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In classical optimal transport, the contributions of Benamou–Brenier and
McCann regarding the time-dependent version of the problem are corner-
stones of the field and form the basis for a variety of applications in other
mathematical areas.

In this article, we characterize solutions to the martingale Benamou–
Brenier problem as Bass martingales, i.e. transformations of Brownian motion
through the gradient of a convex function. Our result is based on a new (static)
Brenier-type theorem for a particular weak martingale optimal transport prob-
lem. As in the classical case, the structure of the primal optimizer is derived
from its dual counterpart, whose derivation forms the technical core of this
article. A key challenge is that dual attainment is a subtle issue in martingale
optimal transport, where dual optimizers may fail to exist, even in highly
regular settings.

1. Introduction. Optimal transport as a field in mathematics goes back to Monge [51] and
Kantorovich [44], who established its modern formulation. The seminal results of Benamou,
Brenier, and McCann [19, 20, 17, 47] form the basis of the modern theory, with striking
applications in a variety of different areas; see the monographs [58, 59, 3, 55].

We are interested in transport problems where the transport plan satisfies an additional mar-
tingale constraint. This additional requirement arises naturally in finance, but is of independent
mathematical interest. For example, there are notable consequences for the study of martingale
inequalities (e.g. [18, 38, 53]) and the Skorokhod embedding problem (e.g. [9, 43, 14]). Early
articles on this topic of martingale optimal transport include [40, 10, 57, 30, 28, 21].

In view of the central role taken by the results of Benamou–Brenier [17] and McCann [49]
on optimal transport for squared (Euclidean) distance, the related continuous-time transport
problem and McCann’s displacement interpolation, it is paramount to search for similar
concepts in the martingale context. This is the main motivation of the present article. Before
describing our results, we briefly recap the classical role models.

1.1. Benamou–Brenier transport problem and McCann interpolation in probabilistic
terms. Given 𝜇, 𝜈 in the space P2(R𝑑) of 𝑑-dimensional distributions with finite second
moment, Brenier’s theorem asserts that if 𝜇 is absolutely continuous, the following are equiv-
alent for a coupling 𝜋 ∈ Cpl(𝜇, 𝜈), i.e., a probability on R𝑑 ×R𝑑 with marginals 𝜇, 𝜈:

(1) 𝜋 minimizes the transport costs with respect to the squared distance between 𝜇 and 𝜈.
(2) 𝜋 is concentrated on the graph of a function 𝑓 : R𝑑 → R𝑑 which is monotone in the sense

that 𝑓 = ∇𝑣 for a convex function 𝑣 : R𝑑 → (−∞,+∞].
Brenier’s theorem gives a structural description of the optimal transport plan for the most
widely used cost function. Another essential consequence of the result is that it provides a
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particularly natural way to move probabilities: it implies that 𝜇 can be transported to 𝜈 via
the gradient of a convex function. In fact, in many applications it is the mere existence of this
monotone transport map that is required, irrespective of its optimality properties.

Ideally, a martingale counterpart of Brenier’s theorem should mimic these aspects. That is,
starting from a natural optimization problem, our goal is to define a natural martingale that
connects the probabilities 𝜇 and 𝜈.

While [12, 39, 31] have proposed martingale versions of Brenier’s monotone transport map
based on static transport problems, our starting point is a continuous formulation in the spirit
of the Benamou–Brenier continuous-time transport problem given in [5, 41].

We first recapitulate the continuous-time formulation of Brenier’s theorem in probabilistic
language. For 𝜇, 𝜈 ∈ P2(R𝑑), consider

(BB) 𝑇2(𝜇, 𝜈) B inf
𝑋0∼𝜇, 𝑋1∼𝜈,
𝑋𝑡=𝑋0+

∫ 𝑡

0 𝑏𝑠 𝑑𝑠

E
[ ∫ 1

0
|𝑏𝑡 |2 𝑑𝑡

]
.

Under the above assumptions, (BB) has a unique optimizer (in law), and the following are
equivalent for a process 𝑋 = (𝑋𝑡 )0⩽𝑡⩽1 with 𝑋0 ∼ 𝜇, 𝑋1 ∼ 𝜈:

(1) 𝑋 solves (BB).
(2) 𝑋1 = 𝑓 (𝑋0), where 𝑓 is the gradient of a convex function 𝑣 : R𝑑 → (−∞,+∞] and all

particles move with constant speed, i.e. 𝑋𝑡 = 𝑋0 + 𝑏𝑡, 𝑡 ∈ [0,1], for the random variable
𝑏 = 𝑋1 − 𝑋0.

In this case, setting 𝜇𝑡 B Law(𝑋𝑡 ), 𝑡 ∈ [0,1], defines McCann’s displacement interpolation
between 𝜇 and 𝜈. This interpolation is time-consistent in the sense that interpolation between
𝜇𝑠 and 𝜇𝑡 , for 0 ⩽ 𝑠 < 𝑡 ⩽ 1, recovers the family (𝜇𝑟 )𝑠⩽𝑟⩽𝑡 up to the obvious affine-time
transformation.

1.2. Martingale optimization problem. Assume that 𝜇, 𝜈 ∈ P2(R𝑑) are in convex order, in
signs 𝜇 ⪯c 𝜈, that is,

∫
𝜙 𝑑𝜇 ⩽

∫
𝜙 𝑑𝜈 for all convex functions 𝜙 : R𝑑 → R with linear growth.

We consider the optimization problem

(MBB) 𝑀𝑇 (𝜇, 𝜈) B inf
𝑀0∼𝜇, 𝑀1∼𝜈,

𝑀𝑡=𝑀0+
∫ 𝑡

0 𝜎𝑠 𝑑𝐵𝑠

E
[ ∫ 1

0
|𝜎𝑡 − 𝐼𝑑 |2HS 𝑑𝑡

]
,

where | · |HS denotes the Hilbert–Schmidt norm. Here the infimum is taken over all fil-
tered probability spaces (Ω,F ,P), with 𝜎 an R𝑑×𝑑-valued F -progressive process and 𝐵

a 𝑑-dimensional F -Brownian motion, such that 𝑀 is a martingale. The stochastic integral∫ 𝑡
0 𝜎𝑠 𝑑𝐵𝑠 is in the Itô sense.

The main result of [5] is that (MBB) admits a unique optimizer 𝑀∗. Moreover, 𝑀∗ is a
continuous strong Markov martingale. While (BB) implies that particles move along straight
lines, the functional in (MBB) stipulates that 𝑀∗ maximizes the correlation with Brownian
motion subject to the given marginal constraints. It is also shown in [5] that 𝑀∗ is the
process whose evolution follows the movement of a Brownian particle as closely as possible
with respect to an adapted Wasserstein distance (see, e.g., [4, 29]) subject to the marginal
conditions 𝑀∗

0 ∼ 𝜇 and 𝑀∗
1 ∼ 𝜈. As in the classical case, setting 𝜇𝑡 B (Law(𝑀∗

𝑡 ))0⩽𝑡⩽1 defines
a time-consistent interpolation between 𝜇 and 𝜈. These properties motivate to interpret (MBB)
as a Martingale Benamou–Brenier problem and to call the martingale 𝑀∗ stretched Brownian
motion between 𝜇 and 𝜈 as in [5].
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1.3. The Bass martingale. Our main result relates the optimality property in the definition
of stretched Brownian motion to a structural description. As motivation we recall a classical
construction of Bass [7] which provides a particularly appealing martingale 𝑀 = (𝑀𝑡 )0⩽𝑡⩽1
that terminates in a fixed measure 𝜈 on the real line and starts at the barycenter of 𝜈. This
amounts to a solution of the Skorokhod embedding problem (modulo time change). Let
(𝐵𝑡 )0⩽𝑡⩽1 be Brownian motion (started in 𝐵0 = 0), let 𝛾 B Law(𝐵1) denote the standard
Gaussian and define 𝑓 : R→ R as the 𝛾-a.e. unique increasing mapping that pushes 𝛾 to 𝜈.
Bass then defines the martingale

(1.1) 𝑀𝑡 B E[ 𝑓 (𝐵1) |𝜎(𝐵𝑠 : 𝑠 ⩽ 𝑡)] = E[ 𝑓 (𝐵1) | 𝐵𝑡 ], 0 ⩽ 𝑡 ⩽ 1,

so that 𝑀0 starts at the barycenter of 𝜈 and Law(𝑀1) = 𝜈.
As we are interested in martingales in multiple dimensions with possibly non-degenerate

starting law 𝜇, we consider the construction of Bass in the following generality:

Definition 1.1. Let 𝐵 = (𝐵𝑡 )0⩽𝑡⩽1 be Brownian motion on R𝑑 , where 𝐵0 ∼ 𝛼 ∈ P(R𝑑),
and let 𝑣 : R𝑑 → R be convex such that ∇𝑣(𝐵1) is square-integrable. Then we call

𝑀𝑡 B E[∇𝑣(𝐵1) |𝜎(𝐵𝑠 : 𝑠 ⩽ 𝑡)] = E[∇𝑣(𝐵1) | 𝐵𝑡 ], 0 ⩽ 𝑡 ⩽ 1

a Bass martingale from 𝜇 B Law(𝑀0) to 𝜈 B Law(𝑀1).

The question arises under which conditions on 𝜇, 𝜈 ∈ P2(R𝑑) there is a Bass martingale 𝑀
from 𝜇 to 𝜈, i.e. satisfying 𝑀0 ∼ 𝜇 and 𝑀1 ∼ 𝜈, for 𝜇 and 𝜈 prescribed in advance?

1.4. Structure of stretched Brownian motion. We need a connectivity assumption on the
marginals, known under the name of irreducibility in the martingale transport literature.

Definition 1.2. For 𝜇, 𝜈 ∈ P(R𝑑) we say that the pair (𝜇, 𝜈) is irreducible if for all
measurable sets 𝐴, 𝐵 ⊆ R𝑑 with 𝜇(𝐴), 𝜈(𝐵) > 0 there is a martingale 𝑋 = (𝑋𝑡 )0⩽𝑡⩽1 with
𝑋0 ∼ 𝜇, 𝑋1 ∼ 𝜈 such that P(𝑋0 ∈ 𝐴, 𝑋1 ∈ 𝐵) > 0.

With this definition in hand, we can announce our first main result.

Theorem 1.3. Let 𝜇 ⪯c 𝜈 be probabilities on R𝑑 with finite second moments and suppose
that (𝜇, 𝜈) is irreducible. Then the following are equivalent for a martingale 𝑀 = (𝑀𝑡 )0⩽𝑡⩽1
with 𝑀0 ∼ 𝜇 and 𝑀1 ∼ 𝜈:

(1) 𝑀 is stretched Brownian motion, i.e. the optimizer of (MBB).
(2) 𝑀 is a Bass martingale.

We briefly provide some context for the irreducibility assumption in Theorem 1.3. In
classical optimal transport, the product coupling of the marginals guarantees that mass can
be transported from an arbitrary starting position to an arbitrary target position. However,
this is not necessarily true in the case of martingale transport where it may happen that R𝑑
decomposes into disjoint (convex) regions that do not communicate with each other. The
irreducibility assumption excludes this, as it guarantees that for any sets 𝐴 and 𝐵 that are
charged by 𝜇 and 𝜈, respectively, there exists a martingale 𝑋 connecting them (in the sense that
P(𝑋0 ∈ 𝐴, 𝑋1 ∈ 𝐵) > 0). For 𝑑 > 1, the appearance of more than one irreducible component
leads to intricate phenomena, analyzed in the remarkable contributions [31, 27, 52]. This
problem is revisited in the follow-up paper [56] in terms of Bass martingales. For equivalent
characterizations of the irreducibility assumption we refer to Theorem D.1 in Appendix D. In
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particular, it is equivalent to consider continuous- or discrete-time martingales in Definition
1.2.

We emphasize that irreducibility is not only a sufficient assumption for Theorem 1.3, but
it is in fact necessary. Indeed, the Bass martingale connects any two sets which are charged
by 𝜇 and 𝜈, see Remark D.3 in Appendix D. In particular, if there is a Bass martingale from
𝜇 to 𝜈, then (𝜇, 𝜈) is irreducible.

An important consequence of Theorem 1.3 is that for any irreducible pair 𝜇 ⪯c 𝜈 there
exists a unique Bass martingale

(1.2) 𝑀𝑡 = E[∇𝑣(𝐵1) |𝜎(𝐵𝑠 : 𝑠 ⩽ 𝑡)] = E[∇𝑣(𝐵1) | 𝐵𝑡 ], 0 ⩽ 𝑡 ⩽ 1,

with 𝑀0 ∼ 𝜇, 𝑀1 ∼ 𝜈 and it is worthwhile to comment on the properties of 𝑀 . We write
𝛾𝑡 for the 𝑑-dimensional centered Gaussian distribution with covariance matrix 𝑡 𝐼𝑑 and
𝑣𝑡 B 𝑣 ∗ 𝛾1−𝑡 : R𝑑 → R for the convolution of the function 𝑣 and the measure 𝛾1−𝑡 . In these
terms, (1.2) amounts to

(1.3) 𝑀𝑡 = ∇𝑣𝑡 (𝐵𝑡 ), 0 ⩽ 𝑡 ⩽ 1,

which emphasizes that the Bass martingale is obtained as a monotone transformation of
Brownian motion at each time point. Finally, as a Brownian martingale, 𝑀 is a diffusion
which connects 𝜇 and 𝜈. Indeed, applying Itô’s formula to (1.3) we obtain

𝑑𝑀𝑡 = ∇2𝑣𝑡 ◦ ∇𝑣∗𝑡 (𝑀𝑡 ) 𝑑𝐵𝑡 , 0 ⩽ 𝑡 ⩽ 1,

where 𝑣∗𝑡 denotes the convex conjugate of 𝑣𝑡 .

McCann [48] managed to extend the validity of Brenier’s theorem: using Aleksandrov’s
lemma he showed that the Brenier map is well defined without any moment assumptions. We
leave the question of whether a similar extension is possible in the case of Bass martingales
for future research.

Finally, we note that the implication “(2) ⇒ (1)” is comparably easy and follows from [5,
Theorem 1.10]. We will establish the reverse implication that every optimizer of (MBB) is a
Bass martingale, based on a duality result, which we describe in the next section.

1.5. Weak transport formulation and dual viewpoint. Our arguments rely on a novel dual
viewpoint on stretched Brownian motion, which is in turn based on a reformulation of problem
(MBB) as a weak transport problem.

In classical transport, minimization of the squared distance is equivalent to maximization
of correlation and the latter formulation yields a dual problem which is simpler to interpret.
A similar fact holds true in the present martingale setting: problem (MBB) is equivalent to
maximizing the covariance with Brownian motion

(1.4) 𝑃(𝜇, 𝜈) B sup
𝑀0∼𝜇, 𝑀1∼𝜈,

𝑀𝑡=𝑀0+
∫ 𝑡

0 𝜎𝑠 𝑑𝐵𝑠

E
[ ∫ 1

0
tr(𝜎𝑡 ) 𝑑𝑡

]
,

in the sense that both problems have the same optimizer and the values are related via
𝑀𝑇 (𝜇, 𝜈) = 𝑑 +

∫
|𝑦 |2 𝑑𝜈(𝑦) −

∫
|𝑥 |2 𝑑𝜇(𝑥) − 2𝑃(𝜇, 𝜈).

We go on to reformulate (1.4) as a weak (martingale) transport problem in the sense of
[35]. Indeed

(1.5) 𝑃(𝜇, 𝜈) = sup
𝜋∈MT(𝜇,𝜈)

∫
MCov(𝜋𝑥 , 𝛾) 𝜇(𝑑𝑥),
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where the maximal covariance (MCov) between 𝑝1, 𝑝2 ∈ P2(R𝑑) is defined as

MCov(𝑝1, 𝑝2) B sup
𝑞∈Cpl(𝑝1, 𝑝2 )

∫
⟨𝑥1, 𝑥2⟩ 𝑞(𝑑𝑥1, 𝑑𝑥2).

The optimization problem (1.5) is a weak martingale optimal transport problem since the
function 𝜋 ↦→

∫
MCov(𝜋𝑥 , 𝛾) 𝜇(𝑑𝑥) is non-linear, as opposed to classical optimal transport,

where linear problems of the form 𝜋 ↦→
∫
𝑐(𝑥, 𝑦) 𝜋(𝑑𝑥, 𝑑𝑦) are studied.

The equality (1.5) was established in [5, Theorem 2.2]. Furthermore, there exists a unique
optimizer 𝜋SBM ∈ MT(𝜇, 𝜈) of (1.5) and if (𝑀𝑡 )0⩽𝑡⩽1 is the stretched Brownian motion from
𝜇 to 𝜈, then the law of (𝑀0, 𝑀1) equals 𝜋SBM. Indeed, the discrete-time formulation (1.5)
will play a central role in this paper. In particular, it will be the basis for the following duality
result, which implies the difficult implication “(1) ⇒ (2)” in Theorem 1.3.

Theorem 1.4. Assume that 𝜇, 𝜈 ∈ P2(R𝑑) are in convex order. The value 𝑃(𝜇, 𝜈) of the
continuous-time optimization problem (1.4) is equal to

(1.6) 𝐷 (𝜇, 𝜈) B inf
𝜓∈𝐿1 (𝜈) ,
𝜓 convex

( ∫
𝜓 𝑑𝜈 −

∫
(𝜓∗ ∗ 𝛾)∗ 𝑑𝜇

)
.

The infimum is attained by a lower semicontinuous convex function 𝜓opt : R𝑑 → (−∞,+∞]
satisfying 𝜇(ri(dom𝜓opt)) = 1 if and only if (𝜇, 𝜈) is irreducible. In this case the (unique)
optimizer to (MBB) is given by the Bass martingale

𝑀𝑡 B E[∇𝑣(𝐵1) |𝜎(𝐵𝑠 : 𝑠 ⩽ 𝑡)] = E[∇𝑣(𝐵1) | 𝐵𝑡 ], 0 ⩽ 𝑡 ⩽ 1,
where 𝑣 = 𝜓∗

opt and 𝐵0 ∼ ∇(𝜓∗
opt ∗ 𝛾)∗(𝜇).

Here, ri(dom𝜓opt) denotes the relative interior of the domain of 𝜓opt, i.e. the set on which
𝜓opt is finite. The symbol ∗ used as a superscript denotes the convex conjugate of a function,
otherwise it is the standard convolution operator.

It turns out that the optimizer 𝜓opt is not necessarily 𝜈-integrable. Therefore, in order for the
difference of the integrals in (1.6) to be well defined for 𝜓 = 𝜓opt, attainment of 𝐷 (𝜇, 𝜈) has to
be understood in a “relaxed” sense frequently encountered in martingale transport problems;
see [12, 14, 15] and Propositions 4.1, 4.2 below.

Note that, since the primal optimizer 𝜋SBM equals the law of (𝑀0, 𝑀1), Theorem 1.4
describes the optimizer of the static weak martingale transport problem (1.5) in terms of the
gradient of a convex function, which originates from its dual problem (1.6). More precisely,
we have

𝜋SBM = Law
(
(∇𝑣 ∗ 𝛾) (𝐵0),∇𝑣(𝐵1)

)
.

This is analogous to the classical Brenier theorem and hence one might view Theorem 1.4 as
a Brenier-type theorem for weak martingale transport.

We emphasize that while Brenier’s theorem is a direct consequence of attainment for the
dual transport problem (which is now well understood), the situation is more delicate in case
of Theorem 1.4. The main reason is that dual attainment for martingale transport can fail even
in very regular settings, e.g. for Lipschitz costs and compactly supported measures on the
real line, see [10, Section 4.3]. Positive results are only available for 𝑑 = 1 and under strong
assumptions [12, 13, 15]. In addition, the duality theory for weak optimal transport is known
to be significantly more complicated than its classical counterpart. Specifically first results for
dual attainment have appeared only recently [16] and are not applicable to weak martingale
transport problems. Accordingly, the technical core of our work is to establish dual attainment
in the framework of Theorem 1.4.
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1.6. Bass martingales for specific marginals. Theorem 1.3 is only an existence result,
which does not provide an explicit Bass martingale connecting the given marginals. This is
parallel to the situation in optimal transport, where the question to numerically approximate
optimal transport plans has generated enormous interest. Already in dimension one, the
problem to explicitly determine Bass martingales is non-trivial (as well as highly important
for financial applications). Here [25] gives an efficient iteration algorithm. See [1] for a
rigorous proof of the algorithm’s linear convergence and [42] for a multi-dimensional variant
of the algorithm.

On the other hand (as in the case of Brenier’s theorem), one can easily generate examples
of Bass martingales by specifying a convex function 𝑣 and the starting distribution of 𝐵0. We
give here one such example that also serves to illustrate some of the intricacies related to irre-
ducible decompositions. Fix parameters 𝜌, 𝑘 > 0 and consider the radially symmetric function
𝑣(𝑥, 𝑦) = ℎ( | (𝑥, 𝑦) |), where ℎ is continuous and piecewise affine with slope 1/2 on [0, 𝑘], slope
8/5 on [𝑘,∞), and ℎ(0) = 0. We consider the Bass martingale 𝑀𝑡 = E[∇𝑣(𝐵1) | F𝑡 ], where 𝐵0
is uniformly distributed on the centered circle with radius 𝜌. Then ∇𝑣(𝑥) = 𝑥

2 |𝑥 | , |𝑥 | ∈ (0, 𝑘)
and ∇𝑣(𝑥) = 8𝑥

5 |𝑥 | , |𝑥 | ∈ (𝑘,∞), from which it follows easily that 𝑀 terminates on either the
circle with radius 1/2 or the circle with radius 8/5 and that 𝑀 starts uniformly distributed on
some centered circle. Specifying 𝜌 = 3, 𝑘 = 3.17, we find (numerically) that 𝑀0 is uniformly
distributed on the unit circle, while 𝑀1 charges the circles with radius 1/2 and 8/5 equally,
see Figures 1 and 2.

Fig 1. Sample paths of 𝑀 , different starting values. Fig 2. Sample paths of 𝑀 , identical starting value.

Setting 𝜇 = Law𝑀0, 𝜈 = Law𝑀1, we have, of course, P((𝑀0, 𝑀1) ∈ 𝐴 × 𝐵) > 0 whenever
𝜇(𝐴), 𝜈(𝐵) > 0.

Notably this is not the case for every martingale 𝑀 starting in 𝜇 and terminating in
𝜈. Specifically we may consider martingales that move only along the (violet) segments
indicated in Figure 3, we refer to [56, Example 6.2] for a detailed justification of this claim.

This example illustrates that even if (𝜇, 𝜈) is irreducible, there can be martingales which
are entirely confined to smaller subpartitions. This phenomenon cannot appear in the trivial
case 𝑑 = 1, see [12, Appendix A], a fact that is heavily exploited in dual attainment results for
martingale transport in 𝑑 = 1. On the other hand, we believe that the existence of martingales
confined to smaller subpartitions present a significant obstacle to general dual attainment
results for martingale transport (and weak martingale transport) for 𝑑 ⩾ 2.
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Fig 3. There is a martingale which starts uniformly distributed on the middle circle (𝑟 = 1), terminates with equal
probability on the inner circle (𝑟 = 1/2) or outer circle (𝑟 = 8/5), and moves only on the violet line segments. The
angle between the segments and the middle circle is chosen so that the lengths to the inner and outer circle are
equal.

1.7. Literature. The first article that provides structural results for the martingale trans-
port problem in general dimensions is the work [31] of Ghoussoub–Kim–Lim. They obtain
descriptions for the minimizers and maximizers for the cost function 𝑐(𝑥, 𝑦) = |𝑥 − 𝑦 |, when
marginals are supported on R2, as well as for marginals on higher-dimensional state spaces
that are in subharmonic order. Given a specific martingale 𝑋 , Ghoussoub–Kim–Lim also
define a finest paving of the source space into cells that are invariant under the martingale 𝑋 .

The contributions of De March–Touzi [27] and Obłój–Siorpaes [52] put the theme of
irreducible decompositions center stage. In contrast to the work of Ghoussoub–Kim–Lim,
their interest lies in pavings that are invariant under all martingales which start in 𝜇 and
terminate in 𝜈. Specifically it is shown in [27] that there exists a unique finest paving with
this property. This De March–Touzi paving is revisited in the follow-up paper [56], where it
is characterized in terms of Bass martingales. While the Ghoussoub–Kim–Lim paving and
the De March–Touzi paving agree for 𝑑 = 1, they can be different for 𝑑 ⩾ 2, as discussed in
the previous section. The interested reader is referred to Ciosmak’s works [24, 23], where a
more general notion of irreducibility (going beyond martingale transports) is studied.

