GL₂-case

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Root Number Equidistribution in the Weight Aspect for Cuspidal, Self-Dual, Automorphic Representations on GL_N

Rahul Dalal (joint w/ Mathilde Gerbelli-Gauthier)

Talk at Schiermonnikoog

April 18, 2024

GL₂-case 0000000 General Case Issues 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Note on technical details

- Anything in gray is a technical detail not relevant to this particular topic
- Anything in orange I will only explain intuitively and imprecisely due to time constraints.
- blue is miscellaneous highlighting

GL₂-case 0000000 General Case Issues

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

- The Question/Motivation
- Prototype Case: GL_2
- General Case Key Points

GL₂-case 0000000 General Case Issues

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

Q1: Consider the set of elliptic curves E/\mathbb{Q} with conductor $\leq N$. What fraction have root number $\epsilon(1/2, E) = \pm 1$ as $N \to \infty$?

GL₂-case 0000000 General Case Issues 0000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

Q1: Consider the set of elliptic curves E/\mathbb{Q} with conductor $\leq N$. What fraction have root number $\epsilon(1/2, E) = \pm 1$ as $N \to \infty$?

• Expectation: equidistribution—1/2 each

General Case Issues

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

Q1: Consider the set of elliptic curves E/\mathbb{Q} with conductor $\leq N$. What fraction have root number $\epsilon(1/2, E) = \pm 1$ as $N \to \infty$?

- Expectation: equidistribution—1/2 each
- Hard problem on Galois side \rightarrow change to automorphic side

General Case Issues

Motivation

Q1: Consider the set of elliptic curves E/\mathbb{Q} with conductor $\leq N$. What fraction have root number $\epsilon(1/2, E) = \pm 1$ as $N \to \infty$?

- Expectation: equidistribution—1/2 each
- Hard problem on Galois side \rightarrow change to automorphic side

Q2: Consider the set of weight-2 modular newforms f of level NWhat fraction have root number $\epsilon(1/2, f) = \pm 1$ as $N \to \infty$?

General Case Issues

Motivation

Q1: Consider the set of elliptic curves E/\mathbb{Q} with conductor $\leq N$. What fraction have root number $\epsilon(1/2, E) = \pm 1$ as $N \to \infty$?

- Expectation: equidistribution—1/2 each
- Hard problem on Galois side \rightarrow change to automorphic side

Q2: Consider the set of weight-2 modular newforms f of level NWhat fraction have root number $\epsilon(1/2, f) = \pm 1$ as $N \to \infty$?

• imperfect translation-modular form field of definition issue

General Case Issues

Motivation

Q1: Consider the set of elliptic curves E/\mathbb{Q} with conductor $\leq N$. What fraction have root number $\epsilon(1/2, E) = \pm 1$ as $N \to \infty$?

- Expectation: equidistribution—1/2 each
- Hard problem on Galois side \rightarrow change to automorphic side

Q2: Consider the set of weight-2 modular newforms f of level NWhat fraction have root number $\epsilon(1/2, f) = \pm 1$ as $N \to \infty$?

- imperfect translation-modular form field of definition issue
- Powerful tool for studying—trace formula

GL₂-case 0000000 General Case Issues

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Weight Aspect

Q2: Consider the set of weight-2 modular forms f of level N. What fraction have root number $\epsilon(1/2, f) = \pm 1$ as $N \to \infty$?

GL₂-case 0000000 General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Weight Aspect

Q2: Consider the set of weight-2 modular forms f of level N. What fraction have root number $\epsilon(1/2, f) = \pm 1$ as $N \to \infty$?

• Modular form perspective allows taking other limits:

GL₂-case 0000000 General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Weight Aspect

Q3: Consider the set of weight-k modular forms f of level N. What fraction have root number $\epsilon(1/2, f) = \pm 1$ as $k \to \infty$?

- Modular form perspective allows taking other limits:
- Weight $ightarrow\infty$ i.e, 'weight aspect" vs. "level aspect"

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Weight Aspect

Q3: Consider the set of weight-k modular forms f of level N. What fraction have root number $\epsilon(1/2, f) = \pm 1$ as $k \to \infty$?

- Modular form perspective allows taking other limits:
- Weight $ightarrow\infty$ i.e, 'weight aspect" vs. "level aspect"
- much easier to study for technical reasons

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Weight Aspect

Q3: Consider the set of weight-k modular forms f of level N. What fraction have root number $\epsilon(1/2, f) = \pm 1$ as $k \to \infty$?

- Modular form perspective allows taking other limits:
- Weight $ightarrow\infty$ i.e, 'weight aspect" vs. "level aspect"
- much easier to study for technical reasons
- arithmetic geometry interpretation confusing??

GL₂-case 0000000 General Case Issues

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Generalizing beyond GL_2

Elliptic Curves \rightarrow other varieties Modular newforms \rightarrow cuspidal automorphic reps. of GL_N

GL₂-case 0000000 General Case Issues

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Generalizing beyond GL_2

Elliptic Curves \rightarrow other varieties Modular newforms \rightarrow cuspidal automorphic reps. of GL_N

• More accurate generalization: add adjectives

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Generalizing beyond GL_2

Elliptic Curves \rightarrow symp./orth.-type, irr. Galois reps. of dim. N Modular newforms \rightarrow self-dual, cuspidal automorphic reps. of GL_N

• More accurate generalization: add adjectives

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Generalizing beyond GL_2

Elliptic Curves \rightarrow symp./orth.-type, irr. Galois reps. of dim. *N* with regular integral Hodge weights Modular newforms \rightarrow regular integral-at- ∞ , self-dual, cuspidal automorphic reps. of GL_N

• More accurate generalization: add adjectives

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Generalizing beyond GL_2

Elliptic Curves \rightarrow symp./orth.-type, irr. Galois reps. of dim. *N* with regular integral Hodge weights Modular newforms \rightarrow regular integral-at- ∞ , self-dual, cuspidal automorphic reps. of GL_N

- More accurate generalization: add adjectives
- regular integral: definition misleading: half-integral or integral depending on orth. vs. symp.

