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Note on technical details

• Anything in gray is a technical detail not relevant to this
particular topic

• Anything in orange I will only explain intuitively and
imprecisely due to time constraints.

• blue is miscellaneous highlighting
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• The Question/Motivation

• Prototype Case: GL2

• General Case Key Points



The Question GL2-case General Case Issues

Motivation

Q1: Consider the set of elliptic curves E/Q with conductor ≤N.
What fraction have root number ε(1/2,E ) = ±1 as N →∞?

• Expectation: equidistribution—1/2 each

• Hard problem on Galois side → change to automorphic side

Q2: Consider the set of weight-2 modular newforms f of level N
What fraction have root number ε(1/2, f ) = ±1 as N →∞?

• imperfect translation—modular form field of definition issue

• Powerful tool for studying—trace formula
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Weight Aspect

Q2: Consider the set of weight-2 modular forms f of level N.
What fraction have root number ε(1/2, f ) = ±1 as N →∞?

• Modular form perspective allows taking other limits:

• Weight →∞ i.e, ‘weight aspect” vs. “level aspect”

• much easier to study for technical reasons

• arithmetic geometry interpretation confusing??
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Generalizing beyond GL2

Elliptic Curves → other varieties
Modular newforms → cuspidal automorphic reps. of GLN

• More accurate generalization: add adjectives

• regular integral: definition misleading: half-integral or integral
depending on orth. vs. symp.

• weight k to ∞ ↔ min. difference b/w Hodge weights to ∞.

• Langlands correspondence conjectural!
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Final Question

Fix N, regular integral infinitesimal character λ at ∞ and
conductor n. Consider the set S2N(λ, n) of automorphic
representations on GL2NQ that:

• have inf. char. λ at ∞,

• have conductor n,

• are symplectic self-dual.

What fraction of π ∈ S2N(λ, n) have root number ε(1/2, π) = ±1
as λ→∞?

• Focus on symplectic-type: orthogonal-type ≈ root number
always +1

• λ→∞: λ is a list of numbers (Hodge weights), min.
difference →∞

• N = 1: original modular form question Q3
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Final Question: SO2N+1-version

Fix N, regular integral infintesimal character at ∞, and conductor
n. Consider the set S ′2N(λ, n) of “newforms” (simple generic
A-packets) on SO2N+1 that

• have inf. char. λ at ∞,

• have standard L-function with conductor n.

What fraction of π ∈ S ′2N(λ, n) have root number

ε(1/2, π, std) = ±1

as λ→∞?
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Result

Theorem
Exactly 1/2 of π ∈ S2N(λ, n) have ε(1/2, π) = +1 as λ→∞ if
and only if there is p such that vp(n) is either odd or > 2N,

• Works over arbitrary totally-real number field F

• independent of weighting by Satake parameters for p - n.

• bounds on rate of convergence, dependence on Satake
weighting (as in Shin-Templier)

• Conditional on Arthur’s Endoscopic Classification

Work-in-progress:

• Conjugate self-dual case for E/F CM quadratic (confusing:
appears to fail even for large n when E ∼= F [i ]??)

• Speculative: level-aspect n→∞
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Method of Proof

Step 1: Understand the classical GL2-proof in great detail
(Yamauchi, Skoruppa-Zagier, Martin)

Step 2: See if modern trace formula technology can generalize the
individual steps



The Question GL2-case General Case Issues

Adelic Perspective

Modular newforms ↔ cuspidal automorphic Reps of GL2

≈GL2(A)-subreps π of L2(GL2(Q)\GL2(A), χ).

• GL2(A) Topological group w/ Haar measure

• Factors as product GL2R×
∏′

v GL2(Qv )

• GL2(Qv ) action is Hecke operators

• GL2(Q)\GL2(A): Quotient by discrete subgroup

• Functions on this: Functions on Γ\GL2(R) for some
arithmetic lattice Γ

Intuition: Work with all levels at once, things become cleaner
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Adelic Perspective: Translation

Translate Adelic rep to newform?

• weight-k ↔ π∞ is weight-k discrete series πk

• level-N ↔ π∞ has a fixed vector by level subgroup K1(N)

• vectors x ∈ π ↔ modular forms on upper-half plane

• The newform: x = x∞ ⊗
⊗

v xv ∈ π: unique subspace s.t.
• weight-k: π∞: SO2R acts by θ · x∞ = e2πikθx∞
• level-N: x∞ fixed by K1(N).
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Trace Formula

∑
π∈ARdisc(GL2)

trπ(f )

≈
∑

[γ]∈[GL2(Q)]

Vol(Gγ(Q)\Gγ(A))

∫
Gγ(A)\G(A)

f (x−1γx) dx

• Trace of convolution operator: v 7→
∫
GL2(A) f (g)gv dg .