Huesmann–Trevisan [41] investigate Benamou–Brenier-type formulations for the martin-
gale transport problem on R𝑑 . In particular, they provide equivalent PDE-formulations and
establish existence and duality results. In the context of market impact in finance Loeper [46]
arrives independently to problem (MBB).

For further contributions to the martingale transport in continuous time, we mention
[28, 11, 26, 33, 37, 32, 22, 36] among many others.

Finally, [5] is a predecessor of the present article in which it is established that the martin-
gale transport problem (MBB) admits a unique solution, solves further related optimization
problems and has properties of time consistency in the spirit of classical optimal transport
for the squared distance cost function. Furthermore, the counterpart of our main result is
established in dimension one (without reference to duality). As discussed in length above,
the main difficulty in higher dimensions stems from the subtleties surrounding the concept of
irreducible component.
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1.8. Structure of the paper. In Section 2 we introduce some definitions and frequently
used notation. Duality results for stretched Brownian motion and the important role of con-
vexity are discussed in Section 3. The proof of the first part of Theorem 1.4, namely that
there is no duality gap between the primal problem (1.4) and the dual problem (1.6), is given
in Section 4. In Section 5 we outline and prepare the proof of the second part of Theorem
1.4, which gives a necessary and sufficient condition for dual attainment in terms of the
irreducibility assumption. To this end, we analyze the connection between the existence of
dual optimizers and Bass martingales, which is the content of Section 6. In Section 7 we
show that the irreducibility assumption implies the existence of a dual optimizer. After these
preparations we are in a position to prove Theorem 1.3 in Subsection 7.4 and complete the
proof of Theorem 1.4 in Subsection 7.5.

In Appendix A we prove Theorem 3.3, which shows that there is no duality gap between
the auxiliary optimization problems (1.5) and (3.1). The rather technical proofs of Lemmas
4.4, 5.1, 6.2, 6.4 and 6.5 are collected in Appendix B. In Appendix C we provide the proof of
Proposition 7.20, a result which will be of crucial importance in the follow-up paper [56] on
the non-irreducible case, but which also seems of independent interest. Finally, in Appendix
D we give equivalent characterizations of irreducibility, as introduced in Definition 1.2.
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In response to the thoughtful suggestions of a diligent referee, we provide in Figure 4
an overview of the logical structure of our paper. This is intended to help readers navigate
the dependencies between the results of this work, as well as the related literature, more
effectively.

Theorem 1.3

Theorem 1.4

Proposition 4.1

Proposition 7.22

Theorem 3.3 Proposition 3.5

Theorem 1.3

Corollary 7.7 Theorem 1.10 of [5]Theorem 2.2 of [5]
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Theorem 6.6
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Fig 4. Dependencies between results.
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2. Definitions and notation.

• We write P(R𝑑) for the probability measures on R𝑑 , P𝑝 (R𝑑) for the subset of proba-
bility measures satisfying

∫
|𝑥 |𝑝 𝑑𝜇 < +∞, and P𝑥

𝑝 (R𝑑) for the elements of P𝑝 (R𝑑) with
barycenter 𝑥 ∈ R𝑑 , for 𝑝 ∈ [1,+∞).

• For 𝜇, 𝜈 ∈ P(R𝑑), we denote by Cpl(𝜇, 𝜈) the set of all couplings 𝜋 ∈ P(R𝑑 ×R𝑑) between
𝜇 and 𝜈, i.e., probability measures 𝜋 on R𝑑 ×R𝑑 with first marginal 𝜇 and second marginal
𝜈.

• We say that 𝜇 ∈ P1(R𝑑) is dominated by 𝜈 ∈ P1(R𝑑) in convex order and write 𝜇 ⪯c 𝜈, if
for all convex functions 𝜙 : R𝑑 → R with linear growth we have

∫
𝜙 𝑑𝜇 ⩽

∫
𝜙 𝑑𝜈.

• For 𝜇, 𝜈 ∈ P1(R𝑑) with 𝜇 ⪯c 𝜈 we define the collection of martingale transports MT(𝜇, 𝜈)
as those couplings 𝜋 ∈ Cpl(𝜇, 𝜈) satisfying bary(𝜋𝑥) B

∫
𝑦 𝜋𝑥 (𝑑𝑦) = 𝑥, for 𝜇-a.e. 𝑥 ∈ R𝑑 .

Here, the family of probability measures {𝜋𝑥}𝑥∈R𝑑 ⊆ P(R𝑑) is obtained by disintegrating
the coupling 𝜋 with respect to its first marginal 𝜇, i.e., 𝜋(𝑑𝑥, 𝑑𝑦) = 𝜋𝑥 (𝑑𝑦) 𝜇(𝑑𝑥).

• The 𝑑-dimensional Gaussian distribution with barycenter 𝑥 ∈ R𝑑 and covariance matrix
𝑡 𝐼𝑑 is denoted by 𝛾𝑡𝑥 and we set 𝛾𝑡 B 𝛾𝑡0, 𝛾𝑥 B 𝛾1

𝑥 as well as 𝛾 B 𝛾0.
• We denote by 𝐶q(R𝑑) the set of continuous functions 𝜓 : R𝑑 → R with quadratic growth,

meaning that there are constants 𝑎, 𝑘, ℓ ∈ R with

ℓ + | · |2
2 ⩽ 𝜓( · ) ⩽ 𝑎 + 𝑘 | · |

2.

We also introduce the set

(2.1) 𝐶aff
q (R𝑑) B

{
𝜓( · ) + aff( · ) : 𝜓 ∈ 𝐶q(R𝑑), aff : R𝑑 → R affine

}
.

• The pushforward of a measure 𝜇 under a function 𝑓 is denoted by 𝑓 (𝜇).
• For two measures 𝜚 and 𝜌 we write 𝜚 ∗ 𝜌 for their convolution. If 𝑓 is a function, the

convolution of 𝑓 and 𝜌 is defined as

( 𝑓 ∗ 𝜌) (𝑥) B
∫

𝑓 (𝑥 − 𝑦) 𝜌(𝑑𝑦).

In particular, ( 𝑓 ∗ 𝛾) (𝑥) =
∫
𝑓 (𝑥 + 𝑦) 𝛾(𝑑𝑦).

• For a function 𝑓 : R𝑑 → (−∞,+∞], its convex conjugate is given by

𝑓 ∗(𝑦) B sup
𝑥∈R𝑑

(
⟨𝑥, 𝑦⟩ − 𝑓 (𝑥)

)
and we write

dom 𝑓 B {𝑥 ∈ R𝑑 : 𝑓 (𝑥) < +∞}

for the domain of 𝑓 . If 𝑓 is convex and dom 𝑓 ≠ ∅, we say that 𝑓 is a proper convex
function. If 𝑓 is additionally lower semicontinuous, then 𝑓 = 𝑓 ∗∗ by the Fenchel–Moreau
theorem, a fact that we will use repeatedly in this work.

• The operators int and ri denote the interior and relative interior of a set, respectively. We
write 𝐴 for the closure of a set 𝐴 ⊆ R𝑑 .

• The operator conv applied to a function or a set denotes the convex hull. The convex hull
conv𝜓 of a function 𝜓 is the greatest convex function smaller or equal to 𝜓.

• The support and the closed convex hull of the support of a measure 𝜌 are denoted by
supp(𝜌) and ŝupp(𝜌), respectively.

• The symbol 𝜕, applied to a convex function, denotes its subdifferential or — by abuse of
notation — also a subgradient.



BASS MARTINGALES AND MARTINGALE BENAMOU–BRENIER 11

3. Duality for stretched Brownian motion. We fix 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈. Recall
from (1.5) that our main focus will lie on the (primal) weak martingale transport problem

𝑃(𝜇, 𝜈) B sup
𝜋∈MT(𝜇,𝜈)

∫
MCov(𝜋𝑥 , 𝛾) 𝜇(𝑑𝑥),

where the maximal covariance (MCov) between 𝑝1, 𝑝2 ∈ P2(R𝑑) is given by

MCov(𝑝1, 𝑝2) B sup
𝑞∈Cpl(𝑝1, 𝑝2 )

∫
⟨𝑥1, 𝑥2⟩ 𝑞(𝑑𝑥1, 𝑑𝑥2).

Throughout this paper we shall make the following assumption.

Assumption 3.1. The support of 𝜈 affinely spans R𝑑 .

This assumption will be convenient, mainly for notational reasons. But it does not restrict
the generality of the results of this paper. Indeed, let 𝐴 denote the affine space spanned
by supp(𝜈). For 𝜋(𝑑𝑥, 𝑑𝑦) = 𝜋𝑥 (𝑑𝑦) 𝜇(𝑑𝑥) ∈ MT(𝜇, 𝜈) we have, for 𝜇-a.e. 𝑥 ∈ R𝑑 , that
supp(𝜋𝑥) ⊆ supp(𝜈) ⊆ 𝐴. Choose an arbitrary point 𝑥0 ∈ 𝐴 and denote by 𝛾𝐴𝑥0 the stan-
dard Gaussian distribution on the affine space 𝐴 centered at 𝑥0. It is easy to see that there is a
constant 𝑐 = 𝑐(𝑥0, 𝐴) such that, for 𝜋 ∈ MT(𝜇, 𝜈), we have∫

MCov(𝜋𝑥 , 𝛾) 𝜇(𝑑𝑥) =
∫

MCov(𝜋𝑥 , 𝛾𝐴𝑥0) 𝜇(𝑑𝑥) + 𝑐.

In other words, replacing 𝛾 by 𝛾𝐴𝑥0 in (1.5) only changes the primal problem in a trivial way by
adding a constant. Denoting by 𝑚 the affine dimension of 𝐴, we can choose an isometry from
𝐴 to R𝑚 which maps 𝑥0 to 0 and which maps 𝜇, 𝜈 to measures 𝜇, 𝜈 on R𝑚. In this way we have
transformed the primal problem (1.5) for general 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈 to the problem
(1.5) for 𝜇, 𝜈 ∈ P2(R𝑚) with 𝜇 ⪯c 𝜈 such that supp(𝜈) affinely spans R𝑚. In conclusion, we
shall assume without loss of generality Assumption 3.1 throughout this paper.

We define the dual problem

(3.1) �̃� (𝜇, 𝜈) B inf
𝜓∈𝐶q (R𝑑 )

( ∫
𝜓 𝑑𝜈 −

∫
𝜑𝜓 𝑑𝜇

)
,

where the function R𝑑 ∋ 𝑥 ↦→ 𝜑𝜓 (𝑥) is given by

(3.2) 𝜑𝜓 (𝑥) B inf
𝑝∈P𝑥

2 (R𝑑 )

( ∫
𝜓 𝑑𝑝 −MCov(𝑝, 𝛾)

)
.

Lemma 3.2. Let 𝜓 : R𝑑 → (−∞,+∞] be a proper, lower semicontinuous convex function.
The function 𝜑𝜓 is convex on dom𝜓 and 𝜑𝜓 ⩽ 𝜓.

Proof. The convexity of 𝑥 ↦→ 𝜑𝜓 (𝑥) is repeated and proved in Lemma 5.1 below. By
taking 𝑝 = 𝛿𝑥 in (3.2), we immediately see that 𝜑𝜓 (𝑥) ⩽ 𝜓(𝑥). □

Theorem 3.3. Let 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈. There is no duality gap between the primal
problem (1.5) and the dual problem (3.1), i.e., 𝑃(𝜇, 𝜈) = �̃� (𝜇, 𝜈). Moreover, the primal
problem is uniquely attained and has a finite value, i.e., there exists a unique 𝜋SBM ∈ MT(𝜇, 𝜈)
such that

(3.3) 𝑃(𝜇, 𝜈) =
∫

MCov(𝜋SBM
𝑥 , 𝛾) 𝜇(𝑑𝑥) < +∞.
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Unique attainment of the primal problem is a consequence of the results in [5], while
duality can be derived from the general duality results for weak optimal transport provided in
[6], see Appendix A for details. To motivate (3.1) as a plausible dual formulation of (1.5) we
provide some heuristics:

Indeed, considering

𝜒(𝜋) B inf
𝜓∈𝐶q (R𝑑 )

( ∫
𝜓 𝑑𝜈 −

∫
𝜓 𝑑𝜋𝑥 𝑑𝜇(𝑥)

)
=

{
0, if

∫
𝜋𝑥 𝑑𝜇(𝑥) = 𝜈,

−∞, else,

we formally obtain the desired duality relation by interchanging inf and sup:

𝑃(𝜇, 𝜈) = sup
𝜋 (𝑑𝑥,𝑑𝑦)=𝜋𝑥 (𝑑𝑦) 𝜇 (𝑑𝑥 ) ,

𝜋𝑥 ∈P𝑥
2 (R𝑑 )

( ∫
MCov(𝜋𝑥 , 𝛾) 𝑑𝜇(𝑥) + 𝜒(𝜋)

)
= inf
𝜓∈𝐶q (R𝑑 )

( ∫
sup

𝜋𝑥 ∈P𝑥
2 (R𝑑 )

(
MCov(𝜋𝑥 , 𝛾) +

∫
𝜓 𝑑 (𝜈 − 𝜋𝑥)

)
𝑑𝜇(𝑥)

)
= �̃� (𝜇, 𝜈).

In the remainder of this section we make the important observation that in the dual problem
(3.1) it suffices to optimize over the class of functions 𝜓 ∈ 𝐶q(R𝑑) which are convex. We refer
to [34, Theorem 1.1] for an analogous result. Another similar restriction to convex functions
in the setting of weak transport costs has been shown in [35, Theorem 2.11, (3)].

We then show in Lemma 3.7 below that it is also equivalent to optimize over all convex
functions 𝜓 : R𝑑 → (−∞,+∞] which are only 𝜇-a.s. finite, but not necessarily of quadratic
growth.

Given some 𝜓 ∈ 𝐶q(R𝑑), it will be convenient to have an explicit representation for the
convex hull of 𝜓, as in (3.4) below. This identity is usually stated in the more specific form

(conv𝜓) (𝑦) = inf
{ 𝑑+1∑︁
𝑖=1
𝜆𝑖𝜓(𝑦𝑖) :

𝑑+1∑︁
𝑖=1
𝜆𝑖𝑦𝑖 = 𝑦

}
,

where the infimum is taken over all expressions of 𝑦 as a convex combination of 𝑑 + 1 points,
see [54, Corollary 17.1.5].

Lemma 3.4. Let 𝜓 ∈ 𝐶q(R𝑑). Then the convex hull conv𝜓 satisfies

(3.4) (conv𝜓) (𝑦) = inf
𝑝∈P𝑦

2 (R𝑑 )

∫
𝜓 𝑑𝑝, 𝑦 ∈ R𝑑

and again conv𝜓 ∈ 𝐶q(R𝑑).

Recalling the dual problem (3.1), we define the dual function

(3.5) D(𝜓) B
∫
𝜓 𝑑𝜈 −

∫
𝜑𝜓 𝑑𝜇,

for 𝜓 ∈ 𝐶q(R𝑑). Now we can prove our crucial observation, that it suffices to optimize the
dual function over the class of functions 𝜓 ∈ 𝐶q(R𝑑) which are convex.

Proposition 3.5. Let 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈. Then D(conv𝜓) ⩽ D(𝜓) for all 𝜓 ∈
𝐶q(R𝑑) and consequently

(3.6) �̃� (𝜇, 𝜈) = inf
𝜓∈𝐶q (R𝑑 )

D(𝜓) = inf
𝜓∈𝐶q (R𝑑 ) ,
𝜓 convex

D(𝜓).
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Proof. Let 𝜀 > 0, 𝜓 ∈ 𝐶q(R𝑑) and {𝑝𝑥}𝑥∈R𝑑 ⊆ P2(R𝑑) be a measurable collection of
probability measures with bary(𝑝𝑥) = 𝑥. To show the claim, it is sufficient to construct a
measurable family {𝑝𝑥}𝑥∈R𝑑 ⊆ P2(R𝑑) with bary(𝑝𝑥) = 𝑥 such that

(3.7) MCov(𝑝𝑥 , 𝛾) +
∫

conv𝜓 𝑑 (𝜈 − 𝑝𝑥) ⩽MCov(𝑝𝑥 , 𝛾) +
∫
𝜓 𝑑 (𝜈 − 𝑝𝑥) + 𝜀.

Let us construct appropriate probability measures {𝑝𝑥}𝑥∈R𝑑 . By Lemma 3.4 and a mea-
surable selection argument we can choose a measurable collection of probability measures
{𝑝𝑦}𝑦∈R𝑑 ⊆ P2(R𝑑) with bary(𝑝𝑦) = 𝑦 such that

(3.8)
∫
𝜓 𝑑𝑝𝑦 ⩽ (conv𝜓) (𝑦) + 𝜀.

Then we define 𝑝𝑥 (𝑑𝑧) B
∫
𝑦
𝑝𝑦 (𝑑𝑧) 𝑝𝑥 (𝑑𝑦), so that bary(𝑝𝑥) = 𝑥. Integrating (3.8) with

respect to 𝑝𝑥 (𝑑𝑦) yields

(3.9)
∫
𝜓 𝑑𝑝𝑥 ⩽

∫
conv𝜓 𝑑𝑝𝑥 + 𝜀.

Since 𝜓, conv𝜓 ∈ 𝐶q(R𝑑) and 𝑝𝑥 ∈ P𝑥
2 (R

𝑑) we conclude

ℓ + 1
2

∫
|𝑦 |2 𝑝𝑥 (𝑑𝑦) ⩽ 𝑎 + 𝑘

∫
|𝑦 |2 𝑝𝑥 (𝑑𝑦) + 𝜀 < +∞,

so that 𝑝𝑥 ∈ P𝑥
2 (R

𝑑).
In order to show the inequality (3.7), we first observe that 𝑝𝑥 ⪯c 𝑝𝑥 by Jensen’s inequality.

Together with the Kantorovich duality (see, e.g. [59, Theorem 5.10]), we conclude that1

(3.10)

MCov(𝑝𝑥 , 𝛾) = inf
𝑓 : R𝑑→R

convex

( ∫
𝑓 𝑑𝑝𝑥 +

∫
𝑓 ∗ 𝑑𝛾

)
⩽ inf
𝑓 : R𝑑→R

convex

( ∫
𝑓 𝑑𝑝𝑥 +

∫
𝑓 ∗ 𝑑𝛾

)
= MCov(𝑝𝑥 , 𝛾).

On the other hand, from conv𝜓 ⩽ 𝜓 and (3.9) we have the inequality

(3.11)
∫

conv𝜓 𝑑 (𝜈 − 𝑝𝑥) ⩽
∫
𝜓 𝑑 (𝜈 − 𝑝𝑥) + 𝜀.

Finally, summing (3.10) and (3.11), we obtain the inequality (3.7). □

Remark 3.6. On the right-hand side of (3.6) we can further require 𝜓 to be smooth.
Indeed, if 𝜓 ∈ 𝐶q(R𝑑) is convex, then 𝜓𝜀 B 𝜓 ∗ 𝛾𝜀 is a smooth convex function in 𝐶q(R𝑑)
and

lim inf
𝜀→0

( ∫
𝜓𝜀 𝑑𝜈 −

∫
𝜑𝜓

𝜀

𝑑𝜇

)
⩽

∫
𝜓 𝑑𝜈 −

∫
𝜑𝜓 𝑑𝜇,

as follows by dominated convergence and the inequality 𝜓𝜀 ⩾ 𝜓.

1

In fact, 𝑝𝑥 ⪯c 𝑝𝑥 is equivalent to the inequality MCov(𝑝𝑥 , 𝑞) ⩽MCov(𝑝𝑥 , 𝑞) being valid for all probability
measures 𝑞 ∈ P2 (R𝑑), see. e.g. [2, Theorem 1] or [60, Corollary 1.2].
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For 𝜓 ∈ 𝐶q(R𝑑), we recall the definition (3.5) of the dual function D( · ), which we rewrite
as

(3.12) D(𝜓) =
∫ (∫

𝜓(𝑦) 𝜋𝑥 (𝑑𝑦) − 𝜑𝜓 (𝑥)
)
𝜇(𝑑𝑥),

where 𝜋(𝑑𝑥, 𝑑𝑦) = 𝜋𝑥 (𝑑𝑦) 𝜇(𝑑𝑥) is an arbitrary fixed element of MT(𝜇, 𝜈). The “relaxed”
representation (3.12) of (3.5) allows us to extend the definition of the dual function D( · )
to convex functions 𝜓 : R𝑑 → (−∞,+∞] which are not confined to be in 𝐶q(R𝑑), but which
are only required to be 𝜇-a.s. finite, i.e., satisfy 𝜇(dom𝜓) = 1. This is summarized in the
following lemma.

Lemma 3.7. Let 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈 and fix 𝜋 ∈ MT(𝜇, 𝜈). Let 𝜓 : R𝑑 → (−∞,+∞]
be a convex function which is 𝜇-a.s. finite. Formula (3.12) then defines D(𝜓) ∈ [0,+∞] and,
recalling (3.1), we have the inequality

(3.13) D(𝜓) ⩾ �̃� (𝜇, 𝜈).

In particular, recalling (3.6), we have

(3.14) �̃� (𝜇, 𝜈) = inf
𝜓∈𝐶q (R𝑑 ) ,
𝜓 convex

D(𝜓) = inf
𝜇 (dom 𝜓)=1,
𝜓 convex

D(𝜓).

Proof. Let 𝜓 : R𝑑 → (−∞,+∞] be a convex function which is 𝜇-a.s. finite. First, note that
by Jensen’s inequality we have∫

𝜓(𝑦) 𝜋𝑥 (𝑑𝑦) ⩾ 𝜓
( ∫

𝑦 𝜋𝑥 (𝑑𝑦)
)
= 𝜓(𝑥).

Together with the inequality 𝜑𝜓 (𝑥) ⩽ 𝜓(𝑥) (recall Lemma 3.2), we conclude that

(3.15)
∫
𝜓(𝑦) 𝜋𝑥 (𝑑𝑦) − 𝜑𝜓 (𝑥) ⩾ 0,

for 𝜇-a.e. 𝑥 ∈ R𝑑 , so that D(𝜓) ∈ [0,+∞]. In order to prove the inequality (3.13), we dis-
tinguish two cases. In the case

∫
𝜓 𝑑𝜋𝑥 = +∞, for 𝑥 ∈ R𝑑 in a set of positive 𝜇-measure, we

conclude from (3.15) that D(𝜓) = +∞, so that (3.13) is trivially satisfied. Now suppose that∫
𝜓 𝑑𝜋𝑥 < +∞, for 𝜇-a.e. 𝑥 ∈ R𝑑 . Recall from Theorem 3.3 that there exists an optimizer

𝜋SBM ∈ MT(𝜇, 𝜈) of (1.5). Taking 𝑝 = 𝜋SBM
𝑥 in (3.2) we get

𝜑𝜓 (𝑥) ⩽
∫
𝜓 𝑑𝜋SBM

𝑥 −MCov(𝜋SBM
𝑥 , 𝛾)

and therefore

D(𝜓) ⩾
∫ (∫

𝜓 𝑑𝜋𝑥 +MCov(𝜋SBM
𝑥 , 𝛾) −

∫
𝜓 𝑑𝜋SBM

𝑥

)
𝜇(𝑑𝑥) = 𝑃(𝜇, 𝜈),

as 𝜋SBM is a primal optimizer and both 𝜋SBM and 𝜋 have 𝜈 as second marginal. Since
𝑃(𝜇, 𝜈) = �̃� (𝜇, 𝜈) by Theorem 3.3, we again see that (3.13) is satisfied.

Finally, from (3.13) and recalling (3.6), we conclude

�̃� (𝜇, 𝜈) ⩽ inf
𝜇 (dom 𝜓)=1,
𝜓 convex

D(𝜓) ⩽ inf
𝜓∈𝐶q (R𝑑 ) ,
𝜓 convex

D(𝜓) = �̃� (𝜇, 𝜈),

which shows (3.14). □
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4. Proof of the first part of Theorem 1.4. In Subsection 1.5 we already noted (by citing
Theorem 2.2 of [5]) that the value of the continuous-time optimization problem (1.4) is equal
to the value of the discrete-time formulation (1.5). We also know from Theorem 3.3 that
there is no duality gap between the primal problem (1.5) and the dual problem (3.1), i.e.,
𝑃(𝜇, 𝜈) = �̃� (𝜇, 𝜈). Therefore we can formulate the first part of Theorem 1.4 equivalently as
follows.

