− 2.

Again, by Lemma 2.54 and Lemma 2.55, the right-hand side of this equation
is equal to maj(I) + maj(σ) + imaj(σ) + maj(I ′) + maj(σ′) + imaj(σ′) + 4nn′ =
2n2 + 2n′2 + 4nn′ = 2(n+ n′)2.

(iii) We have φn+1(∆(I)) = σ ◦ (n+ 1,−n− 1). As maj(∆(I)) = maj(I), this gives

maj(∆(I))+maj(φn+1(∆(I)))+imaj(φn+1(∆(I))) = maj(I)+maj(σ)+imaj(σ)+4n+2,

and the right-hand side is by induction equal to 2n2 + 4n+ 2 = 2(n+ 1)2.

�

Remark. At the beginning of this chapter, we mentioned a bijection between non-
crossing and non-nesting set partitions that locally converts each nesting into a crossing.
When generalizing this bijection to type B in the canonical way, one obtains – as we
do – a bijection between NN(Bn) and rev(NC(Bn)).
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2.7. Coxeter sortable elements

In [84], Reading introduced another subset of a real reflection group W which he
called Coxeter sortable elements and gave a bijection to non-crossing partitions. In the
following sections, we want to present his construction and explore – as for non-crossing
partitions – an interesting connection to non-nesting partitions in types A and B.

Let c be a Coxeter element in W and fix a reduced word for c, say c = s1s2 · · · sl.
For ω ∈ W , the c-sorting word of ω is defined to be the lexicographically first reduced
expression for ω when expressed as a subword of the half infinite word

c∞ := s1s2 · · · sl|s1s2 · · · sl|s1s2 · · · sl| · · · ,
where the divider | is introduced just to distinguish between different occurrences of
s1s2 · · · sl.

Note. The c-sorting word can be interpreted as a sequence of subsets of the simple
reflections: the subsets in this sequence are the sets of letters of the c-sorting word
which occur between adjacent dividers.

Definition 2.60. An element ω ∈ W is called c-sortable if its c-sorting word defines
a sequence of subsets which is decreasing under inclusion. Furthermore, define Coxc(W )
as the set of all c-sortable elements in W ,

Coxc(W ) :=
{
ω ∈ W : ω c-sortable

}
.

Note. The definition of c-sortable does not depend on the specific choice of the
reduced word for c as different reduced words are related by commutations of letters
with no commutations across dividers.

Example 2.61. Consider the case of the symmetric group Sn. Let c be the long
cycle (n, . . . , 2, 1) = sn−1 · · · s2s1. Then we have for σ ∈ Sn,

σ is c-sortable⇔ σ is 231-avoiding.

We consider only the case n = 3, the case n > 3 is similar. When expressing the
permutations in S3 by their c-sorting words, we have

S3 =
{

1, s2, s2s1, s2s1|s2, s1, s1|s2

}
.

The only element which is not Coxeter sortable is s1|s2 = [2, 3, 1].

As already mentioned, Reading proved the following theorem bijectively, see [84,
Section 6]:

Theorem 2.62 (Reading). Let W be a real reflection group and let c be a Coxeter
element in W . Then

|Coxc(W )| = Cat(W ).

Remark. In [84], Reading showed moreover that Coxeter sortable elements provide
a connection between non-crossing partitions and clusters (facets) in the generalized
cluster complex. This simplicial complex was constructed by S. Fomin and A. Zelevinsky
in the context of cluster algebras, see [47, 48, 45, 46], which arose within the last years
in more and more contexts in various fields of mathematics.
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2.8. q-Catalan numbers for Coxeter sortable elements in type A and B

Now, we want to describe the q-Catalan numbers Cat(1)(W ; q) and diag-Cat(1)(W ; q)
in terms of Coxeter sortable elements for W being of type A or B.

Surprisingly, for Coxeter sortable elements we obtain almost the same as for non-
crossing partitions with the advantage that we do not need to reverse the negative
elements, compare Theorem 2.48.

Theorem 2.63. Let W be the reflection group An−1 or Bn and set c = sn−1 · · · s2s1

or c = sn−1 · · · s2s1s0 respectively. Then the q-Catalan numbers Cat(1)(W ; q) and

diag-Cat(1)(W ; q) can be interpreted in terms of c-sortable elements as

Cat(1)(W ; q) =
∑

Coxc(W )

qlS(σ),(6)

diag-Cat(1)(W ; q) =
∑

Coxc(W )

qmaj(σ)+imaj(σ),(7)

where the sums range over all c-sortable elements of the given type and where maj and
imaj are the appropriate statistics.

Remark. As for non-crossing partitions, the analogous statement is false in type
D: for any Coxeter element c ∈ D4,

Cat(1)(D4; q) 6=
∑

σ∈Cox(D4,c)

qlS(σ).

2.8.1. The bijection in type A. In Example 2.61, we have seen that for W =
An−1 and c = (n, . . . , 2, 1), being c-sortable is the same as being 231-avoiding. Bijections
between 3-pattern-avoiding permutations and Catalan paths are very well studied, e.g.
see [14, 33, 74, 85], we will discuss these connections in detail in Section 2.9. Here we
only define the bijection we need and state the proposition from which Theorem 2.63
follows in type A. For a proof of the proposition itself, we refer to Section 2.9.

Let D be a Catalan path of length n and identify D with the set {bij} of cells below
D as described in the beginning of Section 2.2. Label every cell bij by sn−1−i. The
bijection between Catalan paths and c-sortable elements is then defined by mapping
D ∈ Dn to the c-sorting word σ :=

∏
sn−1−i, where the product ranges over all cells bij

in the order as indicated in Figure 23. By construction, σ is c-sortable.

Example 2.64. The Catalan path shown in Figure 23 is mapped to the c-sortable
element

s5s4s3s2s1|s5s4s2|s5 = [6, 2, 1, 5, 4, 3].

Theorem 2.63 follows in type A from the following proposition:

Proposition 2.65. Let D be a Catalan path and let σ be the image of D under the
bijection just defined. Then area(D) = lS(σ) and furthermore,

Des(σ) = [n− 1] \ {n− i : i ∈ SetX(D)},
iDes(σ) = [n− 1] \ {n− i : i ∈ SetY (D)},
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Figure 23. A Catalan path of length 6 with cells labelled by simple transpositions.

in particular,
maj(D) + maj(σ) + imaj(σ) = n(n− 1).

Proof. The fact that area(D) = lS(σ) follows directly from the construction. We
will prove the second statement in Section 2.9.4, it is equivalent to Corollary 2.105. �

The given bijection also preserves another statistic on Catalan paths, namely the
length of the “last descent”, we will use this fact for constructing the bijection in type
B:

Proposition 2.66. Let D be a Catalan path of length n and let k be the number
of east steps after the last north step. Then σ(k) = 1 for σ being the image of D and
furthermore, {1, . . . , k − 1} ⊆ Des(σ).

Proof. Let S1|S2| · · · |Sk be the initial segment of the the c-sorting word for σ,
with Sk possibly empty. Then, by construction, the last simple reflection in Si is si for
i < k and sk is not contained in Sk. Therefore, k is mapped by σ to 1 and, as σ is
231-avoiding, it follows immediately that {1, . . . , k − 1} ⊆ Des(σ) (of course, the later
can also be obtained directly). �

2.8.2. The bijection in type B. As in type A, let D be a Catalan path of type Bn

and identify D with the set {bij} of cells below D as described in Definition 2.24. Label
every cell bij with j < n by sn−1−i and bij with j ≥ n by s2(n−1)−(i+j). The bijection
between Catalan paths of type Bn and c-sortable elements is then defined by mapping
D ∈ Dn to the c-sorting word σ which is the product of the simple transpositions in
the cells bij in the order as indicated in Figure 24.

Example 2.67. The Catalan path shown in Figure 23 is mapped to the c-sortable
element

s5s4s3s2s1s0|s5s4s2s1s0|s5s2s1 = [1,−2,−6, 5, 4, 3].

To see that the image σ = S1|S2| · · · |Sk of a given D is in fact c-sortable, we only
have to show that S1|S2| · · · |Sk is a reduced expression for σ as the inclusion property
S1 ⊇ S2 ⊇ . . . ⊇ Sk is given by construction.

Proposition 2.68. S1|S2| · · · |Sk is a reduced expression for σ.
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Figure 24. A Catalan path of type B6 with cells labelled by simple transpositions.

Proof. If sisi−1 occurs in Sj and in Sj+1 for some i and j then si−2 occurs also in
Sj except for the case i = 1. But if s1s0 occurs in Sj and in Sj+1 and furthermore, s1

occurs in Sj+2 then s2 occurs in Sj+2 left of s1. The proposition follows. �

This proposition immediately implies the following corollary which proves Eq. (6)
in Theorem 2.63 for type B:

Corollary 2.69. Let D be a Catalan path of type Bn and let σ be its image under
the above bijection. Then

area(D) = lS(σ).

To prove Eq. (7) in Theorem 2.63 for type B, we use the fact that a Catalan path
D of type Bn consists of a “lower part” D1 which is a Catalan path of type An−1, and
an “upper part” D2. D1 is obtained from D by replacing all north steps after the n-th
north step by east steps and D2 is obtained as the suffix of D after the n-th north step.
For example, the Catalan path of type B6 in Figure 24 consists of a lower part which
is the Catalan path shown in Figure 23 and an upper part given by the word NNE.

As si and sj commute for |i− j| > 1, we can write the image of D as the image of
D1 followed by the product of the cells below D2 row by row from bottom to top and
from right to left. Set σ, σ1 and σ2 to be the signed permutations associated to D,D1

and D2. For example,

σ = s5s4s3s2s1s0|s5s4s2s1s0|s5s2s1

= σ1 · σ2

= s5s4s3s2s1|s5s4s2|s5 · s0s1s2|s0s1.

As we have seen in the previous section, we have, when considering D1 in type An−1,

maj(D1) + maj(σ1) + imaj(σ1) = n(n− 1).
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This gives, when considered in type Bn,

maj(D1) + maj(σ1) + imaj(σ1) = 2n(n− 1) + 2n = 2n2.

We will use this fact and are going to show that

maj(D) + maj(σ) + imaj(σ) = maj(D1) + maj(σ1) + imaj(σ1),(8)

Eq. (7) in Theorem 2.63 for type B then follows.

We prove Eq. (8) in several steps:

Lemma 2.70. neg(D) + neg(σ) = n.

Proof. By definition, neg(D) is given by the number of east steps in D and by
construction of σ, the number of s0’s in the c-sorting word for σ in n−neg(D). Therefore,

neg(σ) = n− neg(D).

�

To keep the notation simple, we set

maj(D2) :=
∑

i∈Des(D2)

2(k − i),

where k is the number of steps in D2.

Lemma 2.71. Let k be the number of steps in D2 or, equivalently, let k be the number
of east steps in D1 after the last north step. Then

maj(D) = maj(D1) + maj(D2)− 2(n− neg(D)).

Proof. By definition, neg(D) and neg(D1) are the number of east steps in D and
in D1, in particular, neg(D1) = n, and we have

maj(D) = 2 ·
(

neg(D) +
∑

i∈Des(D)

(2n− i)
)

, maj(D1) = 2 ·
(
n+

∑
i∈Des(D)
i<2n−k

(2n− i)
)
.

The lemma follows. �

Lemma 2.72. Let S1|S2| · · · |Sk be the expression for σ2. Then

Neg(σ2) = {j + 1 : sj is the rightmost simple reflection in Si for some i}
and the images of Neg(σ2) under σ2 are the negatives of the first neg(σ2) integers in
increasing order and the image of the complement of Neg(σ2) are the last k − neg(σ2)
integers also in increasing order.

Proof. This can be seen immediately from the expression σ2 = S1|S2| · · · |Sk. �

Example 2.73. Let σ2 = S1|S2 = s0s1s2|s0s1 as above. Then Neg(σ2) = {3, 2} and

σ2(3) = −1, σ2(2) = −2 , σ2(1) = 3, σ2(4) = 4.

Lemma 2.74. Let k be the number of steps in D2. Then

Des(D2) =
{
i < k : i ∈ Neg(σ2) and i+ 1 /∈ Neg(σ2)

}
.
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Proof. Let S1|S2| · · · |Sk be the expression for σ2 as described above. Using Lemma 2.72,
we get

i ∈ Des(D2) ⇔ si−1 ∈ Sj, si /∈ Sj and si+1 ∈ Sj−1 for some j

⇔ σ2(i) ∈ Neg(σ2) and i+ 1 /∈ Neg(σ2).

�

Lemma 2.75. Let k be the number of steps in D2. Then

Des(σ) = Des(σ1) \
{
i < k : i ∈ Neg(σ2) and i+ 1 /∈ Neg(σ2)

}
.

Proof. First, observe that Neg(σ2) = Neg(σ) and second, observe that the descents
of σ and the descents of σ1 which are larger than k coincide and that k is neither a
descent of σ nor a descent of σ1. By Lemma 2.66, we have to show that the descents of
σ which are smaller than k are given by{

i < k : i /∈ Neg(σ) or i+ 1 ∈ Neg(σ)
}

and this can be deduced from Lemma 2.72. �

Lemma 2.76. imaj(σ) = imaj(σ1) + neg(σ).

Proof. As σ = σ1σ2 and iDes(σ2) = ∅, we have

iDes(σ) = iDes(σ1).

The lemma follows with the fact that neg(σ1) = 0. �

Proof of Eq. (8): Lemma 2.70 and Lemma 2.71 imply

maj(D) = maj(D1) + maj(D2)− 2 neg(σ)

and by Lemma 2.74 and Lemma 2.75, we have

maj(σ) = maj(σ1)−maj(D2) + neg(σ).

Together with Lemma 2.76, Eq. (8) follows. �

Note. As we use the results of type A to prove type B, so far everything is only
proved under the assumption that Proposition 2.65 holds.

2.9. Bijections between Catalan paths and 3-pattern avoiding permutations

In the first part of this section, we construct a bijection Φ between Catalan paths
and 231-avoiding permutations with the additional property

maj(Φ(σ)) = maj(σ) + imaj(σ).

Later, we will use this bijection to deduce Proposition 2.65, see Corollary 2.105.

Remark. There exist plenty of bijections between pattern-avoiding permutations
and Catalan paths. To mention one, J. Bandlow and K. Killpatrick introduced an
interesting bijection which sends the inversion statistic of a 312-avoiding permutation
to the area statistic of the corresponding Catalan path [14]. We will discuss this and
other bijections in more detail later, see Section 2.9.4.
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As already mentioned in Remark 2.1.1, in type A, the major index of a Catalan
path D is usually defined as

maj(D) =
∑

i∈Des(D)

i.

For the sake of simplicity, we use this definition in this section.

The ascent set of a permutation σ is defined to be the complement of the descent
set,

Asc(σ) := [n] \Des(σ) =
{
i < n : σi < σi+1

}
∪ {n}.

As we count n as an ascent, this differs from the usual definition. By asc(σ) denote the
number of ascents, and, as for descents, set iAsc(σ) := Asc(σ−1).

We will need following two elementary involutions on Sn: define ρ to be the in-
volution sending [σ1, . . . , σn] to [σn, . . . , σ1] and σ 7→ σ̂ to be the involution sending
a permutation to its inverse. We can easily describe the descent set and the inverse
descent set of the images of those involutions: sending a permutation to its inverse
interchanges Des and iDes and for ρ, we have

Des(ρ(σ)) = [n− 1] \ {n− i : i ∈ Des(σ)},
iDes(ρ(σ)) = [n− 1] \ iDes(σ).

