
QC Motivation Result Arith. lattices BT Theory Covering Aut. Bound

Automorphic Representations and “Golden”
Quantum Logic Gates

Rahul Dalal (Joint w/Shai Evra and Ori Parzanchevski)

University of Vienna

November 5, 2024



QC Motivation Result Arith. lattices BT Theory Covering Aut. Bound

Note on technical details

• Anything in gray is a technical detail not relevant to this
particular topic

• Anything in orange we will only explain intuitively and
imprecisely due to time constraints.
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Outline

• Quantum Computing Motivation

• Results/Summary of Argument

• Argument step details

Draft available at: https:

//www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf

https://www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf
https://www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf
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The Problem

Classical computers use classical circuits:

• Input: String of n bits in {0, 1}n: 01100....

• Circuit: some function {0, 1}n → {0, 1}m.

• Universal Gates: e.g. NAND and NOR can be used to build
any such function—need a good set to build computers

What about Quantum computers? Quantum Circuits

• Input: quantum superposition of all possible strings of n bits:
unit-norm vector in C{0,1}n ∼= C2n .

• Circuit: Projective Unitary map C2n → C2n + measurements

Problem: Find a finite set S of “universal gates” in PU(2n) that
can be multiplied to realize any unitary matrix C2n → C2n .
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Mathematical Formulation

What does it mean for a universal gate set S to approximate well?

• S (`): set of words of minimum length exactly ` in S .

• Def: invar. distance on PU(2n) e.g. d(x , y) = 1− tr(x∗y)/n.

• B(x , δ): ball of volume δ around x w/res to d(·, ·).
• Normalization: VolPU(2n) = 1

• For each δ > 0, there should be a “small” ` such that

PU(2n) ⊆
⋃

s∈S(`)

B(s, δ)

• Absolute best possible:

|S (`)| = 1/δ, |S (`)| = |S |` =⇒ ` ∝ log(1/δ)

• In addition: approximation should be efficiently computable.
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Golden Gates

Definition
A finite subset S ⊆ PU(2n) is a set of golden gates if:

1. Covering: There is c > 1 s.t.

δ` =
(log |S (`)|)c

|S (`)|
=⇒ Vol

PU(2n)−
⋃

s∈S(`)

B(s, δ)

 `−→ 0

2. Growth: |S (`)| grows exponentially in `.

3. Navigation: given s ∈ 〈S〉, there is an efficient algorithm that
writes it as a word in S of the shortest possible length .

4. Approximation: There is constant N such that there is a
(randomized, heuristic) efficient algorithm inputting `, δ, x
such that there is s ∈ S (`) with x ∈ B(s, δ) and outputting
s ′ ∈ |S (`N)| with x ∈ B(s ′, δ).
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Main Result

Theorem ([DEP24])

There are sets of golden gates on PU(2n) for n = 2, 3.

• U(2n) can be written as a product of smaller unitary groups
=⇒ efficient gate sets for small n give less efficient gate sets
for larger n

• Previous work: only n = 1

• n = 2: explicit matrices computed

• n = 3: explicit matrices can be computed from [MSG12]
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Summary of Construction

• Step 1: Pick 〈S〉: “golden” p-arithmetic lattice in PU(2n)
• These only exist when n ≤ 3.

• Step 2: golden =⇒ 〈S〉 has a set of generators S such that
the corresponding Cayley graph is the type-0 or hyperspecial
vertices in a Bruhat-Tits building.

• basic props. of Bruhat-Tits buildings =⇒ growth, navigation

• Step 3: p-Arithmetic =⇒ covering rewritten as Sarnak-Xue
type bound on counts of automorphic representations

• Step 4: Prove bound w/ endoscopic classification [KMSW14]

• Step 5: approximation from orthogonal CS result [RS15]

Rest of the talk: steps 1-4 in more detail
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Algebraic Matrix Groups

We need a more general perspective on matrix groups:

Definition
A matrix group G over R is a set of R-coefficient polynomial
conditions on the entries of matrices that is closed under matrix
multiplication

• e.g. polynomial condition invertible determinant → GLn/Z.

• Given an R-algbera S , G (S) is the group of S-entried
matrices satisfying the polynomial conditions.

Important example: U(N) = G (R) for G a matrix group over R
• 2N × 2N-matrices: each 2× 2-block is a complex number

• preserving a positive-definite Hermitian form.
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• 2N × 2N-matrices: each 2× 2-block is a complex number

• preserving a positive-definite Hermitian form.
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p-Arithmetic Lattices

Key Motivating Example: SL2(Z[1/p]) ⊆ SL2R

Goal: Generalize to U(2n).

• Idea: find matrix group G over Z[1/p] s.t. G (R) = U(2n).

• Choose: imaginary quadratic extension E = Q(
√
−d)/Q.

• Choose: positive-definite 2n × 2n-Hermitian matrix H with
entries in integers OE .