Proposition 4.1. Let 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈. Then �̃� (𝜇, 𝜈) is equal to

(4.1) 𝐷 (𝜇, 𝜈) = inf
𝜓∈𝐿1 (𝜈) ,
𝜓 convex

( ∫
𝜓 𝑑𝜈 −

∫
(𝜓∗ ∗ 𝛾)∗ 𝑑𝜇

)
.

In Subsection 7.5 we will prove the second part of Theorem 1.4 and in particular discuss
the existence of dual optimizers of (4.1). Since in general we cannot expect a dual optimizer
to be integrable with respect to the probability measure 𝜈, we need the following “relaxed”
formulation of Proposition 4.1.

Proposition 4.2. Let 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈. Then �̃� (𝜇, 𝜈) is equal to

(4.2) 𝐷rel(𝜇, 𝜈) B inf
𝜇 (dom 𝜓)=1,
𝜓 convex

E(𝜓),

where

(4.3) E(𝜓) B
∫ (∫

𝜓(𝑦) 𝜋𝑥 (𝑑𝑦) − (𝜓∗ ∗ 𝛾)∗(𝑥)
)
𝜇(𝑑𝑥),

with 𝜋 being an arbitrary fixed element of MT(𝜇, 𝜈).

The main idea behind the proofs of Propositions 4.1, 4.2 (which we will present at the end
of this section) is to apply Proposition 3.5 and then to show that 𝜑𝜓 = (𝜓∗ ∗ 𝛾)∗, for every
convex function 𝜓 ∈ 𝐶q(R𝑑). This motivates our next goal, namely to solve the minimization
problem (3.2), which we rewrite as a maximization problem

(4.4) −𝜑𝜓 (𝑥) = sup
𝑝∈P𝑥

2 (R𝑑 )

(
MCov(𝑝, 𝛾) −

∫
𝜓 𝑑𝑝

)
.

As a preliminary step, we consider the simpler problem

(4.5) 𝜚𝜓 B sup
𝑝∈P2 (R𝑑 )

(
MCov(𝑝, 𝛾) −

∫
𝜓 𝑑𝑝

)
,

where we do not prescribe the barycenter 𝑥 of 𝑝 ∈ P2(R𝑑). In Lemma 4.4 below we will
show for an arbitrary proper convex function 𝜓 : R𝑑 → (−∞,+∞], that the value 𝜚𝜓 equals∫
𝜓∗ 𝑑𝛾. In fact, this information is essentially enough to prove Propositions 4.1, 4.2.

Solving the maximization problem (4.5) leads to an interesting connection with Brenier
maps in Lemma 4.3 below. By Brenier’s theorem (see, e.g., [58, Theorem 2.12]), the optimal
transport for quadratic cost between 𝛾 and 𝑝 ∈ P2(R𝑑) is induced by the 𝛾-a.e. defined
gradient ∇𝑣 of some convex function 𝑣 : R𝑑 → R via (∇𝑣) (𝛾) = 𝑝.

Lemma 4.3 (“reverse Brenier”). Let 𝑣 : R𝑑 → R be a finite-valued convex function and
𝜓 B 𝑣∗ its convex conjugate. Assume that the probability measure 𝑝 B (∇𝑣) (𝛾) has finite
second moment. Then 𝑝 is the unique maximizer of the optimization problem (4.5) and

𝜚𝜓 =

∫
𝑣 𝑑𝛾 =

∫
𝜓∗ 𝑑𝛾 < +∞.
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Proof. We denote by 𝑇 𝑝𝛾 the Brenier map from 𝛾 to 𝑝 ∈ P2(R𝑑) and note that 𝑇 �̂�𝛾 = ∇𝑣.
Since the convex function 𝑣 is finite-valued, its gradient exists 𝛾-a.e. and we have that

𝑣(𝑧) = sup
𝑦∈R𝑑

(
⟨𝑦, 𝑧⟩ − 𝑣∗(𝑦)

)
= ⟨∇𝑣(𝑧), 𝑧⟩ − 𝑣∗(∇𝑣(𝑧)),

for 𝛾-a.e. 𝑧 ∈ R𝑑 . Using these observations, for 𝑝 ∈ P2(R𝑑) we get

MCov(𝑝, 𝛾) −
∫
𝜓 𝑑𝑝 =

∫ (〈
𝑇
𝑝
𝛾 (𝑧), 𝑧

〉
− 𝑣∗

(
𝑇
𝑝
𝛾 (𝑧)

) )
𝛾(𝑑𝑧)

⩽

∫
sup
𝑦∈R𝑑

(
⟨𝑦, 𝑧⟩ − 𝑣∗(𝑦)

)
𝛾(𝑑𝑧) =

∫
𝑣(𝑧) 𝛾(𝑑𝑧)

=

∫ (〈
∇𝑣(𝑧), 𝑧

〉
− 𝑣∗

(
∇𝑣(𝑧)

) )
𝛾(𝑑𝑧)

= MCov(𝑝, 𝛾) −
∫
𝜓 𝑑𝑝,

with equality if and only if 𝑇 𝑝𝛾 (𝑧) = 𝑇 �̂�𝛾 (𝑧), for 𝛾-a.e. 𝑧 ∈ R𝑑 . This in turn is the case if and
only if 𝑝 = 𝑝. Finally, from the convexity of 𝑣 and the Cauchy–Schwarz inequality we obtain

(4.6)
∫

|𝑣 | 𝑑𝛾 ⩽ |𝑣(0) | +

√︄∫
|∇𝑣 |2 𝑑𝛾 ·

√
𝑑 < +∞,

which proves that 𝜚𝜓 < +∞. □

Note that in Lemma 4.3 we started with a finite-valued convex function 𝑣 : R𝑑 → R and
then defined 𝜓 B 𝑣∗. If we additionally know that the probability measure 𝑝 = (∇𝑣) (𝛾) has
finite second moment, then 𝑝 is the unique maximizer of the optimization problem (4.5).
These are rather strong assumptions. However, if we are given just a proper convex function
𝜓 : R𝑑 → (−∞,+∞], we can still compute the value of the supremum in (4.5), without
explicitly constructing a maximizer of this optimization problem.

Lemma 4.4. Let 𝜓 : R𝑑 → (−∞,+∞] be a proper convex function. Then

(4.7) 𝜚𝜓 =

∫
𝜓∗ 𝑑𝛾.

We postpone the proof of Lemma 4.4 to Appendix B. As already announced, with the help
of (4.7), we are now able to prove Propositions 4.1, 4.2. We first show a simpler variant,
where we optimize over the class of convex functions 𝜓 in 𝐶q(R𝑑) (i.e., which have quadratic
growth), as in (4.8) of Proposition 4.5 below. Proposition 4.2, where we optimize over all
𝜇-a.s. finite-valued convex functions 𝜓 : R𝑑 → (−∞,+∞] as in (4.2), is then a straightforward
consequence. Proposition 4.1, where we optimize over all 𝜈-integrable convex functions 𝜓 as
in (4.1), follows from a “sandwich argument”.

Proposition 4.5. Let 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈. Then �̃� (𝜇, 𝜈) is equal to

(4.8) 𝐷q(𝜇, 𝜈) B inf
𝜓∈𝐶q (R𝑑 ) ,
𝜓 convex

( ∫
𝜓 𝑑𝜈 −

∫
(𝜓∗ ∗ 𝛾)∗ 𝑑𝜇

)
.
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Proof. By Proposition 3.5 we have

�̃� (𝜇, 𝜈) = inf
𝜓∈𝐶q (R𝑑 ) ,
𝜓 convex

( ∫
𝜓 𝑑𝜈 −

∫
𝜑𝜓 𝑑𝜇

)
.

Hence it remains to show that 𝜑𝜓 = (𝜓∗ ∗ 𝛾)∗, for every convex function 𝜓 ∈ 𝐶q(R𝑑). In order
to do this, we will first prove that (𝜑𝜓)∗ = 𝜓∗ ∗ 𝛾. By definition of the convex conjugate and
(4.4), for 𝜁 ∈ R𝑑 , we have

(𝜑𝜓)∗(𝜁) = sup
𝑥∈R𝑑

(
⟨𝑥, 𝜁⟩ − 𝜑𝜓 (𝑥)

)
(4.9)

= sup
𝑥∈R𝑑

sup
𝑝∈P𝑥

2 (R𝑑 )

(
MCov(𝑝, 𝛾) −

∫
𝜓𝜁 𝑑𝑝

)
(4.10)

= sup
𝑝∈P2 (R𝑑 )

(
MCov(𝑝, 𝛾) −

∫
𝜓𝜁 𝑑𝑝

)
= 𝜚𝜓𝜁 ,(4.11)

where the function 𝜓𝜁 is defined by 𝜓𝜁 (𝑦) B 𝜓(𝑦) − ⟨𝜁, 𝑦⟩, for 𝑦 ∈ R𝑑 . Now applying Lemma
4.4 to the proper convex function 𝜓𝜁 yields

(4.12) (𝜑𝜓)∗(𝜁) = 𝜚𝜓𝜁 =

∫
𝜓∗
𝜁 𝑑𝛾 =

∫
𝜓∗(𝜁 + 𝑧) 𝑑𝛾(𝑧) = (𝜓∗ ∗ 𝛾) (𝜁).

To complete the proof, we must justify that (𝜑𝜓)∗∗ = 𝜑𝜓 , i.e. that the Fenchel–Moreau theorem
is applicable. To see this, we first note that the function 𝑥 ↦→ 𝜑𝜓 (𝑥) is convex (recall Lemma
3.2) and we have the upper bound 𝜑𝜓 ⩽ 𝜓 < +∞. Furthermore, for any 𝑝 ∈ P𝑥

2 (R
𝑑) we have

the inequalities

MCov(𝑝, 𝛾) ⩽ 1
2

∫
|𝑦 |2 𝑑𝑝(𝑦) + 𝑑

2

as well as ∫
𝜓 𝑑𝑝 ⩾ ℓ + 1

2

∫
|𝑦 |2 𝑑𝑝(𝑦),

the latter following from the fact that 𝜓 ∈ 𝐶q(R𝑑). As a consequence, we get the lower bound
𝜑𝜓 ⩾ ℓ − 𝑑

2 > −∞. Altogether, 𝜑𝜓 is a convex function which is finite everywhere on R𝑑 , thus
it is continuous and we indeed have (𝜑𝜓)∗∗ = 𝜑𝜓 . □

Proof of Proposition 4.2. We first show that the function E( · ) in (4.3) is well defined
for every convex function 𝜓 : R𝑑 → (−∞,+∞], which is 𝜇-a.s. finite. To this end, we will
prove the inequality (𝜓∗ ∗ 𝛾)∗ ⩽ 𝜓. By Jensen’s inequality, this implies that the integrand in
(4.3) is 𝜇-a.s. non-negative, and hence E(𝜓) is well defined and [0,+∞]-valued. Recalling
the equation (4.12) above, we have 𝜓∗ ∗ 𝛾 = (𝜑𝜓)∗. Taking the convex conjugate and using
that 𝜑𝜓 ⩽ 𝜓, we obtain (𝜓∗ ∗ 𝛾)∗ = (𝜑𝜓)∗∗ ⩽ 𝜑𝜓 ⩽ 𝜓, as required.

Now let us turn to the proof of �̃� (𝜇, 𝜈) = 𝐷rel(𝜇, 𝜈). Recalling (4.2), (4.8), and using
Proposition 4.5, we have 𝐷rel(𝜇, 𝜈) ⩽ 𝐷q(𝜇, 𝜈) = �̃� (𝜇, 𝜈), so that we need to show the in-
equality �̃� (𝜇, 𝜈) ⩽ 𝐷rel(𝜇, 𝜈). Let 𝜋 ∈ MT(𝜇, 𝜈) and 𝜓 : R𝑑 → (−∞,+∞] be convex with
𝜇(dom𝜓) = 1. Since �̃� (𝜇, 𝜈) = 𝑃(𝜇, 𝜈) (recall Theorem 3.3 and (3.3)), we have to verify the
inequality ∫

MCov(𝜋𝑥 , 𝛾) 𝑑𝜇(𝑥) ⩽
∫ (∫

𝜓(𝑦) 𝜋𝑥 (𝑑𝑦) − (𝜓∗ ∗ 𝛾)∗(𝑥)
)
𝜇(𝑑𝑥).
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It is sufficient to prove, for 𝜇-a.e. 𝑥 ∈ R𝑑 , that

(4.13) MCov(𝜋𝑥 , 𝛾) ⩽
∫
𝜓 𝑑𝜋𝑥 − (𝜓∗ ∗ 𝛾)∗(𝑥).

We express the convex conjugate on the right-hand side of (4.13) as

−(𝜓∗ ∗ 𝛾)∗(𝑥) = inf
𝜁 ∈R𝑑

(
(𝜓∗ ∗ 𝛾) (𝜁) − ⟨𝜁, 𝑥⟩

)
= inf
𝜁 ∈R𝑑

( ∫
𝜓∗
𝜁 𝑑𝛾 − ⟨𝜁, 𝑥⟩

)
,

where the function 𝜓𝜁 is defined by 𝜓𝜁 (𝑦) B 𝜓(𝑦) − ⟨𝜁, 𝑦⟩, for 𝑦 ∈ R𝑑 . Substituting back into
(4.13) yields

(4.14) MCov(𝜋𝑥 , 𝛾) ⩽ inf
𝜁 ∈R𝑑

( ∫
𝜓𝜁 𝑑𝜋𝑥 +

∫
𝜓∗
𝜁 𝑑𝛾

)
.

Now observe that by the Fenchel–Young inequality we have

MCov(𝜋𝑥 , 𝛾) ⩽
∫

𝜙 𝑑𝜋𝑥 +
∫

𝜙∗ 𝑑𝛾,

for every proper convex function 𝜙 : R𝑑 → (−∞,+∞]. In particular, for every 𝜁 ∈ R𝑑 , it holds
that

MCov(𝜋𝑥 , 𝛾) ⩽
∫
𝜓𝜁 𝑑𝜋𝑥 +

∫
𝜓∗
𝜁 𝑑𝛾,

which implies (4.14). This completes the proof of Proposition 4.2. □

Proof of Proposition 4.1. The assertion follows immediately from Proposition 4.2 and
Proposition 4.5 by a “sandwich argument”. Indeed, we have

(4.15) �̃� (𝜇, 𝜈) = 𝐷rel(𝜇, 𝜈) ⩽ 𝐷 (𝜇, 𝜈) ⩽ 𝐷q(𝜇, 𝜈) = �̃� (𝜇, 𝜈).

The inequalities in (4.15) are due to the inclusions

{𝜓 ∈ 𝐶q(R𝑑) : 𝜓 convex} ⊆ {𝜓 ∈ 𝐿1(𝜈) : 𝜓 convex} ⊆ {𝜓 convex : 𝜇(dom𝜓) = 1};

the equalities on the left-hand side and on the right-hand side of (4.15) are justified by
Proposition 4.2 and Proposition 4.5, respectively. □

5. Preparation for the proof of the second part of Theorem 1.4. The goal of this rather
technical section is to outline and prepare the proof of the second part of Theorem 1.4, for
which we will need the results of Sections 6 and 7. In Section 7 we will show that the value
𝐷 (𝜇, 𝜈) is attained by a convex function 𝜓opt with 𝜇(ri(dom𝜓opt)) = 1 if and only if (𝜇, 𝜈) is
irreducible. In Section 6 (see Theorem 6.6) we will prove that there is such a dual optimizer
𝜓opt if and only if there exists a Bass martingale from 𝜇 to 𝜈. At a first reading one might skip
the present Section 5.

We recall the primal problem (1.5), with optimizer 𝜋SBM ∈ MT(𝜇, 𝜈), i.e.

(5.1) 𝑃(𝜇, 𝜈) =
∫

MCov(𝜋SBM
𝑥 , 𝛾) 𝜇(𝑑𝑥);

the dual problem (3.1), with optimizer 𝜓opt (supposing that this optimizer exists), i.e.

(5.2) �̃� (𝜇, 𝜈) =
( ∫

𝜓opt 𝑑𝜈 −
∫

𝜑𝜓opt 𝑑𝜇

)
;
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and the fact that there is no duality gap by Theorem 3.3. Therefore, comparing the primal
value (5.1) with the dual value (5.2), we see that the minimization problem

𝜑𝜓opt (𝑥) = inf
𝑝∈P𝑥

2 (R𝑑 )

( ∫
𝜓opt 𝑑𝑝 −MCov(𝑝, 𝛾)

)
(recall (3.2)) is attained by 𝜋SBM

𝑥 ∈ P𝑥
2 (R

𝑑), for 𝜇-a.e. 𝑥 ∈ R𝑑 . To draw the connection
to the Bass martingale, we need to express the optimizer 𝜋SBM

𝑥 in terms of the (single)
convex function 𝜓opt. More precisely, we will see as a consequence of Proposition 5.3 that
𝜋SBM
𝑥 = (∇𝜓∗

opt) (𝛾𝜁 ), for some appropriate 𝜁 = 𝜁 (𝑥) ∈ R𝑑 . For this purpose, we have to return
to the optimization problem (3.2) and study its optimizers.

First, we need the following technical result, formulated in Lemma 5.1 below. Let 𝜓 : R𝑑 →
(−∞,+∞] be a lower semicontinuous convex function. We recall from convex analysis that 𝜓
is called co-finite if

∀𝑥 ∈ R𝑑 \ {0} : lim
𝑡→+∞

𝜓(𝑡𝑥)
𝑡

= +∞.

According to [54, Corollary 13.3.1], the convex function 𝜓 is co-finite if and only if its
convex conjugate 𝜓∗ is finite everywhere on R𝑑 . We derive now a sufficient condition for the
co-finiteness of 𝜓, in terms of the function 𝜑𝜓 defined in (3.2). We defer the proof of Lemma
5.1 to Appendix B.

Lemma 5.1. Let 𝜓 : R𝑑 → (−∞,+∞] be a proper, lower semicontinuous convex function.
Then 𝜑𝜓 is convex on dom𝜓. If we additionally assume that 𝜑𝜓 (𝑥) > −∞, for some 𝑥 ∈
int(dom𝜓), then 𝜑𝜓 > −∞ on int(dom𝜓) and 𝜓 is co-finite.

Our next result is the analogue of Lemma 4.4. But now, instead of maximizing over all
𝑝 ∈ P2(R𝑑) as in (4.5), we have to maximize over all 𝑝 ∈ P𝑥

2 (R
𝑑), with a fixed barycenter

𝑥 ∈ R𝑑 , as in (4.4).

Proposition 5.2. Let 𝜓 : R𝑑 → (−∞,+∞] be a lower semicontinuous convex function
and assume that 𝜑𝜓 (𝑥) > −∞ for some 𝑥 ∈ int(dom𝜓). Then we have the duality formula

(5.3) 𝜑𝜓 (𝑥) = sup
𝜁 ∈R𝑑

(
⟨𝜁, 𝑥⟩ −

∫
𝜓∗(𝜁 + 𝑧) 𝑑𝛾(𝑧)

)
,

and the right-hand side admits a unique maximizer 𝜁 (𝑥) ∈ R𝑑 .

Proof. We deploy a similar strategy as in the proof of Proposition 4.5. Recalling equations
(4.9) – (4.12), for each 𝜁 ∈ R𝑑 , we have

(5.4) (𝜑𝜓)∗(𝜁) = sup
𝑝∈P2 (R𝑑 )

(
MCov(𝑝, 𝛾) −

∫
𝜓𝜁 𝑑𝑝

)
=

∫
𝜓∗(𝜁 + 𝑧) 𝑑𝛾(𝑧),

where the function 𝜓𝜁 is defined by 𝜓𝜁 (𝑦) B 𝜓(𝑦) − ⟨𝜁, 𝑦⟩, for 𝑦 ∈ R𝑑 . Since 𝜑𝜓 (𝑥) > −∞
for some 𝑥 ∈ int(dom𝜓), the convex function 𝜉 ↦→ 𝜑𝜓 (𝜉) is finite and thus also continuous
in a neighbourhood of 𝑥. Hence we can apply the variant [8, Proposition 13.44] of the
Fenchel–Moreau theorem and obtain

(5.5) 𝜑𝜓 (𝑥) = (𝜑𝜓)∗∗(𝑥) = sup
𝜁 ∈R𝑑

(
⟨𝜁, 𝑥⟩ −

∫
𝜓∗(𝜁 + 𝑧) 𝑑𝛾(𝑧)

)
,

which proves the duality formula (5.3).
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To prove the existence of a maximizer 𝜁 (𝑥) ∈ R𝑑 , we define the function

(5.6) 𝑓𝑥 (𝜁) B sup
𝑝∈P2 (R𝑑 )

(
MCov(𝑝, 𝛾) −

∫
𝜓 𝑑𝑝 +

∫
⟨𝜁, 𝑦 − 𝑥⟩ 𝑑𝑝(𝑦)

)
,

so that −𝜑𝜓 (𝑥) = inf𝜁 ∈R𝑑 𝑓𝑥 (𝜁). Indeed, it follows from (5.4), (5.5) that

−𝜑𝜓 (𝑥) = inf
𝜁 ∈R𝑑

( ∫
𝜓∗(𝜁 + 𝑧) 𝑑𝛾(𝑧) − ⟨𝜁, 𝑥⟩

)
= inf
𝜁 ∈R𝑑

sup
𝑝∈P2 (R𝑑 )

(
MCov(𝑝, 𝛾) −

∫
𝜓𝜁 𝑑𝑝 − ⟨𝜁, 𝑥⟩

)
.

By assumption, the function 𝑓𝑥 takes values in (−∞,+∞] and is not constant equal to +∞.
Equivalently, we can express 𝑓𝑥 (𝜁) as

(5.7) 𝑓𝑥 (𝜁) =
∫ (

𝜓∗(𝜁 + 𝑧) + 𝜓(𝑥) − ⟨𝜁 + 𝑧, 𝑥⟩
)
𝑑𝛾(𝑧) − 𝜓(𝑥).

We will show that 𝜁 ↦→ 𝑓𝑥 (𝜁) is lower semicontinuous and coercive, implying the existence of
an optimizer 𝜁 (𝑥). It is easy to see from the representation (5.7) that 𝑓𝑥 is lower semicontinu-
ous. Indeed, this directly follows from the lower semicontinuity of the non-negative integrand
in (5.7) and Fatou’s lemma. For the verification of the coercivity, we take a sequence (𝜁 (𝑛) )𝑛⩾1
in R𝑑 with |𝜁 (𝑛) | → +∞. Then there is a coordinate 𝑘 ∈ {1, . . . , 𝑑} such that |𝜁 (𝑛)

𝑘
| → +∞.

Since 𝑥 ∈ int(dom𝜓), we can choose 𝜀 > 0 small enough such that 𝑥 ± 𝜀 𝑒𝑘 ∈ dom𝜓, where
𝑒𝑘 denotes the 𝑘-th standard basis vector of R𝑑 . Defining

𝑦 (𝑛) B 𝑥 + sign(𝜁 (𝑛)
𝑘

) 𝜀 𝑒𝑘 ∈ dom𝜓

and taking 𝑝 = 𝛿𝑦 (𝑛) , we conclude from (5.6) that

𝑓𝑥 (𝜁 (𝑛) ) ⩾ −𝜓(𝑦 (𝑛) ) + 𝜀 |𝜁 (𝑛)𝑘
| → +∞,

which shows lim |𝜁 |→+∞ 𝑓𝑥 (𝜁) = +∞.