• Sum over rational conjugacy classes

• volume of adelic quotient

• integral over conjugation orbit

Usage: Pick clever test functions to make left be the statistic you
want and compute right
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Infinite Test Function

f = f∞ ⊗ f∞: f∞ is pseudocoefficient for weight-k discrete series:

∑
π∈ARdisc(GL2)

π∞=πk

trπ∞(f∞)

≈
∑

[γ]∈[GL2(Q)]

Vol(γ)trλ(γ)

∫
Gγ(A∞)\G(A∞)

f∞(x−1γx) dx

• trk(γ) : trace of γ against f.d. irrep corresponding to k

Key Idea: As k →∞, term for γ = 1 dominates (When ZG = 1):

τ(GL2) dim(k)f∞(1)
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Finite Test Functions

Need:

• Counting Function C∞n : trπ∞(C∞n ) = 1cond(π)=n.

• ε-factor Function E∞n : trπ∞(C∞n ) = ε(1/2, π)1cond(π)=n.

Then ∑
π∈S2(n,k)

ε(1/2, π)

∑
π∈S2(n,k)

1
=

∑
π∈ARdisc(GL2)

π∞=πk

trπ∞(E∞n )

∑
π∈ARdisc(GL2)

π∞=πk

trπ∞(C∞n )

k→∞−−−→ E∞n (1)

C∞n (1)
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acts on
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where Cn/m depends only on n/m

• Same linear combination trick works for E∞n !

• E∞n (1) = 0 whenever 1ι1K1(1) doesn’t appear in combination
⇐⇒ n not a perfect square
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• inverse transpose forces use of twisted test function Ẽ∞n
• =⇒ have to use twisted trace formula

• Issue: trπ(Ẽ∞n ) = ε(1/2, π) only works for generic π
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Use of Endoscopic Classification

Necessity of twisted trace is a feature, not a bug

• Twisted trace formula understandable using Arthur’s
Classification

• Resolves two technical problems
• Isolation of self-dual symplectic-type reps
• Isolation of cuspidal reps =⇒ generic

• Error terms from other self-dual reps bounded by inductive
argument of Täıbi as in previous work

Conclusion:∑
π∈S2N(λ,n)

ε(1/2, π) � (dimSO2N+1
λ)(Ẽ∞n )SO2N+1(1)

in terms of Endoscopic transfer
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λ)(Ẽ∞n )SO2N+1(1)

in terms of Endoscopic transfer



The Question GL2-case General Case Issues

Use of Endoscopic Classification

Necessity of twisted trace is a feature, not a bug

• Twisted trace formula understandable using Arthur’s
Classification

• Resolves two technical problems
• Isolation of self-dual symplectic-type reps
• Isolation of cuspidal reps =⇒ generic

• Error terms from other self-dual reps bounded by inductive
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λ)(Ẽ∞n )SO2N+1(1)

in terms of Endoscopic transfer



The Question GL2-case General Case Issues

The function C̃∞n

How to turn C∞n into twisted test function C̃∞n ?

• use Rogawski’s compact-support Paley-Wiener theorem for
twisted p-adic groups

Technical details:

• Key point: local root numbers are constant after fixing
conductor and Bernstein component

• root number constant on component except when there are
Steinbergs in the discrete support...

• ....but this also changes the conductor correspondingly
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Computing Transfers

To show (Ẽ∞n )SO2N+1(1) = 0

• Extend endoscopic transfer identities to identity through
Shalika germ argument (Langlands, Shelstad, Waldspurger)

• =⇒ just need to show the “least regular” twisted conjugacy
class on GL2N doesn’t intersect support

To show (C̃∞n )SO2N+1(1) > 0

• Endoscopic Character Identities: Fourier transform is positive
on unitary dual

• Fourier inversion formula

• Technical issue!
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To show (Ẽ∞n )SO2N+1(1) = 0

• Extend endoscopic transfer identities to identity through
Shalika germ argument (Langlands, Shelstad, Waldspurger)

• =⇒ just need to show the “least regular” twisted conjugacy
class on GL2N doesn’t intersect support

To show (C̃∞n )SO2N+1(1) > 0

• Endoscopic Character Identities: Fourier transform is
≈positive on unitary dual

• Fourier inversion formula

• Technical issue!



The Question GL2-case General Case Issues

Computing Transfers
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