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We consider an irreducible pair µ≤c ν of probability measures on Rd in con-
vex order. In [BBST25], Backhoff, Beiglböck, Schachermayer and Tschiderer
have shown that the Stretched Brownian Motion from µ to ν is a Bass mar-
tingale, that there exists a dual optimiser ψlim, and the following somewhat
surprising convergence result: by adding affine functions, one can make any
dual optimising sequence (ψn)n (satisfying some minor technical conditions)
converge pointwise to ψlim, save possibly on the relative boundary of the
convex hull of the support of ν. In the present paper we deal with the more
delicate issue of convergence on said boundary, showing in particular that
ψlim is ν a.s. finite, and (ψn)n converges to ψlim in ν-measure.
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1 Introduction

In mathematical finance one can construct several arbitrage-free models which are com-
patible with observed market prices of vanilla options on the spot price S = (St)t∈[0,T ].
In practice, only options with some possible maturities 0 = T0 < T1 < . . . < Tn = T are
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SBM: convergence of dual optimising sequences

traded, whereas to calibrate most models one would need vanilla options prices across
the whole continuum of times t ∈ [0, T ]. This has traditionally been dealt with via
a time-interpolation of the volatility at the unobserved maturities, which can however
introduce instabilities.

A possible and quite recent solution is to consider models which are instead calibrated
to discrete marginals, such as the local variance Gamma model [CN17], the martingale
Schrödinger bridge [HL19], and the Bass local volatility model which, in the continuous-
time limit, converges to the well-known Dupire local volatility model [Dup97].

The Bass local volatility model S arises in a very natural way, as S is the continuous
process such that (St)Ti≤t≤Ti+1 is the martingale diffusion which best interpolates be-
tween the (known!) marginals µi := Law(STi) and µi+1 := Law(STi+1), in the sense that
it is the one which is as close as possible to Brownian Motion [BBHK20]. Since we only
need to restrict our attention to the generic interval [Ti, Ti+1], we assume w.l.o.g. that
Ti = 0, Ti+1 = 1, and write µ, ν for µi, µi+1.

The corresponding optimisation problem, whose solution S has been called Stretched
Brownian Motion (SBM), is the Martingale Benamou-Brenier (MBB) problem, which
was introduced in [BBHK20] using a probabilistic approach and in [HT19] using PDEs,
and had already appeared independently in [Loe18] in the context of market impact in
finance. SBM has been studied in [BBST25, BST23, ST24]. If (µ, ν) is irreducible the
corresponding SBM S is a Bass martingale [BBST25, Theorem 1.3], and thus admits an
explicit construction in terms of a probability α on Rd, and a convex function ψ : Rd →
(−∞,∞]. To calibrate the model one needs to compute such α, which is the solution
to a fixed-point equation and is the minimiser of the so-called Bass functional, and thus
can be computed via a fixed-point iteration scheme and be identified via the gradient
descent for the Bass functional, see [CHL21, AMP23, JLO23, QCYF24, BST23, BPS24].

Since the SBM is defined as the solution to a convex optimisation problem, its study is
carried out also by considering the corresponding dual optimisation problem. The main
result of this paper strengthens the existing results about the convergence of optimising
sequences for such dual optimisation problem, whose solution ψ (which exists if (µ, ν) is
irreducible) is the convex function mentioned above.

Before stating our main result, we now introduce some notations and definitions. Let
P(Rd) be the space of Borel probabilities on Rd, Pp(Rd) be its subspace of probabilities
with finite pth moment, and for p ≥ 1 let Px

p (Rd) be the subspace of all the β ∈ Pp(Rd)

whose barycentre bar(β) :=
󰁕
yβ(dy) equals x ∈ Rd. We assume that µ, ν ∈ P2(Rd), and

denote by Cpl(µ, ν) the set of transports from µ to ν, i.e., the set of probabilities π on Rd×
Rd with marginals µ and ν. Each coupling π ∈ Cpl(µ, ν) can be disintegrated with respect
to µ, i.e. there exists a (µ a.s. unique) kernel (πx)x such that π(dx, dy) = µ(dx)πx(dy),
called the µ-disintegration of π; clearly ν ∈ P2(Rd) implies πx ∈ P2(Rd) for µ a.e. x.
We call π a martingale transport, and (πx)x a martingale kernel, if πx ∈ Px

2 (Rd) holds
µ(dx)-a.e.; we denote with MT (µ, ν) the set of all martingale transports in Cpl(µ, ν). It
follows from no-arbitrage arguments that µ, ν are in convex order µ≤c ν, or equivalently
(by Strassen’s theorem) that there exists a martingale transport π ∈ MT(µ, ν).