We now show that the maximizer 𝜁 (𝑥) ∈ R𝑑 of the right-hand side of (5.3) is unique.
As the assumptions of Lemma 5.1 are satisfied, the convex function 𝜓 is co-finite, and thus
𝜓∗ is finite everywhere on R𝑑 . In particular, 𝜓∗ is continuous everywhere and differentiable
Lebesgue-a.e. on R𝑑 . In order to establish the uniqueness of 𝜁 (𝑥), we show that the function
𝜁 ↦→

∫
𝜓∗(𝜁 + 𝑧) 𝑑𝛾(𝑧) ∈ (−∞,+∞] is strictly convex on its domain. By contradiction, suppose

that there are 𝜁1, 𝜁2 ∈ R𝑑 with 𝜁1 ≠ 𝜁2 such that both
∫
𝜓∗(𝜁1+ 𝑧) 𝑑𝛾(𝑧) and

∫
𝜓∗(𝜁2+ 𝑧) 𝑑𝛾(𝑧)

are finite and∫
𝜓∗ (𝑡𝜁1 + (1 − 𝑡)𝜁2 + 𝑧

)
𝑑𝛾(𝑧) = 𝑡

∫
𝜓∗(𝜁1 + 𝑧) 𝑑𝛾(𝑧) + (1 − 𝑡)

∫
𝜓∗(𝜁2 + 𝑧) 𝑑𝛾(𝑧),

for some 𝑡 ∈ (0,1). Then
𝜓∗ (𝑡𝜁1 + (1 − 𝑡)𝜁2 + 𝑧

)
= 𝑡𝜓∗(𝜁1 + 𝑧) + (1 − 𝑡)𝜓∗(𝜁2 + 𝑧),

for 𝛾-a.e. 𝑧 ∈ R𝑑 . Consequently, the function 𝜓∗ is affine on the line segment from 𝜁1 + 𝑧 to
𝜁2 + 𝑧, for Lebesgue-a.e. 𝑧 ∈ R𝑑 . By convexity and finiteness of 𝜓∗ on R𝑑 , we thus have that
the function

R ∈ 𝜆 ↦−→ 𝜓∗ (𝜆(𝜁2 − 𝜁1) + 𝑧
)

is affine, for every 𝑧 ∈ R𝑑 . By [54, Theorem 8.8], there exists some 𝑐 ∈ R𝑑 such that
𝜓∗ (𝜆(𝜁2 − 𝜁1) + 𝑧

)
= 𝜓∗(𝑧) + 𝜆𝑐.

Differentiating at the point 𝜆 = 1 yields ⟨∇𝜓∗(𝑧), 𝜁2 − 𝜁1⟩ = 𝑐, for Lebesgue-a.e. 𝑧 ∈ R𝑑 . But
this is a contradiction to ∅ ≠ int(dom𝜓) ⊆ (𝜕𝜓∗) (R𝑑), where the symbol 𝜕, applied to a
convex function, denotes its subdifferential. □
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The final result of this section is the analogue of Lemma 4.3. The duality formula (5.3)
established in Proposition 5.2 enables us to identify the structure of the optimizer in the
maximization problem (4.4).

Proposition 5.3. Let 𝜓 : R𝑑 → (−∞,+∞] be a lower semicontinuous convex function.
For fixed 𝜁 ∈ R𝑑 we define the function 𝜓𝜁 by 𝜓𝜁 (𝑦) B 𝜓(𝑦) − ⟨𝜁, 𝑦⟩, for 𝑦 ∈ R𝑑 , so that
𝜓∗
𝜁
(𝑦) = 𝜓∗(𝜁 + 𝑦).

(i) If there are 𝑥 ∈ R𝑑 and 𝜁 = 𝜁 (𝑥) ∈ R𝑑 such that (∇𝜓∗
𝜁
) (𝛾) ∈ P𝑥

2 (R
𝑑), then this is actually

the unique optimizer of the supremum in (4.4). If additionally 𝜑𝜓 (𝑥) > −∞ and 𝑥 ∈
int(dom𝜓), then 𝜁 = 𝜁 (𝑥) is the optimizer of the supremum in (5.3).

(ii) If 𝜑𝜓 (𝑥) > −∞ for some 𝑥 ∈ int(dom𝜓) and the supremum in (4.4) is attained by some
𝑝𝑥 ∈ P𝑥

2 (R
𝑑), then 𝑝𝑥 = (∇𝜓∗

𝜁
) (𝛾) with 𝜁 = 𝜁 (𝑥) being the optimizer of the supremum in

(5.3).

Proof. (i) We set 𝑝𝑥 B (∇𝜓∗
𝜁
) (𝛾) and let 𝑝𝑥 ∈ P𝑥

2 (R
𝑑) be arbitrary. We denote by 𝑇 𝑝𝑥𝛾

the Brenier map from 𝛾 to 𝑝𝑥 and note that 𝑇 �̂�𝑥𝛾 = ∇𝜓∗
𝜁
. Similar to the proof of Lemma 4.3,

we compute∫
𝜓 𝑑𝑝𝑥 −MCov(𝑝𝑥 , 𝛾) =

∫ (
𝜓𝜁

(
𝑇
𝑝𝑥
𝛾 (𝑧)

)
+
〈
𝜁,𝑇

𝑝𝑥
𝛾 (𝑧)

〉
−
〈
𝑇
𝑝𝑥
𝛾 (𝑧), 𝑧

〉)
𝑑𝛾(𝑧)

⩾ ⟨𝜁, 𝑥⟩ +
∫

inf
𝑦∈R𝑑

(
𝜓𝜁 (𝑦) − ⟨𝑦, 𝑧⟩

)
𝑑𝛾(𝑧)

= ⟨𝜁, 𝑥⟩ −
∫
𝜓∗(𝜁 + 𝑧) 𝑑𝛾(𝑧)

=

∫
𝜓 𝑑𝑝𝑥 −MCov(𝑝𝑥 , 𝛾),

with equality if and only if 𝑇 𝑝𝑥𝛾 (𝑧) = 𝑇 �̂�𝑥𝛾 (𝑧), for 𝛾-a.e. 𝑧 ∈ R𝑑 . This in turn is the case if and
only if 𝑝𝑥 = 𝑝𝑥 . We conclude that 𝑝𝑥 is the unique optimizer of the supremum in (4.4), i.e.

(5.8) 𝜑𝜓 (𝑥) =
∫
𝜓 𝑑𝑝𝑥 −MCov(𝑝𝑥 , 𝛾) = ⟨𝜁, 𝑥⟩ −

∫
𝜓∗(𝜁 + 𝑧) 𝑑𝛾(𝑧).

On the other hand, if additionally 𝜑𝜓 (𝑥) > −∞ and 𝑥 ∈ int(dom𝜓), by Proposition 5.2 we
have that

𝜑𝜓 (𝑥) = sup
𝜁 ∈R𝑑

(
⟨𝜁, 𝑥⟩ −

∫
𝜓∗(𝜁 + 𝑧) 𝑑𝛾(𝑧)

)
,

which in light of (5.8) implies that 𝜁 = 𝜁 (𝑥) is the optimizer of the supremum in (5.3).

(ii) By assumption and Proposition 5.2, we have that

𝜑𝜓 (𝑥) = ⟨𝜁, 𝑥⟩ +
∫ (

𝜓𝜁
(
𝑇
�̂�𝑥
𝛾 (𝑧)

)
−
〈
𝑇
�̂�𝑥
𝛾 (𝑧), 𝑧

〉)
𝑑𝛾(𝑧)

= ⟨𝜁, 𝑥⟩ −
∫
𝜓∗
𝜁 (𝑧) 𝑑𝛾(𝑧)

and therefore ∫ (
𝜓𝜁

(
𝑇
�̂�𝑥
𝛾 (𝑧)

)
+ 𝜓∗

𝜁 (𝑧) −
〈
𝑇
�̂�𝑥
𝛾 (𝑧), 𝑧

〉)
𝑑𝛾(𝑧) = 0.
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As the integrand is pointwise non-negative, we conclude that

𝜓
(
𝑇
�̂�𝑥
𝛾 (𝑧)

)
+ 𝜓∗(𝜁 + 𝑧) =

〈
𝑇
�̂�𝑥
𝛾 (𝑧), 𝜁 + 𝑧

〉
and consequently 𝑇 �̂�𝑥𝛾 (𝑧) ∈ 𝜕𝜓∗(𝜁 + 𝑧), for 𝛾-a.e. 𝑧 ∈ R𝑑 . Hence 𝑇 �̂�𝑥𝛾 (𝑧) = ∇𝜓∗(𝜁 + 𝑧), for
𝛾-a.e. 𝑧 ∈ R𝑑 , which implies that 𝑝𝑥 = (∇𝜓∗

𝜁
) (𝛾). □

6. Existence of dual optimizers and Bass martingales. Throughout this section we fix
𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈.

Definition 6.1. A lower semicontinuous convex function 𝜓opt : R𝑑 → (−∞,+∞] satis-
fying 𝜇(ri(dom𝜓opt)) = 1 is called an optimizer of the dual problem (3.14) (in short, a dual
optimizer) if �̃� (𝜇, 𝜈) =D(𝜓opt), for the dual function D( · ) as defined in (3.12).

Let us recall that by Assumption 3.1 the support of 𝜈 affinely spans R𝑑 . As the next result
shows, we could have required in the definition of a dual optimizer 𝜓opt that also the domain
of 𝜓opt affinely spans R𝑑 ; we defer the proof to Appendix B.

Lemma 6.2. If 𝜓opt is an optimizer according to Definition 6.1, then the domain of 𝜓opt
has non-empty interior. In particular, by Assumption 3.1, we have that

dim(dom𝜓opt) = dim(supp 𝜈) = 𝑑.

We recall Definition 1.1 and list some important properties of Bass martingales. Such
martingales were introduced in [5] under the name of a “standard stretched Brownian motion”.
In this paper, we use — with Richard Bass’ permission — the term “Bass martingale” instead.

Remark 6.3. Let 𝑀 = (𝑀𝑡 )0⩽𝑡⩽1 be a Bass martingale from 𝜇 to 𝜈, with correspond-
ing convex function 𝑣 : R𝑑 → R and initial distribution P(R𝑑) ∋ 𝛼 ∼ 𝐵0 of the underlying
Brownian motion 𝐵 = (𝐵𝑡 )0⩽𝑡⩽1.

(i) As shown in [5] (and as a result of Theorem 6.6 below), the martingale transport

Law(𝑀0, 𝑀1) ∈ MT(𝜇, 𝜈)
is equal to the unique optimizer 𝜋SBM of (1.5). Furthermore, the knowledge of 𝜋SBM

already determines the martingale (𝑀𝑡 )0⩽𝑡⩽1 as well as the function 𝑣, which is (𝛼 ∗ 𝛾)-
a.e. (equivalently, Lebesgue-a.e.) unique up to an additive constant.

(ii) The convex function 𝑣 and the probability measure 𝛼 satisfy the identities

(6.1) (∇𝑣 ∗ 𝛾) (𝛼) = 𝜇 and ∇𝑣(𝛼 ∗ 𝛾) = 𝜈,
which we summarize in the following graphic:

𝛼 ∗ 𝛾 𝜈

𝛼 𝜇

∇𝑣

∗
∇𝑣∗𝛾

(iii) We also remark (see [5]) that we have

(6.2) 𝑀𝑡 = (∇𝑣 ∗ 𝛾1−𝑡 ) (𝐵𝑡 ) and 𝜋SBM = Law
(
(∇𝑣 ∗ 𝛾) (𝐵0),∇𝑣(𝐵1)

)
.

The next result, Theorem 6.6 below, explains how the existence of a dual optimizer 𝜓opt is
related to the existence of a Bass martingale. Along with it we need the following technical
lemmas, whose proofs we postpone to Appendix B.
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Lemma 6.4. Let 𝑓 : R𝑑 → R be a finite convex function such that ∇ 𝑓 ∈ 𝐿2(𝛾𝜁 ;R𝑑), for
some 𝜁 ∈ R𝑑 . Then

(i) ∇( 𝑓 ∗ 𝛾) = (∇ 𝑓 ) ∗ 𝛾.

If additionally int(dom 𝑓 ∗) ≠∅, then

(ii) ( 𝑓 ∗ 𝛾)∗ is differentiable and strictly convex on int(dom( 𝑓 ∗ 𝛾)∗) ⊇ int(dom 𝑓 ∗),
(iii) ∇( 𝑓 ∗𝛾)∗ : int(dom( 𝑓 ∗𝛾)∗) → R𝑑 and∇( 𝑓 ∗𝛾) : R𝑑 → int(dom( 𝑓 ∗𝛾)∗) are bĳections,

and we have

(∇ 𝑓 ∗ 𝛾)−1 = ∇( 𝑓 ∗ 𝛾)∗.

Lemma 6.5. Let 𝜓 : R𝑑 → (−∞,+∞] be a lower semicontinuous convex function and
assume that 𝜑𝜓 (𝑥) > −∞, for some 𝑥 ∈ int(dom𝜓). Furthermore, we suppose that ∇𝜓∗ ∈
𝐿2(𝛾𝜁 ;R𝑑), for some 𝜁 ∈ R𝑑 . Then, for all 𝜂 ∈ R𝑑 and all 𝑡 > 0, we have

(6.3) int(dom𝜓) = int
(
(𝜕𝜓∗) (R𝑑)

)
= (∇𝜓∗ ∗ 𝛾𝑡𝜂) (R𝑑).

Theorem 6.6. There exists a dual optimizer 𝜓opt in the sense of Definition 6.1 if and only
if there exists a Bass martingale (𝑀𝑡 )0⩽𝑡⩽1 from 𝜇 to 𝜈. In this case, Law(𝑀0, 𝑀1) is equal to
the optimizer 𝜋SBM ∈ MT(𝜇, 𝜈) of the primal problem (1.5), and 𝜓opt, 𝑣, 𝛼, 𝜋

SBM are related
via 𝑣∗ = 𝜓opt, 𝛼 = 𝜁 (𝜇) and

(6.4) 𝜋SBM
𝑥 = Law(𝑀1 |𝑀0 = 𝑥) = ∇𝑣

(
𝜁 (𝑥) + ·

)
(𝛾),

where the function 𝜁 : 𝑋→ R𝑑 is given by

(6.5) 𝜁 (𝑥) B argmax𝜁 ∈R𝑑
(
⟨𝜁, 𝑥⟩ −

∫
𝑣(𝜁 + 𝑧) 𝑑𝛾(𝑧)

)
as in (5.3), and we have

(6.6) 𝜁 (𝑥) = (∇𝑣 ∗ 𝛾)−1(𝑥) = ∇(𝑣 ∗ 𝛾)∗(𝑥),

for all 𝑥 ∈ 𝑋 . The domain 𝑋 of the function 𝜁 satisfies 𝑋 ⊆ int(dom𝜓opt) and 𝜇(𝑋) = 1.

Proof. “⇒”: Suppose that a dual optimizer 𝜓opt exists. Then �̃� (𝜇, 𝜈) − D(𝜓opt) = 0 and
from (3.3), (3.12) we obtain∫ (

𝜑𝜓opt (𝑥) −
( ∫

𝜓opt(𝑦) 𝜋SBM
𝑥 (𝑑𝑦) −MCov(𝜋SBM

𝑥 , 𝛾)
))
𝜇(𝑑𝑥) = 0.

Hence, for 𝜇-a.e. 𝑥 ∈ R𝑑 , the infimum in

𝜑𝜓opt (𝑥) = inf
𝑝∈P𝑥

2 (R𝑑 )

( ∫
𝜓opt 𝑑𝑝 −MCov(𝑝, 𝛾)

)
must be attained by 𝜋SBM

𝑥 ∈ P𝑥
2 (R

𝑑). Furthermore, as D(𝜓opt) is finite, we deduce as in the
proof of Lemma 3.7 that

∫
𝜓opt 𝑑𝜋

SBM
𝑥 < +∞, for 𝜇-a.e. 𝑥 ∈ R𝑑 . Thus also 𝜑𝜓opt (𝑥) is finite,

for 𝜇-a.e. 𝑥 ∈ R𝑑 . Recalling Lemma 6.2, we have 𝜇(int(dom𝜓opt)) = 1 by Definition 6.1. In
particular, 𝜓opt is co-finite by Lemma 5.1. All in all, we can apply part (ii) of Proposition
5.3 to 𝜓opt, for 𝜇-a.e. 𝑥 ∈ R𝑑 . This yields that 𝜋SBM

𝑥 = ∇𝑣(𝜁 (𝑥) + · )(𝛾), with 𝑣 B 𝜓∗
opt and

𝜁 (𝑥) ∈ R𝑑 as in (6.5). We now define 𝛼 B 𝜁 (𝜇). Since 𝜋SBM has second marginal equal to 𝜈,
we obtain ∇𝑣(𝛼 ∗ 𝛾) = 𝜈. On the other hand, as 𝜋SBM

𝑥 has barycenter 𝑥, we have

(6.7)
∫

∇𝑣
(
𝜁 (𝑥) + 𝑧

)
𝑑𝛾(𝑧) = (∇𝑣 ∗ 𝛾)

(
𝜁 (𝑥)

)
= 𝑥.
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We denote the set of points 𝑥 ∈ R𝑑 for which the identity (6.7) holds by 𝑋 and note that
𝑋 ⊆ int(dom𝜓opt) as well as 𝜇(𝑋) = 1. Since 𝛼 = 𝜁 (𝜇), we conclude from (6.7) that (∇𝑣 ∗
𝛾) (𝛼) = 𝜇. By (6.1), this establishes the existence of a Bass martingale (𝑀𝑡 )0⩽𝑡⩽1 from 𝜇

to 𝜈, which by construction satisfies Law(𝑀0, 𝑀1) = 𝜋SBM, and connects 𝜓opt, 𝑣, 𝛼, 𝜋
SBM as

claimed.

It remains to check the identity (6.6). Since 𝜋SBM
𝑥 ∈ P𝑥

2 (R
𝑑), and as we already established

(6.4), we conclude that

(6.8)
∫ ��∇𝑣 (𝜁 (𝑥) + 𝑧) ��2 𝑑𝛾(𝑧) < +∞,

for every 𝑥 ∈ 𝑋 . In particular, we can apply part (iii) of Lemma 6.4 to the function 𝑓 = 𝑣. Then
from (6.7) we derive (6.6).

“⇐”: Conversely, suppose that a Bass martingale 𝑀 = (𝑀𝑡 )0⩽𝑡⩽1 from 𝜇 to 𝜈 exists. We
denote by 𝑣 : R𝑑 → R the associated convex function and define the proper, lower semicon-
tinuous convex function 𝜓opt B 𝑣∗. Recall that dim(supp 𝜈) = 𝑑 by Assumption 3.1. Since
(𝜕𝑣) (R𝑑) ⊆ dom 𝑣∗ and

int conv
(
(𝜕𝑣) (R𝑑)

)
= int conv

(
(𝜕𝑣) (R𝑑)

)
= int ŝupp(𝜈) ≠∅,

we also have that int(dom 𝑣∗) ≠∅. In the following we show that𝜓opt is indeed a dual optimizer
in the sense of Definition 6.1.

First, we verify that 𝜑𝜓opt (𝑥) > −∞, for all 𝑥 ∈ R𝑑 . As a consequence, we will see that
the identity (6.6) holds for all 𝑥 ∈ int(dom𝜓opt). Note that from (6.1) we have the relation
∇𝑣(𝛼 ∗ 𝛾) = 𝜈. Since 𝜈 has finite second moment, we conclude that

(6.9)
∫

|∇𝑣(𝜁 + 𝑧) |2 𝑑𝛾(𝑧) < +∞,

for 𝛼-a.e. 𝜁 ∈ R𝑑 . In particular, by analogy with (4.6), we obtain that

(6.10) (𝑣 ∗ 𝛾) (𝜁) =
∫
𝑣(𝜁 + 𝑧) 𝑑𝛾(𝑧) ∈ (−∞,+∞),

for 𝛼-a.e. 𝜁 ∈ R𝑑 . Recalling the second equality in (5.5), we have

(6.11) 𝜑𝜓opt (𝑥) ⩾ (𝜑𝜓opt)∗∗(𝑥) = sup
𝜁 ∈R𝑑

(
⟨𝜁, 𝑥⟩ −

∫
𝜓∗

opt(𝜁 + 𝑧) 𝑑𝛾(𝑧)
)
,

and by (6.10), the right-hand side of (6.11) is greater than −∞, for every 𝑥 ∈ R𝑑 . In particular,
we can apply Proposition 5.2 to the function 𝜓opt. As a result, for every 𝑥 ∈ int(dom𝜓opt), we
obtain an equality in (6.11) and the right-hand side admits a unique maximizer 𝜁 (𝑥) ∈ R𝑑 .
Differentiating under the integral sign, which is justified by part (i) of Lemma 6.4 applied to
the function 𝑓 = 𝑣 = 𝜓∗

opt, the first order condition for the optimality of 𝜁 (𝑥) reads

(6.12) (∇𝜓∗
opt ∗ 𝛾)

(
𝜁 (𝑥)

)
= 𝑥.

Now we use part (iii) of Lemma 6.4 and obtain the identity (6.6) from (6.12) above, for all
𝑥 ∈ int(dom𝜓opt).

Next, we show that 𝛼 = 𝜁 (𝜇) and 𝜇(int(dom𝜓opt)) = 1. Recalling from (6.1) that (∇𝑣 ∗
𝛾) (𝛼) = 𝜇, and using (6.6), we get 𝛼 = (∇𝑣 ∗ 𝛾)−1(𝜇) = 𝜁 (𝜇). For the second claim, we again
use (6.6) and obtain

1 = 𝛼(R𝑑) = 𝜇
(
(∇𝑣 ∗ 𝛾) (R𝑑)

)
= 𝜇(int(dom𝜓opt)),
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where the last equality follows from Lemma 6.5.

It remains to check that �̃� (𝜇, 𝜈) = D(𝜓opt) and Law(𝑀0, 𝑀1) = 𝜋SBM. For each 𝑥 ∈
int(dom𝜓opt), we define a probability measure 𝜋𝑣𝑥 B ∇𝑣(𝜁 (𝑥) + · )(𝛾). By (6.9) and (6.12),
𝜋𝑣𝑥 is an element of P𝑥

2 (R
𝑑), for 𝜇-a.e. 𝑥 ∈ R𝑑 . Hence we can apply part (i) of Proposition

5.3, showing that the infimum

𝜑𝜓opt (𝑥) = inf
𝑝∈P𝑥

2 (R𝑑 )

( ∫
𝜓opt 𝑑𝑝 −MCov(𝑝, 𝛾)

)
is attained by 𝜋𝑣𝑥 . Therefore, from the representation (3.12) of the dual function D( · ) and the
fact that 𝜋𝑣𝑥 (𝑑𝑦) 𝜇(𝑑𝑥) ∈ MT(𝜇, 𝜈), we obtain

(6.13) D(𝜓opt) =
∫ (∫

𝜓opt(𝑦) 𝜋𝑣𝑥 (𝑑𝑦) − 𝜑𝜓opt (𝑥)
)
𝜇(𝑑𝑥) =

∫
MCov(𝜋𝑣𝑥 , 𝛾) 𝜇(𝑑𝑥).

On the other hand, from (1.5), Theorem 3.3 and (3.13) we have∫
MCov(𝜋𝑣𝑥 , 𝛾) 𝜇(𝑑𝑥) ⩽ 𝑃(𝜇, 𝜈) = �̃� (𝜇, 𝜈) ⩽ D(𝜓opt),

which in light of (6.13) implies that �̃� (𝜇, 𝜈) = D(𝜓opt). This completes the proof that 𝜓opt
is a dual optimizer. We still have to show that Law(𝑀0, 𝑀1) equals the optimizer 𝜋SBM of
(1.5). Since 𝑀 is a Bass martingale with associated convex function 𝑣, it follows from the
identities (6.1) that 𝜋𝑣𝑥 = Law(𝑀1 |𝑀0 = 𝑥). But then from (6.13) we conclude that 𝜋𝑣𝑥 = 𝜋SBM

𝑥 .
In particular, this shows (6.4). □

We now give a one-dimensional example in which a dual optimizer 𝜓opt in the sense of
Definition 6.1 is not integrable with respect to 𝜈. Example 6.7 below illustrates that the form
(3.5) of the dual function D( · ) may fail to make sense when we allow 𝜓 to range more
generally than in 𝐶q(R𝑑). On the other hand, the dual function written in the form (3.12)
makes perfect sense for general convex functions 𝜓 : R𝑑 → (−∞,+∞], which are 𝜇-a.s. finite
(recall Lemma 3.7). This leads to the satisfactory characterization of dual attainment as given
by Theorem 6.6.

Example 6.7. Let 𝛼 B
∑∞
𝑛=1 2−𝑛𝛿𝑧𝑛 ∈ P(R), with the sequence (𝑧𝑛)𝑛⩾1 ⊆ R satisfying

lim𝑛→∞
|𝑧𝑛 |
2𝑛 = +∞. Consider the convex function 𝑣(𝑧) B 𝑧 arctan 𝑧 − 1

2 log(1 + 𝑧2), with the
derivative 𝑣′(𝑧) = arctan 𝑧 being a strictly increasing, continuous and bounded function. Define
𝜇 B (𝑣′ ∗ 𝛾) (𝛼), so that 𝜇 =

∑∞
𝑛=1 2−𝑛𝛿𝑥𝑛 for some bounded sequence (𝑥𝑛)𝑛⩾1 ⊆ R, and let

𝜈 B 𝑣′(𝛼 ∗ 𝛾). Note that 𝜇 and 𝜈 are supported by (− 𝜋
2 ,

𝜋
2 ). Then, according to (6.1), the pair

(𝑣, 𝛼) defines a Bass martingale from 𝜇 to 𝜈. Theorem 6.6 shows that the derivative of the
dual optimizer is given by

𝑑
𝑑𝑦
𝜓opt(𝑦) = (𝑣′)−1(𝑦) = tan 𝑦.