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Generalizing beyond GL_2

Elliptic Curves \rightarrow symp./orth.-type, irr. Galois reps. of dim. *N* with regular integral Hodge weights Modular newforms \rightarrow regular integral-at- ∞ , self-dual, cuspidal automorphic reps. of GL_N

- More accurate generalization: add adjectives
- regular integral: definition misleading: half-integral or integral depending on orth. vs. symp.
- weight k to $\infty \leftrightarrow \min$. difference b/w Hodge weights to ∞ .

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Generalizing beyond GL_2

Elliptic Curves \rightarrow symp./orth.-type, irr. Galois reps. of dim. *N* with regular integral Hodge weights Modular newforms \rightarrow regular integral-at- ∞ , self-dual, cuspidal automorphic reps. of GL_N

- More accurate generalization: add adjectives
- regular integral: definition misleading: half-integral or integral depending on orth. vs. symp.
- weight k to $\infty \leftrightarrow \min$. difference b/w Hodge weights to ∞ .
- Langlands correspondence conjectural!

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Final Question

Fix *N*, regular integral infinitesimal character λ at ∞ and conductor n. Consider the set $S_{2N}(\lambda, n)$ of automorphic representations on $\operatorname{GL}_{2N}\mathbb{Q}$ that:

- have inf. char. λ at ∞ ,
- have conductor n,
- are symplectic self-dual.

What fraction of $\pi \in S_{2N}(\lambda, \mathfrak{n})$ have root number $\epsilon(1/2, \pi) = \pm 1$ as $\lambda \to \infty$?

General Case Issues 0000

Final Question

Fix N, regular integral infinitesimal character λ at ∞ and conductor \mathfrak{n} . Consider the set $S_{2N}(\lambda, \mathfrak{n})$ of automorphic representations on $\operatorname{GL}_{2N}\mathbb{Q}$ that:

- have inf. char. λ at ∞ ,
- have conductor n,
- are symplectic self-dual.

What fraction of $\pi \in S_{2N}(\lambda, \mathfrak{n})$ have root number $\epsilon(1/2, \pi) = \pm 1$ as $\lambda \to \infty$?

• Focus on symplectic-type: orthogonal-type \approx root number always +1

General Case Issues

Final Question

Fix *N*, regular integral infinitesimal character λ at ∞ and conductor n. Consider the set $S_{2N}(\lambda, n)$ of automorphic representations on $\operatorname{GL}_{2N}\mathbb{Q}$ that:

- have inf. char. λ at ∞ ,
- have conductor n,
- are symplectic self-dual.

What fraction of $\pi \in S_{2N}(\lambda, \mathfrak{n})$ have root number $\epsilon(1/2, \pi) = \pm 1$ as $\lambda \to \infty$?

- Focus on symplectic-type: orthogonal-type \approx root number always +1
- $\lambda \to \infty$: λ is a list of numbers (Hodge weights), min. difference $\to \infty$

General Case Issues 0000

Final Question

Fix N, regular integral infinitesimal character λ at ∞ and conductor \mathfrak{n} . Consider the set $S_{2N}(\lambda, \mathfrak{n})$ of automorphic representations on $\operatorname{GL}_{2N}\mathbb{Q}$ that:

- have inf. char. λ at ∞ ,
- have conductor n,
- are symplectic self-dual.

What fraction of $\pi \in S_{2N}(\lambda, \mathfrak{n})$ have root number $\epsilon(1/2, \pi) = \pm 1$ as $\lambda \to \infty$?

- Focus on symplectic-type: orthogonal-type \approx root number always +1
- $\lambda \to \infty$: λ is a list of numbers (Hodge weights), min. difference $\to \infty$
- N = 1: original modular form question Q3

Final Question: SO_{2N+1} -version

Fix *N*, regular integral infintesimal character at ∞ , and conductor n. Consider the set $S'_{2N}(\lambda, \mathfrak{n})$ of "newforms" (simple generic *A*-packets) on SO_{2N+1} that

- have inf. char. λ at ∞ ,
- have standard *L*-function with conductor n.

What fraction of $\pi \in S'_{2N}(\lambda, \mathfrak{n})$ have root number

 $\epsilon(1/2,\pi,\mathrm{std})=\pm 1$

as $\lambda \to \infty$?

General Case Issues

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Result

Theorem

Exactly 1/2 of $\pi \in S_{2N}(\lambda, \mathfrak{n})$ have $\epsilon(1/2, \pi) = +1$ as $\lambda \to \infty$ if and only if there is p such that $v_p(\mathfrak{n})$ is either odd or > 2N,

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Result

Theorem

Exactly 1/2 of $\pi \in S_{2N}(\lambda, \mathfrak{n})$ have $\epsilon(1/2, \pi) = +1$ as $\lambda \to \infty$ if and only if there is p such that $v_p(\mathfrak{n})$ is either odd or > 2N,

- Works over arbitrary totally-real number field F
- independent of weighting by Satake parameters for $p \nmid \mathfrak{n}$.
- bounds on rate of convergence, dependence on Satake weighting (as in Shin-Templier)

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Result

Theorem

Exactly 1/2 of $\pi \in S_{2N}(\lambda, \mathfrak{n})$ have $\epsilon(1/2, \pi) = +1$ as $\lambda \to \infty$ if and only if there is p such that $v_p(\mathfrak{n})$ is either odd or > 2N,

- Works over arbitrary totally-real number field F
- independent of weighting by Satake parameters for $p \nmid \mathfrak{n}$.
- bounds on rate of convergence, dependence on Satake weighting (as in Shin-Templier)
- Conditional on Arthur's Endoscopic Classification

General Case Issues

Result

Theorem

Exactly 1/2 of $\pi \in S_{2N}(\lambda, \mathfrak{n})$ have $\epsilon(1/2, \pi) = +1$ as $\lambda \to \infty$ if and only if there is p such that $v_p(\mathfrak{n})$ is either odd or > 2N,

- Works over arbitrary totally-real number field F
- independent of weighting by Satake parameters for $p \nmid \mathfrak{n}$.
- bounds on rate of convergence, dependence on Satake weighting (as in Shin-Templier)
- Conditional on Arthur's Endoscopic Classification