By definition the Stretched Brownian Motion M∗ between µ and ν is the unique
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optimiser to the continuous-time optimisation problem

inf
M0∼µ,M1∼v,Mt=M0+

󰁕 t
0 σsdBs

E
󰀗󰁝 1

0
|σt − Id|2HS dt

󰀘
, (1)

where B is a Brownian motion on Rd and | · |HS denotes the Hilbert-Schmidt norm. It
turns out that problem (1) is equivalent to the discrete-time optimisation problem

sup
π∈MT(µ,ν)

󰁝
MCov(πx, γ)µ(dx), (2)

where γ denotes the standard Gaussian law on Rd and

MCov (p1, p2) := sup
q∈Cpl(p1,p2)

󰁝
〈x1, x2〉 q (dx1, dx2) , p1, p2 ∈ P2(Rd)

is the maximal covariance between p1 and p2. Indeed, the unique optimiser πSBM of
eq. (2) is closely related to M∗, and so are the corresponding optimal values; so, πSBM is
also called the Stretched Brownian Motion between µ and ν. To study problems (1),(2)
it is useful to consider the dual optimisation problem

D(µ, ν) := inf
µ(ψ<∞)=1
ψ convex

D(ψ), (3)

where given some π ∈ MT(µ, ν) the functional

D(ψ) :=

󰁝 󰀕󰁝
ψ(y)πx(dy)− ϕψ(x)

󰀖
µ(dx), (4)

is defined for ψ : Rd → (−∞,∞] convex and µ a.s. finite via the auxiliary function

ϕψ(x) := inf
p∈Px

2 (Rd)

󰀕󰁝
ψdp−MCov(p, γ)

󰀖
. (5)

One can check that D(ψ + a) = D(ψ) if a is affine. By taking p = δx in eq. (5) and
applying Jensen’s inequality, we get

−∞ ≤ ϕψ(x) ≤ ψ(x) ∈ R and R ∋ ψ(x) ≤
󰁝

ψ(y)πx(dy) ≤ ∞ for µ a.e. x, (6)

which shows that
󰁕
ψdπx − φψ(x) is well defined and belongs to [0,∞] for µ a.e. x, and

thus D(ψ) is well defined and D(ψ) ∈ [0,∞], and if D(ψ) < ∞ holds then

−∞ < ϕψ(x) ≤
󰁝

ψdπx < ∞ for µ a.e. x. (7)
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We recall that D(µ, ν) does not depend on the choice of π ∈ MT(µ, ν) used in the
definition of D and [BBST25, Theorem 3.3, Lemma 3.7]

sup
π∈MT(µ,ν)

󰁝
MCov(πx, γ)µ(dx) =

󰁝
MCov(πSBM

x , γ)µ(dx) = D(µ, ν) ∈ R. (8)

Denote by C := co (spt (ν)) the closed convex hull of the support spt (ν) of ν, and by
I = ri (C) its relative interior. We define (µ, ν) to be irreducible [BBST25, Def. 1.2]
if for any Borel sets A,B such that µ(A) > 0, ν(B) > 0, there is π ∈ MT(µ, ν) with
π[A × B] > 0; intuitively, this means that π transports positive mass from A to B. In
the rest of this section we assume that (µ, ν) is irreducible. In particular this implies
that πSBM is a Bass martingale [BBST25, Theorem 1.3], the dual problem (3) admits a
lower semicontinuous solution ψlim which satisfies µ(ri (ψ < ∞)) = 1 [BBST25, Theorem
7.6], and this is unique modulo affine functions [BBST25, Definition 7.14, Lemma 7.19].
Moreover, there exists [BBST25, Theorem 7.8 and Propositions 7.13 and 7.20] a dual
optimising sequence ψn ≥ 0, n ∈ N such that supn ψn < +∞ on I and which belongs
to the space Caff

