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Abstract

In this paper, we derive a Fast Reflected Forward-Backward (Fast RFB) algorithm to solve
the problem of finding a zero of the sum of a maximally monotone operator and a monotone
and Lipschitz continuous operator in a real Hilbert space. Our approach extends the class
of reflected forward-backward methods by introducing a Nesterov momentum term and a
correction term, resulting in enhanced convergence performance. The iterative sequence of the
proposed algorithm is proven to converge weakly, and the Fast RFB algorithm demonstrates
impressive convergence rates, achieving o (%) as k — +oo for both the discrete velocity and
the tangent residual at the last-iterate. When applied to minimax problems with a smooth
coupling term and nonsmooth convex regularizers, the resulting algorithm demonstrates
significantly improved convergence properties compared to the current state of the art in
the literature. For convex optimization problems with linear cone constraints, our approach
yields a fully splitting primal-dual algorithm that ensures not only the convergence of iterates
to a primal-dual solution, but also a last-iterate convergence rate of o (%) as k — oo for the
objective function value, feasibility measure, and complementarity condition. This represents
the most competitive theoretical result currently known for algorithms addressing this class
of optimization problems. Numerical experiments are performed to illustrate the convergence
behavior of Fast RFB.
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1 Introduction
1.1 Problem formulation

In recent years, there has been a significant surge in research on minimax problems, primarily
driven by their emerging applications in machine learning and robust optimization. Notable
instances include generative adversarial networks (GANSs) [2, 27], which use minimax frame-
works to improve data generation and adversarial training methods, and distributionally robust
optimization [36, 37], which employs minimax principles to ensure model performance under
varying distributional shifts. Beyond these areas, minimax problems have also found appli-
cations in online learning [7], where they help develop algorithms that adapt to dynamic
environments, and in reinforcement learning [4, 20], contributing to more efficient decision-
making processes. This highlights the versatility and fundamental significance of minimax
approaches across a wide range of domains.
Consider a minimax problem of the form
min max ¥ (x, 1) :=f(x) + ® (x, A) — g(A), (1.1)
xeX rey
where X and ) are two real Hilbert spaces, f: X — RU {4oo}and g: Y — R U {+o0}
are proper, convex, and lower semicontinuous functions, and ®: X x J — R is a convex-
concave and differentiable coupling function with Lipschitz continuous gradient. We are
interested in finding saddle points of W, which are pairs (x4, Ax) € X x ) fulfilling

Wxg, A) S W (x4, Ay) < W(x, Ay) forevery (x,1) € X x ).

The minimax setting (1.1) is highly versatile, providing a general framework for studying
a wide range of problems, including unconstrained composite convex minimization, mixed
variational inequalities, and constrained convex minimization problems, see [12, 17, 19, 24,
38,45,51, 59].

An element (x4, A4) € X x Y is a saddle point of (1.1) if and only if it is a solution of the
system of optimality conditions

0 3 f(x) Vi®(x,2)
<0> € <8g(k)> + <—chb(x,k) ’ (12)
where 8f : X — 2% and 9g : ¥ — 2¥ denote the convex subdifferentials of f and g,

respectively.
This motivates us to develop solution methods for solving the following monotone inclu-
sion problem

0e M(z)+ F(2), (1.3)

where H is a real Hilbert space, M : H — 2™ is a (possibly set-valued) maximally monotone
operator and F: H — H is a single-valued monotone and L-Lipschitz continuous operator.
We assume Zer(M + F) :={ze€ H:0e€ M(2) + F(2)} # 0.
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The graph of a set-valued operator M: H — 27T is defined as Graph(M) := {(z, u) €
H x H : u € M(z)}. The operator M is said to be monotone if (v —u,y —z) > 0
for all (z,u), (y,v) € Graph(M). A monotone operator M: H — 2H s said to be
maximal monotone if there exists no other monotone operator M': H — 2™ such that
Graph(M) C Graph(M’). The convex subdifferential of a proper, convex and lower semi-
continuous function defined on a real Hilbert space is a maximally monotone operator [5, 8].
ForH := X x Y, and

M:H—2" (x, ) (3f (x),9g (), (1.4)
F:H—H, (x,\) > (V;®(x,1), =V, ® (x, 1)), (1.5)

both maximally monotone operators, the system of optimality conditions (1.2) reduces to the
monotone inclusion problem (1.3).
If M := N¢ with C C 'H being a nonempty convex and closed set, (1.3) becomes

0 e Nc(z) + F(2). (1.6)
This nothing else than the variational inequality problem
find z € C suchthat (F(z),u —z) >0 forall u € C,

that has been extensively studied in the literature — see, for instance, [22, 25, 26, 28, 48, 58].
In the following, we will review several methods for solving monotone inclusions of the
form (1.3), as well as saddle point problems of the form (1.1).

