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Note on technical details

This subject has a lot of details that are distractions at the level of
a 45 minute talk. Therefore,

• Feel free to ignore anything in gray if you aren’t familiar with
the subject.

• Anything in orange will be explained only intuitively and
imprecisely.
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Outline

• Background: Automorphic Representations

• Background: Trace Formulas

• Background: Simple Trace Formula

• Results of Shin-Templier

• New Work
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Unmotivated Defintion

Definition
Let G be a reductive group over a number field F . A discrete
automorphic representation for G is an irreducible
subrepresentation of L2(G (F )\G (AF ), χ).

• Reductive group: algeberaic group with nice representation
theory (root and weight theory works).

• ex. GLn,SLn,Un,SOn,Spn.
• Non ex. Upper triangular matrices.

• L2: square-integrable functions as a unitary representation of
G (AF ) under right-translation.

• subrepresentation: analysis issue—infinite-dimensional
representations can be direct integrals instead of direct sums

• discrete: There is a definition for non-discrete



Automorphic Representations Trace Formulas TF w/ discrete series at∞ Previous Results New Work

Motivation

Why do we care about such bizarre objects?

• They have a lot of handles to grab onto when studying
• representation theory of reductive groups
• Fourier analysis

• They mysteriously encode information about so much else:
• Number Theory: Galois representations (Langlands

conjectures)
• Computer Science: expander graphs/higher-dimensional

expanders
• Differential Geometry: spectra of Laplacians on locally

symmetric spaces
• Combinatorics: identities for the partition function
• Finite Groups: representation theory of large sporadic simple

groups (moonshine)
• Mathematical Physics: Scattering amplitudes in string theory,

black hole partition functions
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Example

If G = GL2/Q

{aut. reps. for G} ≈ {new, eigen modular/Maass forms}

• This is NOT obvious

• Key step: If K∞ is a maximal compact subgroup at the finite
places,

GL2(Q)R×\GL2(A)/SO2(R)K∞ = ΓK∞\H

where ΓK∞ is some arithmetic subgroup of SL2R and H is
upper-half plane
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Flath Decomposition

Theorem
Let π be an automorphic representation for group G/F . Then π
factors over places v of F :

π =
⊗̂′

πv

where each πv is an admissible, unitary representation of G (Fv ).

For G = GL2/Q:

• π∞ is the qualitative “type” of π: modular vs. Maass, weight

• πp relates to the pnth Fourier coefficients of π.

Key Question: Which combinations of πv actually appear in L2?
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Motivation

First trick to try for decomposing a representation: look at traces.

• Assume for a moment

L2(G (F )\G (AF ), χ) =
⊕
π d.a.

π

• Then if R is an operator on L2

trL2 R =
∑
π d.a.

trπ R

• Choose R cleverly =⇒ information towards key question:
distribution of fixed component πv “in families”
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Test Functions Example

Idea: f =
∏

v fv so trπ(f ) =
∏

v trπv (fv ).

• Choose one test place v . Everything else is condition places.

• For lots of reasonable conditions on πw , can find

trπw (fw ) =

{
1 condition at w satisfied

0 else

(In general: more complicated weights trπw (fw ) = aw (πw ))

• Set family weight: aF (π) =
∏

w 6=v aw (πw )

• Choose probe function fv

• ∑
trπ(f ) =

∑
aF (π)trπv (fv )

average over harmonic family of local statistic
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Fantasy

How do we compute these traces?

• Convolution operators: f compactly supported smooth on
G (AF ):

Rf : v 7→
∫
G(AF )

f (g)gv dg

• If G (F )\G (AF ) is compact,

trL2 Rf =∑
[γ]∈[G(F )]

Vol(G (F )γ\G (AF )γ)

∫
G(AF )γ\G(AF )

f (g−1γg) dg

• conjugacy classes, volume term, orbital integral Oγ(f )
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Reality

Without compactness, nothing converges. There are various
truncations to use instead. Each complicates the spectral
expansion and the three pieces of the geometric expansion.

coarse expansion

fine expansion Jgeom = Jspec

invariant Igeom = Ispec

stable Sgeom = Sspec

beyond endoscopic??

explicit
elementary
bad abstract properties

inexplicit
complicated
good abstract properties
simple in nice cases



Automorphic Representations Trace Formulas TF w/ discrete series at∞ Previous Results New Work

Discrete Series

• Restrict attention to the nicest “qualitative type” of
automorphic representations↔the nicest real representations

• Discrete series: appear discretely in L2(G (F∞)).

• Classified into L-packets Πλ

• G = GL2/Q
• L-packets singletons parameterized by k ≥ 2.
• π∞ ∈ Πk means π a holomorphic modular form of weight k.

• The invariant trace formula dramatically simplifies when
restricted to representations with discrete series at infinity.
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“Simple” trace formula

Theorem ([Art89])

Let G/F be a cuspidal reductive group and let Πλ be a regular
discrete series L-packet. Let Aλ be the set of automorphic
representations π of G with π∞ ∈ Πλ. Then for any compactly
supported smooth test function f on G (A∞)∑
π∈Aλ

trπ∞ f =
∑

M std. Levi

(−1)[G :M] |ΩM |
|ΩG |

∑
γ∈[M(F )]ell

aγΦG
M(γ)OM,∞

γ (fM)

• “Conjugacy classes” counted with principle of
inclusion-exclusion

• “Volume term”

• “Orbital integral” factored into infinite and finite places
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Some Ideas in Proof that May Come Up Later

• Discrete Series π come with pseudocoefficients ϕπ. For ρ a
basic representation, trρ(ϕπ) = 1π=ρ

• ηλ Euler-Poincaré function

ηλ =
1

|Πdisc(λ)|
∑
π∈Πλ

ϕπ

• When λ regular, for ρ any unitary representation:
trρ(ηλ) = |Πdisc(λ)|−11π∈Πλ

• Use Euler-Poincaré’s as infinite component of test function:
ηλf
∞, the above computes spectral side

• Much more!
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Prototypical Result

This allows us to get good enough error bounds on statistics over
these families for applications. The shape of the result is:

Theorem (prototype)

Fix G. Let Fk be a sequence of increasing-size families of aut.
reps. of G with regular discrete series at infinity. Then for any
unramified test function ϕv at large enough place v:

1

|Fk |
∑
π∈Fk

aFk
trπv (ϕv ) = µpl(ϕv ) + O(‖ϕv‖∞qA+Bκ

v |Fk |−C ).