q

󰀃
Rd

󰀄
of continuous test functions which satisfy a convenient quadratic

growth condition defined in [BBST25, Eq. (2.1)], and surprisingly for any such (ψn)n
there exists affine functions (an)n such that the sequence (ψn + an)n (which is also dual
optimising) converges pointwise in I ∪ Cc to ψlim ≥ 0, and I ⊆ {ψlim < ∞} ⊆ C. The
fact that (ψn)n is dual optimising and ψlim a dual optimiser means that

inf
µ(ψ<∞)=1
ψ convex

D(ψ) = lim
n

D(ψn) = D(ψlim). (9)

We can now state our main result, which refines the above convergence results by
considering the behaviour of (ψn)n also on the relative boundary of C, on which ν may
very well put strictly positive mass. We denote with L0(ν) the space of ν-equivalence
classes of real-valued functions on Rd, equipped with the convergence in ν-measure.
Given V ⊆ Rd, the notation K ⋐ V means that K is a compact subset of V .

Theorem 1. Given an irreducible pair µ≤c ν in P2(Rd) define C := co (spt (ν)) and I :=
ri (C). Let (ψn)n be a dual optimising sequence and ψlim a dual optimiser, i.e. ψn,ψlim :
Rd → (−∞,∞], n ∈ N, are convex and µ a.s. finite and such that eq. (9) holds. Assume
w.l.o.g. that (ψn)n are positive and converges pointwise on I ∪ Cc to ψlim ≥ 0, and
ψlim is lower semicontinuous and satisfies µ(ri (ψlim < ∞)) = 1. Then ψlim ∈ L0(ν)
(i.e. ψlim < ∞, ν a.s.), (ψn)n converges to ψlim in L0(ν), and

lim inf
n→∞

ψn(y) ≥ ψlim(y) for all y ∈ Rd. (10)

Moreover, if spt (µ) ⋐ I then ψlim ∈ L1(ν) and (ψn)n converges to ψlim in L1(ν).

2 Proof of Theorem 1

In this section we state some auxiliary results and prove theorem 1. To prove the L1(ν)
convergence in theorem 1 we will need the following approximation lemma, which will
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allow us to replace a kernel concentrated on C = Ī by a kernel concentrated on some
K ⋐ I; note that we know that (ψn)n is converging uniformly on any K ⋐ I.

Lemma 2. Let µ, ν, C, I be as in theorem 1, and π ∈ MT(µ, ν) have µ-disintegration
(πx)x∈I , so that πx ∈ Px

2 (Rd) and spt (πx) ⊆ C for µ a.e.. Then there exists an increasing
sequence of compact convex sets (Kj)j ⊆ I and a sequence of kernels ((πj

x)x∈I)j such

that ∪jK
j = I, Kj ⊆ ri

󰀃
Kj+1

󰀄
, πj

x ∈ Px
2 (Rd) for j ∈ N and µ a.e. x ∈ I, and:

1. spt
󰀓
πj
x

󰀔
⊆ Kj for µ a.e. x ∈ Kj, and πj

x = δx for µ a.e. x ∈ I \Kj, for all j ∈ N,

2. πj
x≤c π

j+1
x ≤c πx for j ∈ N and µ a.e. x ∈ I,

3. For µ a.e. x ∈ I, as j → ∞ we have W2(π
j
x,πx) → 0 and

0 ≤ MCov
󰀃
πj
x, γ

󰀄
↑ MCov (πx, γ) ≤

󰁝
1

2
󰀂y󰀂2(πx + γ)(dy) ∈ L1(µ(dx)). (11)

To prove the convergence in measure in theorem 1 we will use the statement about
L1(ν) convergence in theorem 1, plus the localisation procedure described in the next
lemma, which is of independent interest; note that an analogous statement holds (with

analogous proof) if µB is replaced by any probability µ′ ≪ µ with bounded density dµ′

dµ .