2.9.1. The bijection. We now construct the proposed bijection Φ between Sn(231)
and Dn having the property that

maj(Φ(σ)) = maj(σ) + imaj(σ).

Lemma 2.77. Let σ ∈ Sn(231) with Des(σ) = {i1, . . . , ik}, Asc(σ) = {j1, . . . , jn−k}.
Then

iDes(σ) = {σi1 − 1, . . . , σik − 1},
iAsc(σ) =

(
{σj1 − 1, . . . , σjn−k − 1} \ {0}

)
∪ {n}

Proof. Let i be a descent of σ. As σ is 231-avoiding, [σi − 1, σi] cannot be a
subword of σ. In other words,

σ̂(σi − 1) > σ̂(σi) = i,

which proves that σi − 1 is a descent of σ̂.
On the other hand let i′ be a descent of σ̂, which is 312-avoiding. The same argument
as above yields σ(σ̂i′+1) > σ(σ̂i′+1 + 1) or, equivalently, σ̂i′+1 is a descent of σ. This
implies

iDes(σ) = {σi1 − 1, . . . , σik − 1}.
As Asc(σ) = [n] \Des(σ), the statement about iAsc(σ) follows. �

Recall the definition of the involution ρ on Sn and its properties. Together with
Lemma 2.77, this implies the following corollary:

Corollary 2.78. Let σ be τ -avoiding for τ ∈ {132, 231, 312, 213}. Then

des(σ) = ides(σ).
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Note. For τ ∈ {123, 321}, the analogous statement of the previous corollary is
false: for example, σ = [2, 4, 1, 3] is 123-avoiding and

Des(σ) = {2} , iDes(σ) = {1, 3}.
Lemma 2.79. Let j be an ascent of a 231-avoiding permutation σ and let k > j.

Then
σk ≥ σj.

Proof. This follows immediately from the fact that σ is 231-avoiding. �

For the remaining part of this subsection, set σ to be a 231-avoiding permutation.
Our next goal is to show that σ is uniquely determined by its ascent set

Asc(σ) = {j1, . . . , jn−k}
and the image

σ(Asc(σ)) = {σj1 , . . . , σjn−k}
of its ascent set. By the previous lemma, σj1 < . . . < σjn−k and thereby σ is determined
on its ascent set.
To determine σ on its descent set, we determine σ on its descent blocks, the maximal
sequences of consecutive descents. On all descent blocks, σ is decreasing and bounded
from below by the image on the ascent following the sequence (recall that our definition
of the ascent set implies that every descent block is followed by an ascent). Together
with the property of being 231-avoiding, this determines σ on its descents from right
to left.

Remark. In [85, Proposition 2.4] and the following discussion, A. Reifegerste ob-
tained an analogous result for 132-avoiding permutations that can be translated by the
involution ρ.

By Lemma 2.77 and the above discussion, we conclude the following:

Corollary 2.80. σ is uniquely determined by its descent set and the descent set
of its inverse.

Example 2.81. Let σ ∈ S6(231) such that

Des(σ) = {1, 2, 4, 5} , iDes(σ) = {1, 3, 4, 5}.
This implies

Asc(σ) = {3, 6} , iAsc(σ) = {2, 6}.
By Lemma 2.77, we have

σ(Des(σ)) = {2, 4, 5, 6} and σ(Asc(σ)) = {1, 3}.
As described in the previous discussion we first determine σ on its ascent set,

σ3 = 1 < σ6 = 3,

and then, we determine σ on its descent blocks, starting from right to left: the last
block is {4, 5},

σ6 = 3 < σ5 = 4 < σ4 = 5,

and the next (and first) block is {1, 2},
σ3 = 1 < σ2 = 2 < σ1 = 6.
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Our next goal is to construct a bijection between Asc(σ) and iAsc(σ) such that the
image of any ascent j is less than or equal to j.

Let j be an ascent of σ. By τ(j), we denote the size of the descent block immediately
left of j, or equivalently,

τ(j) := j − 1− j′,
with j′ being the largest ascent such that j′ < j (respectively 0 if j is the first ascent).

Lemma 2.82. Let j be an ascent of σ. Then

j ≥ σj + τ(j).

Proof. Lemma 2.79 implies σk > σj for all k such that k > j and for all k such
that j > k > j − τ(j). Therefore, n − j ≤ n − σ(j) − τ(j), which is equivalent to the
statement. �

Corollary 2.83. Let Asc(σ) = {j1, . . . , jn−k}. Then, for any 1 ≤ l < n − k, we
have

jl ≥ σjl+1
− 1.

Proof. By Lemma 2.82, jl+1 is greater than or equal to σjl+1
+ τ(jl+1), which, by

definition, is equal to σjl+1
+ jl+1 − 1− jl. This proves the corollary. �

By Lemma 2.77 and Corollary 2.83, we can define a bijection between Asc(σ) and
iAsc(σ), which has the desired property that the image of an ascent j is less than or
equal to j in the following way:

jl 7→ σjl+1
− 1 for 1 ≤ l < n− k,

jn−k 7→ n

This implies the following corollary concerning the descent sets of σ and σ̂:

Corollary 2.84. Let Des(σ) = {i1, . . . , ik} and let iDes(σ) = {i′1, . . . , i′k} such that
il < il+1 and i′l < i′l+1. Then

il ≤ i′l.

Now we define the proposed bijection:

Definition 2.85. Define a map Φ from Sn(231) to Dn as follows: Let σ ∈ Sn(231).
Then Φ(σ) is given by

SetX(Φ(σ)) = Des(σ) , SetY (Φ(σ)) = iDes(σ).

Theorem 2.86. The map Φ from the previous definition is well-defined, bijective
and maj(Φ(σ)) = maj(σ) + imaj(σ).

Proof. By Corollary 2.78, Proposition 2.84 and Proposition 2.7, Φ is well-defined
and by Proposition 2.80 and it is injective and therefore bijective.
The equality maj(Φ(σ)) = maj(σ) + imaj(σ) follows immediately from the definitions.

�
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[4, 2, 1, 3] 7→ [2, 1, 4, 3] 7→ [3, 2, 1, 4] 7→ [4, 3, 2, 1] 7→

Figure 25. All 231-avoiding permutations of {1, 2, 3, 4} and its associ-
ated Catalan paths.

Example 2.87. Let σ be the permutation defined in Example 2.81. As the descent
set of σ is {1, 2, 4, 5} and the descent set of its inverse is {1, 3, 4, 5}, the coordinates of
the descents of Φ(σ) are (1, 1), (2, 3), (4, 4) and (5, 5) and therefore

Φ(σ) = NE NNE NEE NE NE

which is the Catalan path described in Example 2.6. Furthermore,

maj(σ) = 1 + 2 + 4 + 5 = 12,

imaj(σ) = 1 + 3 + 4 + 5 = 13,

maj(Φ(σ)) = 2 + 5 + 8 + 10 = 25.

Example 2.88. In Figure 25 on page 64 all 231-avoiding permutations of the set
{1, 2, 3, 4} and their associated Catalan paths are shown.

2.9.2. A bistatistic on 231-avoiding parmutations. Define the polynomial
An(q, t) by

An(q, t) :=
∑

σ∈Sn(231)

qmaj(σ)t(
n
2)−imaj(σ).

Obviously, An(q, t) reduces for q = t = 1 to Catn and the bijection Φ defined in the
previous section shows that An(q, t) can also be described in terms of Catalan paths:
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n An(q, t)

1 1
2 q + t
3 q3 + q2t+ qt2 + t3 + qt
4 q6 + q5t+ q4t2 + 2q3t3 + q2t4 + qt5 + t6 + q4t+ q3t2 + q2t3 + qt4 + q3t+ qt3

Figure 26. An(q, t) for n ≤ 4.

define two statistics maj0 and maj1 on a Catalan path D by

maj0(D) :=
∑

i∈Des(D)

∣∣{j ≤ i : Dj = 0
}∣∣ , maj1(D) :=

∑
i∈Des(D)

∣∣{j ≤ i : Dj = 1
}∣∣.

Corollary 2.89. Let Φ be the bijection defined in Theorem 2.86 and let σ be a
231-avoiding permutation. Then

maj1(Φ(σ)) = maj(σ) , maj0(Φ(σ)) = imaj(σ)

and furthermore

An(q, t) =
∑
D∈Dn

qmaj1(D)t(
n
2)−maj0(D).

Example 2.90. In Figure 26, An(q, t) is shown for n ≤ 4.

As maj1(D) + maj0(D) = maj(D) we get

q(
n
2)An(q, q−1) =

∑
D∈Dn

qmaj(D).

Together with an identity proved by Fürlinger and Hofbauer in [52] we obtain the
following generating function identity, which gives an equivalent definition of An(q, t):

Theorem 2.91.∑
n≥0

An(q, t) zn

(1 + qz) · · · (1 + qn+1z)(1 + tz) · · · (1 + tn+1z)
= 1.

Proof. Setting x = 1, a = q−1 and b = q in [52, Theorem 5] gives the proposed
identity. �

The following corollary follows immediately from the fact that the generating func-
tion identity proved in Theorem 2.91 is symmetric in q and t:

Corollary 2.92.

An(q, t) = An(t, q).

Now, we want to provide bijective proof of a refinement of this symmetry:

Theorem 2.93.∑
σ∈Sn(231)

ades(σ)qmaj(σ)timaj(σ) =
∑

σ∈Sn(312)

an−1−des(σ)q(
n
2)−maj(σ)t(

n
2)−imaj(σ).
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Proof. Let Ψ be the involution on Sn(231) defined by the rule that a given σ is
mapped to the unique σ′ with Des(σ′) := [n−1]\iDes(σ) and iDes(σ′) := [n−1]\Des(σ).
This implies des(σ) = n− 1− des(Ψ(σ)) and furthermore

maj(σ) =

(
n

2

)
− imaj(Ψ(σ)) , imaj(σ) =

(
n

2

)
−maj(Ψ(σ)).

As mapping a permutation to its inverse interchanges Des(σ) and iDes(σ), the statement
follows. �

Remark. Equivalently, we could have defined the bijection Ψ in the proof of Theo-
rem 2.93 in terms of Catalan paths by the rule that a given Catalan path D is mapped
to the unique Catalan path D′ with

SetX(D′) = [n− 1] \ SetY (D) , SetY (D′) = [n− 1] \ SetX(D).

2.9.3. Another description of Φ. The bijection Φ defined in Definition 2.85 is
closely connected to other bijections from pattern-avoiding permutations to Catalan
paths. In [73], Krattenthaler constructed two bijections from 132- respectively 123-
avoiding permutations to Catalan paths which were recently related to others by Callan
in [33]. In this section, we express the bijection Φ in terms of Krattenthaler’s bijection
from 132-avoiding permutations to Catalan paths, which we denote by κ.

First, we recall the definition of κ from [73, Section 2] and give an example. For
any Catalan path D, the height of D at position i is the number of north steps minus
the number of east steps until and including position i. Now, let σ = [σ1, . . . , σn] be a
132-avoiding permutation and let hi denote the number of j’s larger than i such that
σj > σi. Read σ from left to right and successively generate a Catalan path. When σi
is read, then in the path we adjoin as many north steps as necessary, followed by an
east step from height hi + 1 to height hi.

Example 2.94. Let σ = [3, 4, 5, 1, 2, 6]. Then (h1, . . . , h6) = (3, 2, 1, 2, 1, 0) which
gives the heights of the east steps of the corresponding Catalan paths. Therefore,

κ(σ) = NNNNEEE NNEEE.

Our next goal is to express κ in terms of the descent set of σ and the descent set of
σ̂.

Lemma 2.95. Let σ be any permutation. Then

• hi+1 < hi if and only if i ∈ Asc(σ),
• σ ∈ Sn(132) if and only if hi+1 ≥ hi − 1 for all 1 ≤ i < n.

Proof. The first statement is obvious as is the fact that σ ∈ Sn(132) implies
hi+1 ≥ hi − 1 for all 1 ≤ i < n. For the reverse statement we use that hi+1 ≥ hi − 1
implies for an ascent i that there exists no k > i with σi < σk < σi+1. �

Proposition 2.96. Let σ be a 132-avoiding permutation. Then κ(σ) is the Catalan
path D given by

SetX(D) = Des(σ) and SetY (D) = {i+ hi : i ∈ Des(σ)}.
Proof. The statement follows from the first part of the previous lemma and the

definition of κ. �
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Proposition 2.97. Let σ be a 132-avoiding permutation. Then

iDes(σ) =
{
n− i− hi : i ∈ Des(σ)

}
.

Proof. Let i be a descent of σ. The number of σj’s right of σi that are smaller
than σi is equal to n − i − hi. As σ is 132-avoiding, we know that the set of these
σj’s is equal to {1, . . . , n− i− hi}. This implies that σ̂n−i−hi > σ̂n−i−hi+1 and therefore
n− i− hi is a descent of σ̂.
Now let i be a descent of σ and let j > i. The previous lemma implies that i+hi 6= j+hj
as otherwise {i, i+1, . . . , j−1} ⊆ Asc(σ), a contradiction to i ∈ Des(σ). The proposition
follows from Corollary 2.78. �

These two propositions characterize κ in terms of the descent set of σ and the
descent set of σ̂: let σ ∈ Sn(132). Then

SetX(κ(σ)) = Des(σ) and SetY (κ(σ)) = {n− j : j ∈ iDes(σ)}.

Example 2.98. Continuing with the previous example, we have that Des(σ) and
iDes(σ) are given by {3} and {2} respectively. On the other hand,

SetX(κ(σ)) = {3} = Des(σ) and SetY (κ(σ)) = {4} = {n− j : j ∈ iDes(σ)}.

Let D be a Catalan path with valleys {(i1, j1), . . . , (ik, jk)}. The last map we need
is the involution Ψ as described in the Remark at the end of Section 2.9.2 followed by
the involution c on Catalan paths sending D to its conjugate Catalan path: set ψ(D)
to be the unique Catalan path with

SetX(ψ(D)) = [n− 1] \
{
n− i : i ∈ SetX

}
SetY (ψ(D)) = [n− 1] \

{
n− i : i ∈ SetY

}
or, equivalently,

ψ = c ◦Ψ.

Now we can describe the relation of Φ and κ using the involutions ρ and ψ:

Theorem 2.99. κ = ψ ◦ Φ ◦ ρ.

Proof. Let σ be a 132-avoiding permutation. Then

SetX(Φ ◦ ρ(σ)) = Des(ρ(σ)) = [n− 1] \ {n− i : i ∈ Des(σ)},
SetY (Φ ◦ ρ(σ)) = iDes(ρ(σ)) = [n− 1] \ iDes(σ).

On the other hand,

SetX(ψ(D)) = {n− i : i ∈ [n− 1] \ SetX(D)},
SetY (ψ(D)) = {n− i : i ∈ [n− 1] \ SetY (D)},

for a Catalan path D. So, in total, we have

SetX(ψ ◦ Φ ◦ ρ(σ)) = Des(σ),

SetY (ψ ◦ Φ ◦ ρ(σ)) = {n− j : j ∈ iDes(σ)}.
Together with the above discussion, this implies the theorem. �

Example 2.100. Set σ := [6, 2, 1, 5, 4, 3]. As shown in Example 2.87, Φ(σ) =
NE NNE NEE NE NE and therefore ψ(Φ(σ)) = NNNNEEE NNEEE. As
shown in Example 2.94, this equals κ(ρ(σ)).
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maj(σ), imaj(σ)

)
: σ ∈ S4(τ)

}
(231) (0, 0), (3, 3), (2, 2), (2, 3), (5, 5), (1, 1), (4, 4),

(1, 2), (3, 3), (1, 3), (4, 5), (3, 4), (3, 5), (6, 6)
(132) (0, 0), (1, 1), (2, 1), (3, 1), (1, 2), (3, 3), (4, 3),

(2, 2), (5, 3), (1, 3), (3, 4), (4, 4), (3, 5), (6, 6)
(213) (0, 0), (3, 3), (3, 2), (2, 3), (5, 5), (3, 1), (5, 4),

(2, 2), (5, 3), (1, 3), (4, 5), (4, 4), (3, 5), (6, 6)
(123) (5, 5), (2, 4), (4, 4), (5, 4), (4, 2), (3, 3), (4, 3),

(2, 2), (5, 3), (4, 5), (3, 4), (4, 4), (3, 5), (6, 6)
(321) (0, 0), (3, 3), (2, 2), (3, 2), (2, 3), (1, 1), (4, 4),

(2, 1), (3, 1), (2, 4), (1, 2), (4, 2), (2, 2), (1, 3)

Figure 27. The bistatistic
(

maj(σ), imaj(σ)
)

on 3-pattern-avoiding permutations.