1.2 Numerical methods for monotone inclusions with monotone and Lipschitz
continuous operators

In this subsection, we will survey the most prominent numerical methods for solving (1.3),
excluding algorithms that rely on F being cocoercive and thus belong to the framework of
the classical Forward-Backward (FB) method.

The Extragradient (EG) method was introduced by Korpelevich [29] and Antipin [1] and
is one of the first and most famous algorithms for solving (1.2). Based on the EG method,
Tran-Dinh [52] has recently developed the following algorithm to solve (1.3)

wi = Jr <Zk - ZF(zm) ,
n n

(Vk > 0) 1.7)

21 = Jym @k — Yy F(wy)),

where Jyp:=0d +y M y~! : 'H — 'H denotes the resolvent of M with parameter y > 0,
which plays the role of a step size, and 7 is a scaling factor. The scaling factor n allows to
provide a unified framework for different methods. For example, the classical EG method
is obtained from (1.7) for n = 1, M given by (1.4), with f and g the indicator functions of
two nonempty, convex and closed subsets of X' and ), respectively, F given by (1.5), and
the step size required to satisfy 0 < y < % (see, also, [23]). Assuming that M is maximally
3-cyclically monotone, the author demonstrated convergence for the iterates generated by
(1.7), and that the tangent residual achieves best-iterate and last-iterate convergence rates of

O(ﬁ) as k — 4o0.

By tangent residual we mean the quantity

rran(2):=dist(0, M(z) + F(z)) = inf ||E+ F(2)|.
EeM(z)
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Since (1.3) can be rewritten as the following fixed point problem
2=Jym Z—yF(2),
another widely used measure of optimality is the so-called fixed-point residual
rrix(@:= |z = Jym @ = yF @)

However, the derivation of convergence rates in terms of the tangent residual is more desirable.
This is not only because it gives an upper bound on the fixed point residual, i.e. (see, for
instance, [14])

Ogrfix(z) <ran(z) Vz €N, (1.8)

but also because it allows the convergence rates to be transferred to function values when
applied to convex optimization problems and minimax problems such as (1.1).

In order to reduce the computational cost of the EG method caused by evaluating the
operator F' at two different points in each iteration, Popov introduced in [47] the Optimistic
Gradient Descent Ascent (OGDA) method, which requires only one evaluation of the operator
per iteration. Its extension to solving (1.3) provided in [52] is as follows

w = J%M (Zk - %F(wk—1)> ,

~Vk>=1) (1.9)

k1 = Jym (2 — Y F(wy)),

and differs from (1.7) in that in the first block F'(wi—_1) replaces F(zy), see also [10]. The
classical OGDA method is obtained from (1.9) in the same way as described above, as is the
EG method from (1.7), but with the step size required to satisfy 0 < y < ﬁ Assuming that
M is maximally 3-cyclically monotone, in [52], convergence for the iterates generated by

(1.9), and that the tangent residual achieves best-iterate and last-iterate convergence rates of
1
@ <ﬁ> as k — o0 are shown.

Both the EG and OGDA methods require two evaluations of the resolvent J, s per
iteration. To address this computational demand, Tseng [56] proposed the Forward-
Backward-Forward (FBF) method, inspired by the EG framework. The FBF method reduces
the per-iteration complexity by requiring only a single evaluation of J,, s per iteration, mak-
ing it particularly advantageous when J,, s is expensive to compute. Its iterative scheme is
as follows

wr = Jym (2 — Yy F(2k))