Work-in-progress:

- Conjugate self-dual case for *E*/*F* CM quadratic (confusing: appears to fail even for large n when *E* ≅ *F*[*i*]??)
- Speculative: level-aspect $\mathfrak{n} \to \infty$

GL₂-case 0000000 General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Method of Proof

Step 1: Understand the classical GL_2 -proof in great detail (Yamauchi, Skoruppa-Zagier, Martin)

Step 2: See if modern trace formula technology can generalize the individual steps

GL₂-case •000000 General Case Issues

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Adelic Perspective

$\mathsf{Modular}\ \mathsf{newforms} \leftrightarrow \mathsf{cuspidal}\ \mathsf{automorphic}\ \mathsf{Reps}\ \mathsf{of}\ \mathrm{GL}_2$

GL₂-case ●000000 General Case Issues 0000

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Adelic Perspective

Modular newforms \leftrightarrow cuspidal automorphic Reps of $\operatorname{GL}_2 \approx \operatorname{GL}_2(\mathbb{A})$ -subreps π of $L^2(\operatorname{GL}_2(\mathbb{Q})\backslash \operatorname{GL}_2(\mathbb{A}), \chi)$.

GL₂-case •000000 General Case Issues

Adelic Perspective

Modular newforms \leftrightarrow cuspidal automorphic Reps of GL₂ \approx GL₂(A)-subreps π of $L^2(GL_2(\mathbb{Q})\backslash GL_2(A), \chi)$.

- $\operatorname{GL}_2(\mathbb{A})$ Topological group w/ Haar measure
- Factors as product $\operatorname{GL}_2\mathbb{R} \times \prod_{\nu}^{'} \operatorname{GL}_2(\mathbb{Q}_{\nu})$
- $\operatorname{GL}_2(\mathbb{Q}_{\nu})$ action is Hecke operators

General Case Issues

Adelic Perspective

Modular newforms \leftrightarrow cuspidal automorphic Reps of GL₂ \approx GL₂(\mathbb{A})-subreps π of $L^2(GL_2(\mathbb{Q})\backslash GL_2(\mathbb{A}), \chi)$.

- $\operatorname{GL}_2(\mathbb{A})$ Topological group w/ Haar measure
- Factors as product $\operatorname{GL}_2\mathbb{R} \times \prod_{\nu}^{'} \operatorname{GL}_2(\mathbb{Q}_{\nu})$
- $\operatorname{GL}_2(\mathbb{Q}_{\nu})$ action is Hecke operators
- $\operatorname{GL}_2(\mathbb{Q})\backslash\operatorname{GL}_2(\mathbb{A})$: Quotient by discrete subgroup

General Case Issues

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Adelic Perspective

Modular newforms \leftrightarrow cuspidal automorphic Reps of GL₂ \approx GL₂(\mathbb{A})-subreps π of $L^2(GL_2(\mathbb{Q})\backslash GL_2(\mathbb{A}), \chi)$.

- $\operatorname{GL}_2(\mathbb{A})$ Topological group w/ Haar measure
- Factors as product $\operatorname{GL}_2\mathbb{R} \times \prod_{\nu}^{'} \operatorname{GL}_2(\mathbb{Q}_{\nu})$
- $\operatorname{GL}_2(\mathbb{Q}_{\nu})$ action is Hecke operators
- $\operatorname{GL}_2(\mathbb{Q})\backslash\operatorname{GL}_2(\mathbb{A})$: Quotient by discrete subgroup
- Functions on this: Functions on $\Gamma\backslash {\rm GL}_2(\mathbb{R})$ for some arithmetic lattice Γ
General Case Issues

Adelic Perspective

Modular newforms \leftrightarrow cuspidal automorphic Reps of GL₂ \approx GL₂(\mathbb{A})-subreps π of $L^2(GL_2(\mathbb{Q})\backslash GL_2(\mathbb{A}), \chi)$.

- $\operatorname{GL}_2(\mathbb{A})$ Topological group w/ Haar measure
- Factors as product $\operatorname{GL}_2\mathbb{R} \times \prod_{\nu}^{'} \operatorname{GL}_2(\mathbb{Q}_{\nu})$
- $\operatorname{GL}_2(\mathbb{Q}_{\nu})$ action is Hecke operators
- $\operatorname{GL}_2(\mathbb{Q})\backslash\operatorname{GL}_2(\mathbb{A})$: Quotient by discrete subgroup
- Functions on this: Functions on $\Gamma\backslash {\rm GL}_2(\mathbb{R})$ for some arithmetic lattice Γ

Intuition: Work with all levels at once, things become cleaner

 GL_2 -case 0000000 General Case Issues 0000

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Adelic Perspective: Translation

Translate Adelic rep to newform?

• weight- $k \leftrightarrow \pi_{\infty}$ is weight-k discrete series π_k

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Adelic Perspective: Translation

Translate Adelic rep to newform?

- weight- $k \leftrightarrow \pi_{\infty}$ is weight-k discrete series π_k
- level- $N \leftrightarrow \pi^{\infty}$ has a fixed vector by level subgroup $K_1(N)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Adelic Perspective: Translation

Translate Adelic rep to newform?

- weight- $k \leftrightarrow \pi_{\infty}$ is weight-k discrete series π_k
- level- $N \leftrightarrow \pi^{\infty}$ has a fixed vector by level subgroup $K_1(N)$
- vectors $x \in \pi \leftrightarrow$ modular forms on upper-half plane

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Adelic Perspective: Translation

Translate Adelic rep to newform?

- weight- $k \leftrightarrow \pi_{\infty}$ is weight-k discrete series π_k
- level- $N \leftrightarrow \pi^{\infty}$ has a fixed vector by level subgroup $K_1(N)$
- vectors $x \in \pi \leftrightarrow$ modular forms on upper-half plane
- The newform: $x = x_{\infty} \otimes \bigotimes_{v} x_{v} \in \pi$: unique subspace s.t.
 - weight-k: π_{∞} : SO₂ \mathbb{R} acts by $\theta \cdot x_{\infty} = e^{2\pi i k \theta} x_{\infty}$
 - level-N: x^{∞} fixed by $K_1(N)$.