Next, we want to use the involutions Ψ, ρ and σ 7→ σ̂ (we denote the later by i) to
prove an analogue of Theorem 2.93 for Sn(132) and Sn(213):

Theorem 2.101.∑
σ∈Sn(132)

ades(σ)qmaj(σ)timaj(σ) =
∑

σ∈Sn(213)

an−1−des(σ)q(
n
2)−maj(σ)t(

n
2)−imaj(σ).

Proof. The bijection between Sn(132) and Sn(213) defined as ρ◦i◦Ψ◦ρ, where Ψ is
meant as described in the proof of Theorem 2.93, sends the tristatistic (des,maj, imaj)
to the tristatistic (n− 1− des,

(
n
2

)
−maj,

(
n
2

)
− imaj):

(des,maj, imaj)
ρ
7→ (n− 1− des,

(
n

2

)
− n des + maj,

(
n

2

)
− imaj)

Ψ
7→ (des, imaj, n des−maj)

i
7→ (des, n des−maj, imaj)

ρ
7→ (n− 1− des,

(
n

2

)
−maj,

(
n

2

)
− imaj).

�

Corollary 2.102.∑
σ∈Sn(132)

qmaj(σ)timaj(σ) =
∑

σ∈Sn(213)

q(
n
2)−maj(σ)t(

n
2)−imaj(σ).

Example 2.103. In Figure 27, the bistatistic
(

maj(σ), imaj(σ)
)

is shown for 3-
pattern avoiding permutations of {1, 2, 3, 4}.

Computations suggest that the same statement is true when summing over Sn(123)
respectively Sn(321). It would be implied by the following conjecture:

Conjecture 2.104. There exists a bijection from Sn(321) to itself which leaves
Des invariant and maps iDes to {n− j : j ∈ iDes}.
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2.9.4. The proof of Proposition 2.65. We describe the connection between Φ
and Bandlow-Killpatrick’s bijection between Sn(132) and Dn to see how the area statis-
tic on Catalan paths can be represented in Sn(231) via Φ and to develop the connection
to the bijection we constructed in Section 2.8. Let us denote this bijection for the
moment by γ.

As already mentioned, Bandlow and Killpatrick defined in [14] a bijection β between
Sn(231) and Dn which can be described in terms of γ as

β = c ◦ γ−1,

in other words, β−1 maps a given Catalan path D to the image of the conjugate of D
under γ. They actually defined β in a slightly different way but it is easy to see that
both definition are in fact equivalent.

M. Fulmek and Krattenthaler described the connection between β and κ in a com-
ment on Bandlow and Killpatrick’s paper [49]:

β = Ψ ◦ Φ.

Together with the connection between β and γ, the following corollary finally proves
Proposition 2.65:

Corollary 2.105. β−1 maps the area statistic on Catalan paths to the inversion
number on 231-avoiding permutations and furthermore,

Des(σ) = [n− 1] \ SetY (D) , iDes(σ) = [n− 1] \ SetX(D),

for a Catalan path D and its image σ = β−1(D). In particular,

maj(σ) + imaj(σ) + maj(D) = n(n− 1).

Proof. The corollary follows immediately from the definitions of Ψ and Φ. �

Example 2.106. As we have seen in Example 2.64, the Catalan path

D = NNNNEEE NNEEE

shown in Figure 23 is mapped by γ to the permutation σ := γ(D) = [6, 2, 1, 5, 4, 3]. On
the other hand, we can deduce from Example 2.100 that

Ψ ◦ Φ(σ) = β(σ) = c(D).

This gives

maj(c(D)) + maj(σ) + imaj(σ) = 5 + (1, 2, 4, 5) + (1, 3, 4, 5)

= 30 = 6 · 5 = n(n− 1).





CHAPTER 3

q, t-Fuß-Catalan numbers of type A

The q, t-Catalan numbers and later the q, t-Fuß-Catalan numbers arose within the
last 15 years in more and more contexts in different areas of mathematics, namely
in symmetric functions theory, algebraic and enumerative combinatorics, representa-
tion theory and algebraic geometry. They first appeared in a paper by Haiman as
the Hilbert series of the alternating component of the space of diagonal coinvariants
[64]. In [56], Garsia and Haiman defined them as a rational function in the context of
modified Macdonald polynomials. Later, in his work on the n!– and on the (n+ 1)n−1–
conjecture, Haiman showed that both definitions coincide [66]. Haglund [61] found
a very interesting combinatorial interpretation of the q, t-Catalan numbers which he
proved together with Garsia in [54]. In [78], Loehr conjectured a generalization of this
combinatorial interpretation for q, t-Fuß-Catalan numbers. This conjecture is still open.

The q, t-Fuß-Catalan numbers have many interesting algebraic and combinatorial
properties. To mention some: they are symmetric functions in q and t with non-negative
integer coefficients and specialize for q = t = 1 to Cat(m)

n . Furthermore, specializing
t = 1 reduces them to the q-Fuß-Catalan numbers introduced by Fürlinger and Hof-
bauer in [52] and specializing t = q−1 and multiplying by the highest power of q reduces
them to the q-Fuß-Catalan numbers introduced in the classical case by MacMahon in
[82].

In this chapter, we want to discuss several appearances of the q, t-Fuß-Catalan
numbers, their connections to modified Macdonald polynomials, their interpretation
in terms of the space of diagonal coinvariants and finally their combinatorial interpre-
tation.

It turns out that the interpretation in terms of the space of diagonal coinvariants
is attached to the reflection group of type A whereas the other interpretations can
– so far – not be generalized to other reflection groups. In Chapter 4, we will define
the space of diagonal coinvariants and will thereby give a definition of q, t-Fuß-Catalan
numbers for real reflection groups as well as for the complex reflection groups G(k, p, l).
Moreover, we will explore their properties in this generalized context.

The standard reference for symmetric functions and Macdonald polynomials is Mac-
donald’s book “Symmetric functions and Hall polynomials” [81]. For a more compact
introduction as well as a generalization of Macdonald polynomials to crystallographic
reflection groups, see [80]. Recently, Haglund published the book “The q, t-Catalan
numbers and the space of diagonal harmonics” [62]. The theory presented in this
chapter is mainly based on these references.

71
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3.1. Symmetric functions

When introducing symmetric functions, one should mention that the term “sym-
metric function” is a little misleading. When we refer to symmetric functions – and
mostly when people do – we mean symmetric polynomials or symmetric formal power
series rather than just functions.

Fix a set x := {x1, . . . , xn} of indeterminants. A polynomial or formal power series
p in x is symmetric if for any permutation σ ∈ Sn,

p(x1, . . . , xn) = p(xσ1 , . . . , xσn).

Note. As we have seen in Example 1.18, the notion of symmetric polynomials
coincides with the notion of being invariant with respect to the reflection group An−1 =
Sn.

By Λn, we denote the ring of symmetric polynomials,

Λn = Z[x]Sn .

For any n, we have a surjective homomorphism from Λn+1 → Λn defined by setting
xn+1 = 0. Therefore, we can define Λ as its inverse limit and we have a surjective
homomorphism Λ → Λn defined by setting xm = 0 for all m > n. Λ is obviously a
graded ring and it is called ring of symmetric functions. For any commutative ring R,
we write

ΛR = Λ⊗Z R, Λn,R = Λn ⊗Z R.

The ring Λ has – as a vector space – some remarkable bases which are indexed by com-
binatorial objects called partitions. In order to present these bases, we first introduce
partitions and some of its combinatorial properties.

For a detailed introduction see the book “Young tableaux” by Fulton [50].

3.1.1. Partitions. A partition λ = (λ1, . . . , λl) of a non-negative integer n, written
λ ` n, is a finite, weakly decreasing sequence of non-negative integers such that the λi’s
sum up to n. In order to keep the notation simple, we identify a partition λ with the
infinite sequence (λ1, . . . , λl, 0, . . .) and may write expressions like

∑
i≥1 λi = n. The

positive λi’s are called parts of λ and the number of parts is denoted by l(λ). If λi
occurs k times in λ then we sometimes write λki for short, e.g.

(4, 2, 2, 1, 1, 1) = (4, 22, 13) ` 11.

Note. When the blocks in a set partition {B1, . . . , Bk} of [n] are ordered decreas-
ingly by cardinality, then

(|B1|, . . . , |Bk|) ` n
is a partition of n.

The shape of λ (also called Ferrer’s shape or Young diagram) is defined to be the
array of unit squares, called cells, with λi cells in the i-th row from the top, with the
first cell in each row left-justified.

Example 3.1. In Figure 28(a), the Ferrer’s shape of the partition λ = (3, 22) ` 7
is shown.
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(a) (b)

Figure 28. The shape of the partition λ = (3, 22) ` 7 and of its conju-
gate partition λ′ = (32, 1) ` 7.

1 1 2

2 3

4 5

1 1 2

2 4

3 5

1 1 3

2 2

4 5

1 1 4

2 2

3 5

1 1 5

2 2

3 4

Figure 29. The 5 possible SSYT of shape (3, 22) ` 7 and weight
(22, 13) ` 7.

Remark. There exist several ways to define the shape of a partition. The definition
we gave is called English notation. For example, if one flips the English notation
horizontally, i.e., if one builds the rows of cells from bottom to top, one gets the French
notation.

For a partition λ = (λ1, λ2, . . .) ` n, the conjugate partition λ′ ` n is obtained from
λ by transposing its shape, i.e. λ′ = (λ′1, λ

′
2, . . .) with

λ′i :=
∣∣{λk : λk ≥ i}

∣∣.
Example (continued) 3.2. The conjugate of the partition λ = (3, 22) is given by

λ′ = (32, 1) whose shape is shown in Figure 28(b).

3.1.2. Semi-standard Young tableaux. Given two partitions λ, µ ` n, a semi-
standard Young tableau (or short SSYT) of shape λ and weight µ is a filling of the cells of
λ with the elements of the multiset {1µ1 , 2µ2 , . . .} such that the numbers weakly increase
along rows from left to right and strictly increase along columns from top to bottom.

The number of SSYT of shape λ and weight µ and a certain q, t-generalization of
this number play a central role in the theory of symmetric functions, in combinatorics
of tableaux and in the related representation theory. This number is known as the
Kostka number Kλ,µ. In Section 3.1.9, we will present the mentioned generalization of
the Kostka numbers, the q, t-Kostka numbers.

Note. As there is only one SSYT with the same shape and weight, we have

Kλ,λ = 1 for all λ.

In the next section, we will describe a criterion for the Kostka numbers to be positive.

Example 3.3. In Figure 29, the 5 semi-standard Young tableaux of shape λ =
(3, 22) ` 7 and weight µ = (22, 13) ` 7 are shown.



74 3. q, t-FUSS-CATALAN NUMBERS OF TYPE A

3.1.3. The dominance order. The dominance order on the set of partitions of n
is the partial order defined as

µ ≤ λ :⇔ µ1 + . . .+ µi ≤ λ1 + . . .+ λi for all i.

for λ, µ ` n.

It is easy to deduce from this definition that λ ≤ µ if and only if there exists a
SSYT of shape λ and weight µ,

µ ≤ λ⇔ Kλ,µ > 0.

Example 3.4. For λ = (3, 22) ` 7, the set of partitions that are smaller than or
equal to λ in the dominance order are

(3, 22), (3, 2, 12), (3, 14), (23, 1), (22, 13), (2, 15) and (17).

The dominance order and the Kostka numbers Kλ,µ will later appear in the definition
of Schur functions which form a basis of Λ, see Section 3.1.5. We will also see how the
q, t-Kostka numbers Kλ,µ(q, t) appear in a generalization of the Schur functions called
Macdonald polynomials which form a basis of ΛQ(q,t), see Section 3.1.9.

3.1.4. Some bases of Λ. The most basic symmetric functions are the monomial
symmetric functions mλ which are indexed by partitions. To a partition λ = (λ1, . . . , λl)
associate the monomial

xλ1
1 x

λ2
2 · · · x

λl
l ,

and define mλ as the sum of all distinct monomials obtained from this by permuting
the variables. Obviously, the set {mλ} forms a basis of Λ.

From this basis one obtains immediately three other basis as follows: the power sum
symmetric functions pλ are defined in terms of monomial symmetric functions as

pk := m(k), pλ := pλ1pλ2 · · · pλl ,

the elementary symmetric functions eλ are defined as

ek := m(1k), eλ := eλ1eλ2 · · · eλl ,

and the complete homogeneous symmetric functions hλ are defined as

hk :=
∑
λ`k

mλ, hλ := hλ1hλ2 · · ·hλl .
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Example 3.5.

m(2) =
∑
i

x2
i = p(2),

m(1,1) =
∑
i<j

xixj = e(2),

m(2,1) =
∑
i 6=j

x2
ixj,

p(2,1) =
∑
i,j

x2
ixj = m(2)m(1),

e(2,1) =
∑
i<j,k

xixjxk = m(1,1)m(1),

h(2) = m(1,1) +m(2) = e(2) + p(2).

One can compute the pλ, eλ and hλ from each other by the formulas

ek =
∑
λ`k

pλ
(−1)k−l(λ)

zλ
and

hk =
∑
λ`k

pλ
1

zλ
,

where zλ :=
∏

i i
nini! and ni = ni(λ) is the number of parts of λ equal to i.

3.1.5. Schur functions. The next basis of Λ we want to describe is the basis of
Schur functions, which are fundamental to the theory of symmetric functions. There
are many ways to define a Schur function sλ; we present a definition that leads to a
definition of Macdonald polynomials which we will introduce later.

Definition 3.6. Let λ be a partition. The Schur function sλ is defined as

sλ :=
∑
µ`n

Kλ,µmµ.

As we have seen in Section 3.1.3, one can restrict the sum on the right-hand side in
the definition to these µ that are smaller than or equal to λ,

sλ =
∑
µ≤λ

Kλ,µmµ.

Example 3.7. It is easy to see that for λ = (22, 1),

µ ≤ λ⇔ µ ∈ {(22, 1), (2, 13), (14)}

and that

Kλ,(22,1) = 1, Kλ,(2,13) = 2, Kλ,(14) = 5.

This gives

s(22,1) = m(22,1) + 2m(2,13) + 5m(14).
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Note. For any partition µ ` k, we have

(1k) ≤ µ ≤ (k)

in the dominance order and K(k),µ = 1. This gives

s(1k) = ek , s(k) = hk.

3.1.6. The Hall inner product on Λ. The Hall inner product 〈·, ·〉 on the ring
Λ of symmetric functions is defined such that the power sum symmetric functions are
orthogonal and 〈pλ, pλ〉 = zλ, with zλ as defined in Section 3.1.4. In symbols,

〈pλ, pµ〉 := χ(λ=µ) zλ.