(1.10)
Zk+1 = wi — Yy F(we) +y F(zp),

(Vk > 0) {

and generates a sequence (zx)x>0 that converges to a solution of (1.3) for 0 < y < %
If M = 0, the FBF method reduces to the classical EG method [29]. For cases where M
represents the convex subdifferential of a proper, convex and lower semicontinuous function,

an ergodic convergence rate of O (%) for the restricted gap function as k — 400 was

established in [11]. Furthermore, the best-iterate convergence rate of O (ﬁ) for the tangent

residual as k — +o00 has been shown in two distinct contexts: using a potential function
approach for the star-co-monotone case in [39], and through an alternative method in [52]
that leverages results from [23] combined with the concept of star co-hypomonotonicity.
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By replacing F(zx) with F(wg—1) in (1.10), the following Past Forward-Backward-
Forward (PFBF) method is obtained

V> 1) wr = Jyp @ — Y F(wi-1)) , (L11)
Zk+1 = wp — Y F(we) + y F(wg-1),

which requires only one forward estimation per iteration. For this method, the best-iterate
convergence rate of O (ﬁ) for the tangent residual as k — +o00 was established in [39]

under the assumption that M is star-co-monotone. By interchanging the roles of wy of z; in
(1.11) and simplifying to a single sequence, one arrives at the Forward-Reflected-Backward
(FRB) method proposed by Malitsky and Tam in [41], described as

~Vk 2> 1) zk1 = Jym (2 — 2y F(zi) + v F(zk-1)) (1.12)

which converges to a solution of (1.3) provided 0 < y < ﬁ This iterative scheme can
also be derived from (1.10) by reusing F (wy—1) instead of F(zx) in the first line, similar to

how the OGDA method is derived from the EG method. For variational inequalities, [14]
demonstrated that the FRB method achieves a last-iterate convergence rate of O (ﬁ) for

the tangent residual as k — +o0.
In [15], Cevher and Vii proposed the following Reflected Forward-Backward (RFB)
method

Yk = 1) zkp1 = Jym (zx — Y F Rz — 26—1)) » (1.13)

which converges to a solution of (1.3) provided 0 < y < @ In (1.13), the evaluation of
F through a second forward step is circumvented by using a suitable linear combination of
the iterates. If F is linear, (1.13) is equivalent to (1.12). In [52], best-iterate and last-iterate

convergence rates of O (ﬁ) as k — oo for the tangent residual were established. For

the variational inequality problem (1.6), (1.13) reduces to the Projected Reflected Gradient
(PRG) method introduced in [40]. Last-iterate convergence rates for the PRG were provided
in [14].

Inrecent years, there has been significant interest in the development of numerical methods
with fast convergence properties for solving monotone inclusions. Using the performance
estimation problem framework, Kim introduced in [30] an Accelerated Proximal Point (APP)
method for solving (1.3) in the special case where F' = 0. This method achieves a convergence
rate of O (%) as k + oo for the fixed-point residual, thereby outperforming the classical
Proximal Point method [5]. For problems without a set-valued operator (M = 0 in (1.3)),
a Fast Optimistic Gradient Descent Ascent (Fast OGDA) method was proposed in [9]. This
method, derived as a discretization of a fast-converging continuous time model, not only
ensures the convergence of the iterates but also achieves a last-iterate convergence rate of
o (1) as k — 400 for the operator norm of F.

The Extra-Anchored Gradient (EAG) method, inspired by Halpern iteration [31], has
been developed to address (1.3). This algorithm achieves a last-iterate convergence rate of
O (}) as k — o0 for the tangent residual when M is maximally 3-cyclically monotone
[52]. The method extends an earlier algorithm proposed by Yoon and Ryu in [60]. Building
on these ideas, the Past Extra-Anchored Gradient (PEAG) method was introduced in [49],
leveraging concepts from [54] and the Optimistic Gradient Descent Ascent (OGDA) method
[47]. The PEAG method is designed to solve (1.3) under the assumption that M + F is
co-hypomonotone. It also guarantees a last-iterate convergence rate of O (%) for the tangent
residual as k — +o0.
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Also building on Halpern iteration [31], Cai and Zheng proposed in [14] an Accelerated
Reflected Gradient (ARG) method. This method, which can be viewed as an acceleration of
the RFB method, addresses the monotone inclusion (1.3) under the assumptions that M is
maximally monotone, F is Lipschitz continuous, and M + F is negatively comonotone. The
ARG method achieves a convergence rate of O (%) as k — +oo for the tangent residual.