Lemma 3. Given µ≤c ν in P2(Rd), let πSBM be the Stretched Brownian Motion between
µ and ν and (πSBM

x )x be its µ-disintegration. Given a Borel set B ⊆ Rd with µ(B) > 0,
define

µB :=
µ(B ∩ ·)
µ(B)

, νB :=

󰁝
µB(dx)πSBM

x , πB(dx, dy) := µB(dx)πSBM
x (dy). (12)

Then the Stretched Brownian Motion between µB and νB is πB. Let ψn, n ∈ N be convex
and µ a.s. finite; if (ψn)n∈N is a dual optimising sequence for (µ, ν) then it is a dual
optimising sequence for (µB, νB). Moreover, if (µ, ν) are irreducible then so are (µB, νB)
(equivalently, if πSBM is a Bass martingale then so is πB), νB ∼ ν holds (so in particular
co (spt (νB)) = co (spt (ν))), and the dual optimiser ψlim for (µ, ν) is a dual optimiser for
(µB, νB).

To combine lemmas 2 and 3 we will need the following result.

Lemma 4. Let µ ∈ P(Rd), and µ(Ic) = 0 for some Borel set I ⊆ Rd. Let g, gn, h, hn :
I → R be Borel functions, and (Ij)j∈N be Borel subsets of Rd such that µ(I \ ∪jIj) = 0
and µ(Ij) > 0 for all j. Define µj := µ(Ij ∩ ·)/µ(Ij) ∈ P(Rd). Then:

1. gn → g in L0(µ) if and only if gn → g in L0(µj) for all j ∈ N.

2. Given a martingale kernel (πx)x, define

ν :=
󰁕
µ(dx)πx, νj :=

󰁕
µj(dx)πx ∈ P1(Rd),

then hn → h in L0(ν) if and only if hn → h in L0(νj) for all j ∈ N.
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The proof of lemmas 2 to 4 are postponed to section 3.

Proof of theorem 1. We can assume w.l.o.g. that the affine hull of the support of ν equals
Rd [BBST25, Assumption 3.1 and text that follows], and so I is open. Recall that if
D(ψ) < ∞ then eq. (7) holds, and so ϕψ,

󰁕
ψdπ· ∈ L0(µ); for this reason we assume that

D(ψn) < ∞ for all n, which we can do w.l.o.g. since D(ψn) → D(ψlim) < ∞.

We now prove eq. (10). Assume by contradiction that eq. (10) fails at some point y;
clearly y ∈ C \ I, since by assumption (ψn(y))n → ψlim(y) for all y ∈ I ∪ Cc = (C \ I)c.
Choose a x0 ∈ I; by restricting all functions to the segment from y to x0 (i.e. by replacing
Rd ∋ z 󰀁→ f(z) with [0, 1] ∋ t 󰀁→ f(tx0+(1− t)y)) we can assume w.l.o.g. that d = 1, y =
0, x0 = 1, I = (0, a) for some a > 1. We focus on the case ψlim(0) < ∞, and leave the
case ψlim(0) = ∞ to the reader. As we assumed that eq. (10) fails at y, by passing to a
subsequence (without relabelling) we get that 󰂃 := ψlim(0) − limn→∞ ψn(0) > 0 and so
for all big enough n ∈ N

ψn(0) ≤ ψlim(0)−
3󰂃

4
. (13)

Since ψlim is lower semicontinuous, we have ψlim(x) ≥ ψlim(0) − 󰂃
4 for all x ∈ (0, δ) for

some δ ∈ (0, 1). Thus for all x ∈ (0, δ) for all big enough n ≥ N(x) ∈ N we have

ψn (x) ≥ ψlim(0)−
󰂃

2
. (14)

If follows from eqs. (13) and (14) that the slope ψn(x)−ψn(0)
x−0 of ψn between 0 and x is

bounded below by 󰂃
4x . Since ψn is convex, such slope is bounded above by the left-

derivative ψ′
n(x−) of ψn at x, and so 󰂃

4x ≤ ψ′
n(x−) for all n ≥ N(x). From this and

eq. (14), using the convexity of ψn we conclude that

lim inf
n

ψn(1) ≥ lim inf
n

ψn(x) + ψ′
n(x−)(1− x) ≥

󰀓
ψlim(0)−

󰂃

2

󰀔
+

󰂃

4x
(1− x).