With respect to this inner product, the complete homogeneous symmetric functions
and the monomial symmetric functions are dual to each other,

〈hλ,mµ〉 = χ(λ=µ),

and the Schur functions are orthonormal,

〈sλ, sµ〉 = χ(λ=µ).

The reason to define the inner product on the power sum symmetric functions and then
showing that the Schur functions are orthonormal with respect to this inner product
is that one could have defined the Schur functions also as the unique family {sλ} of
symmetric functions with rational coefficients indexed by partitions which are unitri-
angular when expressed in terms of the monomial symmetric functions and which are
orthogonal with respect to the Hall inner product,

(i) sλ = mλ +
∑

µ<λ cλ,µmµ for suitable coefficients cλ,µ and

(ii) 〈sλ, sµ〉 = 0 if λ 6= µ.

Of course, these two conditions overdetermine the family {sλ} and one has some work
to do to prove that such a family exists. This can be done by setting cλ,µ = Kλ,µ

and showing that they have the desired properties. In Section 3.1.9, we will define
Macdonald polynomials analogously such that the Schur functions appear as a certain
specialization.

3.1.7. Representation theory of the symmetric group. As mentioned in Sec-
tion 1.3.1, the irreducible representations of the symmetric group are in one-to-one cor-
respondence with conjugacy classes of Sn: for a partition λ ` n, Sn acts on (the shape
of) λ by permuting the cells. Define Pλ and Qλ by

Pλ := {σ ∈ Sn : σ leaves the rows of λ invariant},
Qλ := {σ ∈ Sn : σ leaves the columns of λ invariant}.

Furthermore, let aλ :=
∑

σ∈Pλ σ and bλ :=
∑

σ∈Qλ σ. Then the irreducible representa-
tions of Sn are given by {

C[Sn]aλbλ : λ ` n
}
.

For χλ being the character of the irreducible representation C[Sn]aλbλ, a classical result
by F.G. Frobenius is that

χλ(σ) = 〈sλ, pτ(σ)〉,
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where 〈·, ·〉 is the Hall inner product and τ(σ) is the cycle type of the permutation σ.
This equality can equivalently be stated as

sλ =
1

n!

∑
σ∈Sn

χλ(σ)pτ(σ).

This yields the following definition:

Definition 3.8. The Frobenius character F is the map from Cclass(Sn) to Λn,C that
sends χλ to sλ. In symbols,

F(χ) =
∑
λ`n

mult(χλ, χ)sλ

=
1

n!

∑
σ∈Sn

χ(σ)pτ(σ).

Note. As {χλ} and {sλ} are orthonormal bases of Cclass(Sn) and of Λn,C respec-
tively, F is an isometry.

3.1.8. Plethystic notation. Let E(t1, t2, . . .) be a formal power series of rational
functions in the parameters t1, t2, . . .. Define the plethystic substitution of E into pk,
denoted pk[E], by

pk[E] := E(tk1, t
k
2, . . .).

The square “plethystic” brackets around E are introduced to distinguish pk[E] from
the ordinary k-th power sum in a set of indeterminants E which are defined as pk(E).
When a set X = {x1, x2, . . .} of indeterminants is written in plethystic brackets, then
by convention X is meant as p1(X) = x1 + x2 + . . .. Note that it is also important to
distinguish between indeterminants and parameters, see the following example.

Example 3.9. In the case just mentioned, we have pk[X] = pk(X). Let Y be
another set of indeterminants and let t, q be real parameters. Then

pk[tX] = tkpk[X],

pk[X(1− t)] =
∑
i

xki (1− tk),

pk[X − Y ] =
∑
i

(xki − yki ) = pk[X]− pk[Y ],

pk

[
X(1− t)

1− q

]
=

∑
i

xki (1− tk)
1− qk

.

3.1.9. Macdonald polynomials. The polynomials we present in this section form
a basis for ΛQ(q,t), the space of symmetric polynomials with coefficients being rational
functions in q and t. For t = q, they specialize to the Schur functions.

In order to introduce these polynomials, we extend the Hall inner product to ΛQ(q,t)

by

〈pλ, pµ〉q,t := χ(λ=µ) zλ

l(λ)∏
i=1

1− qλi
1− tλi

.
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•
• • • c • • • •

•
•

Figure 30. A cell c in the shape of the partition λ = (10, 8, 7, 5, 3) ` 33
with a(c) = 4, a′(c) = 3, l(c) = 2 and l′(c) = 1.

The following two conditions uniquely determine a family of symmetric functions,
{Pλ(X; q, t)}, indexed by partitions with coefficients in Q(q, t): they are unitriangular
when expressed in terms of the monomial symmetric functions and they are orthogonal
with respect to the Hall inner product,

(i) Pλ(X; q, t) = mλ +
∑

µ<λ cλ,µmµ(X), with cλ,µ ∈ Q(q, t),

(ii) 〈Pλ(X; q, t), Pµ(X; q, t)〉q,t = 0 if λ 6= µ.

As for Schur functions, these two conditions overdetermine the family {Pλ(X; q, t)} and
it needs some sophisticated work to prove the existence of such a family. The uniqueness
follows easily. The idea of the proof of the existence is to construct a certain operator
on ΛQ(q,t) and to show that the eigenfunctions of this operator have in fact the desired
properties. For a clear and self-contained proof see [80, Chapter 1].

Note. Since the q, t extension of the Hall inner product reduces to the ordinary
Hall inner product when q = t, it follows that Pλ(X; q, q) = sλ(X).

In [80, Chapter 2], Macdonald generalized the construction to all crystallographic
reflection groups by introducing another scalar product for which the Pλ’s are also
orthogonal and which can be generalized to other reflection groups.

3.1.10. Modified Macdonald polynomials. In order to define q, t-Fuß-Catalan
numbers in terms of Macdonald polynomials, we have to deal with a modified version of
the Pλ(X; q, t)’s. These are obtained by a certain plethystic substitution and so far it is
totally unclear, how this substitution could be translated into the language of reflection
groups.

The first modification is done by introducing integral forms of Macdonald polyno-
mials. To define these, set arm a(c), coarm a′(c), leg l(c) and coleg l′(c) of a cell c in a
partition λ to be the number of cells right, left, below and above the cell c in the shape
of λ. See Figure 30 for an example.

Define a modification of Pλ(X; q, t) by

Jλ(X; q, t) :=
∏
c∈λ

(1− qa(c)tl(c)+1)Pλ(X; q, t).
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Macdonald showed that expanding Jλ in terms of
{
sµ[X(1− t)]

}
gives

Jλ(X; q, t) := sλ[X(1− t)] +
∑
µ<λ

Kλ,µ(q, t)sµ[X(1− t)],

for suitable Kλ,µ(q, t) ∈ Q(q, t) satisfying Kλ,µ(1, 1) = Kλ,µ. Furthermore, he conjec-
tured that Kλ,µ(q, t) ∈ N[q, t].

Note. The coefficients Kλ,µ(q, t) are the q, t-Kostka numbers. The conjecture that
Kλ,µ(q, t) ∈ N[q, t] became a famous problem in combinatorics known as Macdonald’s
positivity conjecture.

A specialization of the conjecture was proved by A. Lascoux and Schützenberger in
[75] by introducing a statistic on tableaux called charge such that the specialization
q = 0 in Kλ,µ(q, t) has the following combinatorial interpretation:

Kλ,µ(0, t) =
∑

tcharge(T ),

where the sum ranges over all SSYT of shape λ and weight µ.

Beside this combinatorial interpretation, there are a few known ways to prove the
positivity of Kλ,µ(0, t) by interpreting them representation theoretically or geometri-
cally. Such an interpretation was conjectured also for Kλ,µ(q, t) by Garsia and Haiman
in [56] and was finally proved by Haiman as a corollary of his proof of the n!-conjecture
[66].

As we will see in the next section, from the representation theoretical point of view,
it is more convenient to work with the polynomials

K̃λ,µ(q, t) := tn(µ)Kλ,µ(q, t−1),

where n(µ) :=
∑

c∈µ l(c) =
∑

(i− 1)µi.

Definition 3.10. The modified Macdonald polynomials H̃λ(X; q, t) are defined as

H̃µ(X; q, t) :=
∑
λ≤µ

K̃λ,µ(q, t)sλ(X).

Remark. The work on the charge statistic implies that Macdonald’s positivity

conjecture holds for Kλ,µ(q, t) if and only if it holds for K̃λ,µ(q, t).

3.1.11. The nabla operator. The nabla operator ∇ is the linear operator on
ΛQ(q,t) defined on the modified Macdonald polynomials as

∇H̃µ(X; q, t) := qn(µ′)tn(µ)H̃µ(X; q, t).

Some of the basic properties of ∇ were first obtained by F. Bergeron in [16] and more
enhanced applications followed in a series of papers by Bergeron, Garsia, Haiman and
G. Tesler [17], [18] and [57].
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The following proposition was first proved in [56] by expressing the image of an
elementary symmetric function under ∇ in terms of modified Macdonald polynomials:

Proposition 3.11.

∇en =
∑
µ`n

qn(µ′)tn(µ)(1− q)(1− t)BµΠµH̃µ∏
c∈µ (qa(c) − tl(c)+1)(tl(c) − qa(c)+1)

,

where Bµ =
∑

c∈µ q
a′(c)tl

′(c) and Πµ =
∏

c∈µ\(0,0) (1− qa′(c)tl′(c)).

Remark. So far, it is totally unclear how the nabla operator could extend to other
reflection groups.

3.2. The Garsia-Haiman module

Before we introduce a module which was constructed by Garsia and Haiman to
prove Macdonald’s positivity conjecture, we first want to recall the definition of Hilbert
series and Frobenius series. To keep things as simple as possible, we will introduce
them not in full generality but only in the context of the Garsia-Haiman module.

The objects we are looking at are subrings of the polynomial ring

C[x,y] := C[x1, y1, . . . , xn, yn].

By a slight modification of the action introduced in Section 1.1.8, C[x,y] comes equipped
with an additional diagonal action of the symmetric group Sn,

σ(xi) = xσ(i), σ(yi) = yσ(i) for σ ∈ Sn.

Note that C[x,y] is bigraded by degree in x and degree in y,

C[x,y] =
⊕
i,j≥0

C[x,y]i,j,

where C[x,y]i,j denotes the set of all polynomials which are bihomogeneous of x-degree
i and y-degree j and furthermore note that the diagonal action preserves this grading.

As we will deal with subspaces of C[x,y], we have to carry over the notion of being
bigraded to those: a submodule M ⊆ C[x,y] is said to be bigraded if it contains all of
the bihomogeneous components of each of its elements, i.e., if p ∈M with p =

∑
i,j pi,j

and pi,j ∈ C[x,y]i,j, we have pi,j ∈M for all i, j.

3.2.1. The Hilbert series and the Frobenius series. Let M be a bigraded
subspace of C[x,y],

M =
⊕
i,j≥0

Mi,j.

Define the bigraded Hilbert series of M as the generating function for the dimensions of
its bigraded components,

H(M ; q, t) :=
∑
i,j≥0

dim (Mi,j)q
itj.
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Furthermore, when M is invariant under the diagonal action we can define the bigraded
Frobenius series of M as the generating function for the Frobenius characters of its
bigraded components,

F(M ; q, t) :=
∑
i,j≥0

F(χi,j)q
itj,

where χi,j := χMi,j
is the character of Mi,j.

3.2.2. The bivariate Vandermonde determinant and the n!–conjecture.
The Vandermonde determinant ∆(x) is defined as

∆(x) := det

 1 x1 . . . xn−1
1

...
...

...
1 xn . . . xn−1

n

 =
∏
i<j

(xj − xi).

This determinant can be generalized as follows: for X =
{

(α1, β1), . . . , (αn, βn)
}
⊆

N× N define the polynomial ∆X by

∆X(x,y) := det

 xα1
1 y

β1

1 . . . xαn1 yβn1
...

...
xα1
n y

β1
n . . . xαnn yβnn

 ,

and for a partition λ ` n set ∆λ := ∆Xλ where

Xλ = {(i, j) ∈ N2 : 0 ≤ i < l(λ), 0 ≤ j < λi}.
As ∆X(x,y) reduces for X = X(1n) =

{
(0, 0), . . . , (n−1, 0)

}
to ∆(x) and symmetrically

for X = X(n) to ∆(y), it is a bivariate analogue of the Vandermonde determinant.

Definition 3.12. Fix a partition µ ` n. The module V (µ) is defined to be the
linear span of all partial derivatives of ∆µ(x,y),

V (µ) := L[∂px∂
q
y∆µ(x,y)].

The module V (µ) was introduced in [56] by Garsia and Haiman where they conjec-
tured that the bigraded Frobenius series of V (µ) is equal to the modified Macdonald
polynomials. As this conjecture would imply that dim(V (µ)) = n!, it became known

as the n!-conjecture. As this conjecture states that K̃λ,µ(q, t) can be realized as a cer-
tain character, it implies Macdonald’s positivity conjecture; in [65], Haiman proved the
surprising result that both conjectures are in fact equivalent. In [66], Haiman finally
proved them after almost 10 years of intensive research.

Theorem 3.13 (Haiman). Let µ ` n be a partition of n. Then

F(V (µ); q, t) = H̃µ(X; q, t).

In particular, K̃λ,µ(q, t) ∈ N[q, t].

Remark. In her PhD thesis [8], S. Assaf was able to prove the non-negativity of

K̃λ,µ(q, t) combinatorially.

Corollary 3.14 (Haiman).

dim(V (µ)) = n!.
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3.3. Diagonal coinvariants

Define the polarized power sum symmetric functions pk,l(x,y) as

pi,j(x,y) :=
n∑
k=1

xiky
j
k.

In [98], H. Weyl observed that the ring of diagonal invariants, C[x,y]Sn , is generated
by {pi,j(x,y)}.

Definition 3.15. The diagonal coinvariant ring DRn is given by

DRn := C[x,y]/I,
where I is the ideal in C[x,y] generated by all polarized power sums of positive degree,
or equivalently, the ideal generated by all invariant polynomials without constant term.

The study of the diagonal coinvariant ring is closely related to the study of the space
V (µ) defined in the previous section. They are connected via the space of diagonal
harmonics, which is defined as

DHn := {f ∈ C[x,y] : pi,j(∂x, ∂y)f = 0 for all i+ j > 0}.
Here, pi,j(∂x, ∂y) is the operator given by the polarized power sum in the linear oper-
ators ∂x1, ∂y1, . . . , ∂xn, ∂yn.

Remark. It is easy to see that DRn and DHn are isomorphic as vector spaces, see
[64, Section 1.3], and that DHn is closed under partial differentiation and contains ∆µ.
This implies that V (µ) is an Sn-submodule of DHn for any µ ` n.

In [64], Haiman conjectured that DRn and DHn have dimension (n + 1)n−1. He
derived this result as a corollary of a formula for the Frobenius series of DHn which
was conjectured by Garsia and him in [56]. He was finally able to prove this formula
using the techniques developed to prove the n!–conjecture, see Theorem 3.16.

Remark. The number (n+1)n−1 is known to count the number of parking functions
on n cars, for definitions see [96]. Haglund and Loehr found a conjectured combinatorial
interpretation of H(DRn; q, t), the Hilbert series of the diagonal coinvariants, in terms
of statistics on parking functions [63].

The diagonal coinvariants DRn have a closely related extension for each integer
m ≥ 1: as above define I to be the ideal generated by all invariant polynomials without
constant term and let A be the ideal generated by all alternating polynomials. Then

the space DR
(m)
n was defined by Garsia and Haiman in [56] as

DR(m)
n :=

(
Am−1/Am−1I

)
⊗ det⊗(m−1) .