Additional fast methods that exploit either Nesterov momentum [46] or Halpern iteration
can be found in [13, 42, 43, 49]. A more detailed discussion of these approaches, along with
comparisons to our proposed method, will be presented in the next section.

1.3 Numerical methods for saddle point problems with convex regularizes

In the literature, several attempts have been made to solve the saddle point problem (1.1)
directly, without relying on the more general formulation (1.3).

A particularly well-studied instance of this problem involves a bilinear coupling term,
namely, ®(x, 1) := (Ax, A), where A: X — ) is a linear continuous operator. In this case,
the problem (1.1) reduces to

)rcréigré I/\nea§ fx)+ (Ax, 1) — g(n). (1.14)

To address (1.14), a primal-dual approach was first proposed in [3] and further developed
in [61], with convergence properties guaranteed under the assumption that f is strongly
convex. Later, Chambolle and Pock [16] introduced a fully splitting primal-dual algorithm to
solve (1.14) in the finite-dimensional setting. They demonstrated that the sequence of iterates
(x> M) >0 converges to a saddle point of (1.14), and they established an ergodic convergence
rate of O (%) as k — +oo for the so-called restricted primal-dual gap. When f is strongly
convex, an accelerated version of this primal-dual algorithm achieves an improved ergodic
convergence rate of O (k%) as k — +oo again with respect to the restricted primal-dual gap
[17]. The Chambolle-Pock algorithm has since inspired a variety of primal-dual methods for
solving (1.14), including those proposed in [17, 21, 34, 50, 53, 55, 57], to name just a few.

Compared to the bilinear case, the study of (1.1) in its general form has been less extensive.
Nemirovski and Juditsky [35, 44] introduced the Mirror-Prox method to address (1.1) in
the absence of regularizers (f = g = 0) achieving an ergodic convergence rate of O (%)
as k — +oo0 for the restricted gap function. This method was later extended in [33] to
handle convex regularizers using Bregman distances, while maintaining the same ergodic
convergence rate. Hamedani and Aybat [32] proposed an Accelerated Primal-Dual (APD)
algorithm incorporating a Nesterov momentum term, which generalizes the Chambolle-Pock
approach [16] to the saddle point problem (1.1). The APD algorithm is defined as

sk = (1 4+ 0 Va® (i, k) — O Va P (xp—1, Ak—1),
(Vk > 1) { Ak+1 = Proxg, o (Ak + oksk)
X1 = ProXe, p (Xx — Tk Ve @ Xk, Ags1)) -
Under suitable conditions on the parameter sequence (T, o) >0, the authors proved that
the iterates converge to a saddle point. Moreover, the ergodic sequence ()Ek, Xk) k>0 satisfied
W (Xk, Ax) — W (x4, Ax) — O with a convergence rate of O (%) in the general convex setting

and of O (kl—z) as k — +oo when @ (x, -) is linear for each fixed x and f is strongly convex.

Recently, Chang, Yang, and Zhang [18] introduced an enhancement of the APD algorithm
by employing adaptive linesearch techniques, which only assume local Lipschitz continuity
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for V,® and V, ®. This enhanced method retains similar convergence and convergence rate
properties as the original APD algorithm.

1.4 Our contribution

This paper introduces an accelerated first-order method for solving the monotone inclusion
problem (1.3). The proposed approach ensures the weak convergence of iterates to a solu-
tion of (1.3) and achieves last-iterate convergence rates of o (%) as k — oo for both the
discrete velocity and the tangent residual. We demonstrate the versatility of the algorithm by
applying it to the minimax problem (1.1) and convex optimization problems with linear cone
constraints. Finally, we validate the theoretical results and explore the impact of algorithm
parameters through comprehensive numerical experiments.
The contributions of the paper are as follows:

e We propose a Fast Reflected Forward-Backward (Fast RFB) algorithm, which incor-
porates a Nesterov momentum term and a correction term, for solving the monotone
inclusion problem (1.3). This method requires only a single operator evaluation and one
resolvent computation J, s per iteration. The iterative sequence (zx)r>0 generated by
the algorithm weakly converges to a solution of (1.3). Furthermore, the Fast RFB algo-
rithm achieves a last-iterate convergence rate of o (%) as k — +-oo for both the discrete
velocity ||zx — zk—1]| and the tangent residual riy, (zx) = dist(0, M (zx) + F(zx)) =
infeepz) 15 + F (2ol

e Building on the Fast RFB method, we develop a primal-dual full-splitting algorithm for
solving the saddle point problem (1.1). The proposed algorithm ensures the weak conver-
gence of the sequence of primal-dual iterates (xx, Ak )0 to a saddle point. Additionally,
it achieves last-iterate convergence rates of o (%) as k — 400 or the discrete primal and
dual velocities, the tangent residual, and the primal-dual gap.