Taking limx↓0 gives lim infn ψn(1) = ∞, contradicting ψn(1) → ψlim(1) ∈ R. Thus,
eq. (10) holds.

We now prove that ψlim ∈ L1(ν) if spt (µ) ⋐ I. Let πSBM be the Stretched Brownian
Motion πSBM from µ to ν and (πSBM

x )x be its disintegration with respect to µ. By
[BBST25, Lemma 7.9] and Fatou’s lemma

0 ≤ A :=

󰁝 󰁝
(ψlim(y)− ψlim(x))π

SBM
x (dy)µ(dx) < ∞,

i.e.

󰁕 󰁕
ψlim(y)π

SBM
x (dy)µ(dx) ≤ A+

󰁕 󰁕
(ψlim(x))π

SBM
x (dy)µ(dx),

or equivalently
󰁕
ψlim dν ≤ A+

󰁕
ψlim dµ. So, from the fact that ψlim is continuous and

finite on I, and thus bounded on the compact set spt (µ) ⊆ I, we conclude ψlim ∈ L1(ν).
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We now prove that (ψn)n → ψlim in L1(ν) if spt (µ) ⋐ I. Since ψlim,ψn ≥ 0, we get

0 ≤ (ψn − ψlim)
− ≤ ψlim,

and as eq. (10) is equivalent to (ψn − ψlim)
−(y) → 0 for all y ∈ Rd, since ψlim ∈ L1(ν)

by dominated convergence we conclude that (ψn − ψlim)
− → 0 in L1(ν). Thus, to prove

(ψn)n → ψlim in L1(ν) it suffices to show that
󰁕
ψndν →

󰁕
ψlim dν. Since eq. (10) and

Fatou’s lemma imply that lim infn
󰁕
ψndν ≥

󰁕
ψlimdν, it suffices to show that

lim sup
n

󰁝
ψndν ≤

󰁝
ψlimdν. (15)

Since we assumed that (ψn)n is a dual optimising sequence, i.e.

󰁝
ψndν −

󰁝
ϕψndµ = D(ψn) → D(ψlim) =

󰁝
ψlimdν −

󰁝
ϕψlimdµ, (16)

to prove eq. (15) it remains to show that

lim sup
n

󰁝
ϕψndµ ≤

󰁝
ϕψlimdµ. (17)

For πx := πSBM
x , let Kj ,πj

x be as in lemma 2. Since πj
x ∈ Px

2 (Rd), the definition of ϕψ

gives

ϕψn ≤
󰁝

ψndπ
j
· −MCov(πj

· , γ) µ a.e.. (18)

Since (ψn)n are convex and ψn → ψ < ∞ on I, the convergence ψn → ψ is uniform on
compacts [HUL01, Theorem 3.1.4]. It follows from item 1 of lemma 2 that the support
of νj :=

󰁕
µ(dx)πj

x satisfies spt
󰀃
νj
󰀄
⊆ Kj ∪ spt (µ), and thus it is compact. Thus we get

lim
n

󰁝 󰀕󰁝
ψndπ

j
·

󰀖
dµ = lim

n

󰁝
ψndν

j =

󰁝
ψdνj =

󰁝 󰀕󰁝
ψdπj

·

󰀖
dµ. (19)

Since πj
x≤c πx gives

󰁕 󰀓󰁕
ψdπj

·
󰀔
dµ ≤

󰁕 󰀃󰁕
ψdπ·

󰀄
dµ, integrating eq. (18), taking lim supn

and using eq. (19) we get that

lim sup
n

󰁝
ϕψndµ ≤

󰁝 󰀕󰁝
ψdπ· −MCov(πj

· , γ)