As DR
(m)
n is a module that reduces for m = 1 to the diagonal coinvariant ring, we call

it space of generalized diagonal coinvariants.

Theorem 3.16 (Haiman).

F(DR(m)
n ; q, t) = ∇men.

Corollary 3.17 (Haiman).

dimDR(m)
n = (mn+ 1)n−1.
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3.3.1. The alternating component of DR
(m)
n . Observe that the natural Sn-

action is twisted by the (m−1)-st power of the alternating representation such that the
generators of this module, which are the minimal generators of Am−1, become invariant.

One can show that the alternating component of DR
(m)
n is, except for the sign-twist,

naturally isomorphic to Am/〈x,y〉Am, where 〈x,y〉 = 〈x1, y1, . . . , xn, yn〉 is the ideal of
all polynomials without constant term. Define M (m) to be this alternating component

of DR
(m)
n ,

M (m) := edet(DR
(m)
n )

=
(
Am/〈x,y〉Am

)
⊗ det⊗(m−1),

where edet is the sign idempotent as defined in Section 1.3.2.

This alternating component was first considered in [56, Section 3], but a proof of
the proposed identity was left to the reader. The identity can be deduced from the
following well-known lemma, we will prove it in a more general context in Section 4.2,
see Theorem 4.6.

Lemma 3.18 (Graded version of Nakayama’s Lemma). Let R = ⊕i≥0Ri be an N-
graded k-algebra for some field k and let M be a graded R-module, bounded below in
degree. Then {m1, ...,mt} generate M as an R-module if and only if their images
{m̄1, ..., m̄t} k-linearly span the k-vector space M/R+M , where R+ := ⊕n≥1Ri. In
particular, {m1, ...,mt} generate M minimally as an R-module if and only if {m̄1, ..., m̄t}
is a of M/R+M as a k-vector space.

Remark. Nakayama’s Lemma implies that the space Am/〈x,y〉Am is naturally iso-
morphic to the vector space with basis in one-to-one correspondence with any minimal
generating set of Am. Therefore, it is often called minimal generating space of Am.

As a vector space, the space C[x,y]det of all alternating polynomials has a well-
known basis given by

B =
{

∆X : X ⊆ N× N, |X| = n
}
.

In particular the ideal generated by these elements equals A. Again by Nakayama’s
Lemma, M (1) is isomorphic to the vector space with basis in one-to-one correspon-
dence to any maximal linearly independent subset of B with coefficients in C[x,y]Sn+ .
Unfortunately, no construction of such an independent subset is known in general.

3.4. q, t-Fuß-Catalan numbers

The q, t-Catalan numbers Catn(q, t) appeared first in [64] where Haiman defined
them as

Catn(q, t) := 〈F(DRn; q, t), s(1n)〉,(9)

and conjectured that Catn(q, t) is in fact a q, t-extension of the Catalan numbers, i.e.,
Catn(1, 1) = Catn. As seen in the last section, the right-hand side of Eq. (9) is equal
to the Hilbert series of M (1),

Catn(q, t) = H(M (1); q, t).
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The second appearance was in [56] where Garsia and Haiman defined Catn(q, t) together

with its generalization Cat(m)
n (q, t) as

Cat(m)
n (q, t) :=

∑
µ`n

q(m+1)n(µ′)t(m+1)n(µ)(1− q)(1− t)BµΠµ∏
c∈µ (qa(c) − tl(c)+1)(tl(c) − qa(c)+1)

.

With Corollary 3.11 and the fact that 〈H̃µ, s1n〉 = qn(µ′)tn(µ), this complicated rational
function can be nicely described in terms of the nabla operator introduced in Sec-
tion 3.1.11:

Cat(m)
n (q, t) = 〈∇men, en〉.

At that point, it was still a long way to show that Cat(m)
n (q, t) reduces to Catn(q, t) for

m = 1, which is an immediate consequence of Theorem 3.16:

Corollary 3.19.

Cat(m)
n (q, t) = 〈F(DR(m)

n ; q, t), s(1n)〉
= H(M (m); q, t).

3.4.1. The specializations q = t = 1, t = 1 and t = q−1. Using their definition
as a rational function, Garsia and Haiman were able to show that specializing q = t = 1
gives in fact the Fuß-Catalan numbers,

Cat(m)
n (1, 1) = Cat(m)

n ,

and furthermore they proved the specializations t = 1 and t = q−1, which were al-
ready conjectured for Catn(q, t) in [64]. Both specializations are equal to well-known
q-extensions of the Catalan numbers, namely the generating function for the area statis-
tic on m-Catalan paths defined in Section 2.4.1,

Cat(m)
n (q, 1) = Cat(m)

n (q) =
∑

D∈D(m)
n

qarea(D),

and MacMahon’s q-Catalan numbers Cat(m)
n defined in Section 2.1.1,

qm(n2) Cat(m)
n (q, q−1) = diag-Cat(m)

n (q) =
1

[mn+ 1]q

[
(m+ 1)n

n

]
q

.

For m = 1 we have seen in Sections 2.6 and 2.8 that there exists a bijection between
Catalan paths and non-crossing partitions and a bijection between Catalan paths and
Coxeter sortable elements that send the area statistic to the length function and simul-
taneously the major index to the sum of the major and the inverse major indices. This
implies the following corollary:

Corollary 3.20. Let NC(An−1) the the non-crossing partition lattice of type An−1

and let Coxc(An−1) be the set of Coxeter sortable elements as given in Theorem 2.48
and in Theorem 2.63 respectively. Then

Catn(q, 1) =
∑

σ∈NC(An−1)

qlS(σ) =
∑

σ∈Coxc(An−1)

qlS(σ),

q(
n
2) Catn(q, q−1) =

∑
σ∈NC(An−1)

qmaj(σ)+imaj(σ) =
∑

σ∈Coxc(An−1)

qmaj(σ)+imaj(σ).
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Figure 31. A Catalan path D ∈ D8 and its bounce path bp(D).

3.4.2. Combinatorial descriptions of Cat(m)
n (q, t). The – at that time con-

jectured – description of Cat(m)
n (q, t) as a bigraded Hilbert series would imply that

Cat(m)
n (q, t) ∈ N[q, t]. Together with the combinatorial description of the specialization

t = 1 this was the starting point of an intensive search for a second statistic tstat on

D(m)
n such that

Cat(m)
n (q, t) =

∑
D∈D(m)

n

qarea(D)ttstat(D).

In [61], Haglund came up with a statistic he called bounce on Catalan paths and con-
jectured that the q, t-Catalan numbers are described as the bistatistic (area, bounce)
on Catalan paths. The bounce statistic is defined as follows: recall the definition of a
valley of D ∈ Dn from Section 2.1.1. D is called bounce path if all its valleys are at
the diagonal x = y, i.e. all valleys of D are of the form (i, i). To any Catalan path
D ∈ Dn, define the bounce path ofD to be the path described by the following algorithm:

Start at (n, n) and travel west along D until you encounter a north step.
Turn south and travel straight until you hit the diagonal x = y.
Turn west and travel again until you encounter a north step.

Continue this procedure until you reach the point (0, 0).

Notice that the resulting path is by construction a bounce path, denote it by bp(D).
The bounce statistic bounce(D) is now defined as

bounce(D) :=
∑

(i,i) valley of bp(D)

i.

Often, the valleys of a bounce path are called bounce points.

Example 3.21. In Figure 31, a Catalan path D ∈ D8 and its associated bounce
paths bp(D) is shown. As indicated by the dots, bp(D) has valleys (1, 1), (3, 3) and
(5, 5). This gives

bounce(D) = 1 + 3 + 5 = 9.
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The conjecture mentioned above was shortly later proved in [54, 55] by Garsia and
Haglund:

Theorem 3.22 (Garsia, Haglund).

Cat(1)
n (q, t) =

∑
D∈Dn

qarea(D)tbounce(D).

Remark. The bounce path occurred independently in a paper by G.E. Andrews,
Krattenthaler, L. Orsina and P. Papi [5] (see also [34]) in which they computed the
number of ad-nilpotent ideals in sl(n). They prove that the ad-nilpotent ideals are in
one-to-one correspondence with order ideals in the root poset and, in type A, that the
degree of nilpotence is equal the number of bounce points of the associated bounce
path. This occurrence of the bounce path is very remarkable as it discloses a possible
connection which no one – so far – was able to develop.

From the definition it is easy to see that Cat(m)
n (q, t) is symmetric in q and t since

arm and leg length of some partition µ ` n equal leg and arm length of µ′ respectively.
This gives ∑

D∈Dn

qarea(D)tbounce(D) =
∑
D∈Dn

qbounce(D)tarea(D).

So far no bijective proof of this fact is known:

Open Problem. Find a bijection on Catalan paths which interchanges area and
bounce.

Haiman discovered another closely related statistic dinv on Catalan paths called
diagonal inversion number. For D ∈ Dn, let λ ⊆ (n − 1, . . . , 2, 1, 0) be the associated
partition as described in Example 2.1. Then

dinv(D) :=
∣∣{c ∈ λ : a(c)− l(c) ∈ {0, 1}

}∣∣.
Haglund constructed a bijection on Dn which sends the bistatistic (area, bounce) to the
bistatistic (dinv, area), see [62, Theorem 3.15]. This implies immediately that

Cat(1)
n (q, t) =

∑
D∈Dn

qarea(D)tdinv(D).

In [78], Loehr generalized the definitions of bounce and dinv to D(m)
n . As the gen-

eralization of bounce is a little more difficult, we content ourselves with the gener-

alized definition of the diagonal inversion number: as before, fix D ∈ D(m)
n and set

λ ⊆ (m(n− 1), . . . , 2m,m, 0) to be the associated partition. Then

dinv(D) :=
∣∣{c ∈ λ : a(c)−ml(c) ∈ {0, 1, . . . ,m}

}∣∣.
Loehr conjectured that the bistatistics (area, bounce) and (area, dinv) describes the
q, t-Fuß-Catalan numbers combinatorially:

Conjecture 3.23 (Loehr).

Cat(m)
n (q, t) =

∑
D∈D(m)

n

qarea(D)tbounce(D) =
∑

D∈D(m)
n

qarea(D)tdinv(D).

This conjecture is still open, only the specializations q = 1 and t = q−1 are proved
in [78].



CHAPTER 4

q, t-Fuß-Catalan numbers for reflection groups

In this chapter, we generalize the definition of q, t-Fuß-Catalan numbers to arbitrary
(finite) real reflection groups. Moreover, we present several beautiful conjectures con-
cerning this generalization and we prove the conjectures for the dihedral groups I2(k).
Finally, we consider the definition of q, t-Fuß-Catalan numbers for complex reflection
groups and we will discuss the situation for cyclic groups G(k, 1, 1) in full detail.

4.1. Diagonal coinvariants

In Section 3.3, the space of generalized diagonal coinvariants, DR
(m)
n , was defined

and in Corollary 3.17, we have seen that

dimDR(m)
n = (mn+ 1)n−1.(10)

The definition of the space of generalized diagonal coinvariants makes sense for any real
reflection group. For m = 1, it can be found in [64, Section 7].

Definition 4.1. Let W be a real reflection group of rank l acting diagonally on
a polynomial ring in two sets of variables, C[x,y] := C[x1, y1, . . . , xl, yl]. Furthermore,
let I E C[x,y] be the ideal generated by all invariant polynomials without constant
term and let A E C[x,y] be the ideal generated by all alternating polynomials. For
any positive integer m, define the space of generalized diagonal coinvariants DR(m)(W )
as

DR(m)(W ) :=
(
Am−1/Am−1I

)
⊗ det⊗(m−1) .

Remark. The definition implies that C[x,y] and C[V ⊕ V ] are isomorphic as W -
modules. As we have seen in Section 1.2.4, the second is, for real reflection groups,
isomorphic to C[V ⊕ V ∗]. This does in general not hold for complex reflection groups.
For the analogous definition for complex reflection groups, see Section 4.5.

In type A, the dimension of DR
(m)
n , see Eq. (10), can be expressed in terms of the

reflection group An−1 as

dimDR(m)(An−1) = (mh+ 1)l,

where h = n is the Coxeter number of An−1 and l = n− 1 is its rank.

We reproduce the following incorrect guess from [64, Guess 7.1.1]:

Guess (incorrect, see below). Let W be a (crystallographic) reflection group of rank
l having Coxeter number h. Then

dimDR(1)(W ) = (h+ 1)l.

As we have seen, the guess is correct for type A. Furthermore, it follows from
computations by Alfano [2] and Reiner [86] that it is correct for the dihedral groups:

87
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dim (h+ 1)l

B4 94 + 1 94

B5 115 + 33 115

D4 74 + 40 74

Figure 32. The actual dimension of DR(1)(W ) for the reflection groups
B4, B5 and D4.

Theorem 4.2 (Alfano, Reiner). Let W = I2(k) be a dihedral group. Then

dimDR(1)(W ) = (k + 1)2.

Haiman computed the actual dimension of DR(1)(W ) for the reflection groups B4, B5

and D4. The results can be found in Figure 32.

These “counterexamples” led him to the following conjecture [64, Conjecture 7.1.2]:

Conjecture 4.3 (Haiman). For each (crystallographic) reflection group W , there
exists a “natural” quotient ring RW of C[x,y] by some homogeneous ideal containing
I such that

dimRW = (h+ 1)l.

This conjecture was proved by Gordon in [58] using subtle results from the theory
of rational Cherednik algebras :

Theorem 4.4 (Gordon). Let W be the crystallographic reflection group. There
exists a graded W -stable quotient ring RW of DR(1)(W ) such that

(i) dim(RW ) = (h+ 1)l and furthermore
(ii) qNH(RW ; q) = [h+ 1]lq,
(iii) RW ⊗ det is isomorphic to the permutation representation of W on

Q/(h+ 1)Q,

where Q is the root lattice associated to W defined in Section 1.1.11.

In Chapter 5, we will show that (i) and (ii) in Corollary 4.4 hold in fact for all real
reflection groups and for arbitrary non-negative m, see Corollary 5.8.

4.2. q, t-Fuß-Catalan numbers for real reflection groups

Haiman’s computations of the dimension of the diagonal coinvariants in types B4,
B5 and D4 seemed to be the end of the story, but computations of the dimension of the
determinantal component of the generalized diagonal coinvariants DR(m)(W ) suggest
the following conjecture:

Conjecture 4.5. Let W be a real reflection group. Then

dim edet

(
DR(m)(W )

)
= Cat(m)(W ).

Remark. In Appendix A.1, the computations of the dimensions for which the
conjecture holds are shown. We used the computer algebra system Singular [94] for
these computations, in particular, we used the following two commands:
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module M = modulo(I∧m,J*I∧m);

dim(std(M));

Here, we used the following theorem which was mentioned in type A in Section 3.3.1:

Theorem 4.6. Let W be a complex reflection group. The determinantal compo-
nent of DR(m)(W ) is, except for the sign-twist, naturally isomorphic to the minimal
generating space of the ideal A E C[x,y],

edet

(
DR(m)(W )

)
=

(
Am/〈x,y〉Am

)
⊗ det⊗(m−1) .

We will prove the theorem using Nakayama’s Lemma (Lemma 3.18)3. As we also
need the following simple equality concerning invariant and determinantal polynomials,
we state it as a lemma in its own:

Lemma 4.7. Let W be a complex reflection group and for 1 ≤ i ≤ s let pi be a
polynomial in C[x,y], let invi be an invariant polynomial and let alti be a determinantal
polynomial. Set p :=

∑
i pi alti and q :=

∑
i pi invi. Then

p determinantal ⇔ p =
∑

e(pi) alti,

q determinantal ⇔ q =
∑

edet(pi) invi .