By definition of 𝜈 and 𝛼, this function is not 𝜈-integrable, and neither is its antiderivative
𝜓opt. ^

We finish this section by deducing a trajectorial property of Bass martingales from Lemma
6.5 and Theorem 6.6, namely that a Bass martingale 𝑀 with 𝑀1 ∼ 𝜈 can only reach the
boundary of ŝupp(𝜈) at time 1. In this paper we only make use of this result as a technical step
in the proof of Lemma 7.17. However, this is a natural property to examine from the point of
view of stochastic analysis (e.g. Feller’s explosion test is devoted to a related question), and it
gives us some intuition about the behavior of Bass martingales.
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Corollary 6.8. Let 𝑀 = (𝑀𝑡 )0⩽𝑡⩽1 be a Bass martingale with 𝑀1 ∼ 𝜈. Define 𝜏 as the
stopping time

𝜏 B inf
{
𝑡 ∈ [0,1] : 𝑀𝑡 ∉ ri ŝupp(𝜈)

}
∧ 1,

i.e., the minimum of 1 and the first time that 𝑀 reaches the boundary of ŝupp(𝜈). Then 𝜏 = 1
a.s.

Proof. We will prove that

P
(
𝑡 ∈ [0,1) : 𝑀𝑡 ∈ ri ŝupp(𝜈)

)
= 1.

Thus, if 𝑀 ever reaches the boundary of ŝupp(𝜈), this will happen at time 𝑡 = 1, so 𝜏 = 1.
Otherwise, i.e., if 𝑀 never reaches the boundary of ŝupp(𝜈), then by definition 𝜏 = 1, too.

Recall that dim(supp 𝜈) = 𝑑 by Assumption 3.1, so we can replace the relative interior
operator by the interior operator throughout the argument. By (6.2), the Bass martingale is
given by 𝑀𝑡 = (∇𝑣 ∗ 𝛾1−𝑡 ) (𝐵𝑡 ), where ∇𝑣(𝛾) = 𝜈, for some finite-valued convex function 𝑣.
We now define the proper, lower semicontinuous convex function 𝜓 B 𝑣∗. As in the proof of
the second implication of Theorem 6.6, namely the part of the proof corresponding to “⇐”,
we see that int(dom 𝑣∗) ≠∅, that 𝜑𝜓 (𝑥) > −∞ for all 𝑥 ∈ R𝑑 , and that ∇𝜓∗ ∈ 𝐿2(𝛾𝐵0 ;R𝑑) a.s.
(for the latter, see (6.9) and recall that 𝐵0 ∼ 𝛼). Therefore we can apply Lemma 6.5 and from
(6.3) we obtain for all 𝑡 ∈ [0,1) the equality

int(dom𝜓) = int
(
(𝜕𝜓∗) (R𝑑)

)
= (∇𝜓∗ ∗ 𝛾1−𝑡 ) (R𝑑).

As we justify in (B.11) in Appendix B, we automatically have the equality

int
(
(𝜕𝜓∗) (R𝑑)

)
= int conv

(
(𝜕𝜓∗) (R𝑑)

)
,

so we conclude that

int conv
(
(𝜕𝜓∗) (R𝑑)

)
= (∇𝜓∗ ∗ 𝛾1−𝑡 ) (R𝑑).

On the other hand, we clearly have

int conv
(
(𝜕𝜓∗) (R𝑑)

)
= int conv

(
(𝜕𝜓∗) (R𝑑)

)
= int ŝupp(𝜈),

so we obtain for all 𝑡 ∈ [0,1) that

int ŝupp(𝜈) = (∇𝜓∗ ∗ 𝛾1−𝑡 ) (R𝑑).

Since 𝑀𝑡 = (∇𝜓∗ ∗ 𝛾1−𝑡 ) (𝐵𝑡 ), we conclude as desired that 𝑀𝑡 lies in int ŝupp(𝜈) as long as
𝑡 ∈ [0,1). □

7. Irreducibility and existence of dual optimizers.

7.1. Outline and objectives. In this technically demanding section we connect our find-
ings with the groundbreaking analysis presented in [27] by H. De March and N. Touzi. Their
work establishes the existence of a unique maximal paving of R𝑑 into relatively open, convex,
invariant sets. Each martingale transport from 𝜇 to 𝜈 maps these relatively open sets into their
closures. Our focus here is on the irreducible case, where this paving is trivial, i.e., it consists
of a single cell. The general case is treated in the follow-up paper [56].

We show that the triviality of the De March–Touzi (DMT) paving (as formalized in
Definition 7.2 below) is equivalent to the irreducibility condition in Definition 1.2. This
equivalence, along with additional equivalent characterizations of irreducibility, is established
in Theorem D.1 of Appendix D, which builds on the results of the present section.
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Assuming the triviality of the DMT paving in Assumption 7.3 below, we fix a martingale
transport 𝜋DMT ∈ MT(𝜇, 𝜈) such that every transition kernel 𝜋DMT

𝑥 has full convex support.
The existence of such a martingale transport 𝜋DMT was established in [27]. In Lemma 7.5, we
prove a uniformity property of this full-support feature, valid for 𝜇-a.e. 𝑥 ∈ R𝑑 .

The main result of this section is Theorem 7.6, which links the triviality of the DMT
paving to the existence of an optimizer for the dual problem (3.14). As a direct consequence
of this theorem, we obtain that triviality of the DMT paving implies the existence of a Bass
martingale 𝑀 from 𝜇 to 𝜈 with Law(𝑀0, 𝑀1) = 𝜋SBM. Notably, this Bass martingale serves
as a concrete example of a De March–Touzi transport since, for 𝜇-a.e. 𝑥 ∈ R𝑑 , the measures
𝜋DMT
𝑥 are equivalent to 𝜈.

The first step in proving Theorem 7.6 is to identify a limit 𝜓lim of an arbitrary optimizing
sequence of convex functions (𝜓𝑛)𝑛⩾1 for the dual problem (3.1). A crucial observation is that
the value of the dual function (3.12) remains invariant under the addition of affine functions
to 𝜓. This invariance allows us to choose and add affine functions that facilitate our analysis.
Concrete examples of such choices of affine functions are provided in [56] (Examples 6.1
and 6.2). After appropriately selecting representatives of 𝜓𝑛 (by adding affine functions),
we establish in Lemma 7.12 (by applying Komlós’ theorem) the existence of a sequence of
Cesàro means of a subsequence that is bounded on compact subsets of 𝐼 = ri ŝupp(𝜈). Using
arguments from convex analysis, we extract a further subsequence that converges uniformly
on compact subsets 𝐾 ⊆ 𝐼 to a convex function 𝜓lim.

The second step in proving Theorem 7.6 is to verify that the limiting function 𝜓lim is indeed
a dual optimizer. To this end, we introduce in Definition 7.14 the Brenier map ∇𝑣𝑥SBM from
𝛾 to 𝜋SBM

𝑥 . The next goal (see Lemma 7.18) is to show that, for 𝜇-a.e. 𝑥 ∈ 𝐼 , the function
𝜓lim equals (𝑣𝑥SBM)∗, modulo the addition of an affine function. Specifically, we introduce (see
(7.6)) the set

𝐴 =
{
𝑥 ∈ 𝐼 : 𝜓lim . (𝑣𝑥SBM)∗ mod (aff)

}
,

and prove that 𝜇(𝐴) = 0. This proof proceeds by contradiction. Assuming 𝜇(𝐴) > 0, we
construct, for 𝑥 ∈ 𝐴, measures �̌�𝑥 ∈ P2

𝑥 (R𝑑) in Lemma 7.16, which are adjusted in Lemma
7.17 to have compact support. The measures �̌�𝑥 then contradict the optimality of 𝜋SBM

𝑥 ,
allowing us to conclude 𝜇(𝐴) = 0 and thereby complete the proof of Lemma 7.18. With the
help of Lemma 7.19 we can then finish the second step and thus also the proof of Theorem 7.6.
Broadly speaking, Lemma 7.19 shows that 𝜓lim is a dual optimizer if and only if 𝜇(𝐴) = 0.
The proof of this result is based on Proposition 5.3 and Theorem 6.6.

At this point we encounter a remarkable and somewhat surprising feature. In Proposition
7.20 we use the wisdom of hindsight to show that in the arguments outlined above, there is
no need of passing to a subsequence or of forming Cesàro means of the optimizing sequence
(𝜓𝑛)𝑛⩾1. Rather already the original sequence (𝜓𝑛)𝑛⩾1 — modulo adding affine functions
— converges to the optimizer 𝜓lim. Note that in Proposition 7.20 the pair (𝜇, 𝜈) is not
necessarily irreducible, rather the boundedness assumption (7.25) is made (cf. Lemma 7.12).
This refinement plays a crucial role in the follow-up paper [56].

Towards the end of Section 7 we are finally in the position to prove Theorem 1.3 as well as
the second part of Theorem 1.4, thereby completing the main body of the paper (apart from
four appendices).

In the following subsections we now proceed with a formal and detailed treatment of the
outlined program for Section 7.
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7.2. Irreducibility and dual attainment. We fix 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈. The following
notation from [27] will be used throughout this section.

Definition 7.1. We denote by 𝐶 B ŝupp(𝜈) the closed convex hull of the support of 𝜈
and by 𝐼 B ri𝐶 its relative interior.

Recall that dim(supp 𝜈) = 𝑑 by Assumption 3.1, so that 𝐼 is open in R𝑑 .

Definition 7.2. We say that the pair (𝜇, 𝜈) is De March–Touzi irreducible, if the irre-
ducible convex paving of De March–Touzi [27] consists of the single irreducible component
𝐼 . By [27, Theorem 2.1], this condition means that

(i) the set 𝐼 = ri𝐶, with 𝐶 = ŝupp(𝜈), satisfies 𝜇(𝐼) = 1,
(ii) there exists some martingale transport 𝜋DMT ∈ MT(𝜇, 𝜈) with the property that 𝐶 =

ŝupp(𝜋DMT
𝑥 ), for 𝜇-a.e. 𝑥 ∈ R𝑑 . We refer to 𝜋DMT as a De March–Touzi transport.

The main assumption of this section (with the exception of Lemma 7.9, Lemma 7.19,
Proposition 7.20 and Corollary 7.21) is the following.

Assumption 7.3. The pair (𝜇, 𝜈) is De March–Touzi irreducible.

Assumption 7.3 is equivalent to the irreducibility of the pair (𝜇, 𝜈) in the sense of Definition
1.2. For a proof of this result and for further equivalent characterizations of irreducibility we
refer to Theorem D.1 in Appendix D.

In Lemma 7.5 below we give a more quantitative description of the defining property of a
De March–Touzi transport 𝜋DMT ∈ MT(𝜇, 𝜈) between an irreducible pair (𝜇, 𝜈).

Definition 7.4. Let 𝐾 ⊆ 𝐼 be compact. For an element 𝑦∗ of the unit sphere S𝑑−1 in R𝑑
we define the slice 𝑆𝑦∗ of 𝐶 beyond 𝐾 by

(7.1) 𝑆𝑦∗ B
{
𝑦 ∈ 𝐶 : ⟨𝑦, 𝑦∗⟩ > sup{⟨�̃�, 𝑦∗⟩ : �̃� ∈ 𝐾}

}
.

Lemma 7.5. Under Assumption 7.3, for 𝜇-a.e. 𝑥 ∈ R𝑑 and for every compact set 𝐾 ⊆ 𝐼 ,
there exists a constant 𝛿(𝐾, 𝑥) > 0 such that 𝜋DMT

𝑥 (𝑆𝑦∗) ⩾ 𝛿(𝐾, 𝑥) for every 𝑦∗ ∈ S𝑑−1.

Proof. We fix 𝑥 ∈ R𝑑 with 𝐶 = ŝupp(𝜋DMT
𝑥 ) and note that the map 𝑟𝑥 : S𝑑−1 → [0,1]

given by 𝑟𝑥 (𝑦∗) B 𝜋DMT
𝑥 (𝑆𝑦∗), for 𝑦∗ ∈ S𝑑−1, is lower semicontinuous. As the set 𝐶 equals

the closed convex hull of the support of 𝜋DMT
𝑥 , the map 𝑟𝑥 is also strictly positive. Indeed, if

there was some 𝑦∗ ∈ S𝑑−1 with 𝑟𝑥 (𝑦∗) = 0, then the closed convex set 𝐶 \ 𝑆𝑦∗ would support
𝜋DMT
𝑥 , which is in contradiction to 𝐶 \ 𝑆𝑦∗ ⊊ 𝐶 = ŝupp(𝜋DMT

𝑥 ). Since S𝑑−1 is compact we
conclude that 𝑟𝑥 attains its minimum 𝛿(𝐾, 𝑥) B min𝑦∗∈S𝑑−1 𝑟𝑥 (𝑦∗) > 0. □

The main result of this section is the following.

Theorem 7.6. Under Assumption 7.3, there exists a dual optimizer 𝜓opt in the sense of
Definition 6.1.

Together with Theorem 6.6, this has the following consequence for the primal optimizer
𝜋SBM ∈ MT(𝜇, 𝜈) of the primal problem (1.5).
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Corollary 7.7. Under Assumption 7.3, there exists a Bass martingale (𝑀𝑡 )0⩽𝑡⩽1 from 𝜇

to 𝜈. Moreover, Law(𝑀0, 𝑀1) = 𝜋SBM and, for 𝜇-a.e. 𝑥 ∈ R𝑑 , the measure 𝜋SBM
𝑥 is equivalent

to 𝜈. In particular, 𝜋SBM is a De March–Touzi transport in the sense of Definition 7.2, (ii).

Proof. Admitting Theorem 7.6, there exists a dual optimizer 𝜓opt. Thus, by Theorem
6.6, there is a Bass martingale from 𝜇 to 𝜈 with the property that Law(𝑀0, 𝑀1) = 𝜋SBM. In
particular, by (6.4), there is a measurable set 𝐴 with 𝜇(𝐴) = 1, such that 𝜋SBM

𝑥 and 𝜋SBM
𝑥′ are

image measures of suitably translated Gaussians under the same function ∇𝑣, for all 𝑥, 𝑥′ ∈ 𝐴.
Hence 𝜋SBM

𝑥 ∼ 𝜋SBM
𝑥′ , for all 𝑥, 𝑥′ ∈ 𝐴, and this in turn implies the equivalence of 𝜈(𝑑𝑦) =∫

𝜋SBM
𝑥 (𝑑𝑦) 𝜇(𝑑𝑥) with 𝜋SBM

𝑥′ (𝑑𝑦), for each 𝑥′ ∈ 𝐴. In particular, supp(𝜋SBM
𝑥 ) = supp(𝜈), for

𝜇-a.e. 𝑥 ∈ R𝑑 , which implies Definition 7.2, (ii) for 𝜋SBM. □

7.3. Proof of Theorem 7.6. The proof is split into two main steps.

7.3.1. Step 1 of the proof of Theorem 7.6. We first construct a convergent optimizing
sequence of convex functions (𝜓𝑛)𝑛⩾1 ⊆ 𝐶aff

q (R𝑑) (see Remark 7.11 below) for the dual
problem (3.1).

Proposition 7.8. Under Assumption 7.3, there is an optimizing sequence (𝜓𝑛)𝑛⩾1 of non-
negative convex functions in 𝐶aff

q (R𝑑) for the dual problem (3.1), which converges compactly
on 𝐼 (i.e., uniformly on compact subsets 𝐾 ⊆ 𝐼) to some convex function 𝜓lim : 𝐼→ [0,+∞).

Before we turn to the proof of Proposition 7.8, we still need some preparation. The following
auxiliary result does not require the irreducibility Assumption 7.3, but solely relies on the
finiteness of the value �̃� (𝜇, 𝜈) of the dual problem (3.1).

Lemma 7.9. Let (𝜓𝑛)𝑛⩾1 ⊆ 𝐶q(R𝑑) be an optimizing sequence for the dual problem (3.1)
and take any 𝜋 ∈ MT(𝜇, 𝜈). Then

(7.2) sup
𝑛⩾1

∫ ∫ (
𝜓𝑛 (𝑦) − 𝜓𝑛 (𝑥)

)
𝜋𝑥 (𝑑𝑦) 𝜇(𝑑𝑥) < +∞.

Proof. Recalling (3.2), we consider for 𝑛 ⩾ 1 the functions

(7.3) R𝑑 ∋ 𝑥 ↦−→ 𝜑𝜓𝑛 (𝑥) = inf
𝑝∈P𝑥

2 (R𝑑 )

( ∫
𝜓𝑛 𝑑𝑝 −MCov(𝑝, 𝛾)

)
.

By taking 𝑝 = 𝛿𝑥 in (7.3) we obtain the trivial estimate 𝜑𝜓𝑛 (𝑥) ⩽ 𝜓𝑛 (𝑥) and consequently∫ ∫ (
𝜓𝑛 (𝑦) − 𝜓𝑛 (𝑥)

)
𝜋𝑥 (𝑑𝑦) 𝜇(𝑑𝑥) ⩽

∫ ∫ (
𝜓𝑛 (𝑦) − 𝜑𝜓𝑛 (𝑥)

)
𝜋𝑥 (𝑑𝑦) 𝜇(𝑑𝑥).

By definition (3.12) of the dual function D( ·) we have

D(𝜓𝑛) =
∫ (∫

𝜓𝑛 (𝑦) 𝜋𝑥 (𝑑𝑦) − 𝜑𝜓𝑛 (𝑥)
)
𝜇(𝑑𝑥),

and as the sequence of real numbers (D(𝜓𝑛))𝑛⩾1 converges to the finite number �̃� (𝜇, 𝜈), we
conclude (7.2). □

Definition 7.10. We fix an arbitrary optimizing sequence (𝜓𝑛)𝑛⩾1 ⊆ 𝐶q(R𝑑) of convex
functions for the dual problem (3.1), which is possible thanks to Proposition 3.5. For 𝑥 ∈ R𝑑 ,
we define

(7.4) 𝜓𝑥𝑛 ( · ) B 𝜓𝑛 ( · ) − 𝜓𝑛 (𝑥) − ⟨𝜕𝜓𝑛 (𝑥), · − 𝑥⟩,
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so that 𝜓𝑥𝑛 (𝑥) = 0 and 𝜓𝑥𝑛 ( · ) takes values in [0,+∞), for every 𝑛 ⩾ 1. Here — by abuse
of notation — 𝜕𝜓𝑛 (𝑥) denotes a subgradient of 𝜓𝑛 at 𝑥, i.e., an arbitrary element of the
subdifferential of 𝜓𝑛 at 𝑥.

Remark 7.11. We observe that passing from 𝜓 ∈ 𝐶q(R𝑑) to 𝜓 +aff, where aff : R𝑑 → R is
an arbitrary affine function, does not change the value of the dual function (3.12), i.e., D(𝜓) =
D(𝜓 + aff). In particular, we note that the sequence (𝜓𝑥𝑛)𝑛⩾1 defined in (7.4) is contained in
the class of functions 𝐶aff

q (R𝑑), as introduced in (2.1), and hence D(𝜓𝑥𝑛) =D(𝜓𝑛).

Our goal is to show that — under the irreducibility Assumption 7.3 and after passing to
Cesàro means of a suitable subsequence — the sequence (𝜓𝑥𝑛)𝑛⩾1 of (7.4) is bounded on
compact subsets of 𝐼 , for 𝜇-a.e. 𝑥 ∈ 𝐼 . This is the content of the following lemma.

Lemma 7.12. Under Assumption 7.3, for any given optimizing sequence (𝜓𝑛)𝑛⩾1 ⊆
𝐶q(R𝑑) of convex functions, there is a sequence of Cesàro means of a subsequence, still
denoted by (𝜓𝑛)𝑛⩾1, such that, for 𝜇-a.e. 𝑥 ∈ 𝐼 and for every compact set 𝐾 ⊆ 𝐼 , we have that
sup𝑛⩾1,𝑦∈𝐾 𝜓

𝑥
𝑛 (𝑦) < +∞, for every choice of (𝜓𝑥𝑛)𝑛⩾1 ⊆ 𝐶aff

q (R𝑑) as in (7.4).

Proof. We rely on [27] and fix a De March–Touzi transport 𝜋DMT ∈ MT(𝜇, 𝜈) satisfying
point (ii) of Definition 7.2, which exists by the irreducibility Assumption 7.3. Let (𝜓𝑛)𝑛⩾1
and (𝜓𝑥𝑛)𝑛⩾1, measurable selected for 𝑥 ∈ R𝑑 , be as in Definition 7.10 above. By Lemma 7.9,
the sequence

Ψ𝑛 (𝑥) B
∫
𝜓𝑥𝑛 (𝑦) 𝜋DMT

𝑥 (𝑑𝑦) =
∫ (

𝜓𝑛 (𝑦) − 𝜓𝑛 (𝑥)
)
𝜋DMT
𝑥 (𝑑𝑦)

is bounded in 𝐿1(𝜇). Applying Komlós’ theorem [45, Theorem 1], we can find a subsequence
(𝑛𝑘)𝑘⩾1 ⊆ N, such that the Cesàro means

Ψ𝑘 B
Ψ𝑛1 +Ψ𝑛2 + . . . +Ψ𝑛𝑘

𝑘

converge 𝜇-a.s. to some random variable Ψ ∈ 𝐿1(𝜇). If we define the Cesàro means

�̄�𝑥𝑘 B
𝜓𝑥𝑛1 + 𝜓

𝑥
𝑛2 + . . . + 𝜓

𝑥
𝑛𝑘

𝑘
,

we have

Ψ𝑘 (𝑥) =
∫
�̄�𝑥𝑘 (𝑦) 𝜋

DMT
𝑥 (𝑑𝑦), 𝑥 ∈ R𝑑 .

Note that passing to a subsequence (𝑛𝑘)𝑘⩾1 ⊆ N and forming Cesàro means (�̄�𝑥
𝑘
) preserves

the property of being an optimizing sequence of convex functions in 𝐶aff
q (R𝑑) of the form

(7.4). Therefore we can replace the original sequences (Ψ𝑛) and (𝜓𝑥𝑛) by (Ψ𝑘) and (�̄�𝑥
𝑘
),

respectively, and may again relabel them as (Ψ𝑛) and (𝜓𝑥𝑛), respectively. With that said, as a
consequence of the 𝜇-a.s. convergence to a finite limit, we have that

(7.5) 𝑚(𝑥) B sup
𝑛⩾1

Ψ𝑛 (𝑥) = sup
𝑛⩾1

∫
𝜓𝑥𝑛 (𝑦) 𝜋DMT

𝑥 (𝑑𝑦) < +∞,

for 𝜇-a.e. 𝑥 ∈ R𝑑 .