󰀖
dµ. (20)

By dominated convergence it follows from eq. (11) that MCov
󰀓
πj
· , γ

󰀔
→ MCov (π·, γ)

in L1(µ), and so taking limj of eq. (20) we conclude that eq. (17) holds, since πx is
the solution of the minimisation problem (5) for µ a.e. x ∈ I when ψ = ψlim [BBST25,
Section 5, sentence after eq. (5.2)]. We have thus proved that (ψn)n → ψlim ∈ L1(ν) if
spt (µ) is compact.
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We now prove that ψlim ∈ L0(ν) and (ψn)n → ψlim in L0(ν). For πx := πSBM
x , let Kj

be as in lemma 2, and define

µj := µ(·|Kj) :=
µ(Kj ∩ ·)
µ(Kj)

, νj :=

󰁝
µj(dx)π

SBM
x .

For any j ∈ N, by lemma 3 ψlim is a dual optimiser and (ψn)n is a dual optimising
sequence also for (µj , νj). Moreover, (µj , νj) satisfy spt (µj) = Kj ⋐ I = ri (co (spt (νj)))
and νj ∼ ν. Thus from the previously proved statements we get that ψlim ∈ L1(νj), and
so ψlim is finite νj a.s. and so ν a.s. (i.e. ψlim ∈ L0(ν)), and ψn → ψlim in L1(νj), and so
ψn → ψlim in L0(νj), and so by lemma 4 ψn → ψlim in L0(ν).

3 Proofs of lemmas

In this section we first present the proof of lemma 4, and then prove lemmas 2 and 3
with the aid the additional lemmas 5 and 6.

Proof of lemma 4. Item 1 is well known. Let us prove item 2. Let θ ∈ P(Rd) and
(πx)x be a martingale kernel, and define β :=

󰁕
Rd θ(dx)πx. As (hn)n → h in L0(θ) iff

(1{|hn−h|>󰂃})n → 0 in L1(θ) for all 󰂃 > 0, we get that (hn)n → h in L0(β) iff, for all
󰂃 > 0, the sequence

v󰂃n :=

󰁝

Rd

π·(dy)1{|hn(y)−h(y)|>󰂃}, n ∈ N,

converges to 0 in L1(θ), or equivalently (since |v󰂃n| ≤ 1) in L0(θ). Thus item 2 follows from
item 1 applying this fact to θ = µ and then to θ = µj with gn := 1{|hn−h|>󰂃}, g = 0.

Lemma 5. If α,β, ζ ∈ P1(Rd), π1 ∈ MT(α,β), π2 ∈ Cpl(α, ζ), then there exist random
variables A,B,Z such that (A,B) ∼ π1, (A,Z) ∼ π2 and E[B|A,Z] = A.

Proof. One can take (A,B,Z) to be any random vector whose law π is given by

π(da, db, dz) := α(da)π1
a(db)π

2
a(dz), where πi(da, dx) = α(da)πi

a(dx),

i.e. the kernel (πi
a)a denotes the disintegration of πi with respect to α for i = 1, 2.

Lemma 6. If α,β, ζ ∈ P2(Rd) and α≤c β then

〈bar(α), bar(ζ)〉 ≤ MCov (α, ζ) ≤ MCov (β, ζ) ≤
󰁝

1

2
󰀂x󰀂2(β + ζ)(dx) < ∞.

Proof. Fix any π2 ∈ Cpl(α, ζ). By Strassen’s theorem ∃π1 ∈ MT(α,β), so applying
lemma 5 yields (A,B,Z) such that A ∼ α, B ∼ β, Z ∼ ζ and

E〈Z,B〉 = E (E[〈Z,B〉|A,Z]) = E〈Z,E[B|A,Z]〉 = E〈Z,A〉 =
󰁕
π2(da, dz)〈a, z〉,
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which, since π2 ∈ Cpl(α, ζ) was arbitrary, shows that α≤c β implies MCov (α, ζ) ≤
MCov (β, ζ) = MCov (ζ,β), which applied to δbar(α)≤c α and then to δbar(ζ)≤c ζ gives

〈bar(α), bar(ζ)〉 = MCov
󰀃
δbar(α), δbar(ζ)

󰀄
≤ MCov

󰀃
α, δbar(ζ)

󰀄
≤ MCov (α, ζ) .