Proof. We prove the first statement, the second is analogous. Suppose that p is
determinantal. Then

p = edet(p)

=
1

|W |
∑
ω

det(ω)ω(
∑
i

pi alti)

=
1

|W |
∑
ω

∑
i

det(ω)ω(pi) det−1(ω) alti

=
∑
i

( 1

|W |
∑
ω

ω(pi)
)

alti

=
∑
i

e(pi) alti .

�

Remark. In the proof of the previous lemma, we only used the fact that C[x,y] is
a ring and that its W -action is compatible with the ring structure. In particular, the
lemma still holds if C[x,y] is replaced by C[x,y]⊗ det⊗k for any k.

Proof of Theorem 4.6. Using complete reducibility, one can rewrite the left-
hand side of the theorem as

edet

(
Am−1 ⊗ det⊗(m−1)

)/
edet

(
IAm−1 ⊗ det⊗(m−1)

)
.

Define A(m) to be the complex vector space of all linear combinations of products
of m determinantal polynomials. Let p ∈ Am−1, i.e.

p =
∑

pi alt(i,1) · · · alt(i,m−1),

3I thank Vic Reiner for improving several arguments in the proof of Theorem 4.6
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where pi ∈ C[x,y] and alt(i,j) ∈ C[x,y]det. As for ω ∈ W ,

ω
(

alt(i,1) · · · alt(i,m−1)

)
= det(ω)−m+1 alt(i,1) · · · alt(i,m−1),

the product alt(i,1) · · · alt(i,m−1) is invariant in C[x,y]⊗ det⊗(m−1). If p is determinantal

in C[x,y]⊗ det⊗(m−1), Lemma 4.7 implies

p =
∑

edet(pi) alt(i,1) · · · alt(i,m−1),

and therefore

p ∈ edet

(
Am−1 ⊗ det⊗(m−1)

)
⇔ p ∈ A(m).(11)

Applying the same argument to p ∈ IAm−1 gives,

p ∈ edet

(
IAm−1 ⊗ det⊗(m−1)

)
⇔ p ∈ C[x,y]W+ A

(m).(12)

Combining Eq. (11) and (12), we get

edet

(
DR(m)(W )

)
= A(m)/C[x,y]W+ A

(m).(13)

By Nakayama’s Lemma, the right-hand side of Eq. (13) is isomorphic to a vector
space generated by a minimal generating set of A(m) as a C[x,y]W -module.

On the other hand, Nakayama’s Lemma gives that Am/〈x,y〉Am is isomorphic to
a vector space generated by a minimal generating set of Am considered as a C[x,y]-
module.
Am is generated as a C[x,y]-module by all products ofm determinantal polynomials.

Therefore, it has a minimal generating set that is also contained A(m). Using again
Lemma 4.7, this generating set generates A(m) as a C[x,y]W -module, which is minimal
by construction. This gives the proposed isomorphism. �

Remark. We proved the theorem for all complex reflection groups, as we will also
need it (in a slightly modified version) in Section 4.5.

Definition 4.8. Define the W -module M (m)(W ) as the alternating component of
DR(m)(W ),

M (m)(W ) := edet

(
DR(m)(W )

)
=

(
Am/〈x,y〉Am

)
⊗ det⊗(m−1) .

The space C[x,y]det of all alternating polynomials has a well-known basis which is
given by

BW :=
{
edet(m(x,y)) : m(x,y) monomial in x,y with edet(m(x,y)) 6= 0

}
.

This basis reduces in type A to the basis B defined in Section 3.3.1. For the other clas-
sical types, BW can also be described using the bivariate analogue of the Vandermonde
determinant. In type B, it reduces to

BBn =
{

∆X : X = {(α1, β1), . . . , (αn, βn)} ⊆ N× N, |X| = n, αi + βi ≡ 1 mod 2
}

and in type D, it reduces to

BDn =
{

∆X : X = {(αi, βi), . . . , (αn, βn)} ⊆ N× N, |X| = n, αi + βi ≡ αj + βj mod 2
}
.

Conjecture 4.5 leads to the following definition:
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Definition 4.9. Let W be a real reflection group, let DR(m)(W ) be the space
of generalized diagonal coinvariants and let M (m)(W ) be its alternating component.

Define q, t-Fuß-Catalan numbers Cat(m)(W ; q, t) as

Cat(m)(W ; q, t) := H(M (m)(W ); q, t).

Note. By definition, the q, t-Fuß-Catalan numbers Cat(m)(W ; q, t) are symmetric
polynomials in q and t with non-negative integer coefficients. The Conjecture 4.5 would
imply that

Cat(m)(W ; 1, 1) = Cat(m)(W ).

In the following section, we present several beautiful conjectured properties of
Cat(m)(W ; q, t) which are based on further computations.

4.3. Conjectured properties of the q, t-Fuß-Catalan numbers

In addition to the computations of the dimension of M (m)(W ), see Remark 4.2,

we computed its bigraded Hilbert series Cat(m)(W ; q, t). The following routines of the
computer algebra system Macaulay 2 [79] were used:

M = mingens(I∧m);

<< for i from 0 to numgens source M − 1 list degree M i;;

The computations are listed in Appendix A.1. All further conjectures are based on
these computations.

The following conjecture, which is obviously stronger than Conjecture 4.5, would
generalize the specialization t = q−1 presented in Section 3.4 and would thereby give a
new answer to a question of C. Kriloff and Reiner in [6, Problem 2.2]:

Conjecture 4.10. Let W be a real reflection group. Then

qmN Cat(m)(W ; q, q−1) = diag-Cat(m)(W ; q),

where N =
∑

(di − 1) as defined in Section 1.2.4 and where diag-Cat(m)(W ; q) is
defined as in Section 2.1.1.

Corollary 4.11. If Conjecture 4.10 holds, then the q-degree and the t-degree of
Cat(m)(W ; q, t) are both equal to mN .

As we will see in Chapter 5, this conjecture can be stated equivalently in the context
of rational Cherednik algebras.

By definition, the q, t-Fuß-Catalan numbers are polynomials in N[q, t]. As in Sec-
tion 3.4.2 for type A, this leads to the natural question of a combinatorial description
of Cat(m)(W ; q, t):

Open Problem. Are there statistics qstat and tstat on objects counted by Cat(m)(W )

which generalize the area and the bounce statistics on Catalan paths D(m)
n such that

Cat(m)(W ; q, t) =
∑
D

qqstat(D)ttstat(D)?
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The next conjecture we want to present concerns the specialization t = 1 of this
open problem. In Section 4, we have defined combinatorially q-Fuß-Catalan numbers
as the generating function for the coheight statistic on the extended Shi arrangement,

Cat(m)(W ; q) =
∑
R

qcoh(R),

where the sum ranges over all positive regions in the extended Shi arrangement Shi(m)(W ).

The following conjecture would generalize the statement for type A from Section 3.4
and would partially answer the open problem:

Conjecture 4.12. Let W be a crystallographic reflection group. Then the q, t-Fuß-
Catalan numbers reduce to the q-Fuss-Catalan numbers for the specialization t = 1,

Cat(m)(W ; q, 1) = Cat(m)(W ; q).

4.3.1. The conjectures in type B. Analogously to type A, we have seen for
m = 1 in Sections 2.6 and 2.8 that there exists a bijection between Catalan paths and
non-crossing partitions with reversed negative elements and a bijection between Catalan
paths and Coxeter sortable elements that send the area statistic to the length function
and simultaneously the major index to the sum of the major and the inverse major
indices. Therefore, Conjecture 4.10 and Conjecture 4.12 would imply the following
corollary:

Corollary 4.13. Let NC(Bn) the the non-crossing partition lattice of type Bn and
let Coxc(Bn) be the set of Coxeter sortable elements as given in Theorem 2.48 and in
Theorem 2.63 respectively. If Conjectures 4.10 and 4.12 hold in type B, then

Cat(Bn, q, 1) =
∑

σ∈rev(NC(Bn))

qlS(σ) =
∑

σ∈Coxc(Bn)

qlS(σ),

qn
2

Cat(Bn; q, q−1) =
∑

σ∈rev(NC(Bn))

qmaj(σ)+imaj(σ) =
∑

σ∈Coxc(Bn)

qmaj(σ)+imaj(σ).

4.4. q, t-Fuß-Catalan numbers for the dihedral groups

In unpublished work in the context of their PhD-theses [2, 86], Alfano and Reiner
were able to describe uniformly the diagonal coinvariant ring DR(1)(I2(k)) for the di-
hedral groups. For the sake of more readability, we introduce the q, t-extension [n]q,t of
the integer n which we define by

[n]q,t :=
qn − tn

q − t
= qn−1 + qn−1t+ . . .+ qtn−2 + tn−1.

Then [n]q1 = [n]q and [n]1t = [n]t are the well-known q- and t-extensions of the integer
n defined at the beginning of Section 2.1.1.

The following description is taken from [64, Section 7.5]:

Theorem 4.14 (Alfano, Reiner). Let W = I2(k) be a dihedral group. Then

H(DR(1)(W ); q, t) = 1 + [k + 1]q,t + qt+ 2
k−1∑
i=1

[i+ 1]q,t.
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Even more, they obtained an exact description of DR(1)(W ):

(i) the first 1 belongs to the unique copy of the trivial representation,
(ii) the string

[k + 1]q,t + qt = qk + qk−1t+ . . .+ qtk−1 + tk + qt

belongs to copies of the determinantal representation which are generated by

D,∆(D), . . . ,∆k(D) and x1y2 − x2y1,

where

D(x1, x2) := 2k
k−1∏
i=0

(sin(πi/k)x1 + cos(πi/k)x2)

is the discriminant of W and ∆ is the operator defined as ∆ := ∂x1 ·y1 +∂x2 ·y2,
(iii) all other strings belong to copies of the permutation representation.

Remark. The description of the determinantal component was obtained by proving
that Haiman’s operator conjecture [64, Conjecture 5.1.1] holds for the dihedral groups.

By Theorem 4.14 and the discussion, we can immediately compute the q, t-Fuß-Catalan
numbers for the dihedral groups:

Corollary 4.15. Let W = I2(k). Then

Cat(1)(W ; q, t) = [k + 1]q,t + qt

= qk + qk−1t+ . . .+ qtk−1 + tk + qt.

This corollary supports the suggested root poset of type I2(k) introduced in Sec-
tion 1.1.13:

Corollary 4.16. Let W = I2(k) be a dihedral group and let Φ+ be the root poset
for I2(K) suggested by Armstrong, see Figure 6 on page 18. Then

Cat(1)(W ; q, 1) =
∑
IEΦ+

qcoh(I).

From Theorem 4.14, one can also deduce the q, t-Fuß-Catalan numbers Cat(m)(W ; q, t).

Theorem 4.17. The q, t-Fuß-Catalan numbers for the dihedral group I2(k) are given
by

Cat(m)(I2(k); q, t) =
m∑
j=0

qm−jtm−j[jk + 1]q,t.

To prove the theorem, we need the following lemma:

Lemma 4.18. Fix the monomial o := xa1x
b
2. Let m be a positive integer and let

i1, . . . , im, j1, . . . , jm be two sequences of non-negative integers such that
∑
il =

∑
jl.

Then

∆i1(o) · · ·∆im(o) ≡ ∆j1(o) · · ·∆jm(o) mod〈Im−1 · (x1y2 − x2y1)〉,
where I E C(x,y) is the ideal generated by

{
o,∆(o), . . . ,∆a+b(o), x1y2 − x2y1

}
.
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Proof. By definition, ∆i(o) is given for any i by

∆i(o) = i!
i∑
l=0

(
a

l

)(
b

i− l

)
xa−l1 yl1x

b−i+l
2 yi−l2 .

This implies

∆i(o) ≡ ∆i
mod(o) :=

[
i! ·

i∑
l=0

(
a

l

)(
b

i− l

)]
xa1x

b−i
2 yi2 mod〈x1y2 − x2y1〉,(14)

and thereby

∆i1(o) · · ·∆im(o) ≡ ∆i1(o) · · ·∆im−1(o)∆im
mod(o) mod〈Im−1 · (x1y2 − x2y1)〉.

With ∆i(o) and x1y2 − x2y1, ∆i
mod(o) is also contained in I and therefore,

∆i1(o) · · ·∆im(o) ≡ ∆i1
mod(o) · · ·∆im

mod(o) mod〈Im−1 · (x1y2 − x2y1)〉.(15)

If follows from Eq. (14) that the right-hand side of Eq. (15) does not depend on the
specific il’s but only on their sum

∑
il. The lemma follows. �

Proof of Theorem 4.17. By definition, the ideal Am E C[x,y] is generated by
all products of m generators of determinantal representations in the various bidegrees.
As seen above, these generators are given by D,∆(D), . . . ,∆k(D) and x1y2 − x2y1.
For a given 0 ≤ j ≤ m, the previous lemma implies that any minimal generating set
of Im contains one and only one generator for each 0 ≤ i ≤ k(m− j) where the factor
(x1y2 − x2y1) appears exactly j times. It is of the form

∆i1(D) · · ·∆im−j(D)(x1y2 − x2y1)j,

where the il’s sum up to i. �

This theorem immediately implies the following recurrence relation:

Corollary 4.19. The q, t-Fuß-Catalan numbers for the dihedral group I2(k) satisfy
the recurrence relation

Cat(m)(W ; q, t) = [mk + 1]q,t + qtCat(m−1)(W ; q, t).

We can also deduce Conjecture 4.5 and Conjecture 4.10 for the dihedral groups:

Corollary 4.20. Conjectures 4.5 and 4.10 hold for the dihedral groups: let W =
I2(k), then

qmk Cat(m)(W ; q, q−1) =
[2 +mk]q[k +mk]q

[2]q[k]q
.

Proof. By Theorem 4.17, we have

qmk Cat(m)(W ; q, q−1) = qmk
m∑
j=0

[jk + 1]q,q−1 =
m∑
j=0

q(m−j)k [2jk + 2]q
[2]q

.

Therefore, it remains to show that
m∑
j=0

q(m−j)k[2jk + 2]q =
[2 +mk]q[k +mk]q

[k]q
.(16)
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To prove this equality observe that on the left-hand side of (16), the terms for j and
m− j sum up to [mk + 2]q(q

jk + q(m−j)k). This gives

m∑
j=0

q(m−j)k[2jk + 2]q = [mk + 2]q(1 + qk + . . .+ qmk),

the corollary follows. �

4.5. q, t-Fuß-Catalan numbers for complex reflection groups

This section was carried out during Vic Reiner’s visit at the University of Vienna,
Austria [88].

We start this section with the following easy observation: any complex reflection
group W acting on C[x,y] = C[V ⊕ V ] would give rise to a q, t-Fuß-Catalan number

Cat(m)(W ; q, t) which is symmetric in q and t. Therefore, the analogue of Conjec-
ture 4.10 would imply that

qmN Cat(m)(W ; q, q−1) = diag-Cat(m)(W ; q)

is a polynomial of even degree.

The degree of diag-Cat(m)(W ; q) is given by

l∑
i=1

(di +mh)−
l∑

i=1

di = lmh,(17)

where l is the rank of W and where h is the Coxeter number.

Proposition 4.21. The analogue of Conjecture 4.10 does not hold for the wreath
product Ck o Sn = G(k, 1, n) for odd k and odd n.