GL₂-case 00●0000 General Case Issues

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$$\sum_{\pi \in \mathcal{AR}_{\operatorname{disc}}(\operatorname{GL}_2)} \operatorname{tr}_{\pi}(f)$$

$$\approx \sum_{[\gamma] \in [\operatorname{GL}_2(\mathbb{Q})]} \operatorname{Vol}(G_{\gamma}(\mathbb{Q}) \setminus G_{\gamma}(\mathbb{A})) \int_{G_{\gamma}(\mathbb{A}) \setminus G(\mathbb{A})} f(x^{-1}\gamma x) \, dx$$

GL₂-case 00●0000 General Case Issues

Trace Formula

$$\sum_{\pi \in \mathcal{AR}_{\mathrm{disc}}(\mathrm{GL}_2)} \mathrm{tr}_{\pi}(f)$$

$$\approx \sum_{[\gamma] \in [\mathrm{GL}_2(\mathbb{Q})]} \mathrm{Vol}(G_{\gamma}(\mathbb{Q}) \setminus G_{\gamma}(\mathbb{A})) \int_{G_{\gamma}(\mathbb{A}) \setminus G(\mathbb{A})} f(x^{-1}\gamma x) \, dx$$

• Trace of convolution operator: $v \mapsto \int_{GL_2(\mathbb{A})} f(g)gv \, dg$.

GL₂-case 00●0000 General Case Issues

$$\sum_{\pi \in \mathcal{AR}_{\operatorname{disc}}(\operatorname{GL}_2)} \operatorname{tr}_{\pi}(f)$$

$$\approx \sum_{[\gamma] \in [\operatorname{GL}_2(\mathbb{Q})]} \operatorname{Vol}(G_{\gamma}(\mathbb{Q}) \setminus G_{\gamma}(\mathbb{A})) \int_{G_{\gamma}(\mathbb{A}) \setminus G(\mathbb{A})} f(x^{-1}\gamma x) \, dx$$

- Trace of convolution operator: $v \mapsto \int_{GL_2(\mathbb{A})} f(g)gv \, dg$.
- Sum over rational conjugacy classes

GL₂-case 00●0000 General Case Issues

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

$$\sum_{\pi \in \mathcal{AR}_{\operatorname{disc}}(\operatorname{GL}_2)} \operatorname{tr}_{\pi}(f)$$

$$\approx \sum_{[\gamma] \in [\operatorname{GL}_2(\mathbb{Q})]} \operatorname{Vol}(G_{\gamma}(\mathbb{Q}) \setminus G_{\gamma}(\mathbb{A})) \int_{G_{\gamma}(\mathbb{A}) \setminus G(\mathbb{A})} f(x^{-1}\gamma x) \, dx$$

- Trace of convolution operator: $v \mapsto \int_{GL_2(\mathbb{A})} f(g)gv \, dg$.
- Sum over rational conjugacy classes
- volume of adelic quotient

GL₂-case 00●0000 General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$\sum_{\pi \in \mathcal{AR}_{\operatorname{disc}}(\operatorname{GL}_2)} \operatorname{tr}_{\pi}(f)$$

$$\approx \sum_{[\gamma] \in [\operatorname{GL}_2(\mathbb{Q})]} \operatorname{Vol}(G_{\gamma}(\mathbb{Q}) \setminus G_{\gamma}(\mathbb{A})) \int_{G_{\gamma}(\mathbb{A}) \setminus G(\mathbb{A})} f(x^{-1}\gamma x) \, dx$$

- Trace of convolution operator: $v \mapsto \int_{GL_2(\mathbb{A})} f(g)gv \, dg$.
- Sum over rational conjugacy classes
- volume of adelic quotient
- integral over conjugation orbit

GL₂-case

General Case Issues

Trace Formula

$$\sum_{\pi \in \mathcal{AR}_{\operatorname{disc}}(\operatorname{GL}_2)} \operatorname{tr}_{\pi}(f)$$

$$\approx \sum_{[\gamma] \in [\operatorname{GL}_2(\mathbb{Q})]} \operatorname{Vol}(G_{\gamma}(\mathbb{Q}) \setminus G_{\gamma}(\mathbb{A})) \int_{G_{\gamma}(\mathbb{A}) \setminus G(\mathbb{A})} f(x^{-1}\gamma x) \, dx$$

- Trace of convolution operator: $v \mapsto \int_{GL_2(\mathbb{A})} f(g)gv \, dg$.
- Sum over rational conjugacy classes
- volume of adelic quotient
- integral over conjugation orbit

Usage: Pick clever test functions to make left be the statistic you want and compute right

 GL_2 -case 0000000

General Case Issues

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Infinite Test Function

 $f = f_{\infty} \otimes f^{\infty}$: f_{∞} is pseudocoefficient for weight-k discrete series:

 $\substack{\operatorname{GL}_2\text{-case}\\000\bullet000}$

General Case Issues

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Infinite Test Function

 $f = f_{\infty} \otimes f^{\infty}$: f_{∞} is pseudocoefficient for weight-k discrete series:

$$\sum_{\substack{\pi \in \mathcal{AR}_{\mathrm{disc}}(\mathrm{GL}_2)\\\pi_{\infty} = \pi_k}} \mathrm{tr}_{\pi^{\infty}}(f^{\infty})$$
$$\approx \sum_{[\gamma] \in [\mathrm{GL}_2(\mathbb{Q})]} \mathrm{Vol}(\gamma) \mathrm{tr}_{\lambda}(\gamma) \int_{\mathcal{G}_{\gamma}(\mathbb{A}^{\infty}) \setminus \mathcal{G}(\mathbb{A}^{\infty})} f^{\infty}(x^{-1}\gamma x) \, dx$$