e As a particular instance of the saddle problem (1.1), we apply the proposed primal-dual
full splitting algorithm to solve optimization problems of the form

min f (x) +h (x),

) (1.15)
subject to Ax — b € —K,

where X and ) are real Hilbert spaces, K is a nonempty, convex and closed cone in ),
f: X — RU{+o0} is a proper, convex, and lower semicontinuous function, #: X — R
is a convex and differentiable function such that Vh is Lvj,-Lipschitz continuous, and
A: X — Y is alinear continuous operator.

We generate a sequence (X, Ak)g>o of primal-dual iterates which converges weakly to
a primal-dual solution of (1.15). In addition, we achieve as k — +00 convergence rates
for the velocities

1 1
lxk — xk—1ll =0 <%) and Ak — Ak—1ll =0 <%> ,

the tangent residual
| 1
Jux + Vi) + A% = 0<§> and  flog — Axi + bl = o (E)

where u; € 0 f (xx) and vy € Ni=(Ag), for all k > 0, the primal-dual gap

‘C (.xk, )“*) - £(X*, )"k) =0 (%) )
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the complementarity condition

1
[(Ak, Axp — b)] 20(%>,

and the objective function values

1
CF 4+ 1) () — (f + ) ()] :0(7),

k
Here, £ denotes the Lagrangian attached to (1.15), and (x4, A,) a primal-dual optimal
solution.

e The approach we consider involves the minimization of the sum of a nonsmooth con-
vex and a smooth convex function subject to linear equality constraints. While there is
an extensive body of work on full splitting primal-dual methods for solving this class of
problems, few results exist regarding fast-converging methods in terms of objective func-
tion values and feasibility measures, while also ensuring the convergence of the iterates.
Our approach contributes to filling this gap.

2 A Fast Reflected Forward-Backward algorithm for monotone
inclusions

2.1 The Fast RFB algorithm

In this section, we formulate the algorithm and conduct a thorough analysis of its convergence.

Algorithm 1 Let

1
o> 2, g<c<a—1, and O <y < —.
2 2L

For initial points zg, yo, wo € H, and z1 = J, i (Yo — ¥ F (wp)), we set

o Cc
- 1= ) (2 — 2 1= ) et — 200,
Yk Zk+< k+a>(2k Zk 1)+( k+a>()’k 1 —2k)

wi = 2k + Yk — Yk—1) »
Zk+1 = Jym vk — v F (wy)) .

(Vk = 1)

2.1

In the following we give an equivalent formulation for Algorithm 1, which will play a
central role in the convergence analysis.

Proposition 2.1 Let 20, yo, wo € M, 21 = Jym (yo — ¥ F (wo)), and & = L (yo —21) —
F (wo) € M (z1). Then the sequence (zx )k >0 generated in Algorithm I can also be generated
equivalently by the following iterative scheme

. 1 o C F
wk—Zk+< —m> (Zk_Zkfl)_my(gk"r‘ (wk-1) ),
Yk = 1) ziw1 = Sy (we — y F (wi) + v (F (wi—1) + &) ), 2.2)

1
k1 = " (Wi — zg41) — F (wy) + F (w—1) + &
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In addition, it holds

& € M (zx) Vi > 1.