Finally MCov (β, ζ) ≤ 1
2

󰁕
󰀂x󰀂2(β + ζ)(dx) follows from 2〈x, y〉 ≤ 󰀂x󰀂2 + 󰀂y󰀂2.

Proof of lemma 2. As usual, by restricting to the affine hull of C, we may assume w.l.o.g.
(see [BBST25, Assumption 3.1 and text that follows]) that C has dimension d, i.e. that
I is open. Let Kj denote the intersection of the closed ball of radius j with the set of
x ∈ C whose distance dist(x, Ic) := inf{󰀂x− b󰀂 : b ∈ Ic} from Ic is at least 1/j, i.e.

Kj :=
󰁱
z ∈ C : dist(z, Ic) ≥ 1

j , 󰀂z󰀂 ≤ j
󰁲
. (21)

Then (Kj)j ⊆ I is an increasing sequence of compact convex sets such that ∪jK
j = I

and Kj ⊆ int
󰀃
Kj+1

󰀄
. For x ∈ I let (Mx

t )t∈[0,1] be the Stretched Brownian motion
between δx and πx, and define the stopping times

τ jx := inf
󰀋
t ∈ [0, 1] : Mx

t /∈ Kj
󰀌
∧ 1, j ∈ N.

Note that, for x /∈ Kj , we have τ jx = 0. Since the limit τx of the increasing sequence (τ jx)j
equals 1 a.s. for all x ∈ I [BBST25, Corollary 6.8] and Mx is continuous, we get that
Mx

τ j
→ Mx

1 a.s., and thus also in L2 since Doob’s L2-inequality and Mx
1 ∼ πx ∈ P2(Rd)

imply supt 󰀂Mx
t 󰀂 ∈ L2. Thus the law πj

x of Mx
τ j

converges weakly to the law πx of Mx
1 ,

and its second moment is finite and also converges, i.e. M2(π
j
x) → M2(πx). It follows

[Vil03, Theorem 7.12] that W2(π
j
x,πx) → 0 as j → ∞, and so the identity1

M2(p)− 2MCov(p, q) +M2(q) = W2(p, q), p, q ∈ P2(Rd)

implies MCov
󰀓
πj
x, γ

󰀔
→ MCov (πx, γ) as j → ∞. Since Mx is a martingale we get

πj
x≤c π

j+1
x ≤c πx for all j, so Lemma 6 implies

0 ≤ MCov
󰀃
πj
x, γ

󰀄
≤ MCov

󰀃
πj+1
x , γ

󰀄
≤ MCov (πx, γ) < ∞. (22)

Clearly Mx
τ j

has values in Kj for x ∈ Kj , and Mx
τ j

= x for x ∈ I \ Kj , and so πj
x is

supported in Kj (resp. {x}) for x ∈ Kj (resp. x ∈ I \Kj). Finally, lemma 6 gives

MCov (πx, γ) ≤
󰁝

1

2
󰀂y󰀂2(πx + γ)(dy) =: g(x),

and since ν =
󰁕
µ(dx)πx ∈ P2(Rd) ∋ γ it follows that g ∈ L1(µ).

1This identity follows integrating the formula 󰀂x󰀂2 − 2〈x, y〉 + 󰀂y󰀂2 = 󰀂x − y󰀂2 w.r.t. r(dx, dy) and
taking the infimum over r ∈ Cpl(p, q).
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Lemma 7. Given µ≤c ν in P2(Rd), let πSBM be the Stretched Brownian Motion between
µ and ν and (πSBM

x )x be its µ-disintegration. For any ψ : Rd → (−∞,∞] convex and µ
a.s. finite define

L(ψ)(x) :=

󰁝
ψ(y)πSBM

x (dy)− ϕψ(x), x ∈ Rd.