Infinite Test Function

 $f = f_{\infty} \otimes f^{\infty}$: f_{∞} is pseudocoefficient for weight-k discrete series:

$$\sum_{\substack{\pi \in \mathcal{AR}_{\mathrm{disc}}(\mathrm{GL}_2) \\ \pi_{\infty} = \pi_k}} \mathrm{tr}_{\pi^{\infty}}(f^{\infty}) \\ \approx \sum_{[\gamma] \in [\mathrm{GL}_2(\mathbb{Q})]} \mathrm{Vol}(\gamma) \mathrm{tr}_{\lambda}(\gamma) \int_{\mathcal{G}_{\gamma}(\mathbb{A}^{\infty}) \setminus \mathcal{G}(\mathbb{A}^{\infty})} f^{\infty}(x^{-1}\gamma x) \, dx$$

• $tr_k(\gamma)$: trace of γ against f.d. irrep corresponding to k

Infinite Test Function

 $f = f_{\infty} \otimes f^{\infty}$: f_{∞} is pseudocoefficient for weight-k discrete series:

$$\sum_{\substack{\pi \in \mathcal{AR}_{\operatorname{disc}}(\operatorname{GL}_2) \\ \pi_{\infty} = \pi_k}} \operatorname{tr}_{\pi^{\infty}}(f^{\infty})$$
$$\approx \sum_{[\gamma] \in [\operatorname{GL}_2(\mathbb{Q})]} \operatorname{Vol}(\gamma) \operatorname{tr}_{\lambda}(\gamma) \int_{\mathcal{G}_{\gamma}(\mathbb{A}^{\infty}) \setminus \mathcal{G}(\mathbb{A}^{\infty})} f^{\infty}(x^{-1}\gamma x) \, dx$$

• $\operatorname{tr}_k(\gamma)$: trace of γ against f.d. irrep corresponding to kKey Idea: As $k \to \infty$, term for $\gamma = 1$ dominates (When $Z_G = 1$):

 $\tau(\operatorname{GL}_2)\dim(k)f^\infty(1)$

GL₂-case 0000●00 General Case Issues

Finite Test Functions

Need:

GL₂-case 0000●00 General Case Issues 0000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finite Test Functions

Need:

• Counting Function $C_{\mathfrak{n}}^{\infty}$: $\operatorname{tr}_{\pi^{\infty}}(C_{\mathfrak{n}}^{\infty}) = \mathbf{1}_{\operatorname{cond}(\pi)=\mathfrak{n}}$.

GL₂-case 0000●00 General Case Issues 0000

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Finite Test Functions

Need:

- Counting Function $C_{\mathfrak{n}}^{\infty}$: $\operatorname{tr}_{\pi^{\infty}}(C_{\mathfrak{n}}^{\infty}) = \mathbf{1}_{\operatorname{cond}(\pi)=\mathfrak{n}}$.
- ϵ -factor Function $E_{\mathfrak{n}}^{\infty}$: $\operatorname{tr}_{\pi^{\infty}}(C_{\mathfrak{n}}^{\infty}) = \epsilon(1/2,\pi)\mathbf{1}_{\operatorname{cond}(\pi)=\mathfrak{n}}$.

GL₂-case 0000●00 General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Finite Test Functions

Need:

• Counting Function $C_{\mathfrak{n}}^{\infty}$: $\operatorname{tr}_{\pi^{\infty}}(C_{\mathfrak{n}}^{\infty}) = \mathbf{1}_{\operatorname{cond}(\pi)=\mathfrak{n}}$.

• ϵ -factor Function E_n^{∞} : $\operatorname{tr}_{\pi^{\infty}}(C_n^{\infty}) = \epsilon(1/2, \pi) \mathbf{1}_{\operatorname{cond}(\pi)=\mathfrak{n}}$. Then

$$\frac{\sum_{\pi \in \mathcal{S}_{2}(\mathfrak{n},k)} \epsilon(1/2,\pi)}{\sum_{\pi \in \mathcal{S}_{2}(\mathfrak{n},k)} 1} = \frac{\sum_{\pi \in \mathcal{AR}_{\operatorname{disc}}(\operatorname{GL}_{2})} \operatorname{tr}_{\pi^{\infty}}(E_{\mathfrak{n}}^{\infty})}{\sum_{\pi \in \mathcal{AR}_{\operatorname{disc}}(\operatorname{GL}_{2})} \operatorname{tr}_{\pi^{\infty}}(C_{\mathfrak{n}}^{\infty})}$$

GL₂-case 0000●00 General Case Issues 0000

Finite Test Functions

Need:

- Counting Function $C_{\mathfrak{n}}^{\infty}$: $\operatorname{tr}_{\pi^{\infty}}(C_{\mathfrak{n}}^{\infty}) = \mathbf{1}_{\operatorname{cond}(\pi)=\mathfrak{n}}$.
- ϵ -factor Function E_n^{∞} : $\operatorname{tr}_{\pi^{\infty}}(C_n^{\infty}) = \epsilon(1/2, \pi) \mathbf{1}_{\operatorname{cond}(\pi)=n}$. Then

GL₂-case 0000●00 General Case Issues 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Finite Test Functions

Need:

- Counting Function $C_{\mathfrak{n}}^{\infty}$: $\operatorname{tr}_{\pi^{\infty}}(C_{\mathfrak{n}}^{\infty}) = \mathbf{1}_{\operatorname{cond}(\pi)=\mathfrak{n}}$.
- ϵ -factor Function $E_{\mathfrak{n}}^{\infty}$: $\operatorname{tr}_{\pi^{\infty}}(C_{\mathfrak{n}}^{\infty}) = \epsilon(1/2,\pi)\mathbf{1}_{\operatorname{cond}(\pi)=\mathfrak{n}}$. Then

$$\frac{\sum_{\pi \in \mathcal{S}_{2}(\mathfrak{n},k)} \epsilon(1/2,\pi)}{\sum_{\pi \in \mathcal{S}_{2}(\mathfrak{n},k)} 1} = \frac{\sum_{\pi \in \mathcal{AR}_{\text{disc}}(\text{GL}_{2})} \operatorname{tr}_{\pi^{\infty} = \pi_{k}} \operatorname{tr}_{\pi^{\infty}}(E_{\mathfrak{n}}^{\infty})}{\sum_{\pi \in \mathcal{AR}_{\text{disc}}(\text{GL}_{2})} \operatorname{tr}_{\pi^{\infty}}(C_{\mathfrak{n}}^{\infty})} \xrightarrow{k \to \infty} \frac{E_{\mathfrak{n}}^{\infty}(1)}{C_{\mathfrak{n}}^{\infty}(1)}$$

Equidistribution: $E_N^{\infty}(1) = 0$ and $C_N^{\infty}(1) \neq 0$.