• Same def. w/res to complex conjugation!
• other possibility: involution of second kind on division algebra

• Define: UE ,H as matrices g such that gHḡT = H.
• AG def: UE ,H(R) is such matrices g with entries in R ⊗Z OE

• Depends on choice of H and d

Upshot: SL2(Z[1/p]) generalizes to matrices with entries in
Z[
√
−d , 1/p] preserving H for p inert in OE .
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• AG def: UE ,H(R) is such matrices g with entries in R ⊗Z OE

• Depends on choice of H and d

Upshot: SL2(Z[1/p]) generalizes to matrices with entries in
Z[
√
−d , 1/p] preserving H for p inert in OE .



QC Motivation Result Arith. lattices BT Theory Covering Aut. Bound

Adelic Perspective

Arithmetic lattices are simpler from an adelic perspective:

• Recall: Q has completions R and Qp. A is the restricted
direct product, diagonal Q ↪→ A discrete and cocompact

• Define: UE ,H(A), UE ,H(Q), UE ,H(Qp), UE ,H(Zp).

• Fact: UE ,H(Q) ↪→ UE ,H(A) discrete and cocompact

Arithmetic lattices ↔ open compact subgroups K∞ ⊆ UE ,H(A∞)

• For each p: define p-arithmetic lattice Λp := K∞,p ∩UE ,H(Q).

• Example: If Kp = UE ,H(Zp), then Λp = UE ,H(Z[1/p]).
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Golden Arithmetic Subroups

Definition
A compact open K∞ ⊆ UE ,H(A∞) is golden if

1. K∞UE ,H(Q) = UE ,H(A∞),

2. K∞ ∩ UE ,H(Q) = 1.

Key Property: if K∞ is golden, then;

UE ,H(Q)\UE ,H(A)/K∞
1
= UE ,H(R)/(K∞ ∩ UE ,H(Q))

2
= U(2n)

Variant: For all p: Λp acts on UE ,H(Qp)/Kp simply transitively

Key Limitation: 1 is rarely satisfied (finitely many examples with
rank > 4, none with rank > 8)
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Bruhat-Tits Building

Given reductive matrix group G/Qp, there is an associated
contractible simplicial complex B with a G (Qp)-action.

• Ex: if G = GL2/Qp, then B is an infinite (p + 1)-regular tree.

• Higher-dimensional generalization for higher-rank groups

Properties:

• B: union of equidimensional Euclidean subsets, apartments
• Any two simplices share a common apartment
• GL2/Qp: apartments are infinite two-sided paths, each ∼= R.

• If K is a maximal compact special subgroup, G (Qp)/K
embeds as a subset of the vertices of B.

• Consistent with G (Qp)-action
• K is the stabilizer of fixed vertex v0.
• GL2/Qp: G (Qp)/K is the vertices of the tree
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Example Apartments
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Golden Lattice to Gate Set

Definition
A golden subgroup K∞ ⊆ UE ,H(A∞) is golden at p if Kp is a
hyperspecial maximal compact.

For Simplicity: Assume UE ,H(Qp)/Kp is all vertices of B. Then:

• Λp acts simply transitively on the vertices of B.

• The 1-skeleton of B is a Cayley graph for Λp w/res to
generators taking v0 to its neighbors.

• These generators are our gate set SK∞
p corresp. to K∞ and p

• simplifying condition holds when p is split

• when p is non-split, can use distance-2 vertices instead of
neighbors—specific trick to unitary groups!
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Growth and Navigation

Immediately get growth and navigation properties.

Growth:

• S (`) is all vertices at distance exactly ` in the 1-skeleton of B.

• Standard properties of buildings =⇒ exponential size in `.

Navigation:

• Cartan Decomposition of γ: finds relative position of v0 and
γv0 in shared apartment

• Can be computed by integer normal form algorithm

• find shortest path from γv0 to v0 in apartment

• Cayley graph structure gives decomposition as a word in S
• iterative process: try all generators at each step to find which

follows path
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Intuitive Idea

1Bδ : indicator function of a ball of volume δ around 1 ⊆ U(2n).

• If S (`) covers U(2n) efficiently ↔ it is evenly distributed

• =⇒ this should be close to the identity function 1:

1S(`) ? 1Bδ := |S (`)|−1
∑
s∈S(`)

1Bδ(s−1(∗))

Quantitative Bound

‖Proj1⊥(1S(`) ? 1Bδ)‖2
2 = ‖1S(`) ? 1Bδ − δ1‖

2
2

≥ δ2 Vol

U(2n)−
⋃

s∈S(`)

B(s, δ)


=⇒ Goal: Upper bound ‖1S(`) ? 1Bδ‖2

2/‖1Bδ‖2
2
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Automorphic Interpretation

Definition
An automorphic representation on UE ,H is an irreducible subrep.
of L2(UE ,H(Q)\UE ,H(A)) under right translation by UE ,H(A).

• Fact: G (R) compact =⇒ L2 decomposes as a ⊕ of irreps.