Arguing by contradiction to the statement of Lemma 7.12, we assume that there is a
compact set 𝐾0 ⊆ 𝐼 such that the set

𝐴1 B
{
𝑥 ∈ R𝑑 : sup

𝑛⩾1,𝑦∈𝐾0

𝜓𝑥𝑛 (𝑦) = +∞
}
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has positive 𝜇-measure. Furthermore, by Lemma 7.5, the set

𝐴2 B
{
𝑥 ∈ R𝑑 : ∃ 𝛿(𝐾0, 𝑥) > 0 such that 𝜋DMT

𝑥 (𝑆𝑦∗) ⩾ 𝛿(𝐾0, 𝑥) for every 𝑦∗ ∈ S𝑑−1
}

has full 𝜇-measure. By (7.5) above, also the set

𝐴3 B {𝑥 ∈ R𝑑 : 𝑚(𝑥) < +∞}

has full 𝜇-measure, so that the intersection 𝐴 B 𝐴1 ∩ 𝐴2 ∩ 𝐴3 has positive 𝜇-measure. Pick
a point 𝑥0 ∈ 𝐴. As 𝑥0 ∈ 𝐴1, for arbitrarily large 𝑀 > 𝑚(𝑥0)/𝛿(𝐾0, 𝑥0), we can find 𝑛0 ⩾ 1 and
𝑦0 ∈ 𝐾0 such that 𝜓𝑥0

𝑛0 (𝑦0) ⩾ 𝑀 . The function

ℓ(𝑦) B
〈
𝜕𝜓

𝑥0
𝑛0 (𝑦0), 𝑦 − 𝑦0

〉
+𝑀, 𝑦 ∈ R𝑑 ,

satisfies ℓ ⩽ 𝜓𝑥0
𝑛0 and ℓ(𝑦) ⩾ 𝑀 , for all 𝑦 ∈ 𝑆𝑦∗ , with 𝑦∗ B 𝑧

|𝑧 | and 𝑧 B 𝜕𝜓
𝑥0
𝑛0 (𝑦0). We conclude

with

𝑚(𝑥0) ⩾
∫
𝜓𝑥𝑛 (𝑦) 𝜋DMT

𝑥0 (𝑑𝑦) ⩾
∫
ℓ+(𝑦) 𝜋DMT

𝑥0 (𝑑𝑦) ⩾ 𝑀 𝜋DMT
𝑥0 (𝑆𝑦∗) ⩾ 𝑀 𝛿(𝐾0, 𝑥0),

which is the desired contradiction, as 𝑀 is arbitrarily large. □

Proof of Proposition 7.8. By Lemma 7.12 we can fix some 𝑥0 ∈ 𝐼 such that the sequence
of convex functions (𝜓𝑥0

𝑛 )𝑛⩾1 is bounded on all compact subsets 𝐾 ⊆ 𝐼 . In particular, the
sequence (𝜓𝑥0

𝑛 )𝑛⩾1 is pointwise bounded on 𝐼 . By [54, Theorem 10.9] we can select a
subsequence, still denoted by (𝜓𝑥0

𝑛 )𝑛⩾1, which converges uniformly on compact subsets 𝐾 ⊆ 𝐼
to some convex function 𝜓𝑥0

lim : 𝐼 → [0,+∞). Dropping the superscript 𝑥0 to ease notation,
we arrive at a sequence (𝜓𝑛)𝑛⩾1 with limit 𝜓lim as required in the statement of Proposition
7.8. □

7.3.2. Step 2 of the proof of Theorem 7.6. We extend the function 𝜓lim : 𝐼 → [0,+∞)
of Proposition 7.8 to a lower semicontinuous convex function 𝜓lim : R𝑑 → [0,+∞] which
is equal to +∞ on R𝑑 \ 𝐶. Since 𝐼 ⊆ dom𝜓lim, 𝐼 is open and 𝜇(𝐼) = 1, it follows that
𝜇(int(dom𝜓lim)) = 1.

Proposition 7.13. Under Assumption 7.3, the convex function 𝜓lim : R𝑑 → [0,+∞] is a
dual optimizer in the sense of Definition 6.1, i.e., satisfies �̃� (𝜇, 𝜈) =D(𝜓lim).

Definition 7.14. For 𝜇-a.e. 𝑥 ∈ R𝑑 , we denote by 𝑣𝑥SBM the Brenier potential from 𝛾 to
𝜋SBM
𝑥 , so that ∇𝑣𝑥SBM(𝛾) = 𝜋SBM

𝑥 and

MCov(𝜋SBM
𝑥 , 𝛾) =

∫ 〈
∇𝑣𝑥SBM(𝑧), 𝑧

〉
𝛾(𝑑𝑧);

we write 𝜓𝑥SBM B (𝑣𝑥SBM)∗ for its convex conjugate.

Remark 7.15. As 𝛾 has full support, the convex function 𝑣𝑥SBM is finite-valued and
continuous everywhere on R𝑑 . In particular, 𝑣𝑥SBM is unique, up to an additive constant.
Therefore also its convex conjugate 𝜓𝑥SBM : R𝑑 → (−∞,+∞] is unique, up to an additive
constant. Also note that 𝜓𝑥SBM is finite-valued on 𝐼 and takes the value +∞ on R𝑑 \𝐶, with
𝐶 = ŝupp(𝜈) and 𝐼 = int𝐶.
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Our goal is to show that 𝜓lim : R𝑑 → [0,+∞] is a dual optimizer. For this purpose, we will
prove that, for 𝜇-a.e. 𝑥 ∈ 𝐼 , the function 𝜓lim( · ) equals 𝜓𝑥SBM( · ), modulo adding an affine
function; in short, 𝜓lim ≡ 𝜓𝑥SBM mod (aff), for 𝜇-a.e. 𝑥 ∈ R𝑑 . In Lemma 7.18 below we will
show that the set

(7.6) 𝐴B
{
𝑥 ∈ 𝐼 : 𝜓lim . 𝜓

𝑥
SBM mod (aff)

}
indeed has 𝜇-measure zero. It will then follow from Lemma 7.19 that 𝜓lim is actually a dual
optimizer. First, we need some auxiliary results.

Lemma 7.16. Under Assumption 7.3, for 𝜇-a.e. 𝑥 ∈ 𝐴, there exists a measure �̌�𝑥 ∈ P𝑥
2 (R

𝑑)
supported by 𝐶 and there is a constant 𝛽(𝑥) > 0 such that

(7.7) MCov(�̌�𝑥 , 𝛾) +
∫
𝜓lim 𝑑 (𝜋SBM

𝑥 − �̌�𝑥) ⩾MCov(𝜋SBM
𝑥 , 𝛾) + 𝛽(𝑥).

Proof. Recalling the representation (3.12) of the dual function D( · ) and the definition
(3.2) of the function 𝑥 ↦→ 𝜑𝜓 (𝑥), we consider for 𝜇-a.e. 𝑥 ∈ 𝐼 the functions

(7.8)

𝜙𝜓
𝑥
SBM (𝑥) B

∫
𝜓𝑥SBM(𝑦) 𝜋SBM

𝑥 (𝑑𝑦) − 𝜑𝜓𝑥
SBM (𝑥)

= sup
𝑝∈P𝑥

2 (R𝑑 )

(
MCov(𝑝, 𝛾) +

∫
𝜓𝑥SBM 𝑑 (𝜋

SBM
𝑥 − 𝑝)

)
and

(7.9)

𝜙𝜓lim (𝑥) B
∫
𝜓lim(𝑦) 𝜋SBM

𝑥 (𝑑𝑦) − 𝜑𝜓lim (𝑥)

= sup
𝑝∈P𝑥

2 (R𝑑 )

(
MCov(𝑝, 𝛾) +

∫
𝜓lim 𝑑 (𝜋SBM

𝑥 − 𝑝)
)
.

Recalling Definition 7.14, we have ∇(𝜓𝑥SBM)∗(𝛾) = 𝜋SBM
𝑥 ∈ P𝑥

2 (R
𝑑). Therefore, we can apply

part (i) of Proposition 5.3, which yields that the supremum in (7.8) is attained by 𝜋SBM
𝑥 ,

so that 𝜙𝜓𝑥
SBM (𝑥) = MCov(𝜋SBM

𝑥 , 𝛾). By taking 𝑝 = 𝜋SBM
𝑥 in (7.9), we obtain the inequality

𝜙𝜓lim (𝑥) ⩾ 𝜙𝜓𝑥
SBM (𝑥), for 𝜇-a.e. 𝑥 ∈ 𝐼 .

Now we define the sets

𝐵 B
{
𝑥 ∈ 𝐼 : 𝜙𝜓lim (𝑥) > 𝜙𝜓𝑥

SBM (𝑥)
}
, 𝑋 B

{
𝑥 ∈ 𝐼 : 𝜙𝜓

𝑥
SBM (𝑥) < +∞

}
and claim that for the set 𝐴 defined in (7.6) we have the relation �̃� B 𝐴 ∩ 𝑋 = 𝐵. In other
words, since 𝜇(𝑋) = 1, the sets 𝐴 and 𝐵 are equal, up to a set of 𝜇-measure zero.

In fact, if 𝑥 ∉ �̃�, then 𝜓lim ≡ 𝜓𝑥SBM mod (aff) or 𝜙𝜓𝑥
SBM (𝑥) = +∞, so that in both cases

𝜙𝜓lim (𝑥) = 𝜙𝜓𝑥
SBM (𝑥). Conversely, if 𝑥 ∉ 𝐵, then 𝑥 ∉ 𝑋 or we have the equality 𝜙𝜓lim (𝑥) =

𝜙𝜓
𝑥
SBM (𝑥) of real numbers and thus also the supremum in the definition (7.9) of 𝜙𝜓lim (𝑥) is

attained by

(7.10) 𝜋SBM
𝑥 = ∇(𝜓𝑥SBM)∗(𝛾) ∈ P𝑥

2 (R
𝑑).

Hence we can apply part (ii) of Proposition 5.3 to the lower semicontinuous convex function
𝜓lim : R𝑑 → [0,+∞] satisfying 𝜇(int(dom𝜓lim)) = 1, which tells us that the optimizer (7.10)
of the supremum in (7.9) is equal to

∇𝜓∗
lim(𝛾𝜁 (𝑥 ) ),
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for some 𝜁 (𝑥) ∈ R𝑑 . We conclude the 𝛾-a.s. equality

∇(𝜓𝑥SBM)∗ = ∇𝜓∗
lim

(
· + 𝜁 (𝑥)

)
,

which is equivalent to the 𝛾-a.s. equality

(7.11) (𝜓𝑥SBM)∗ = 𝜓∗
lim

(
· + 𝜁 (𝑥)

)
+ 𝑐,

for some constant 𝑐 ∈ R. Since the convex function (𝜓𝑥SBM)∗ is finite-valued and continuous
everywhere on R𝑑 , the equality (7.11) has to hold everywhere on R𝑑 . This implies that
𝜓lim ≡ 𝜓𝑥SBM mod (aff) and we deduce that 𝑥 ∉ 𝐴. Altogether, we have seen that 𝑥 ∉ 𝐵 implies
that 𝑥 ∉ �̃�.

As a consequence of 𝐴 = 𝐵, up to a set of 𝜇-measure zero, for 𝜇-a.e. 𝑥 ∈ 𝐴 we have
𝜙𝜓lim (𝑥) > 𝜙𝜓𝑥

SBM (𝑥), so that we can measurably select some �̌�𝑥 ∈ P𝑥
2 (R

𝑑) with

(7.12) MCov(�̌�𝑥 , 𝛾) +
∫
𝜓lim 𝑑 (𝜋SBM

𝑥 − �̌�𝑥) >MCov(𝜋SBM
𝑥 , 𝛾),

which gives (7.7). As the right-hand side of (7.12) is finite, for 𝜇-a.e. 𝑥 ∈ 𝐼 , and since
𝜓lim(𝑦) = +∞ for 𝑦 ∈ R𝑑 \𝐶, we see that �̌�𝑥 is supported by 𝐶. □

Our next step is to modify the measures {�̌�𝑥}𝑥∈𝐴 of Lemma 7.16, so that they have compact
support and still satisfy (7.7) for some 𝛽(𝑥) > 0 instead of 𝛽(𝑥). To this end, we choose an
increasing sequence (𝐾 𝑗) 𝑗⩾1 of compact subsets of 𝐼 such that

⋃
𝑗⩾1𝐾 𝑗 = 𝐼 . Denoting by 𝑀 𝑥

the Bass martingale from 𝛿𝑥 to �̌�𝑥 , and by 𝜏𝑥
𝑗

the first exit time of 𝑀 𝑥 from 𝐾 𝑗 (similarly as
in Corollary 6.8), we define �̌� 𝑗𝑥 B Law(𝑀 𝑥

𝜏𝑥
𝑗
∧1). By optional sampling, �̌� 𝑗𝑥 ∈ P𝑥

2 (R
𝑑) and, by

definition, �̌� 𝑗𝑥 is supported by the compact set 𝐾 𝑗 .

Lemma 7.17. Under Assumption 7.3, for 𝜇-a.e. 𝑥 ∈ 𝐴, there exists �̌� 𝑗 (𝑥 )𝑥 ∈ P𝑥
2 (R

𝑑) sup-
ported by 𝐾 𝑗 (𝑥 ) for some 𝑗 (𝑥) ∈ N and there is a constant 𝛽(𝑥) > 0 such that

(7.13) MCov(�̌� 𝑗 (𝑥 )𝑥 , 𝛾) +
∫
𝜓lim 𝑑 (𝜋SBM

𝑥 − �̌� 𝑗 (𝑥 )𝑥 ) ⩾MCov(𝜋SBM
𝑥 , 𝛾) + 𝛽(𝑥).

Proof. From Lemma 7.16 we already have the inequality (7.7). In order to derive (7.13),
we have to show that

(7.14) lim
𝑗→+∞

MCov(�̌� 𝑗𝑥 , 𝛾) = MCov(�̌�𝑥 , 𝛾)

and

(7.15) lim sup
𝑗→+∞

∫
𝜓lim(𝑦) 𝑑�̌� 𝑗𝑥 (𝑦) ⩽

∫
𝜓lim(𝑦) 𝑑�̌�𝑥 (𝑦).

We begin with the proof of (7.14). First, observe that 𝑀 𝑥
𝜏𝑥
𝑗
∧1 → 𝑀 𝑥

𝜏𝑥∧1 in 𝐿2, where 𝜏𝑥

is the first exit time of 𝑀 𝑥 from 𝐼 . Since 𝜏𝑥 ∧ 1 = 1 a.s. by Corollary 6.8, we conclude that
𝑀 𝑥
𝜏𝑥
𝑗
∧1 → 𝑀 𝑥

1 in 𝐿2. Consequently,

W2
2 (�̌�

𝑗
𝑥 , �̌�𝑥) B inf

𝑞∈Cpl( �̌� 𝑗
𝑥 , �̌�𝑥 )

∫
|𝑥1 − 𝑥2 |2 𝑞(𝑑𝑥1, 𝑑𝑥2)

converges to zero as 𝑗 →+∞, and the inequality

|MCov(�̌� 𝑗𝑥 , 𝛾) −MCov(�̌�𝑥 , 𝛾) | ⩽W2(�̌� 𝑗𝑥 , �̌�𝑥)
√
𝑑
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yields (7.14).

Finally, we show (7.15). Note that by optional sampling, �̌� 𝑗𝑥 ∈ P𝑥
2 (R

𝑑). Since a martingale
composed with a convex function is a submartingale, it follows that

∀ 𝑗 ⩾ 1:
∫
𝜓lim 𝑑�̌�

𝑗
𝑥 ⩽

∫
𝜓lim 𝑑�̌�𝑥

and we obtain (7.15). □

Lemma 7.18. Under Assumption 7.3, the set 𝐴 ⊆ R𝑑 defined in (7.6) has 𝜇-measure zero.

Proof. We assume for contradiction that 𝜇(𝐴) > 0. Thanks to Lemma 7.17, the set 𝐴 is
𝜇-a.s. equal to the union⋃

𝑗∈N,
𝛽∈Q+\{0}

{
𝑥 ∈ 𝐴 : MCov(�̌� 𝑗𝑥 , 𝛾) +

∫
𝜓lim 𝑑 (𝜋SBM

𝑥 − �̌� 𝑗𝑥) ⩾MCov(𝜋SBM
𝑥 , 𝛾) + 𝛽

}
.

Hence we can find a subset 𝐵 ⊆ 𝐴with 𝜇(𝐵) > 0, such that (7.13) holds with uniform constants
𝑗 ∈ N and 𝛽 > 0 for all 𝑥 ∈ 𝐵, i.e.,

(7.16) ∃ 𝑗 ∃𝛽 ∀𝑥 ∈ 𝐵 : MCov(�̌� 𝑗𝑥 , 𝛾) +
∫
𝜓lim 𝑑 (𝜋SBM

𝑥 − �̌� 𝑗𝑥) ⩾MCov(𝜋SBM
𝑥 , 𝛾) + 𝛽.

Now we define a measurable collection of probability measures {�̃�𝑥}𝑥∈R𝑑 ⊆ P2(R𝑑) with
bary(�̃�𝑥) = 𝑥 by

(7.17) �̃�𝑥 B

{
�̌�
𝑗
𝑥 , 𝑥 ∈ 𝐵,
𝜋SBM
𝑥 , 𝑥 ∈ R𝑑 \ 𝐵.

From the inequality (7.16) and the definition (7.17) we deduce that∫ ∫
𝜓lim 𝑑 (𝜋SBM

𝑥 − �̃�𝑥) 𝑑𝜇(𝑥) +
∫

MCov(�̃�𝑥 , 𝛾) 𝑑𝜇(𝑥)(7.18)

⩾

∫
MCov(𝜋SBM

𝑥 , 𝛾) 𝑑𝜇(𝑥) + 𝛽 𝜇(𝐵)(7.19)

= 𝑃(𝜇, 𝜈) + 𝛽 𝜇(𝐵).(7.20)

Recall from Proposition 7.8 that there is an optimizing sequence (𝜓𝑛)𝑛⩾1 of convex functions
𝜓𝑛 : R𝑑 → [0,+∞) for the dual problem (3.1), which converges uniformly on compact subsets
𝐾 ⊆ 𝐼 to𝜓lim. To find the desired contradiction, we want to replace𝜓lim in (7.18) by lim𝑛→∞ 𝜓𝑛
and write the limit outside of the integral. This is clearly not a problem if 𝑥 ∉ 𝐵. For 𝑥 ∈ 𝐵,
note that the measure �̃�𝑥 = �̌� 𝑗𝑥 is supported by the compact set 𝐾 𝑗 . As (𝜓𝑛)𝑛⩾1 converges to
𝜓lim uniformly on 𝐾 𝑗 , we have

(7.21) lim
𝑛→∞

∫
𝐵

∫
𝜓𝑛 (𝑦) 𝑑�̃�𝑥 (𝑦) 𝑑𝜇(𝑥) =

∫
𝐵

∫
𝜓lim(𝑦) 𝑑�̃�𝑥 (𝑦) 𝑑𝜇(𝑥).

On the other hand, Fatou’s lemma gives

(7.22) lim inf
𝑛→∞

∫
𝐵

∫
𝜓𝑛 (𝑦) 𝑑𝜋SBM

𝑥 (𝑦) 𝑑𝜇(𝑥) ⩾
∫
𝐵

∫
𝜓lim(𝑦) 𝑑𝜋SBM

𝑥 (𝑦) 𝑑𝜇(𝑥).

Now combining (7.18) – (7.20) with (7.21), (7.22) yields the inequality

lim inf
𝑛→∞

∫ ∫
𝜓𝑛 𝑑 (𝜋SBM

𝑥 − �̃�𝑥) 𝑑𝜇(𝑥) +
∫

MCov(�̃�𝑥 , 𝛾) 𝑑𝜇(𝑥) ⩾ 𝑃(𝜇, 𝜈) + 𝛽 𝜇(𝐵).
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Recalling the definition (3.2) of the function 𝑥 ↦→ 𝜑𝜓 (𝑥) and the dual function (3.12), we
observe that the left-hand side of this inequality is less than or equal to

lim inf
𝑛→∞

D(𝜓𝑛) = lim inf
𝑛→∞

∫ (∫
𝜓𝑛 (𝑦) 𝜋SBM

𝑥 (𝑑𝑦) − 𝜑𝜓𝑛 (𝑥)
)
𝜇(𝑑𝑥).

Since (𝜓𝑛)𝑛⩾1 is an optimizing sequence for the dual problem, it follows that

�̃� (𝜇, 𝜈) = lim
𝑛→∞

D(𝜓𝑛) = lim inf
𝑛→∞

D(𝜓𝑛) ⩾ 𝑃(𝜇, 𝜈) + 𝛽 𝜇(𝐵) > 𝑃(𝜇, 𝜈).

But this is a contradiction to the fact that there is no duality gap by Theorem 3.3. □

Lemma 7.19. A lower semicontinuous convex function 𝜓opt : R𝑑 → (−∞,+∞] satisfying
𝜇(int(dom𝜓opt)) = 1 is a dual optimizer in the sense of Definition 6.1 if and only if

(7.23) 𝜇
({
𝑥 ∈ R𝑑 : 𝜓opt ≡ 𝜓𝑥SBM mod (aff)

})
= 1.

Proof. “⇐”: As we have seen in the proof of Lemma 7.16, for 𝜇-a.e. 𝑥 ∈ R𝑑 , the supremum
in (7.8) is attained by 𝑝 = 𝜋SBM

𝑥 . Hence integrating with respect to 𝜇(𝑑𝑥) yields∫
MCov(𝜋SBM

𝑥 , 𝛾) 𝜇(𝑑𝑥) =
∫ (∫

𝜓𝑥SBM(𝑦) 𝜋SBM
𝑥 (𝑑𝑦) − 𝜑𝜓𝑥

SBM (𝑥)
)
𝜇(𝑑𝑥).

By assumption (7.23) it follows that

(7.24)
∫

MCov(𝜋SBM
𝑥 , 𝛾) 𝜇(𝑑𝑥) =

∫ (∫
𝜓opt(𝑦) 𝜋SBM

𝑥 (𝑑𝑦) − 𝜑𝜓opt (𝑥)
)
𝜇(𝑑𝑥).

Recalling the representation (3.12) of the dual function D( · ), we see that the expression on
the right-hand side of (7.24) equals D(𝜓opt). On the other hand, the left-hand side is equal to
𝑃(𝜇, 𝜈) = �̃� (𝜇, 𝜈) by Theorem 3.3, so that 𝜓opt is a dual optimizer.

“⇒”: Let 𝜓opt be a dual optimizer. As in the proof of the implication “⇒” in Theorem 6.6
we conclude that

𝜋SBM
𝑥 = ∇𝜓∗

opt
(
𝜁 (𝑥) + ·

)
(𝛾),

for 𝜇-a.e. 𝑥 ∈ R𝑑 , with 𝜁 (𝑥) ∈ R𝑑 as in (6.5). On the other hand, by Definition 7.14 we have
𝜋SBM
𝑥 = ∇(𝜓𝑥SBM)∗(𝛾), for 𝜇-a.e. 𝑥 ∈ R𝑑 . Arguing as in the proof of Lemma 7.16, we obtain

(7.23). □

Let us summarize why the above arguments complete the proof of Proposition 7.13 and
thus also of Theorem 7.6.

Proof of Proposition 7.13. According to Lemma 7.18, the function 𝜓lim : R𝑑 → [0,+∞]
equals 𝜓𝑥SBM mod (aff), for 𝜇-a.e. 𝑥 ∈ 𝐼 . By Lemma 7.19, this implies that 𝜓lim is a dual
optimizer. □

Proof of Theorem 7.6. The existence of a dual optimizer follows from Proposition 7.8
and Proposition 7.13. □

Let us have one more look at the structure of the proof of Theorem 7.6 and Corollary
7.7 above. We started with an arbitrary optimizing sequence (𝜓𝑛)𝑛⩾1 ⊆ 𝐶q(R𝑑) of convex
functions for the dual problem (3.1), which we normalized to obtain (𝜓𝑥𝑛)𝑛⩾1 as in (7.4).
Then we showed in Proposition 7.8 that under the irreducibility Assumption 7.3, which
guarantees the existence of a De March–Touzi transport 𝜋DMT ∈ MT(𝜇, 𝜈), we could find



36

a limiting function 𝜓lim. However, this was only possible after passing to a subsequence,
forming Cesàro means, and then choosing a further subsequence of (𝜓𝑥𝑛)𝑛⩾1. In Proposition
7.13 we argued that 𝜓lim is a dual optimizer and hence, by Theorem 6.6, there is a Bass
martingale from 𝜇 to 𝜈.

In the follow-up paper [56], the general case of a pair (𝜇, 𝜈) which is not necessarily
irreducible — and thus does not necessarily satisfy Assumption 7.3 — is treated. In this case,
a variant of this line of reasoning is needed. Suppose we already know that an optimizing
sequence (𝜓𝑛)𝑛⩾1 is pointwise bounded on a relatively open convex set 𝐼 ⊆ R𝑑 with 𝜇(𝐼) = 1
and such that ŝupp(𝜈) is contained in the closure of 𝐼 . Under this assumption — but without
imposing irreducibility on the pair (𝜇, 𝜈) — we will prove in Proposition 7.20 below that there
is no need of passing to a subsequence or of forming convex combinations of the optimizing
sequence (𝜓𝑛)𝑛⩾1. Rather already the original sequence (𝜓𝑛)𝑛⩾1 — modulo adding affine
functions — converges.