GL₂-case 00000●0 General Case Issues

The function C_N^{∞}

• First idea: $\operatorname{tr}_{\pi^{\infty}}(\operatorname{Vol}(\mathcal{K}_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{\mathcal{K}_{1}(\mathfrak{n})}) = \operatorname{dim}((\pi^{\infty})^{\mathcal{K}_{1}(\mathfrak{n})})$

GL₂-case 00000●0 General Case Issues

The function C_N^{∞}

- First idea: $\operatorname{tr}_{\pi^{\infty}}(\operatorname{Vol}(K_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{K_{1}(\mathfrak{n})}) = \operatorname{dim}((\pi^{\infty})^{K_{1}(\mathfrak{n})})$
- Trick: if $cond(\pi) = \mathfrak{m}|\mathfrak{n}, \dim((\pi^{\infty})^{K_1(\mathfrak{n})})$ depends only on $\mathfrak{n}/\mathfrak{m}$

GL₂-case 00000●0 General Case Issues 0000

The function C_N^{∞}

- First idea: $\operatorname{tr}_{\pi^{\infty}}(\operatorname{Vol}(K_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{K_{1}(\mathfrak{n})}) = \operatorname{dim}((\pi^{\infty})^{K_{1}(\mathfrak{n})})$
- Trick: if $cond(\pi) = \mathfrak{m}|\mathfrak{n}, \dim((\pi^{\infty})^{K_1(\mathfrak{n})})$ depends only on $\mathfrak{n}/\mathfrak{m}$
- Solve system of linear equations, linear combination of Vol(K₁(n))⁻¹1_{K₁(n)} works!

GL₂-case 00000●0 General Case Issues

The function C_N^{∞}

- First idea: $\operatorname{tr}_{\pi^{\infty}}(\operatorname{Vol}(K_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{K_{1}(\mathfrak{n})}) = \operatorname{dim}((\pi^{\infty})^{K_{1}(\mathfrak{n})})$
- Trick: if $cond(\pi) = \mathfrak{m}|\mathfrak{n}$, $dim((\pi^{\infty})^{K_1(\mathfrak{n})})$ depends only on $\mathfrak{n}/\mathfrak{m}$
- Solve system of linear equations, linear combination of Vol(K₁(n))⁻¹1_{K₁(n)} works!
- $C^{\infty}_{\mathfrak{n}}(1) \neq 0$

GL₂-case 000000● General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The function E_N^{∞}

• $\operatorname{GL}_2 \times \operatorname{GL}_1$ Rankin-Selberg: $\iota_{\mathfrak{n}} := \begin{pmatrix} 0 & 1 \\ -\mathfrak{n} & 0 \end{pmatrix}$ acts on newvector with eigenvalue $\approx \epsilon(1/2, \pi)$.

GL₂-case 000000● General Case Issues 0000

The function E_N^{∞}

- $\operatorname{GL}_2 \times \operatorname{GL}_1$ Rankin-Selberg: $\iota_{\mathfrak{n}} := \begin{pmatrix} 0 & 1 \\ -\mathfrak{n} & 0 \end{pmatrix}$ acts on newvector with eigenvalue $\approx \epsilon(1/2, \pi)$.
- \implies if $\operatorname{cond}(\pi) = \mathfrak{n}$, $\operatorname{tr}_{\pi^{\infty}}(\operatorname{Vol}(\mathcal{K}_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{\mathcal{K}_{1}(\mathfrak{n})}) \approx 1$

GL₂-case 000000● General Case Issues

The function E_N^{∞}

- $\operatorname{GL}_2 \times \operatorname{GL}_1$ Rankin-Selberg: $\iota_{\mathfrak{n}} := \begin{pmatrix} 0 & 1 \\ -\mathfrak{n} & 0 \end{pmatrix}$ acts on newvector with eigenvalue $\approx \epsilon(1/2, \pi)$.
- \implies if $\operatorname{cond}(\pi) = \mathfrak{n}$, $\operatorname{tr}_{\pi^{\infty}}(\operatorname{Vol}(\mathcal{K}_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{\iota_{\mathfrak{n}}\mathcal{K}_{1}(\mathfrak{n})}) \approx \epsilon(1/2,\pi)$

GL₂-case 000000● General Case Issues

The function E_N^{∞}

- $\operatorname{GL}_2 \times \operatorname{GL}_1$ Rankin-Selberg: $\iota_{\mathfrak{n}} := \begin{pmatrix} 0 & 1 \\ -\mathfrak{n} & 0 \end{pmatrix}$ acts on newvector with eigenvalue $\approx \epsilon(1/2, \pi)$.
- \implies if $\operatorname{cond}(\pi) = \mathfrak{n}$, $\operatorname{tr}_{\pi^{\infty}}(\operatorname{Vol}(\mathcal{K}_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{\iota_{\mathfrak{n}}\mathcal{K}_{1}(\mathfrak{n})}) \approx \epsilon(1/2,\pi)$
- Harder trick: if $\operatorname{cond}(\pi) = \mathfrak{m}|\mathfrak{n}$

$$\mathrm{tr}_{\pi^{\infty}}(\mathrm{Vol}(K_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{\iota_{\mathfrak{n}}K_{1}(\mathfrak{n})})=\mathrm{tr}_{(\pi^{\infty})^{K_{1}(\mathfrak{n})}}(\iota_{\mathfrak{n}})\approx C_{\mathfrak{n}/\mathfrak{m}}\epsilon(1/2,\pi)$$

where $C_{\mathfrak{n}/\mathfrak{m}}$ depends only on $\mathfrak{n}/\mathfrak{m}$