Proof Given zg, wo, yo € H and z; = J, i (yo — ¥ F (wp)), it holds
&1 Z%(yo—m)—F(wo) € M(z1).
In the same way, by invoking also the third update block of Algorithm 1, we obtain
B 1= - = 2k) = F () € M(Ge) YK >0,

Therefore, the iterative scheme in Algorithm 1 can be equivalently written as

Y=z + (1 - %) Gk — ze1) + (1 - k%a) v &+ F (wi1) .

k> 1) wr =y — ¥ E + F (we-1)), 2.3)

Zk+1 = Jym O — ¥ F (wp)) ,

1
&k = " Ok — 2ker1) — F (wg) ,

which, after some simplifications, it transforms into (2.2).
Conversely, starting from (2.2), we can define a sequence (yr);>; following the first
update block in (2.3). Consequently, for every k > 1 it holds

Y Gk + F (W) = Yk — Zk+1,

leading to the transformation of (2.2) into (2.1). ]

Remark 2.2 1f the momentum term z — zx—1 and the correction term yx_1 — zx are removed
from the first update block of (2.1), the resulting algorithm reduces to the Reflected Forward-
Backward (RFB) method

Wk = 2z — Zk—1,
Vk>=1) 2.4)
Zkr1 = Jym @ — Y F (wp))
as introduced in [15]. This method extends the PRG method proposed by Malitsky in [40] for
variational inequalities. For (2.4), best-iterate and last-iterate convergence rates of O (i)

Vi
as k — +oo0 for the tangent residual were established in [52].

When F is linear, (2.4) simplifies to the Forward-Reflected-Backward (FRB) method
(1.12) by Malitsky and Tam [41]

~Vk 2 1) zk1 = Jym 2k —2v F (zp) + v F (2k-1)) -

While convergence results for the iterates were established in [41] in the general setting, a last-
iterate convergence rate of O (ﬁ) as k — —+oo for the tangent residual was demonstrated
in [14] in the specific case of variational inequalities.

Remark 2.3 The Accelerated Reflected Gradient (ARG) method, introduced by Cai and
Zheng in [14], is defined as follows for initial points z0 = z; € H and z» =
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Jym (z1 — Y F(z1)),

1
X =2z — 21 + (zo — 2k) — E(ZO—Zkfl),

k> 1) k+1

1
Z+1 = Jym (Zk —vF () + i (zo — Zk)) ,

where 0 < y < ﬁ. The ARG method builds on the anchoring technique employed in
(2.4), a concept originating in [31]. It was shown to achieve a last-iterate convergence rate
of O (1) as k — o0 for the tangent residual.

The Accelerated Extragradient (AEG) method was introduced by Tran-Dinh in [49]
accelerates the FBF method by employing the momentum term % (xx — x;—1) alongside

additional correction terms. It is defined as follows for initial points xg, x1, wg, 21 € H

k+1
xk=Jym |z —vF@) + ——=ywr—1 ),

k+2
1 k+1
(Vk = 1) wp = — |2k — Xk + T——=YWk—1 | + Fla) — F(zk),
y k+2
1 k+2
Zk1 = Xk + Xk — xg—1) — ——=y (F(x) — F(zk))

k+3 k+3

where 0 < y < %

To further reduce the number of evaluations of F, Tran-Dinh proposed the Accelerated Past
Extragradient (APEG) method in [49], defined as follows for initial points xo, x1, wo, 21 € H

k+1
X = JyM 2k — v F(zx) + m)’wk—l s

1 k+1
Vk=>1) wk=;<2k_xk+7)’wk—l>,

5(k +2) S5k+1)

+1
kg3 kT M) T YW = Y

Zk+1 = Xk + k—15

where 0 < y < ﬁ.

Both the AEG and APEG methods have been shown to achieve last-iterate convergence
rates of O (}) as k — +oo for the tangent residual.

In contrast, the Fast RFB algorithm introduces both momentum and correction terms
to the Reflected Forward-Backward framework (2.4). This design not only ensures weak
convergence to a solution of (1.3) but also achieves a superior convergence rate of O (%) as

k — +oo for the discrete velocity and the tangent residual.

2.2 Convergence analysis

In the following, we will use the notation
v = F(wg—1) + & Vk > 1.