• Families: set of aut. reps weighted by aF , total weight is |F|.
• µpl: average over space of representations

• κ: measure of size of support of unramified ϕ.
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Which Families?

Shin-Templier ’16:

• Fk : Level condition on π∞ and π∞ in a fixed discrete series
L-packet

aFk
(π) = 1π∞∈Πdisc(λ)dim((πv ,∞)U

v,∞
)

• k →∞: level →∞ or if G has trivial center, weight of
L-packet →∞

• Applications:
• Automorphic Sato-Tate—equidstribution of unramified πv over

all v .
• Distributions of low-lying zeros of L-functions in families

• Error bound essential for applications!

• Proof-of-concept that detailed information can be computed
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Computing terms

Reasonably general reductive groups, but terms somewhat explicit!∑
π∈Aλ

trπ∞ f =
∑

M std. Levi

(−1)[G :M] |ΩM |
|ΩG |

∑
γ∈[M(F )]ell

aγΦG
M(γ)OM,∞

γ (fM)

• Sums: reductive group theory, Steinberg-Hitchen base?

• Φ: Weyl character formula + more root combinatorics

• Oγ : Counting points moved some amount by automorphisms
of Bruhat-Tits buildings

• fM : The p-adic integrals are easier OR branching laws +
Kato-Lusztig formula

• aγ : L-functions of Gross motives for red. groups
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Goal

We want to compute detailed information about families that
distinguish representations with π∞ in the same L-packet:

aFπ0
(π) = 1π∞=π0 dim((πv ,∞)U

v,∞
)

[Dal19]: Develop the necessary techniques and generalize
Shin-Templier’s results as a proof-of-concept.
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Why?

Different members of the L-packet are the same for Galois
Representation applications so why do we care about distinguishing
them?

• Ex. G = SL2: one member holomorphic, one antiholomorphic

• Ex. G = Sp2n: one member holomorphic

• Ex. G exceptional: one member quaternionic

• When λ non-regular, some members may be “entangled” with
non-tempered reps at infinity when trying to pick them out
with the trace formula
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Spectral Side

Strategy: plug ϕπ0f
∞ into the trace formula

Lemma
If π0 is a regular discrete series representation of G∞, then for all
unitary representations of G∞, trρ ϕπ0 = 1ρ=π0 .

Proof.
(Idea) Expand ρ as a sum of basic representations in the
Grothendieck group. All of π0’s L-packet has the same sign.

Corollary

Ispec(ϕπ0f
∞) =

∑
π∈ARdisc(G)

mdisc(π)aFπ0
(π) trπS (fS)
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Geometric Side: Endoscopy and Stabilization
Goal:

• Rational conjugacy is too complicated, work with stable
conjugacy instead

• =⇒ want a trace formula with stably-invariant terms: SO’s

How?

• G has elliptic endoscopic groups H ∈ Eell(G ) if Gder simply
connected

• (H, s, η): Ĥ = ZĜ (s), η : LH ↪→ LG

• f on G has a transfer f H on H
• κ-orbital integral identity locally: OκH

γG
(f ) = SOγH

(f H)

• For S? stably-invariant:

IG? (f ) =
∑

H∈Eell(G)

ι(G ,H)SH
? (f H)
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How to compute Igeom?

• Igeom(f∞f∞) simplifies if f∞ linear combination of ηλ’s.

• Try: write Igeom(ϕπ0f
∞) in terms of Igeom(ηλf

∞)’s

Lemma
If π0 ∈ Πdisc(λ), ϕπ0 has the same stable orbital integrals as ηλ.
Furthermore, all endoscopic transfers (ϕπ0)H ’s can be taken to be
linear combinations of ηλ’s.

• Therefore stabilization will help!
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Hyperendscopy Outline

Trick from [Fer07]:

• Rearrange the stabilization of the spectral side

SG∗
disc(f G

∗
) = IGdisc(f ) +

∑
H∈Eell(G)

(−ι(G ,H))SH
disc(f H)

• Inductively continue expanding each of the SH
disc → a linear

combination of IHdisc’s that is stable

• Forward substitution terminates at tori: IT? = ST
?

• Set this equal for f , f ′ with the same stable orbital integrals:

IGdisc(f ) = IGdisc(f ′) +
∑

H∈HEell(G)

ι(G ,H)IHdisc((f ′ − f )H)
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Hyperendoscopy Application Outline

We use this with f = ϕπ0f
∞ and f ′ = ηλf

∞:

IGdisc(f ) = IGdisc(f ′) +
∑

H∈HEell(G)

ι(G ,H)IHdisc((f ′ − f )H)

• These are linear combinations of ηλ’s

• Idisc should therefore be computable by just applying
Shin-Templier

Issues:

• Sum: which terms appear depend on f∞

• This: needs to be bounded

• HEell: Major technical issue coming from precise definition,
extend Arthur/Shin-Templier to arbitrary center
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