GL₂-case 000000● General Case Issues

The function E_N^{∞}

- $\operatorname{GL}_2 \times \operatorname{GL}_1$ Rankin-Selberg: $\iota_{\mathfrak{n}} := \begin{pmatrix} 0 & 1 \\ -\mathfrak{n} & 0 \end{pmatrix}$ acts on newvector with eigenvalue $\approx \epsilon(1/2, \pi)$.
- \implies if $\operatorname{cond}(\pi) = \mathfrak{n}$, $\operatorname{tr}_{\pi^{\infty}}(\operatorname{Vol}(\mathcal{K}_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{\iota_{\mathfrak{n}}\mathcal{K}_{1}(\mathfrak{n})}) \approx \epsilon(1/2,\pi)$
- Harder trick: if $\operatorname{cond}(\pi) = \mathfrak{m}|\mathfrak{n}$

$$\mathrm{tr}_{\pi^{\infty}}(\mathrm{Vol}(K_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{\iota_{\mathfrak{n}}K_{1}(\mathfrak{n})})=\mathrm{tr}_{(\pi^{\infty})^{K_{1}(\mathfrak{n})}}(\iota_{\mathfrak{n}})\approx C_{\mathfrak{n}/\mathfrak{m}}\epsilon(1/2,\pi)$$

where $C_{\mathfrak{n}/\mathfrak{m}}$ depends only on $\mathfrak{n}/\mathfrak{m}$

• Same linear combination trick works for E_n^{∞} !

GL₂-case

General Case Issues

The function E_N^{∞}

- $\operatorname{GL}_2 \times \operatorname{GL}_1$ Rankin-Selberg: $\iota_{\mathfrak{n}} := \begin{pmatrix} 0 & 1 \\ -\mathfrak{n} & 0 \end{pmatrix}$ acts on newvector with eigenvalue $\approx \epsilon(1/2, \pi)$.
- \implies if $\operatorname{cond}(\pi) = \mathfrak{n}$, $\operatorname{tr}_{\pi^{\infty}}(\operatorname{Vol}(\mathcal{K}_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{\iota_{\mathfrak{n}}\mathcal{K}_{1}(\mathfrak{n})}) \approx \epsilon(1/2,\pi)$
- Harder trick: if $\operatorname{cond}(\pi) = \mathfrak{m}|\mathfrak{n}$

$$\mathrm{tr}_{\pi^{\infty}}(\mathrm{Vol}(K_{1}(\mathfrak{n}))^{-1}\mathbf{1}_{\iota_{\mathfrak{n}}K_{1}(\mathfrak{n})})=\mathrm{tr}_{(\pi^{\infty})^{K_{1}(\mathfrak{n})}}(\iota_{\mathfrak{n}})\approx C_{\mathfrak{n}/\mathfrak{m}}\epsilon(1/2,\pi)$$

where $C_{\mathfrak{n}/\mathfrak{m}}$ depends only on $\mathfrak{n}/\mathfrak{m}$

- Same linear combination trick works for E_n^{∞} !
- $E_{\mathfrak{n}}^{\infty}(1) = 0$ whenever $\mathbf{1}_{\iota_1 K_1(1)}$ doesn't appear in combination $\iff \mathfrak{n}$ not a perfect square

GL₂-case

General Case Issues

Twisted Traces

How to construct E_n^{∞} in general?

General Case Issues

Twisted Traces

How to construct E_n^{∞} in general?

- Use $\operatorname{GL}_{2N} \times \operatorname{GL}_{2N-1}$ Rankin-Selberg integral

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Twisted Traces

How to construct E_n^{∞} in general?

- Use $\operatorname{GL}_{2N} \times \operatorname{GL}_{2N-1}$ Rankin-Selberg integral
- Involution that proves functional equation is

$$g\mapsto \iota_{\mathfrak{n}}g^{-T}$$

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Twisted Traces

How to construct E_n^{∞} in general?

- Use $\operatorname{GL}_{2N} \times \operatorname{GL}_{2N-1}$ Rankin-Selberg integral
- Involution that proves functional equation is

$$g\mapsto \iota_{\mathfrak{n}}g^{-T}$$

• inverse transpose forces use of twisted test function \widetilde{E}_n^{∞}

General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Twisted Traces

How to construct E_n^{∞} in general?

- Use $\operatorname{GL}_{2N} \times \operatorname{GL}_{2N-1}$ Rankin-Selberg integral
- Involution that proves functional equation is

$$g\mapsto \iota_{\mathfrak{n}}g^{-T}$$

- inverse transpose forces use of twisted test function \widetilde{E}_n^{∞}
- \implies have to use twisted trace formula
General Case Issues

Twisted Traces

How to construct E_n^{∞} in general?

- Use $\operatorname{GL}_{2N} \times \operatorname{GL}_{2N-1}$ Rankin-Selberg integral
- Involution that proves functional equation is

$$g\mapsto \iota_{\mathfrak{n}}g^{-T}$$

- inverse transpose forces use of twisted test function \tilde{E}_n^{∞}
- \implies have to use twisted trace formula
- Issue: $\operatorname{tr}_{\pi}(\widetilde{E}^{\infty}_{\mathfrak{n}}) = \epsilon(1/2,\pi)$ only works for generic π

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Use of Endoscopic Classification

Necessity of twisted trace is a feature, not a bug

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Use of Endoscopic Classification

Necessity of twisted trace is a feature, not a bug

• Twisted trace formula understandable using Arthur's Classification

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Use of Endoscopic Classification

Necessity of twisted trace is a feature, not a bug

- Twisted trace formula understandable using Arthur's Classification
- Resolves two technical problems
 - Isolation of self-dual symplectic-type reps
 - Isolation of cuspidal reps \implies generic

 GL_2 -case

General Case Issues ○●○○

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Use of Endoscopic Classification

Necessity of twisted trace is a feature, not a bug

- Twisted trace formula understandable using Arthur's Classification
- Resolves two technical problems
 - Isolation of self-dual symplectic-type reps
 - Isolation of cuspidal reps \implies generic
- Error terms from other self-dual reps bounded by inductive argument of Taïbi as in previous work

 GL_2 -case 0000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Use of Endoscopic Classification

Necessity of twisted trace is a feature, not a bug

- Twisted trace formula understandable using Arthur's Classification
- Resolves two technical problems
 - Isolation of self-dual symplectic-type reps
 - Isolation of cuspidal reps \implies generic
- Error terms from other self-dual reps bounded by inductive argument of Taïbi as in previous work

Conclusion:

$$\sum_{\pi\in \mathcal{S}_{2N}(\lambda,\mathfrak{n})}\epsilon(1/2,\pi)\asymp (\mathsf{dim}_{\mathrm{SO}_{2N+1}}\,\lambda)(\widetilde{E}^\infty_\mathfrak{n})^{\mathrm{SO}_{2N+1}}(1)$$

in terms of Endoscopic transfer

GL₂-case 0000000 General Case Issues $00 \bullet 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The function $\widetilde{C}^{\infty}_{\mathfrak{n}}$

How to turn C_n^{∞} into twisted test function \widetilde{C}_n^{∞} ?