Then

L(ψ) ≥ MCov(πSBM
· , γ) ≥ 0 µ a.e. (23)

for any such ψ, and (ψn)n is dual optimising (i.e. ψn : Rd → (−∞,∞] is convex and µ
a.s. finite for any n ∈ N, and satisfies eq. (9)) if and only if

󰀂L(ψn)−MCov(πSBM
· , γ)󰀂L1(µ) → 0 as n → ∞. (24)

Proof. The first inequality in eq. (23) follows from the definition of ϕψ (eq. (5)), the
second from lemma 6. By eq. (8) (ψn)n is dual optimising if and only if

D(ψn) =

󰁝
L(ψn)dµ →

󰁝
MCov(πSBM

· , γ)dµ < ∞

which by eq. (23) holds if and only if eq. (24) holds.

Proof of lemma 3. Trivially πB ∈ MT(µB, νB). Choose any π ∈ MT(µB, νB), and let
(πx)x be its µ-disintegration. Define

π̃x :=

󰀫
πx for x ∈ B,

πSBM
x for x ∈ Rd \B.

, π̃(dx, dy) := µ(dx)π̃x(dy).

Notice that π̃(Rd × ·) = ν, and so π̃ ∈ MT(µ, ν). The inequality

󰁝

C
µ(dx)MCov(πSBM

x , γ) ≥
󰁝

C
µ(dx)MCov(π̃x, γ) (25)

holds when C = B: indeed it holds when C = Rd (since π̃ ∈ MT(µ, ν), this follows from
eq. (8)), and it holds with equality when C = Rd \ B (by definition of π̃x). Evaluating
eq. (25) with C = B and dividing by µ(B) we get that

󰁝

Rd

µB(dx)MCov(πSBM
x , γ) ≥

󰁝

Rd

µB(dx)MCov(πx, γ)

and given that π ∈ MT(µB, νB) was arbitrary, it follows that πB is the Stretched Brown-
ian Motion between µB and νB: indeed by [BBST25, Theorem 3.3] the unique maximiser
of π 󰀁→

󰁕
MCov(πx, γ)µ

′(dx) over π ∈ MT(µ′, ν ′) is the Stretched Brownian Motion be-
tween µ′ and ν ′, so the thesis follows taking µ′ = µB, ν ′ = νB.

If eq. (24) holds then it holds with µ replaced by µB, and since the µ-disintegration
(πB

x )x of the Stretched Brownian Motion πB between µB and νB equals the µ-disintegration

10
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(πSBM
x )x of the Stretched Brownian Motion between µ and ν, if (ψn)n is a dual opti-

mising sequence for (µ, ν) then by lemma 7 it is also is a dual optimising sequence for
(µB, νB). In particular, if a dual optimiser ψlim for (µ, ν) exists, then it is also a dual
optimiser for (µB, νB), since ψ is a dual optimiser iff ψn = ψ, n ∈ N is a dual opti-
mising sequence (here an alternative proof: use (πB

x )x = (πSBM
x )x and apply [BBST25,

Definition 7.14, Lemma 7.19]).
By [BBST25, Theorems 1.4 and Remark D.3] two probabilities are irreducible iff there

exists a Bass martingale connecting them, and by [BBST25, Theorem 1.3] the Stretched
Brownian Motion between irreducible measures is a Bass martingale, so the statements
about irreducibility and Bass martingales are equivalent.

To show that they hold, assume that (µ, ν) is irreducible, so πSBM
x ∼ ν for µ a.e. x by

[BBST25, Corollary 7.7]. Since, for any Borel A ⊆ Rd, νB(A) = 0 holds iff πSBM
x (A) = 0

for µB a.e. x, we conclude that νB(A) = 0 iff ν(A) = 0, i.e. νB ∼ ν; thus CB :=
co (spt (νB)) equals C := co (spt (ν)), and [BBST25, Theorem D.1] implies that (µB, νB)
is irreducible. Finally, recall that if (µ, ν) is irreducible, the dual optimiser ψlim exists
[BBST25, Theorem 7.6].
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