Proposition 7.20. Let 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈. Let 𝐼 ⊆ R𝑑 be a relatively open convex
set with 𝜇(𝐼) = 1. Denote by 𝐶 the closure of 𝐼 and assume that ŝupp(𝜈) ⊆ 𝐶. Let (𝜓𝑛)𝑛⩾1
be an optimizing sequence of non-negative convex functions in 𝐶aff

q (R𝑑) for the dual problem
(3.1) such that

(7.25) ∀𝑦 ∈ 𝐼 : sup
𝑛⩾1

𝜓𝑛 (𝑦) < +∞.

Then there is a lower semicontinuous convex function 𝜓lim : R𝑑 → [0,+∞] and a sequence
(�̃�𝑛)𝑛⩾1 such that 𝜓𝑛 ≡ �̃�𝑛 mod (aff), for each 𝑛 ⩾ 1, and

∀𝑦 ∈ 𝐼 : 𝜓lim(𝑦) = lim
𝑛→∞

�̃�𝑛 (𝑦) < +∞,(7.26)

∀𝑦 ∈ R𝑑 \𝐶 : 𝜓lim(𝑦) = lim
𝑛→∞

�̃�𝑛 (𝑦) = +∞.(7.27)

The convergence in (7.26) is uniform on compact subsets of 𝐼 . Moreover, we have that
𝐶 = ŝupp(𝜈) and 𝜓lim is a dual optimizer, which is unique modulo adding affine functions.

The proof of Proposition 7.20 is delayed until Appendix C.

Corollary 7.21. Under the assumptions of Proposition 7.20, there exists a Bass mar-
tingale (𝑀𝑡 )0⩽𝑡⩽1 from 𝜇 to 𝜈. Moreover, Law(𝑀0, 𝑀1) = 𝜋SBM and, for 𝜇-a.e. 𝑥 ∈ 𝐼 , the
measure 𝜋SBM

𝑥 is equivalent to 𝜈. In particular, 𝜋SBM is a De March–Touzi transport and the
pair (𝜇, 𝜈) is irreducible.

Proof. By Proposition 7.20, the limiting function 𝜓lim is a dual optimizer. Therefore, by
analogy with the deduction of Corollary 7.7 from Theorem 7.6, we deduce Corollary 7.21
from Proposition 7.20. To see that the pair (𝜇, 𝜈) is irreducible we refer to Theorem D.1. □

7.4. Proof of Theorem 1.3. We are now in the position to prove our first main result of
the introduction.

Proof of Theorem 1.3. The implication “(2) ⇒ (1)” is Theorem 1.10 of [5]. For the proof
of “(1) ⇒ (2)” we apply Corollary 7.7 and obtain the existence of a Bass martingale from 𝜇

to 𝜈. By the uniqueness results of Theorem 2.2 in [5], this Bass martingale has to agree with
the given stretched Brownian motion. □
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7.5. Proof of the second part of Theorem 1.4. Finally, we complete the proof of Theorem
1.4. Recalling the results of Section 4 and the definition (4.3) of E( · ), we can formulate the
second part of Theorem 1.4 equivalently as follows.

Proposition 7.22. Let 𝜇, 𝜈 ∈ P2(R𝑑) with 𝜇 ⪯c 𝜈. The value

(7.28) 𝐷rel(𝜇, 𝜈) = inf
𝜇 (dom 𝜓)=1,
𝜓 convex

E(𝜓)

is attained by a lower semicontinuous convex function 𝜓opt : R𝑑 → (−∞,+∞] satisfying
𝜇(ri(dom𝜓opt)) = 1 if and only if (𝜇, 𝜈) is irreducible. In this case the (unique) optimizer to
(MBB) is given by the Bass martingale

𝑀𝑡 B E[∇𝑣(𝐵1) |𝜎(𝐵𝑠 : 𝑠 ⩽ 𝑡)] = E[∇𝑣(𝐵1) | 𝐵𝑡 ], 0 ⩽ 𝑡 ⩽ 1,

where 𝑣 = 𝜓∗
opt and 𝐵0 ∼ ∇(𝜓∗

opt ∗ 𝛾)∗(𝜇).

Proof. We call a function 𝜓opt as in the statement of the proposition a dual optimizer
of (7.28) and first show that this notion is equivalent to a dual optimizer in the sense of
Definition 6.1. Indeed, if 𝜓opt is a dual optimizer of (7.28), it follows from the inequality
(𝜓∗ ∗ 𝛾)∗ = (𝜑𝜓)∗∗ ⩽ 𝜑𝜓 that 𝜓opt is also a dual optimizer according to Definition 6.1.
Conversely, suppose that 𝜓opt is an optimizer in the latter sense. Then it follows from Lemma
7.19 that (7.23) is satisfied. Note that by the classical Kantorovich duality we have

MCov(𝜋SBM
𝑥 , 𝛾) =

∫
𝜓𝑥SBM 𝑑𝜋

SBM
𝑥 +

∫
(𝜓𝑥SBM)∗ 𝑑𝛾,

for 𝜇-a.e. 𝑥 ∈ R𝑑 . Thus, by (7.23), for 𝜇-a.e. 𝑥 ∈ R𝑑 there exists 𝜁 (𝑥) ∈ R𝑑 such that

MCov(𝜋SBM
𝑥 , 𝛾) =

∫ (
𝜓opt( · ) − ⟨𝜁 (𝑥), · ⟩

)
𝑑𝜋SBM

𝑥 +
∫ (

𝜓opt( · ) − ⟨𝜁 (𝑥), · ⟩
)∗
𝑑𝛾.

Reading the proof of Proposition 4.2 backwards we conclude that∫
MCov(𝜋SBM

𝑥 , 𝛾) 𝑑𝜇(𝑥) =
∫ (∫

𝜓opt(𝑦) 𝜋SBM
𝑥 (𝑑𝑦) − (𝜓∗

opt ∗ 𝛾)∗(𝑥)
)
𝜇(𝑑𝑥),

i.e., 𝐷rel(𝜇, 𝜈) = E(𝜓opt). This shows that 𝜓opt is also a dual optimizer of (7.28).

Now that we know that both definitions of a dual optimizer are equivalent, we can conclude
the assertions of Proposition 7.22 from the results we have already established. Indeed, by
Theorem 6.6, the existence of a dual optimizer is equivalent to the existence of a Bass
martingale (𝑀𝑡 )0⩽𝑡⩽1 in the given form. Finally, by Theorem 1.3 and Theorem D.1, the
existence of a Bass martingale is equivalent to the irreducibility of (𝜇, 𝜈). □

APPENDIX A: PROOF OF THEOREM 3.3

Proof of Theorem 3.3. Existence and uniqueness of the optimizer 𝜋SBM ∈ MT(𝜇, 𝜈) of
the primal problem (1.5), as well as finiteness of the primal value 𝑃(𝜇, 𝜈) in (3.3), were proved
in [5, Theorem 2.2]. In order to show that there is no duality gap, we apply [6, Theorem 1.3]
with the cost function

𝐶 (𝑥, 𝑝) B
{
−MCov(𝑝, 𝛾) + 1

2

∫
|𝑦 |2 𝑑𝑝, if bary(𝑝) = 𝑥,

+∞, if bary(𝑝) ≠ 𝑥,

for 𝑥 ∈ R𝑑 and 𝑝 ∈ P2(R𝑑). This function is bounded from below and convex in the second
argument. If we equip P2(R𝑑) with the topology induced by the quadratic Wasserstein
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distance one verifies that 𝐶 (𝑥, 𝑝) is also jointly lower semicontinuous with respect to the
product topology on R𝑑 ×P2(R𝑑). We introduce the space of continuous functions which are
bounded from below and have at most quadratic growth

𝐶b,q(R𝑑) B
{
�̃� : R𝑑 → R continuous s.t. ∃ 𝑎, 𝑘, ℓ ∈ R with ℓ ⩽ �̃�( · ) ⩽ 𝑎 + 𝑘 | · |2

}
.

Then by [6, Theorem 1.3] the value 𝑃(𝜇, 𝜈) of the primal problem (1.5) equals

�̃�b,q(𝜇, 𝜈) B inf
�̃�∈𝐶b,q (R𝑑 )

( ∫ (
�̃�( · ) + | · |2

2
)
𝑑𝜈 −

∫
�̃��̃� 𝑑𝜇

)
,

where

�̃��̃� (𝑥) B inf
𝑝∈P𝑥

2 (R𝑑 )

( ∫ (
�̃�( · ) + | · |2

2
)
𝑑𝑝 −MCov(𝑝, 𝛾)

)
.

Finally, passing from the functions �̃� ∈ 𝐶b,q(R𝑑) to 𝜓( · ) B �̃�( · ) + | · |2
2 ∈ 𝐶q(R𝑑), we see that

�̃�b,q(𝜇, 𝜈) = �̃� (𝜇, 𝜈). □

APPENDIX B: PROOFS OF LEMMAS 4.4, 5.1, 6.2, 6.4 AND 6.5

Proof of Lemma 4.4. Using probabilistic notation, we rewrite the supremum in (4.5) as

(B.1) 𝜚𝜓 = supE
[
⟨𝑌, 𝑍⟩ − 𝜓(𝑌 )

]
,

where the supremum in (B.1) is taken over all probability spaces such that 𝑍 ∼ 𝛾 and 𝑌 is an
R𝑑-valued random variable with finite second moment. Replacing 𝑌 by E[𝑌 | 𝑍], we observe
that the maximization in (B.1) can be restricted to random variables 𝑌 which are measurable
functions of 𝑍 , and we obtain

(B.2) 𝜚𝜓 = sup
𝑌 ∈𝐿2 (𝛾;R𝑑 )

∫ (〈
𝑌 (𝑧), 𝑧

〉
− 𝜓

(
𝑌 (𝑧)

) )
𝛾(𝑑𝑧),

where 𝐿2(𝛾;R𝑑) denotes the space of R𝑑-valued Borel measurable functions on R𝑑 , which
are square-integrable under 𝛾. Clearly, for any 𝑌 ∈ 𝐿2(𝛾;R𝑑) we have∫ (〈

𝑌 (𝑧), 𝑧
〉
− 𝜓

(
𝑌 (𝑧)

) )
𝛾(𝑑𝑧) ⩽

∫
sup
𝑦∈R𝑑

(
⟨𝑦, 𝑧⟩ − 𝜓(𝑦)

)
𝛾(𝑑𝑧) =

∫
𝜓∗(𝑧) 𝛾(𝑑𝑧),

which shows the inequality 𝜚𝜓 ⩽
∫
𝜓∗ 𝑑𝛾. In order to see the reverse inequality, we define the

auxiliary problem

(B.3) 𝜚
𝜓
∞ B sup

𝑌 ∈𝐿∞ (𝛾;R𝑑 )

∫ (〈
𝑌 (𝑧), 𝑧

〉
− 𝜓

(
𝑌 (𝑧)

) )
𝛾(𝑑𝑧),

where 𝐿∞(𝛾;R𝑑) denotes the space of R𝑑-valued Borel measurable functions on R𝑑 , which
are bounded 𝛾-a.e. Comparing (B.2) with (B.3), we obviously have 𝜚𝜓 ⩾ 𝜚𝜓∞. Now we claim
that

(B.4) 𝜚
𝜓
∞ ⩾

∫
sup
𝑦∈R𝑑

(
⟨𝑦, 𝑧⟩ − 𝜓(𝑦)

)
𝛾(𝑑𝑧) =

∫
𝜓∗(𝑧) 𝛾(𝑑𝑧),

which will finish the proof of (4.7). To see this, we first write

𝜚
𝜓
∞ = lim

𝑁→∞
sup

𝑌 ∈𝐿∞ (𝛾;R𝑑 ) ,
|𝑌 |⩽𝑁

∫ (〈
𝑌 (𝑧), 𝑧

〉
− 𝜓

(
𝑌 (𝑧)

) )
𝛾(𝑑𝑧).
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Using a measurable selection argument, we obtain

sup
𝑌 ∈𝐿∞ (𝛾;R𝑑 ) ,

|𝑌 |⩽𝑁

∫ (〈
𝑌 (𝑧), 𝑧

〉
− 𝜓

(
𝑌 (𝑧)

) )
𝛾(𝑑𝑧) ⩾

∫
sup
𝑦∈R𝑑 ,
|𝑦 |⩽𝑁

(
⟨𝑦, 𝑧⟩ − 𝜓(𝑦)

)
𝛾(𝑑𝑧).

Since 𝜓 is proper we can choose 𝑦0 ∈ dom𝜓 ≠∅. Then for 𝑁 large enough we have

sup
𝑦∈R𝑑 ,
|𝑦 |⩽𝑁

(
⟨𝑦, 𝑧⟩ − 𝜓(𝑦)

)
⩾ ⟨𝑦0, 𝑧⟩ − 𝜓(𝑦0),

with the right-hand side being integrable with respect to 𝛾(𝑑𝑧). Hence we can apply the
monotone convergence theorem and deduce that

lim
𝑁→∞

∫
sup
𝑦∈R𝑑 ,
|𝑦 |⩽𝑁

(
⟨𝑦, 𝑧⟩ − 𝜓(𝑦)

)
𝛾(𝑑𝑧) =

∫
sup
𝑦∈R𝑑

(
⟨𝑦, 𝑧⟩ − 𝜓(𝑦)

)
𝛾(𝑑𝑧),

which completes the proof of (B.4). □

Proof of Lemma 5.1. To see that 𝜑𝜓 is convex on dom𝜓, we let 𝑥 B 𝑐𝑥1 + (1 − 𝑐)𝑥2
for 𝑥1, 𝑥2 ∈ dom𝜓 and 𝑐 ∈ (0,1). If 𝜑𝜓 (𝑥1) = −∞, then there are 𝑝

(𝑛)
𝑥1 ∈ P𝑥1

2 (R𝑑) with∫
𝜓 𝑑𝑝

(𝑛)
𝑥1 − MCov(𝑝 (𝑛)𝑥1 , 𝛾) → −∞. We observe that 𝑝 (𝑛)𝑥 B 𝑐𝑝

(𝑛)
𝑥1 + (1 − 𝑐)𝛿𝑥2 ∈ P𝑥

2 (R
𝑑),

and consequently

𝜑𝜓 (𝑥) ⩽ 𝑐
∫
𝜓 𝑑𝑝

(𝑛)
𝑥1 + (1 − 𝑐)𝜓(𝑥2) −MCov(𝑝 (𝑛)𝑥 , 𝛾)

⩽ 𝑐
( ∫

𝜓 𝑑𝑝
(𝑛)
𝑥1 −MCov(𝑝 (𝑛)𝑥1 , 𝛾)

)
+ (1 − 𝑐)𝜓(𝑥2),

where we have used the convexity of P2(R𝑑) ∋ 𝑝 ↦→ −MCov(𝑝, 𝛾). We conclude that 𝜑𝜓 (𝑥) =
−∞. The case 𝜑𝜓 (𝑥2) = −∞ is treated similarly. If, on the other hand, both 𝜑𝜓 (𝑥1) > −∞ and
𝜑𝜓 (𝑥2) > −∞, then 𝜑𝜓 (𝑥) ⩽ 𝑐𝜑𝜓 (𝑥1) + (1 − 𝑐)𝜑𝜓 (𝑥2) follows by standard arguments. All in
all we see that 𝜑𝜓 is convex on dom𝜓.

If 𝜑𝜓 (𝑥) > −∞ for one 𝑥 ∈ int(dom𝜓), then 𝜑𝜓 (𝑥) > −∞ for all 𝑥 ∈ int(dom𝜓), as can be
seen directly by convexity.

Finally, given some 𝑥 ∈ int(dom𝜓) with 𝜑𝜓 (𝑥) > −∞, we show that 𝜓 is co-finite. Without
loss of generality, we assume that 𝑥 = 0 and 𝜓(0) = 0. Using probabilistic notation, we rewrite
the supremum in (4.4) as

(B.5) −𝜑𝜓 (0) = supE
[
⟨𝑌, 𝑍⟩ − 𝜓(𝑌 )

]
< +∞,

where the supremum in (B.5) is taken over all probability spaces such that 𝑍 ∼ 𝛾 and 𝑌 is
an R𝑑-valued random variable with finite second moment and E[𝑌 ] = 0. By contradiction,
suppose there is 𝑒 ∈ R𝑑 \ {0} such that

(B.6) lim
𝑡→+∞

𝜓(𝑡𝑒)
𝑡

< +∞.

We define the convex function �̄� : R→ (−∞,+∞] by �̄�(𝑡) B 𝜓(𝑡𝑒), for 𝑡 ∈ R. By assumption
we have 0 ∈ int(dom𝜓), thus also 0 ∈ int(dom �̄�). In particular, �̄� is continuous in a neigh-
bourhood of 0. By (B.6), there is a constant 𝐾 such that �̄�(𝑡) ⩽ 𝐾𝑡, for all 𝑡 large enough. As
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�̄�(0) = 0 and �̄� is convex, we conclude that �̄�(𝑡) ⩽ 𝐾𝑡, for all 𝑡 ⩾ 0. Next we introduce four
parameters, 𝐴 < 0 and 𝛿, 𝑀,𝐶 > 0, and define the R𝑑-valued function

R𝑑 ∋ 𝑧 ↦−→ 𝑓
𝑀,𝐶

𝛿,𝐴
(𝑧) B


𝑀𝑒, if ⟨𝑒, 𝑧⟩ ⩾ 𝐶,
−𝛿𝑒, if ⟨𝑒, 𝑧⟩ ∈ (𝐴,0),
0, else.

Given 𝑍 ∼ 𝛾, this induces a random variable 𝑌𝑀,𝐶
𝛿,𝐴
B 𝑓

𝑀,𝐶

𝛿,𝐴
(𝑍). We impose the relation

(B.7) 𝑀 P
[
⟨𝑒, 𝑍⟩ ⩾ 𝐶

]
= 𝛿 P

[
⟨𝑒, 𝑍⟩ ∈ (𝐴,0)

]
between 𝑀 and 𝛿, so that E[𝑌𝑀,𝐶

𝛿,𝐴
] = 0. Now we fix 𝐴 < 0 and some 𝜀 > 0. Then we choose

𝛿 > 0 small enough such that

|�̄�(−𝛿) | ∨ 𝛿E
[
|⟨𝑒, 𝑍⟩|

]
⩽ 𝜀

2 ,

which we achieve by continuity of �̄� and the fact that �̄�(0) = 0. We leave𝐶 as a free parameter,
which fixes 𝑀 via (B.7). We compute

E
[
⟨𝑌𝑀,𝐶
𝛿,𝐴

, 𝑍⟩ − 𝜓(𝑌𝑀,𝐶
𝛿,𝐴

)
]

=E
[
1⟨𝑒,𝑍 ⟩⩾𝐶

(
𝑀 ⟨𝑒, 𝑍⟩ − �̄�(𝑀)

)
+ 1⟨𝑒,𝑍 ⟩∈ (𝐴,0)

(
− 𝛿⟨𝑒, 𝑍⟩ − �̄�(−𝛿)

) ]
⩾𝑀 E

[
1⟨𝑒,𝑍 ⟩⩾𝐶

(
⟨𝑒, 𝑍⟩ − 𝐾

) ]
− 𝛿E

[
1⟨𝑒,𝑍 ⟩∈ (𝐴,0) ⟨𝑒, 𝑍⟩

]
− �̄�(−𝛿) P

[
⟨𝑒, 𝑍⟩ ∈ (𝐴,0)

]
⩾𝑀 (𝐶 − 𝐾) P

[
⟨𝑒, 𝑍⟩ ⩾ 𝐶

]
− 𝜀

= 𝛿(𝐶 − 𝐾) P
[
⟨𝑒, 𝑍⟩ ∈ (𝐴,0)

]
− 𝜀.

Now taking 𝐶↗+∞ we conclude that −𝜑𝜓 (0) = +∞, which is a contradiction to (B.5). □

Proof of Lemma 6.2. By contradiction, we suppose that

dim(dom𝜓opt) < dim(supp 𝜈) = 𝑑.
Defining 𝐵ℓ B {𝑥 ∈ R𝑑 : 𝜓opt(𝑥) ⩽ ℓ} for ℓ ⩾ 1, we clearly have 𝜇(𝐵ℓ) ↗ 1 and furthermore

sup
ℓ⩾1

𝜋SBM (
𝐵ℓ × (R𝑑 \ dom𝜓opt)

)
> 0.

Indeed, otherwise 𝜈 would be concentrated on dom𝜓opt, contradicting the assumption that
dim(dom𝜓opt) < dim(supp 𝜈). As a consequence,∫

𝐵ℓ×R𝑑
𝜓opt(𝑦) 𝜋SBM(𝑑𝑥, 𝑑𝑦) = +∞

for all ℓ ⩾ 1 large enough. We now show that 𝜓opt could not have been optimal, by establishing
that

D(𝜓opt) =
∫ (

sup
𝑝∈P𝑥

2 (R𝑑 )

(
MCov(𝑝, 𝛾) −

∫
𝜓opt 𝑑𝑝

)
+
∫
𝜓opt(𝑦) 𝜋SBM

𝑥 (𝑑𝑦)
)
𝜇(𝑑𝑥) = +∞.

To wit, selecting 𝑝𝑥 = 𝜋SBM
𝑥 for 𝑥 ∈ R𝑑 \ 𝐵ℓ and 𝑝𝑥 = 𝛿𝑥 for 𝑥 ∈ 𝐵ℓ we find

D(𝜓opt) ⩾
∫
R𝑑\𝐵ℓ

MCov(𝜋SBM
𝑥 , 𝛾) 𝜇(𝑑𝑥) −

∫
𝐵ℓ

(
𝜓opt(𝑥) −

∫
𝜓opt(𝑦) 𝜋SBM

𝑥 (𝑑𝑦)
)
𝜇(𝑑𝑥)

⩾ 𝑐 − ℓ +
∫
𝐵ℓ×R𝑑

𝜓opt(𝑦) 𝜋SBM(𝑑𝑥, 𝑑𝑦),

for a finite constant 𝑐. We conclude by taking ℓ ⩾ 1 large enough. □
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Proof of Lemma 6.4. We first prove the identity (i). We denote 𝐹 B ∇ 𝑓 , which is well
defined Lebesgue-a.e. For 𝑦, 𝜂 ∈ R𝑑 we have to compute

( 𝑓 ∗ 𝛾) (𝑦 + ℎ𝜂) − ( 𝑓 ∗ 𝛾) (𝑦)
ℎ

=

∫
𝑓 (𝑦 + ℎ𝜂 + 𝑧) − 𝑓 (𝑦 + 𝑧)

ℎ
𝑑𝛾(𝑧),

as ℎ→ 0. For all 𝑦, 𝜂 and for 𝛾-a.e. 𝑧 ∈ R𝑑 , we have

lim
ℎ→0

𝑓 (𝑦 + ℎ𝜂 + 𝑧) − 𝑓 (𝑦 + 𝑧)
ℎ

= ⟨𝐹 (𝑦 + 𝑧), 𝜂⟩,

so we only need to justify the exchange of limit and integral. To this end, it suffices to show
the uniform integrability, with respect to the reference measure 𝛾, of the family

(B.8) 𝒰 B

{
𝑓 (𝑦 + ℎ𝜂 + · ) − 𝑓 (𝑦 + · )

ℎ
: 0 ⩽ ℎ ⩽ 1

}
.

Using twice the above-tangent characterization of convexity, we obtain

(B.9) ⟨𝐹 (𝑦 + 𝑧), 𝜂⟩ ⩽ 𝑓 (𝑦 + ℎ𝜂 + 𝑧) − 𝑓 (𝑦 + 𝑧)
ℎ

⩽ ⟨𝐹 (𝑦 + ℎ𝜂 + 𝑧), 𝜂⟩.