GL₂-case 0000000 General Case Issues $00 \bullet 0$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The function $\widetilde{C}_{\mathfrak{n}}^{\infty}$

How to turn C_n^{∞} into twisted test function \widetilde{C}_n^{∞} ?

 use Rogawski's compact-support Paley-Wiener theorem for twisted *p*-adic groups

GL₂-case 0000000 General Case Issues $00 \bullet 0$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The function $\widetilde{C}_{\mathfrak{n}}^{\infty}$

How to turn C_n^{∞} into twisted test function \widetilde{C}_n^{∞} ?

 use Rogawski's compact-support Paley-Wiener theorem for twisted *p*-adic groups

Technical details:

• Key point: local root numbers are constant after fixing conductor and Bernstein component

GL₂-case 0000000 General Case Issues $00 \bullet 0$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The function $\widetilde{C}_{\mathfrak{n}}^{\infty}$

How to turn C_n^{∞} into twisted test function \widetilde{C}_n^{∞} ?

 use Rogawski's compact-support Paley-Wiener theorem for twisted *p*-adic groups

Technical details:

- Key point: local root numbers are constant after fixing conductor and Bernstein component
- root number constant on component except when there are Steinbergs in the discrete support...

General Case Issues $00 \bullet 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The function $\widetilde{C}_{\mathfrak{n}}^{\infty}$

How to turn C_n^{∞} into twisted test function \widetilde{C}_n^{∞} ?

 use Rogawski's compact-support Paley-Wiener theorem for twisted *p*-adic groups

Technical details:

- Key point: local root numbers are constant after fixing conductor and Bernstein component
- root number constant on component except when there are Steinbergs in the discrete support...
-but this also changes the conductor correspondingly

GL₂-case

General Case Issues

Computing Transfers

To show $(\widetilde{E}_{\mathfrak{n}}^{\infty})^{\mathrm{SO}_{2N+1}}(1) = 0$

GL₂-case 0000000 General Case Issues $000 \bullet$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Computing Transfers

To show $(\widetilde{E}_{\mathfrak{n}}^{\infty})^{\mathrm{SO}_{2N+1}}(1) = 0$

• Extend endoscopic transfer identities to identity through Shalika germ argument (Langlands, Shelstad, Waldspurger)

GL₂-case 0000000 General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Computing Transfers

To show $(\widetilde{E}_{\mathfrak{n}}^{\infty})^{\mathrm{SO}_{2N+1}}(1) = 0$

- Extend endoscopic transfer identities to identity through Shalika germ argument (Langlands, Shelstad, Waldspurger)
- \implies just need to show the "least regular" twisted conjugacy class on GL_{2N} doesn't intersect support

GL₂-case 0000000 General Case Issues

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Computing Transfers

To show $(\widetilde{E}_{\mathfrak{n}}^{\infty})^{\mathrm{SO}_{2N+1}}(1) = 0$

- Extend endoscopic transfer identities to identity through Shalika germ argument (Langlands, Shelstad, Waldspurger)
- \implies just need to show the "least regular" twisted conjugacy class on GL_{2N} doesn't intersect support

To show $(\widetilde{C}^{\infty}_{\mathfrak{n}})^{\mathrm{SO}_{2N+1}}(1) > 0$

General Case Issues $000 \bullet$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Computing Transfers

To show $(\widetilde{E}_{\mathfrak{n}}^{\infty})^{\mathrm{SO}_{2N+1}}(1) = 0$

- Extend endoscopic transfer identities to identity through Shalika germ argument (Langlands, Shelstad, Waldspurger)
- \implies just need to show the "least regular" twisted conjugacy class on GL_{2N} doesn't intersect support

To show $(\widetilde{C}_{\mathfrak{n}}^{\infty})^{\operatorname{SO}_{2N+1}}(1) > 0$

• Endoscopic Character Identities: Fourier transform is ≈positive on unitary dual

General Case Issues $000 \bullet$

Computing Transfers

To show $(\widetilde{E}_{\mathfrak{n}}^{\infty})^{\mathrm{SO}_{2N+1}}(1) = 0$

- Extend endoscopic transfer identities to identity through Shalika germ argument (Langlands, Shelstad, Waldspurger)
- \implies just need to show the "least regular" twisted conjugacy class on GL_{2N} doesn't intersect support

To show $(\widetilde{C}_{\mathfrak{n}}^{\infty})^{\operatorname{SO}_{2N+1}}(1) > 0$

- Endoscopic Character Identities: Fourier transform is ≈positive on unitary dual
- should be able to use Fourier inversion formula

General Case Issues $000 \bullet$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Computing Transfers

To show $(\widetilde{E}_{\mathfrak{n}}^{\infty})^{\mathrm{SO}_{2N+1}}(1) = 0$

- Extend endoscopic transfer identities to identity through Shalika germ argument (Langlands, Shelstad, Waldspurger)
- \implies just need to show the "least regular" twisted conjugacy class on GL_{2N} doesn't intersect support

To show $(\widetilde{C}_{\mathfrak{n}}^{\infty})^{\operatorname{SO}_{2N+1}}(1) > 0$

- Endoscopic Character Identities: Fourier transform is positive on stable unitary dual
- need to develop stable Fourier inversion formula
- Technical issue!