Proof. The Coxeter number for the reflection group G(k, 1, n) equals kn. By

Eq. (17), diag-Cat(m)(Ck o Sn; q) has degree kmn2. As k and n are odd, the analogue
of the conjecture fails for odd m. �

We now want to look closely at the diagonal action on C[x, y] = C[C ⊕ C] of the
cyclic groups Ck as described in Example 1.35 to see how one can solve the resulting
problems in this case: the diagonal action of Ck on C[x, y] is given by

ζ(xayb) = ζa+b · xayb.

For m = 1, the space of diagonal coinvariants is the diagonal coinvariant ring C[x, y]/I,
where I is the ideal generated by all invariant polynomials without constant term. We
can consider either its determinantal or its inverse determinantal component:

C[x, y]Ck = span
{
xayb : a+ b ≡ 0 mod k

}
,

C[x, y]det = span
{
xayb : a+ b ≡ 1 mod k

}
,

C[x, y]det−1

= span
{
xayb : a+ b ≡ k − 1 mod k

}
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and

C[x, y]det = xC[x, y]W + yC[x, y]W ,(18)

C[x, y]det−1

=
∑

i+j=k−1

xiyjC[x, y]W .(19)

Therefore, the determinantal component of C[x,y]/I is spanned by {x, y} and the
inverse determinantal component is spanned by {xk−1, xk−2y, . . . , xyk−2, yk−1}, and the
two resulting Hilbert series are given by

q + t = [2]q,t and qk−1 + . . . tk−1 = [k]q,t.

For k > 2, the second contradicts the analogue of Conjecture 4.5 and both contradict
the analogue of Conjecture 4.10.

4.5.1. The diagonal action for complex reflection groups. For the cyclic
groups, one can solve the occurring problems in the following way: define a diagonal
action of Ck on C[x, y] by ζ(x) := ζx and ζ(y) := ζ−1y or, equivalently,

ζ(xayb) = ζa−bxayb.

This gives

C[x, y]Ck = span
{
xayb : a ≡ bmod k

}
,

C[x, y]det = span
{
xayb : a+ 1 ≡ bmod k

}
,

C[x, y]det−1

= span
{
xayb : a ≡ b+ 1 mod k

}
and

C[x, y]det = xC[x, y]W + yk−1C[x, y]W ,

C[x, y]det−1

= xk−1C[x, y]W + yC[x, y]W .

The two possible q, t-Catalan numbers are therefore given by

q + tk−1 and qk−1 + t,

and, more generally, the two possible q, t-Fuß-Catalan numbers are given by∑
i+j=m

qitj(k−1) and
∑
i+j=m

qi(k−1)tj.

Note. By construction, both possible q, t-Fuß-Catalan numbers are obtained from
each other by interchanging q and t.

This idea can be generalized to complex reflection groups in a very natural way
as follows: identify C[x,y] with the W -module C[V ⊕ V ∗], where the action of W on
C[V ⊕ V ∗] is induced by the natural action of W on V ⊕ V ∗. As defined in Section 1.3,
this action is described by

ω(v ⊕ v∗) := ωv ⊕ t(ω−1)v∗,

where W is considered as a matrix group.

Note. As W is a finite subgroup of the unitary group U(V ), t(ω−1) is the complex
conjugate of a given ω ∈ W . If W is real, ω = t(ω−1) and therefore, the described
W -action on C[x,y] coincide with the W -action described in Definition 4.1.
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Define the space of generalized diagonal coinvariants as for real reflection groups as

DR(m)(W ) := Am−1/IAm−1 ⊗ det⊗(m−1).

As the graded version of Nakayama’s Lemma and Lemma 4.7 can be applied in this
slightly modified context, we have

edet

(
DR(m)(W )

)
= Am/〈x,y〉Am ⊗ det⊗(m−1),

which we also denote by M (m)(W ).

Definition 4.22. For any complex reflection group W , define q, t-Fuß-Catalan num-
bers Cat(m)(W ; q, t) as

Cat(m)(W ; q, t) := H(M (m)(W ); q, t).

Note. For real reflection groups, Definitions 4.9 and 4.22 are equivalent.

The above discussion implies the following corollary:

Corollary 4.23. Let Ck = G(k, 1, 1) be the cyclic group of order k and let Ck act
diagonally on C[x, y] as described above. Furthermore, let N = k − 1 be the number of
reflections in Ck and let N∗ = 1 be the number of reflecting hyperplanes. Then

qmN Cat(m)(Ck; q, q
−1) = qmN

∗
Cat(m)(Ck; q

−1, q)

= diag-Cat(m)(Ck; q)

= 1 + qk + . . .+ qmk.

In Table 5 in Appendix A.1, we computed Cat(m)(W ; q, t) for several 2-dimensional
representations of type G(k, 1, 2). These computations lead to the following conjecture:

Conjecture 4.24. Let W be a well-generated complex reflection group (or, even-
tually, W = G(k, p, l)) acting on C[x,y] = C[V ⊕ V ∗] as described above. Set N =∑

(di − 1) to be the number of reflections in W and set N∗ =
∑

(d∗i + 1) to be the
number of reflecting hyperplanes. Then

qmN Cat(m)(W ; q, q−1) = qmN
∗

Cat(m)(W ; q−1, q)

= diag-Cat(m)(W ; q).





CHAPTER 5

Connections to rational Cherednik algebras

In this chapter, we want to investigate (conjectured) connections between the gen-
eralized diagonal coinvariants DR(m)(W ) and a module that naturally arises in the
context of rational Cherednik algebras. These algebras were introduced by Etingof and
Ginzburg in [42]. The notion is adapted from this reference as well as from a paper by
Berest, Etingof and Ginzburg [15] from which most of the facts about rational Chered-
nik algebras are taken.

The work by Berest, Etingof and Ginzburg deals only with real reflection groups
but in [60], S. Griffeth partially generalized the work to complex reflection groups.
We expect that the conjectured connection of the q, t-Fuß-Catalan numbers, see Corol-
lary 5.10, should also hold in this generalized context.

In this chapter, we fix W to be a real reflection group acting on a complex vector
space h (which is by construction the complexification of a real vector space) and fix
T ⊆ W to be the set of reflections in W .

5.1. The rational Cherednik algebra

In [42], Etingof and Ginzburg defined the rational Cherednik algebra as follows:

Definition 5.1. Let c : T → C, t 7→ ct be a W -invariant function on the set
of reflections. The rational Cherednik algebra Hc = Hc(W ) is the associative algebra
generated by the vector spaces h, h∗ and the set W subject to the defining relations

ωxω−1 = ω(x), ωyω−1 = ω(y) for all y ∈ h, x ∈ h∗, ω ∈ W,
x1x2 = x2x1, y1y2 = y2y1 for all y1, y2 ∈ h, x1, x2 ∈ h∗,

yx− xy = 〈y, x〉 −
∑
t∈T

ct〈y, αt〉〈α∨t , x〉t for all y ∈ h, x ∈ h∗.

The polynomial ring C[h] sits inside Hc as the subalgebra generated by h∗ and the
polynomial ring C[h∗] as the subalgebra generated by h. Furthermore, the elements in
W span a copy of the group algebra C[W ] sitting naturally inside Hc.

By [42, Theorem 1.3], there is a Poincaré-Birkhoff-Witt isomorphism

C[h]⊗ C[W ]⊗ C[h∗] −̃→ Hc.

5.1.1. An induced grading. Define the element h ∈ Hc by

h :=
1

2

∑
i

(xiyi + yixi),

99
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where {xi} and {yi} are dual bases of h∗ and h respectively. It is easy to see that

h · x = x,h · y = −y and h · ω = 0 for x ∈ h∗, y ∈ h, ω ∈ W.
This gives an induced grading on Hc by

deg x = 1, deg y = −1, degω = 0.

5.1.2. A natural filtration. Beside the discussed grading, there exists a natural
filtration on Hc which is given by

deg x = deg y = 1, degω = 0 for x ∈ h∗, y ∈ h, ω ∈ W.
By the Poincaré-Birkhoff-Witt isomorphism, the associated graded module gr(Hc) is
given by

gr(Hc) = C[h⊕ h∗] oW.(20)

For a definition of filtrations as well as for a definition associated graded modules, we
refer to in [41, Chapter 5].

5.2. A module over the rational Cherednik algebra

Define for any Hc-representation τ an Hc-module M(τ), called standard module, to
be the induced module

Mc(τ) := Hc ⊗C[h]oW τ,

where C[h] oW acts on τ by pω · a := p(0)(ω(a)) for p ∈ C[h], ω ∈ W and a ∈ τ .

For our purposes it is enough to restrict to the case where τ is the trivial represen-
tation and where the parameter c = ct is a rational constant. Denote this module by
M := Mc(C). Many nice properties of Mc even hold in the more general context of τ
being any Hc-representation and for arbitrary parameter c.

C.F. Dunkl and E. Opdam showed in [38] that M has a unique simple quotient,
which we denote by L = Lc(C). In [15], Berest, Etingof and Ginzburg investigated
this module L and showed in [15, Theorem 1.4] for c = 1

h
+m (where h is the Coxeter

number of W ) that L is the only finite dimensional irreducible Hc-module. They also
showed that L is graded and they computed the graded Hilbert series of L. See [15,
Section 1.7] for the property of being graded and [15, Theorem 1.6] for the Hilbert
series:

Theorem 5.2 (Berest, Etingof, Ginzburg). Let c = 1
h

+m as before. Then

H(L; q) = q−mN([mh+ 1]q)
l,

where l is the rank of W and N is the number of positive roots. In particular,

dim(L) = (mh+ 1)l.

Consider the graded module associated to L: since h induces a grading on both L
and on gr(L), we see that the Hilbert series of L and gr(L) with respect to this grading
coincide.

Corollary 5.3.
H(gr(L); q) = q−mN([mh+ 1]q)

l.
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5.3. The spherical subalgebra

Define the spherical subalgebra of Hc as eHce ⊆ Hc where e is the trivial idempotent
defined in Section 1.3.2. For any Hc-module V , eV has a natural eHce-module structure
and the element h preserves eV ⊆ V , which implies that h also induces a grading on
eV . For the following theorem see [15, Theorem 1.10]:

Theorem 5.4 (Berest, Etingof, Ginzburg). eL is the only finite dimensional simple
eHce-module for the parameter c = 1

h
+m. The Hilbert series of eL is given by

H(eL; q) = q−mN
l∏

i=1

[di +mh]q
[di]q

,

where l is the rank of W , d1 ≤ . . . ≤ dl are the degrees and h is the Coxeter number.

The same argument as above implies

Corollary 5.5. The Hilbert series of the associated graded module e(gr(L)) is also
given by

H(e(gr(L)); q) = q−mN
l∏

i=1

[di +mh]q
[di]q

.

Remark. Berest, Etingof and Ginzburg proved Theorem 5.2 and Theorem 5.4 by
constructing a certain homogeneous system of parameters (hsop) inside the p-th com-
ponent of S = Sym(V ∗) such that its span is W -stable and carries a W -representation
isomorphic to V ∗. In [22, Section 4], Bessis and Reiner described how such a construc-
tion would imply both theorems for arbitrary complex reflection groups and conjectured
in [22, Conjecture 4.3] that such hsop exist at least for well-generated groups. Further-
more, they described how the positive Fuß-Catalan numbers Cat+(W ) come into play
in this algebraic context and they constructed a hsop for any group G(k, p, l). This
implies Theorems 5.2 and 5.4 in this slightly more general context.

5.3.1. A decomposition of L and gr(L). There exist nice and important decom-
positions of the modules in question, which were explored in [15].

Set H(m) := Hc for c = 1
h

+m. Then there exists a filtered algebra isomorphism

eH(m)e −̃→ edetH
(m+1)edet,

see [15, Proposition 4.6]. Berest, Etingof and Ginzburg used this isomorphism to
connect the modules L(m+1) and L(m) for L(m) = Lc(C) and c = 1

h
+m by the equality

L(m+1) = H(m+1)edet ⊗eH(m)e eL(m),(21)

see [15, Lemma 4.7] and [15, Proposition 4.8]. In the [58, Theorem 4.6], Gordon showed
that L(0) = C. Applying Eq. (21) iteratively gives rise to a decomposition of L = L(m),
which is taken from [15, Eq. (7.6)] as

L = H(m)edet ⊗eH(m−1)e eH(m−1)edet ⊗eH(m−2)e · · · ⊗eH(1)e eH(1)edet ⊗eH(0)e C,(22)

and also a decomposition of the eH(m)e-module eL, see [15, Eq. (7.7)], as

eL = eH(m)edet ⊗eH(m−1)e eH(m−1)edet ⊗eH(m−2)e · · · ⊗eH(1)e eH(1)edet ⊗eH(0)e C.(23)
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5.3.2. A bigrading on gr(L). We have already seen that gr(L) carries the same
grading as L which is induced by h. On the other hand, it is by construction equipped
with the grading induced by the filtration deg x = deg y = 1 and degω = 0. This allows
to define a bigrading on gr(L), see [15, Formula 7.9]:

gr(L) = ⊕p,q∈ZLp,q, where h|Lp,q = (p− q)IdLp,q .

Similar considerations and definitions apply to the eHce-module eL.

5.3.3. gr(L) and the generalized diagonal coinvariants. As indicated in Theo-
rem 4.4, Gordon connected the diagonal coinvariant ring with the H(0)-module L. Using
the above decompositions, we prove his theorem in a slightly more general context using
the same argument. The following well-known lemma is taken from [59, Lemma 6.7
(2)]:

Lemma 5.6. Let R =
⋃
F iR be a filtered C-algebra, A =

⋃
F iA a filtered right

R-module and B =
⋃
F iB a filtered left R-module. Filter A⊗RB by the tensor product

filtration
F i(A⊗B) =

∑
j

F jA⊗ F n−jB.

Then there is a natural surjection

grF A⊗gr(R) grF B � grF (A⊗R B).

Theorem 5.7. Let W be a real reflection group, let DR(m)(W ) be the space of
generalized diagonal coinvariants and let gr(L) be bigraded as described in Section 5.3.2.
Then there exists a natural surjection of bigraded W -modules,

DR(m)(W )⊗ det� gr(L).

Proof. Consider the decomposition (22),

L = H(m)edet ⊗eH(m−1)e eH(m−1)edet ⊗eH(m−2)e · · · ⊗eH(1)e eH(1)edet ⊗eH(0)e C.
The iterative application of the tensor product filtration to the right hand side defines
a filtration on L. To see that the associated graded module equals gr(L), observe that
for both, the n-th degree consists of these elements of which the total degree equals n.
By Lemma 5.6 and the identities

gr(eHce) ∼= eC[h⊕ h∗] , gr(eHcedet) ∼= edetC[h⊕ h∗],

which can be found in [15, Eq. (7.8)], we have the surjection

(C[h⊕h∗]⊗det)⊗eC[h⊕h∗]edetC[h⊕h∗]⊗eC[h⊕h∗]· · ·⊗eC[h⊕h∗]edetC[h⊕h∗]⊗eC[h⊕h∗]C� gr(L).

As the left-hand side equals DR(m)(W )⊗ det, the theorem follows.
�

Remark. Work of Griffeth [60] suggests that Theorem 5.7 holds also for the com-
plex reflection group G(k, p, l) defined in Theorem 1.34.

Theorem 5.7 partially generalizes Theorem 4.4:

Corollary 5.8. Let W be a real reflection group. There exists a graded W -stable
quotient ring RW of DR(m)(W ) such that

(i) dim(RW ) = (mh+ 1)l and
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(ii) qmNH(RW ; q) = [mh+ 1]lq.

For real reflection groups, Theorem 5.4 and Theorem 5.7 imply that Conjecture 4.5
and Conjecture 4.10 would follow from (and are in fact equivalent to) the following
conjecture:

Conjecture 5.9. The kernel of the surjection defined in Theorem 5.7 does not
contain a copy of the trivial representation.