We take 𝑟 ∈ (1,2), 𝑝 B 2/𝑟 , and 𝑞 B 𝑝/(𝑝 − 1) its Hölder conjugate, and compute∫
|𝐹 (𝑦 + ℎ𝜂 + 𝑧) |𝑟 𝑑𝛾(𝑧) =

∫
|𝐹 (𝜁 + 𝑧) |𝑟 𝑑𝛾𝑦+ℎ𝜂−𝜁 (𝑧)

=

∫
|𝐹 (𝜁 + 𝑧) |𝑟 exp

(
− |𝑦 − 𝜁 + ℎ𝜂 |2/2 + ⟨𝑧, 𝑦 − 𝜁 + ℎ𝜂⟩

)
𝑑𝛾(𝑧)

⩽ 𝑝

√︃
∥𝐹∥2

𝐿2 (𝛾𝜁 ;R𝑑 )
𝑞

√︄∫
exp

(
− 𝑞 |𝑦 − 𝜁 + ℎ𝜂 |2/2 + 𝑞⟨𝑧, 𝑦 − 𝜁 + ℎ𝜂⟩

)
𝑑𝛾(𝑧)

⩽ 𝑝

√︃
∥𝐹∥2

𝐿2 (𝛾𝜁 ;R𝑑 )
𝑞

√︄∫
exp

(
𝑞⟨𝑧, 𝑦 − 𝜁 + ℎ𝜂⟩

)
𝑑𝛾(𝑧)

= 𝑝

√︃
∥𝐹∥2

𝐿2 (𝛾𝜁 ;R𝑑 )
𝑞

√︃
exp

(
𝑞2 |𝑦 − 𝜁 + ℎ𝜂 |2/2

)
.(B.10)

We see that the first factor in (B.10) is finite (and independent of ℎ) by assumption, while the
second factor is uniformly bounded for 0 ⩽ ℎ ⩽ 1. Hence both the upper and lower bounds in
(B.9) are uniformly integrable for 0 ⩽ ℎ ⩽ 1, implying the same property for the family 𝒰 of
(B.8).

We now turn to (ii) and (iii). The arguments given at the end of the proof of Proposition
5.2 show that, under the assumptions made here (but with 𝑓 instead of 𝜓∗), the function 𝑓 ∗ 𝛾
is strictly convex. We already know that this function is differentiable, and that the interior
of its domain is R𝑑 . Hence by [54, Theorem 26.5] we deduce the stated properties. The only
thing that merits an explanation is the inclusion int(dom( 𝑓 ∗ 𝛾)∗) ⊇ int(dom 𝑓 ∗). To this end,
observe that

( 𝑓 ∗ 𝛾)∗(𝑥) = sup
𝜁 ∈R𝑑

{
⟨𝜁, 𝑥⟩ −

∫
𝑓 (𝜁 + 𝑧) 𝑑𝛾(𝑧)

}
⩽

∫
sup
𝜁 ∈R𝑑

{⟨𝜁, 𝑥⟩ − 𝑓 (𝜁 + 𝑧)} 𝑑𝛾(𝑧)

=

∫
sup
𝜁 ∈R𝑑

{
⟨𝜁 − 𝑧, 𝑥⟩ − 𝑓 (𝜁)

}
𝑑𝛾(𝑧) =

∫ (
𝑓 ∗(𝑥) − ⟨𝑧, 𝑥⟩

)
𝑑𝛾(𝑧) = 𝑓 ∗(𝑥),

so dom( 𝑓 ∗ 𝛾)∗ ⊇ dom 𝑓 ∗. □
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Proof of Lemma 6.5. The first equality in (6.3) follows from

int(dom𝜓) ⊆ dom 𝜕𝜓 ⊆ dom𝜓

and dom 𝜕𝜓 = (𝜕𝜓∗) (R𝑑). We also note that

(B.11) int
(
(𝜕𝜓∗) (R𝑑)

)
= int conv

(
(𝜕𝜓∗) (R𝑑)

)
,

where conv denotes the convex hull. Indeed, as a consequence of a result by Mirsky [50], we
have that int conv((𝜕𝜓∗) (R𝑑)) ⊆ (𝜕𝜓∗) (R𝑑), since the subdifferential (multi-valued) mapping
of any lower semicontinuous proper convex function is also a maximal monotone mapping
by [54, Corollary 31.5.2].

Let us turn to the proof of the second equality in (6.3). Without loss of generality we can
assume that 𝜂 = 0 and 𝑡 = 1. Since we already verified the first equality and by virtue of (B.11),
it suffices to show the inclusions

(B.12) (∇𝜓∗ ∗ 𝛾) (R𝑑) ⊆ int conv((𝜕𝜓∗) (R𝑑))

and

(B.13) int(dom𝜓) ⊆ (∇𝜓∗ ∗ 𝛾) (R𝑑).

Note that we have (∇𝜓∗ ∗ 𝛾) (R𝑑) ⊆ conv((𝜕𝜓∗) (R𝑑)) and therefore

(B.14) int(∇𝜓∗ ∗ 𝛾) (R𝑑) ⊆ int conv((𝜕𝜓∗) (R𝑑)) = int conv((𝜕𝜓∗) (R𝑑)).

Under the assumptions of Lemma 6.5, the function 𝜓 is co-finite by Lemma 5.1 and therefore
we can apply Lemma 6.4 to its convex conjugate 𝑓 = 𝜓∗. In particular, by (iii), the set
(∇𝜓∗ ∗ 𝛾) (R𝑑) is open and hence the inclusion (B.12) follows from (B.14).

In order to prove (B.13), we first observe that int(dom𝜓) ⊆ int(dom(𝜓∗ ∗ 𝛾)∗) by Lemma
6.4, (ii). Since int(dom(𝜓∗ ∗ 𝛾)∗) = (∇𝜓∗ ∗ 𝛾) (R𝑑) by Lemma 6.4, (iii), the inclusion (B.13)
follows. □

APPENDIX C: PROOF OF PROPOSITION 7.20

Lemma C.1. For every sequence (𝜓𝑛)𝑛⩾1 of lower semicontinuous convex functions
𝜓𝑛 : R𝑑 → [0,+∞) there is a closed convex set 𝐶lim ⊆ R𝑑 with relative interior 𝐼lim and a
subsequence (𝜓𝑛𝑘 )𝑘⩾1 such that the limits

𝜓lim(𝑦) B lim
𝑘→∞

𝜓𝑛𝑘 (𝑦) < +∞, 𝑦 ∈ 𝐼lim(C.1)

𝜓lim(𝑦) B lim
𝑘→∞

𝜓𝑛𝑘 (𝑦) = +∞, 𝑦 ∈ R𝑑 \𝐶lim(C.2)

exist. Moreover, the convergence in (C.1) is uniform on compact subsets of 𝐼lim.

Proof. Step 1. We denote by N the collection of increasing subsequences 𝒩 = (𝑛𝑘)𝑘⩾1
of N. For two subsequences 𝒩,𝒩′ ∈ N we call 𝒩′ finer than 𝒩, denoted by 𝒩

′ ≽𝒩, if
𝒩

′ ⊆𝒩, up to finitely many elements.

We write I for the collection of relatively open convex sets 𝐼 ⊆ R𝑑 . For two pairs
(𝐼,𝒩), (𝐼 ′,𝒩′) ∈ I × N we say that (𝐼 ′,𝒩′) is finer than (𝐼,𝒩), again denoted by
(𝐼 ′,𝒩′) ≽ (𝐼,𝒩), if 𝐼 ′ ⊋ 𝐼 and 𝒩

′ ≽𝒩.

We call a pair (𝐼,𝒩) ∈ I ×N admissible if it satisfies

(C.3) ∀𝑦 ∈ 𝐼 : sup
𝑛𝑘∈𝒩

𝜓𝑛𝑘 (𝑦) < +∞.
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Step 2. Let (𝐼,𝒩) be admissible. Write 𝒩 = (𝑛𝑘)𝑘⩾1 ∈ N and denote by 𝐶 the closure of 𝐼 .
Then one of the following two alternatives hold: either
(C.4) lim

𝑘→∞
𝜓𝑛𝑘 (𝑦) = +∞, 𝑦 ∈ R𝑑 \𝐶,

in which case we call (𝐼,𝒩) maximal; or there is some 𝑦0 ∈ R𝑑 \ 𝐶 and a subsequence
𝒩

′ = (𝑛′
𝑘
)𝑘⩾1 ∈ N finer than 𝒩 such that

sup
𝑛′
𝑘
∈𝒩′

𝜓𝑛′
𝑘
(𝑦0) < +∞.

Now we define the relatively open convex set 𝐼 ′ B ri conv(𝑦0, 𝐼) and note that 𝐼 ′ ⊋ 𝐼 . Then
the pair (𝐼 ′,𝒩′) is admissible and finer than (𝐼,𝒩). In this second case we say that (𝐼,𝒩) is
refinable.

Step 3. Assume that (𝐼,𝒩) is maximal, so that both (C.3) and (C.4) are satisfied. In particular,
the sequence (𝜓𝑛𝑘 )𝑘⩾1, with 𝒩 = (𝑛𝑘)𝑘⩾1, is pointwise bounded on 𝐼 . By [54, Theorem
10.9] we can select a further subsequence, still denoted by (𝜓𝑛𝑘 )𝑘⩾1, such that (C.1) holds
for all 𝑦 ∈ 𝐼lim B 𝐼 and the convergence is uniform on compact subsets of 𝐼lim. Furthermore,
condition (C.2) is still satisfied for this further subsequence thanks to (C.4).

Step 4. In light of Step 3, in order to prove Lemma C.1, it suffices to show the existence of a
maximal pair (𝐼,𝒩), which we will denote by (𝐼lim,𝒩lim). The construction of the maximal
pair (𝐼lim,𝒩lim) is done via transfinite recursion along the countable ordinal numbers 𝛼 < 𝜔1,
where 𝜔1 is the first uncountable ordinal.

We start the construction as follows. If sup𝑛∈N 𝜓𝑛 (𝑦) = +∞ holds for all 𝑦 ∈ R𝑑 , the
pair (𝐼0,𝒩0) = (∅,N) is admissible. Otherwise, we can find some 𝑦0 ∈ R𝑑 such that
sup𝑛∈N 𝜓𝑛 (𝑦0) < +∞ and then the pair (𝐼0,𝒩0) = ({𝑦0},N) is admissible.

Now let 𝛼 < 𝜔1 be an ordinal number and suppose that the transfinite family (𝐼𝛽 ,𝒩𝛽)𝛽<𝛼
in I ×N is such that

(i) the pair (𝐼𝛽 ,𝒩𝛽) is admissible, for all 𝛽 < 𝛼,
(ii) the pair (𝐼𝛽2 ,𝒩𝛽2) is finer than (𝐼𝛽1 ,𝒩𝛽1), for all 𝛽1 < 𝛽2 < 𝛼.

We first assume that 𝛼 is a successor ordinal, i.e., there is an ordinal 𝛽 such that 𝛼 = 𝛽 + 1.
Since (𝐼𝛽 ,𝒩𝛽) is admissible, by Step 2 only two cases are possible. If (𝐼𝛽 ,𝒩𝛽) is maximal,
we set (𝐼lim,𝒩lim) B (𝐼𝛽 ,𝒩𝛽) and finish the construction. If (𝐼𝛽 ,𝒩𝛽) is refinable, we can find
a pair (𝐼𝛼,𝒩𝛼) which is finer than (𝐼𝛽 ,𝒩𝛽).

Suppose that 𝛼 is a limit ordinal, i.e., it can be written as 𝛼 = {𝛽 : 𝛽 < 𝛼}. Since 𝛼 < 𝜔1, the
ordinal 𝛼 is countable and can be enumerated as 𝛼 = {𝛼𝑘 : 𝑘 < 𝜔}, where 𝜔 is the first infinite
ordinal. Letting 𝛽0 B 0 and defining inductively 𝛽𝑚+1 B 𝛼ℓ , where ℓ B min{𝑘 : 𝛽𝑚 < 𝛼𝑘}, we
obtain a strictly increasing cofinal sequence (𝛽𝑚)𝑚<𝜔 in 𝛼. Now we define 𝐼𝛼 B

⋃
𝑚<𝜔 𝐼𝛽𝑚 .

By (ii), (𝐼𝛽𝑚)𝑚<𝜔 is a strictly increasing sequence of relatively open convex sets, therefore also
𝐼𝛼 ∈ I. Again by (ii), the sequence (𝒩𝛽𝑚)𝑚<𝜔 satisfies 𝒩𝛽𝑚1

≽𝒩𝛽𝑚2
, for all 𝑚1 < 𝑚2 < 𝜔.

Thus we can find a diagonal subsequence 𝒩𝛼 ∈ N of (𝒩𝛽𝑚)𝑚<𝜔 , meaning that 𝒩𝛼 ≽𝒩𝛽𝑚 ,
for all 𝑚 < 𝜔. Since by (i) the pair (𝐼𝛽𝑚 ,𝒩𝛽𝑚) is admissible, for all 𝑚 < 𝜔, by construction
also (𝐼𝛼,𝒩𝛼) is admissible. Furthermore, (𝐼𝛼,𝒩𝛼) satisfies (𝐼𝛼,𝒩𝛼) ≽ (𝐼𝛽𝑚 ,𝒩𝛽𝑚), for all
𝑚 < 𝜔. Since (𝛽𝑚)𝑚<𝜔 is cofinal, it follows that (𝐼𝛼,𝒩𝛼) ≽ (𝐼𝛽 ,𝒩𝛽), for all 𝛽 < 𝛼.

After countably many steps, this transfinite recursion must stop, which happens when
𝛼 < 𝜔1 is such that (𝐼𝛼,𝒩𝛼) is maximal and we can then set (𝐼lim,𝒩lim) B (𝐼𝛼,𝒩𝛼). Indeed,
otherwise we would have a transfinite sequence (𝐼𝛽)𝛽<𝜔1 of strictly increasing relatively open
convex sets, indexed by the countable ordinals, which is impossible. □
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Proof of Proposition 7.20:
Step 1. By Lemma C.1, there is a closed convex set 𝐶lim ⊆ R𝑑 with relative interior 𝐼lim and a
subsequence (𝜓𝑛𝑘 )𝑘⩾1 such that the limits

𝜓lim(𝑦) B lim
𝑘→∞

𝜓𝑛𝑘 (𝑦) < +∞, 𝑦 ∈ 𝐼lim(C.5)

𝜓lim(𝑦) B lim
𝑘→∞

𝜓𝑛𝑘 (𝑦) = +∞, 𝑦 ∈ R𝑑 \𝐶lim(C.6)

exist, where the convergence in (C.5) is uniform on compact subsets of 𝐼lim. Via (C.5) and
(C.6) we define a lower semicontinuous convex function 𝜓lim : R𝑑 → [0,+∞] on all of R𝑑 .

Step 2. By the hypothesis (7.25) and the construction of 𝐼lim, we clearly have 𝐼 ⊆ 𝐼lim. Our
goal is to show that 𝐼lim = 𝐼 . To this end, we define the set 𝐴 ⊆ R𝑑 as in (7.6), now with 𝐼
replaced by 𝐼lim, i.e.,

𝐴 =
{
𝑥 ∈ 𝐼lim : 𝜓lim . 𝜓

𝑥
SBM mod (aff)

}
.

Again, we will show that 𝜇(𝐴) = 0. Repeating the reasoning of Lemma 7.16 we obtain,
for 𝜇-a.e. 𝑥 ∈ 𝐴, measures �̌�𝑥 ∈ P𝑥

2 (R
𝑑) satisfying (7.7), which now are supported by 𝐶lim.

Then we choose an increasing sequence (𝐾 𝑗) 𝑗⩾1 of relatively compact subsets of 𝐼lim such
that

⋃
𝑗⩾1𝐾 𝑗 = 𝐼lim. As in Lemma 7.17, for 𝜇-a.e. 𝑥 ∈ 𝐴, we find measures �̌� 𝑗 (𝑥 )𝑥 ∈ P𝑥

2 (R
𝑑)

satisfying (7.13) and supported by 𝐾 𝑗 (𝑥 ) , for some 𝑗 (𝑥) ∈ N. Arguing as in Lemma 7.18
we conclude that 𝜇(𝐴) = 0, i.e., 𝜓lim ≡ 𝜓𝑥SBM mod (aff), for 𝜇-a.e. 𝑥 ∈ 𝐼lim. In particular,
since 𝐼lim = ri(dom𝜓lim) and ri(dom𝜓𝑥SBM) = ri ŝupp(𝜈), we conclude from the assumption
ŝupp(𝜈) ⊆ 𝐶 that 𝐼lim = 𝐼 and consequently𝐶 = ŝupp(𝜈). From Lemma 7.19, we conclude that
the limiting function 𝜓lim is a dual optimizer. Together with Step 1, this proves the statement
of Proposition 7.20 for the subsequence (𝜓𝑛𝑘 )𝑘⩾1.

Step 3. Applying Step 1 and Step 2 to an arbitrary subsequence (𝜓𝑚ℓ
)ℓ⩾1 instead of the original

sequence (𝜓𝑛)𝑛⩾1, we obtain a further subsequence (𝜓𝑚ℓ𝑗
) 𝑗⩾1 and a lower semicontinuous

convex function �̃�lim : R𝑑 → [0,+∞] such that

∀𝑦 ∈ 𝐼 : �̃�lim(𝑦) = lim
𝑗→∞

𝜓𝑚ℓ𝑗
(𝑦) < +∞,

∀𝑦 ∈ R𝑑 \𝐶 : �̃�lim(𝑦) = lim
𝑗→∞

𝜓𝑚ℓ𝑗
(𝑦) = +∞,

and �̃�lim ≡ 𝜓𝑥SBM mod (aff), for 𝜇-a.e. 𝑥 ∈ 𝐼 . We conclude that there is an affine function aff
depending on the subsequence (𝑚ℓ 𝑗 ) 𝑗⩾1 such that 𝜓lim = �̃�lim + aff. In particular,

(C.7) ∀𝑦 ∈ 𝐼 ∪ (R𝑑 \𝐶) : lim
𝑗→∞

(
𝜓𝑚ℓ𝑗

(𝑦) + aff(𝑦)
)
= 𝜓lim(𝑦).

Step 4. Let 𝑥0, . . . , 𝑥𝑑 be affinely independent points in 𝐼 ∪ (R𝑑 \𝐶). For each 𝑛 ⩾ 1 there is a
unique affine function aff𝑛 such that

(C.8) ∀𝑖 ∈ {0, . . . , 𝑑} : 𝜓𝑛 (𝑥𝑖) + aff𝑛 (𝑥𝑖) = 𝜓lim(𝑥𝑖).
We claim that

(C.9) ∀𝑦 ∈ 𝐼 ∪ (R𝑑 \𝐶) : lim
𝑛→∞

(
𝜓𝑛 (𝑦) + aff𝑛 (𝑦)

)
= 𝜓lim(𝑦).

Indeed, if this were not the case, there would be some 𝑦0 ∈ 𝐼 ∪ (R𝑑 \𝐶) and a subsequence
(𝑚ℓ)ℓ⩾1 such that

(C.10) lim
ℓ→∞

(
𝜓𝑚ℓ

(𝑦0) + aff𝑚ℓ
(𝑦0)

)
≠ 𝜓lim(𝑦0).
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By Step 3 there is a further subsequence (𝑚ℓ 𝑗 ) 𝑗⩾1 and an affine function aff such that (C.7)
holds. In particular,

∀𝑖 ∈ {0, . . . , 𝑑} : lim
𝑗→∞

(
𝜓𝑚ℓ𝑗

(𝑥𝑖) + aff(𝑥𝑖)
)
= 𝜓lim(𝑥𝑖),(C.11)

lim
𝑗→∞

(
𝜓𝑚ℓ𝑗

(𝑦0) + aff(𝑦0)
)
= 𝜓lim(𝑦0).(C.12)

From (C.8) and (C.11) we obtain that

(C.13) ∀𝑖 ∈ {0, . . . , 𝑑} : lim
𝑗→∞

aff𝑚ℓ𝑗
(𝑥𝑖) = aff(𝑥𝑖).

Since the points 𝑥0, . . . , 𝑥𝑑 are affinely independent, the convergence in (C.13) holds for every
𝑦 ∈ 𝐼 ∪ (R𝑑 \𝐶). Then (C.12) leads to a contradiction to (C.10), which proves claim (C.9).
Defining �̃�𝑛 B 𝜓𝑛 + aff𝑛, for 𝑛 ⩾ 1, we derive from (C.9) the limiting assertions (7.26) and
(7.27). Finally, by [54, Theorem 10.8] the convergence in (7.26) is uniform on compact subsets
of 𝐼 and we have already seen in Step 2 that 𝜓lim ≡ 𝜓𝑥SBM mod (aff), for 𝜇-a.e. 𝑥 ∈ 𝐼 . □

APPENDIX D: CHARACTERIZATION OF IRREDUCIBILITY

Theorem D.1. Let 𝜇, 𝜈 in P2(R𝑑) with 𝜇 ⪯c 𝜈. Then the following are equivalent.

(1) The pair (𝜇, 𝜈) is De March–Touzi irreducible in the sense of Definition 7.2.
(2) There exists 𝜋 ∈ MT(𝜇, 𝜈) such that 𝜋𝑥 ∼ 𝜈, for 𝜇-a.e. 𝑥 ∈ R𝑑 .
(3) The pair (𝜇, 𝜈) is irreducible in the sense of Definition 1.2, i.e., for all Borel sets 𝐴, 𝐵 ⊆
R𝑑 with 𝜇(𝐴), 𝜈(𝐵) > 0 there is a martingale (𝑋𝑡 )0⩽𝑡⩽1 with 𝑋0 ∼ 𝜇, 𝑋1 ∼ 𝜈 such that
P(𝑋0 ∈ 𝐴, 𝑋1 ∈ 𝐵) > 0.

(4) For all Borel sets 𝐴, 𝐵 ⊆ R𝑑 with 𝜇(𝐴), 𝜈(𝐵) > 0 there exists 𝜋 ∈ MT(𝜇, 𝜈) such that
𝜋(𝐴 × 𝐵) > 0.

(5) For all compact sets 𝐴 ⊆ R𝑑 and open halfspaces 𝐻 with 𝜇(𝐴), 𝜈(𝐻) > 0 there exists
𝜋 ∈ MT(𝜇, 𝜈) such that 𝜋(𝐴 × 𝐻) > 0.

Proof. For the proof of “(1) ⇒ (2)” we can take 𝜋 = 𝜋SBM in (2) by Corollary 7.7. We
turn to the proof of the implication “(2) ⇒ (3)”: Clearly condition (2) implies (4). Thus,
in order to show (3), it suffices to construct a continuous-time martingale (𝑋𝑡 )0⩽𝑡⩽1 with
Law(𝑋0, 𝑋1) = 𝜋. This can be achieved as in the proof of [5, Theorem 2.2]. For the proof of
“(3) ⇒ (4)” we can take 𝜋 = Law(𝑋0, 𝑋1) in (4). The implication “(4) ⇒ (5)” is trivial. It
remains to show that “(5) ⇒ (1)”: We fix an open halfspace 𝐻 satisfying 𝜈(𝐻) > 0 and set

𝑚 B sup
𝜋∈MT(𝜇,𝜈)

{
𝜇
(
{𝑥 ∈ R𝑑 : 𝜋𝑥 (𝐻) > 0}

)}
.

Considering countable convex combinations of elements of MT(𝜇, 𝜈) it follows that the
supremum is attained by some �̄� ∈ MT(𝜇, 𝜈). If the set

{𝑥 ∈ R𝑑 : �̄�𝑥 (𝐻) = 0}

had positive 𝜇-measure, it would contain a compact set 𝐴 with positive 𝜇-measure in contra-
diction to condition (5). Hence 𝑚 = 1.

Observe that there is a countable family of open halfspaces {𝐻𝑛}𝑛⩾1 with 𝜈(𝐻𝑛) > 0 such
that, for every open halfspace 𝐻 with 𝜈(𝐻) > 0, there is some 𝑛 ⩾ 1 satisfying 𝐻𝑛 ⊆ 𝐻.

Next, for each 𝑛 ⩾ 1, we pick 𝜋 (𝑛) ∈ MT(𝜇, 𝜈) such that 𝜋 (𝑛)𝑥 (𝐻𝑛) > 0, for 𝜇-a.e. 𝑥 ∈ R𝑑 .
Set �̂� B

∑
𝑛⩾1 2−𝑛𝜋 (𝑛) ∈ MT(𝜇, 𝜈). Then by Lemma D.2 below it follows that ŝupp(𝜈) ⊆

ŝupp(�̂�𝑥), for 𝜇-a.e. 𝑥 ∈ R𝑑 . □
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Lemma D.2. Let 𝜌 ∈ P(R𝑑). Then 𝑦 ∈ ŝupp(𝜌) if and only if 𝜌(𝐻) > 0 for every open
halfspace 𝐻 such that 𝑦 ∈ 𝐻.

Proof. This is a simple consequence of Hahn–Banach. □

Remark D.3. We note that irreducibility is not only a sufficient assumption for the
existence of a Bass martingale from 𝜇 to 𝜈, but in fact also necessary. Indeed, as in the proof
of Corollary 7.7 one sees that the Bass martingale does the job of connecting any two sets
which are charged by 𝜇 and 𝜈, implying the irreducibility of (𝜇, 𝜈) by Theorem D.1.
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