L2(UE ,H(Q)\UE ,H(A)) =
⊕

π∈AR(UE ,H)

π

• Recall: if K∞ is golden

L2(UE ,H(Q)\UE ,H(A))K
∞

= L2(U(2n))

• Output: extra UE ,H(A∞) action on L2(U(2n)) understandable
through information about the set AR(UE ,H).
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Automorphic Interpretation: Hecke Operators

Goal: Realize 1S(`)? operator in this extra action

• nice function f on UE ,H(Qp) 7→ covolution operator on reps:

f : πp → πp : f ? v =

∫
UE ,H(Qp)

f (g)g · v dg

• Kp compact open =⇒ 1KpgKp acts on π
Kp
p .

• Kp from golden K∞ =⇒ 1KpS(`)Kp
acts on L2(U(2n)).

• Recall: S (`)Kp is all vertices at distance ` from v0

=⇒ KpS
(`)Kp = S (`)Kp =⇒ 1KpS(`)Kp

? f = 1S(`) ? f
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p-Matrix Coefficient Decay

Recall: π ∈ AR(UE ,H) =⇒ irreps π∞, πp of UE ,H(R),UE ,H(Qp):

π = π∞ ⊗
⊗
p

′
πp,

Define: σ(π, p) := inf{q > 2 : πp has matrix coefficients in Lq}
• The (false!) näıve Ramanujan Conjecture: σ(π, p) = 2 always.

Theorem ([Kam16])

Let finite S ⊆ UE ,H(Qp)der and Kp Iwahori or maximal compact
hyperspecial. Then for π ∈ AR(UE ,H) and all ε > 0

‖1KpSKp |π‖op �ε |KpSKp/Kp|
(1+ε)

(
1− 1

σ(π,p)

)
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A Sarnak-Xue-Type Bound

Final Goal: Control ‖1S(`) ? 1Bδ‖2
2 by bounding projections of 1Bδ

onto π ∈ AR(UE ,H) with large σ(π, p).

Theorem ([DEP24])

For π ∈ AR(UE ,H), define

a(δ, π) :=
‖Projπ 1B̃δ‖

2
2

‖1
B̃δ
‖2

2

.

Then, for all ε > 0,∑
π:σ(π,p)≥σ0

a(δ, π)�ε δ
(1−ε)

(
1− 2

σ0

)
.

Interpretation: most of 1
B̃δ

avoids violations of Ramanujan
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Endoscopic Classification Input

How to prove bound? First,

Deep input from Aut. Rep. theory

• [KMSW14]: π ∈ AR(UE ,H) 7→ Arthur-SL2, SL2 → GL2n/C
• Invariant determining much useful info about π
• Requires: Arthur’s trace formula, Ngo’s proof the fundamental

lemma, stabilization of the trace formula, Moeglin and
Waldspurger’s work on twisted versions, relations between
Aubert involutions and intertwining operators, etc.

• +[Shi11, Clo13]: triv. Arthur-SL2 =⇒ σ(π, p) = 2 for all p
• Intuitively: Ramanujan conjecture for UE ,H

• Requires: +theory of Shimura Varieties and their integral
models, Weil conjectures, etc.

• +[Mœg09]: Bound on σ(π, p) in terms of Arthur-SL2.
• Requires: classifications of p-adic reps of GLn/classical groups.

Upshot: rewrite bound in terms of Arthur-SL2 instead of σ(π, p).
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Computing a(δ, π)

Next, understand a(δ, π)

• Compute:

a(δ, π) = ‖Projπ∞ 1Bδ |‖
2
2 dim((π∞)K

∞
)

= trπ∞(1Bδ ? 1Bδ) dim((π∞)K
∞

)

• U(2n) compact =⇒ π∞ is some finite dimensional πλ∞ with
highest weight λ∞.

• Kirilov’s orbit-method character formula explicitly computes

a(λ∞, δ) := trπλ∞ (1
B̃δ
? 1

B̃δ
)

• 1
B̃δ

: slight modification of 1Bδ for computational simplicity
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Putting it Together

Goal: 2: subset of AR(UE ,H) w/ some fixed Arthur-SL2. Bound:∑
π∈2

a(π, δ) =

Key Input: [DGG23, DGG24] finds explicit function d(λ∞) s.t.∑
π∈2

π∞=πλ∞

dim((π∞)K
∞

)� d(λ∞)

• Req: End. class. [KMSW14] + inductive method of Täıbi.

• d(λ∞) is conjecturally optimal

Final Step: plug in formulas for d(λ∞), a(λ∞, δ) and sum!
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• d(λ∞) is conjecturally optimal

Final Step: plug in formulas for d(λ∞), a(λ∞, δ) and sum!



QC Motivation Result Arith. lattices BT Theory Covering Aut. Bound

Putting it Together

Goal: 2: subset of AR(UE ,H) w/ some fixed Arthur-SL2. Bound:∑
π∈2

a(π, δ) =
∑
λ∞

a(λ∞, δ)
∑
π∈2

π∞=πλ∞

dim((π∞)K
∞

)

Key Input: [DGG23, DGG24] finds explicit function d(λ∞) s.t.∑
π∈2

π∞=πλ∞

dim((π∞)K
∞

)� d(λ∞)

• Req: End. class. [KMSW14] + inductive method of Täıbi.
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