This conjecture would show that the module M (m), and thereby the q, t-Fuß-Catalan
numbers Cat(m)(W ; q, t), can be described in terms of the module L over the rational
Cherednik algebra:

Corollary 5.10. Let W be a real reflection group, let M (m) be the bigraded W -
module defined in Section 4.2 and let gr(L) be the bigraded W -module defined in Sec-
tion 5.3.2. If Conjecture 5.9 holds, then

M (m) ⊗ det ∼= e(gr(L))

as bigraded W -modules.





APPENDIX A

Computations with Singular, Macaulay2 and GAP

A.1. Computations of dimM (m) and of Cat(m)(W, q, t)

To compute the dimensions of the module M (m) defined in Section 4.2, we used the
computer algebra system Singuar [94].

Table 1. dimM (m) for the classical types A, B and D:

m

n = 1
n = 2
n = 3
n = 4
n = 5

1 2 3 4

1 1 1 1
2 3 4 5
5 12 22 35
14 55 140
42

1 2 3 4

2 3 4 5
6 15 28 45
20 84
70 495

1 2 3 4

1 1 1 1
4 9 16 25
14 55 140 285
50 336

For the computations of the bigraded Hilbert series of M (m) we used the computer
algebra system Macaulay 2 [79]. We write [n] for [n]qt.

Table 2. Cat(m)(An−1, q, t):

n = 2,m = 1 [2]
m = 2 [3]
m = 3 [4]

n = 3,m = 1 [4] + qt[1]
m = 2 [7] + qt[4] + q2t2[1]
m = 3 [10] + qt[7] + q2t2[4] + q3t3[1]

n = 4,m = 1 [7] + qt[4] + qt[3]
m = 2 [13] + qt[10] + qt[9] + q2t2[7] + q2t2[6] + q2t2[5] + q3t3[4] + q4t4[1]
m = 3 [19] + qt[16] + qt[15] + q2t2[13] + q2t2[12] + q3t3[10] + q2t2[11]+

q3t3[9] + q4t4[7] + q3t3[8] + q4t4[6] + q5t5[4] + q3t3[7] + q5t5[3]
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Table 3. Cat(m)(Bn, q, t):

n = 1,m = 1 [2]
m = 2 [3]
m = 3 [4]

n = 2,m = 1 [5] + qt[1]
m = 2 [9] + qt[5] + q2t2[1]
m = 3 [13] + qt[9] + q2t2[5] + q3t3[1]

n = 3,m = 1 [10] + qt[6] + qt[4]
m = 2 [19] + qt[15] + qt[13] + q2t2[11] + q2t2[9] + q3t3[7] + q2t2[7] + q4t4[3]
m = 3 [28] + qt[24] + qt[22] + q2t2[20] + q2t2[18] + q3t3[16]+

q2t2[16] + q3t3[14] + q4t4[12] + q3t3[12] + q4t4[10]+
q5t5[8] + q3t3[10] + q5t5[6] + q6t6[4]

n = 4,m = 1 [17] + qt[13] + qt[11] + q2t2[9] + qt[9] + q3t3[5] + q2t2[5] + q4t4[1]
m = 2 [33] + qt[29] + qt[27] + q2t2[25] + qt[25] + q2t2[23] + q3t3[21]+

2q2t2[21] + q3t2[19] + q4t4[17] + q2t2[19] + 2q3t3[17] + q4t4[15]+
q5t5[13] + q2t2[17] + q3t3[15] + 2q4t4[13] + q5t5[11] + q6t6[9]+
q3t3[13] + q4t4[11] + 2q5t5[9] + q6t6[7] + q7t7[5] + q9t9[1]+
q4t4[9] + 2q6t6[5] + q8t8[1]

Table 4. Cat(m)(Dn, q, t):

n = 2,m = 1 [3] + qt[1]
m = 2 [5] + qt[3] + q2t2[1]
m = 3 [7] + qt[5] + q2t2[3] + q3t3[1]

n = 3,m = 1 [7] + qt[4] + qt[3]
m = 2 [13] + qt[10] + qt[9] + q2t2[7] + q2t2[6] + q2t2[5] + q3t3[4] + q4t4[1]
m = 3 [19] + qt[16] + qt[15] + q2t2[13] + q2t2[12] + q3t3[10] + q2t2[11]+

q3t3[9] + q4t4[7] + q3t3[8] + q4t4[6] + q5t5[4] + q3t3[7] + q5t5[3]

n = 4,m = 1 [13] + 2qt[9] + qt[7] + 2q2t2[5] + q4t4[1] + q3t3[1]
m = 2 [25] + 2qt[21] + qt[19] + 3q2t2[17] + 2q2t2[15]+

4q3t3[13] + q2t2[13] + 2q3t3[11] + 5q4t4[9]+
q5t5[7] + 2q6t6[5] + q8t8[1] + q4t4[7]+
2q5t5[5] + q7t7[1] + q6t6[1]

Table 5. Cat(1)(W, q, t) for some complex reflection groups:

G(3, 1, 2) : q7 + q5t+ q3t2 + q2t+ qt3 + t5

G(4, 1, 2) : q10 + q7t+ q4t2 + q3t+ qt3 + t6

G(6, 1, 2) : q16 + q11t+ q6t2 + q5t+ qt3 + t8

G(3, 2, 2) : q7 + q5t+ q3t2 + q2t+ qt3 + t5

G(4, 2, 2) : q6 + q4t2 + 2q3t+ q2t4 + 2qt3 + t6

G(6, 2, 2) : q10 + q6t2 + 2q5t+ q3t5 + q2t4 + qt3 + t8
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A.2. Computations of Cat(m)(W, q)

For the computations of the the q-Fuß-Catalan numbers defined in Section 2.4, we
used the programming language GAP [53]. For simplicity, we list only the coefficients of
the polynomials, e.g. 1 + 2q + q2 + q3 + q4 is listed as 1, 2, 1, 1, 1.

Table 6. List of the coefficients of Cat(m)(WBn , q):

n = 2,m = 1 1, 2, 1, 1, 1
m = 2 1, 2, 3, 2, 2, 2, 1, 1, 1
m = 3 1, 2, 3, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1

n = 3,m = 1 1, 3, 3, 3, 3, 2, 2, 1, 1, 1
m = 2 1, 3, 6, 7, 8, 8, 8, 7, 7, 6, 5, 4, 4, 3, 2, 2, 1, 1, 1
m = 3 1, 3, 6, 10, 12, 14, 15, 15, 15, 15, 14, 13, 13, 11, 10, 9, 8, 7, 6, 5, 4, 4,

3, 2, 2, 1, 1, 1
n = 4,m = 1 1, 4, 6, 7, 8, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1

m = 2 1, 4, 10, 16, 22, 26, 30, 31, 32, 32, 31, 29, 28, 26, 24, 22, 20, 18, 16, 14,
12, 10, 9, 7, 6, 5, 4, 3, 2, 2, 1, 1, 1

m = 3 1, 4, 10, 20, 31, 43, 54, 63, 71, 77, 81, 83, 85, 84, 83, 81, 78, 75, 72, 68,
64, 61, 57, 53, 49, 45, 41, 38, 34, 30, 27, 24, 21, 19, 16, 14, 12, 10, 9, 7,
6, 5, 4, 3, 2, 2, 1, 1, 1

n = 5,m = 1 1, 5, 10, 14, 18, 19, 20, 20, 18, 18, 17, 15, 13, 12, 10, 9, 8, 6, 5, 4, 3,
2, 2, 1, 1, 1

m = 2 1, 5, 15, 30, 49, 68, 88, 104, 118, 128, 136, 139, 141, 140, 139, 134, 131,
126, 120, 114, 108, 100, 94, 87, 80, 74, 68, 61, 55, 50, 44, 39, 35, 30,
26, 23, 19, 16, 14, 11, 10, 8, 6, 5, 4, 3, 2, 2, 1, 1, 1

m = 3 1, 5, 15, 35, 65, 105, 152, 202, 254, 304, 351, 392, 429, 458, 482, 500, 511,
518, 521, 519, 514, 508, 498, 488, 476, 461, 446, 431, 413, 396, 378, 359,
341, 324, 305, 288, 271, 253, 237, 221, 205, 190, 176, 161, 148, 136, 123,
112, 102, 91, 82, 74, 65, 58, 52, 45, 40, 35, 30, 26, 23, 19, 16, 14, 11, 10,
8, 6, 5, 4, 3, 2, 2, 1, 1, 1

Table 7. List of the coefficients of Cat(m)(WDn , q):

n = 4,m = 1 1, 4, 6, 7, 7, 6, 6, 4, 3, 3, 1, 1, 1
m = 2 1, 4, 10, 16, 22, 25, 28, 28, 28, 27, 25, 22, 21, 16, 14, 13, 9, 7, 7, 4, 3,

3, 1, 1, 1
m = 3 1, 4, 10, 20, 31, 43, 53, 61, 67, 71, 73, 73, 73, 70, 67, 64, 58, 53, 50, 42,

37, 35, 28, 24, 22, 17, 14, 13, 9, 7, 7, 4, 3, 3, 1, 1, 1
n = 5,m = 1 1, 5, 10, 14, 17, 17, 18, 17, 15, 14, 12, 10, 8, 7, 5, 4, 3, 2, 1, 1, 1

m = 2 1, 5, 15, 30, 49, 67, 85, 98, 109, 115, 120, 120, 121, 116, 112, 106, 100,
91, 85, 76, 69, 61, 54, 47, 41, 35, 30, 25, 21, 17, 14, 11, 9, 7, 5, 4, 3, 2,
1, 1, 1

m = 3 1, 5, 15, 35, 65, 105, 151, 199, 247, 291, 331, 363, 391, 410, 425, 435, 439,
438, 436, 426, 414, 402, 385, 367, 349, 329, 308, 289, 267, 247, 228, 208,
189, 173, 155, 140, 125, 111, 98, 87, 76, 66, 57, 49, 42, 36, 30, 25, 21, 17,
14, 11, 9, 7, 5, 4, 3, 2, 1, 1, 1
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Table 8. List of the coefficients of Cat(m)(WG2 , q):

m = 1 1, 2, 1, 1, 1, 1, 1
m = 2 1, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1
m = 3 1, 2, 3, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1
m = 4 1, 2, 3, 4, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1

Table 9. List of the coefficients of Cat(m)(WF4 , q):

m = 1 1, 4, 6, 7, 8, 7, 8, 7, 7, 7, 6, 5, 5, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1
m = 2 1, 4, 10, 16, 22, 26, 30, 31, 33, 33, 34, 33, 34, 33, 32, 31, 30, 29, 28 25,

24, 23, 22, 20, 18, 17, 17, 15, 13, 12, 11, 10, 9, 8, 7, 6, 6, 5, 4, 3, 3,
3, 2, 2, 1, 1, 1, 1, 1

m = 3 1, 4, 10, 20, 31, 43, 54, 63, 71, 77, 82, 84, 88, 88, 90, 90, 91, 90, 90, 88,
87, 86, 84, 80, 79, 76, 74, 71, 67, 64, 63, 60, 56, 53, 51, 49, 46, 43, 40,
39, 36, 33, 31, 29, 27, 25, 23, 21, 19, 18, 17, 15, 13, 12, 11, 10, 9, 8, 7,
6, 6, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1

Table 10. List of the coefficients of Cat(m)(WE6 , q):

m = 1 1, 6, 15, 25, 35, 41, 46, 50, 50, 51, 50, 49, 45, 44, 40, 38, 34,
31, 27, 25, 22, 19, 16, 14, 12, 10, 8, 7, 6, 4, 3, 3, 2, 1, 1, 1, 1

m = 2 1, 6, 21, 50, 95, 151, 216, 281, 345, 400, 451, 491, 528, 553, 575,
587, 598, 598, 599, 590, 583, 568, 555, 535, 518, 496, 477, 452, 431,
406, 385, 360, 339, 315, 294, 272, 253, 232, 213, 195, 180, 162, 147,
133, 121, 107, 96, 86, 77, 67, 59, 52, 46, 39, 33, 29, 26, 21, 17, 15,
13, 10, 8, 7, 6, 4, 3, 3, 2, 1, 1, 1, 1

Table 11. List of the coefficients of Cat(m)(WE7 , q):

m = 1 1, 7, 21, 41, 65, 87, 106, 124, 135, 145, 152, 157, 159, 160, 159,
158, 156, 151, 147, 142, 138, 132, 126, 119, 114, 108, 101, 95, 90,
83, 77, 72, 66, 61, 56, 51, 47, 43, 38, 34, 31, 28, 25, 22, 19, 17,
15, 13, 11, 10, 8, 7, 6, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1

Table 12. List of the coefficients of Cat(m)(WE8 , q):

m = 1 1, 8, 28, 63, 112, 168, 224, 281, 330, 373, 411, 442, 469, 489, 507, 520,
534, 539, 546, 547, 551, 550, 550, 544, 542, 536, 531, 523, 518, 508, 499,
490, 481, 470, 460, 449, 439, 428, 416, 404, 393, 382, 370, 359, 347, 335,
324, 313, 301, 291, 279, 268, 258, 248, 237, 227, 217, 207, 198, 189, 179,
171, 163, 155, 147, 139, 131, 124, 118, 111, 104, 98, 92, 87, 82, 76, 71,
66, 62, 58, 54, 50, 46, 43, 40, 37, 34, 31, 28, 26, 24, 22, 20, 18, 17, 15,
14, 12, 11, 10, 9, 8, 7, 6, 5, 5, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1
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numbers, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 198 (1989), 171–199.
74. , Permutations with restricted patterns and Dyck paths, Adv. in Appl. Math. 27 (2001),

510–530.
75. A. Lascoux and M.-P. Schützenberger, Sur une conjecture de H.O. Foulkes, C. R. Math. Acad.

Sci., Paris 286 (1978), 323–324.
76. G.I. Lehrer and J. Michel, Invariant theory and eigenspaces for unitary reflection groups, C. R.

Math. Acad. Sci., Paris 336 (2003), 795–800.
77. G.I. Lehrer and T.A. Springer, Reflection subquotients of unitary reflection groups, Canad. J. Math.

51 (1999), 1175–1193.
78. N.A. Loehr, Conjectured statistics for the higher q, t-Catalan sequences, Electron. J. Combin. 12

(2005).
79. Macaulay 2 – A software system for research in algebraic geometry, available at

http://www.math.uiuc.edu/Macaulay2/.
80. I.G. Macdonald, Symmetric functions and orthogonal polynomials, University Lecture Series, Amer.

Math. Soc. 12 (1998).
81. , Symmetric functions and Hall polynomials, Oxford University Press, Oxford (1999).
82. P.A. MacMahon, Combinatory analysis Vol. 2, Cambridge University Press, London (1960).
83. P. Orlik and L. Solomon, Unitary reflection groups and cohomology, Invent. Math. 59 (1980),

77–94.
84. N. Reading, Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Amer. Math.

Soc. 359 (2007), 5931–5958.



112 BIBLIOGRAPHY

85. A. Reifegerste, On the diagram of 132-avoiding permutations, European J. Combin. 24 (2003),
no. 6, 759–776.

86. E. Reiner, Some applications of the theory of orbit harmonics, PhD thesis, University of California,
San Diego, USA (1993).

87. V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), 195–
222.

88. , personal communication at the University of Vienna, (2008).
89. V. Reiner, D. Stanton, and D. White, The cyclic sieving phenomenon, J. Combin. Theory Ser. A

108 (2004), 17–50.
90. M. Renault, Lost (and found) in translation: André’s actual method and its application to the
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