With this notation, from Algorithm 1 we obtain

yur and Zp41 = wi — y(vk+1 — Uk) Vk > 1.
2.5)

k
Wp = 2k + (Zk — Zk—l) -

k+ o k+ o
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Since 0 < y < i, the definition of vi together with the Lipschitz continuity of F' give for
allk > 1

k1 + F (2r41) = Vi1l = I1F (zk+1) — F (i)l < L llze1 — wiell
=YL |lvkt1 — vl < % k1 — vkl < ok — vell . (2.6)
By summing up the two equations in (2.5), we obtain that for all k > 1 it holds
(k + @) (zk41 — 2k) =k (2k — 2k—1) = =Y V1 =V (k + o — ) (Vi1 —v) - (2.7)

Letzy € Zer(M + F),0 < A <a—1and 1 < s < 2. In the lines of [9], we denote for
allk > 1

Uy sk “=2A (2k — 24) + 2k (2zk — 2k—1) + sy kg,

1 2 )
Ersk =5 Jursi|” + 22 (@ =1 =2) llzx — zl

+ 20y (2 — )k + 2(a — ¢)) {2k — 2z, Vi)

1
+ 5;/2 (2 = 5)k + 2(c — ©)) (sk + 2¢) lvell*, (2.8)
and for all k > 2

Grosik = Ensk — 27 (2 — )k + 2( — ©))k (zk — zk—1, F (z1) — F (we—1))
+ 7 L(@ = 9k +2@ =) (k+a —c+ ey L@ =9k +2@ o)
lloe — ve— 117 2.9)

The proof of the following lemma is given in Appendix B.

Lemma 2.4 Let z, € Zer(M + F) and (zx)i 0 be the sequence generated by Algorithm 1.
ForO< A <oa—1landl < s <2, the following identity holds for all k > 1

skl —Ensk =—4(c— DAy (Zk+1 — Zx, Vk+1)
+200+ 1 —a) Ck+a+ 1) llzesr — 2l

+2)/(((2—S))»+s()»+1—a)+s—20)k+2ka+s—2ac)

(Zk+1 — Zk» Vk+1) (2.10)
-2y (k+a) ((2 — 8k +2(x — c)) (Tk+1 — Zk> Vk+1 — Uk)

— 7 k@) (@ =k +2(@ =) ) v = vl
+72((1 = 0 @sk +2¢ +9) + 5@ = ) ) ok 12

In the next result we prove a quasi-Féjer monotone property together with a lower bound
for the sequence (Gj s,k )k>1. For the proof we also refer the reader to Appendix B.

Lemma 2.5 Let z4 € Zer(M + F) and (zx) >0 be the sequence generated by Algorithm 1.
ForO < A <oa—1landl < s <2, the following statements are true:
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(i) forallk > 2, it holds

gk,s,k-H - g)\,s,k

dc-D* )
———X2 |z -z —4(c—DAry(z — Zss + F(z
PRI ] llzks1 — z«|l ( YAY {Zkt1 — 2o, Ekp1 (Zk+1))

+ 2y (@1k + @) (zkt1 — 260 V1) — ky > lokgr — vl

) (w3k +Vosk+1) + w7> lzkst — 2l
+y? <w4k + cvwok + 2we + sw6> logg1 11

where

wg=2—5>0, woj=wgA+sA+1—a)+s—2¢c, wr)=2rx+s—2ac,

w3 =2A+1—-0a)<0, wg=25(1—-¢) <0, ws=(—2)wy >0,

we=a—c>0, wj= (¢ —1)2weg — wp) >0,

wr =wo (1 —2yL) K+ QRwe + woa) k + 2w (2.11)
— 2y L ((2(wo + 2w6) — swe) k + (wp + 2w6) (@ + 1 — ¢)) — (k + Dk + 1
—(ws(k+ 1) + w7)

x Jws(k+ 1) + w7 — y? L2 c(wo(k + 1) + 2w6) Vo (k + 1) + 2ws.

(ii) there exists k1 = 2 such that for all k > kj it holds

1
Gisk = ) 1424 (zk — z4) + 2k (zk — ze—1) + 2sykug ||

1 4@—-1
+ —ofk? llzk — zk—1 11> + 22 <a—l >||Zk — zl?.
4s so

2.12)

The following lemma will play an essential role in the proof of the main convergence result
of this section. Its proof is also given in Appendix B.

Lemma2.6 Let z4 € Zer(M + F) and (zx) >0 be the sequence generated by Algorithm 1.
The following statements are true:

(i) if s and § are such that

<s<?2 (2.13)
4c —a

and

max{\/s(a—2)+2(2c—s)’\/—(2—s)(“—1)—s+2c <5 <1, (2.14)
4s(c — 1) s(c—=1)

then there exist
0< Ao, c,8) <Al c,s) < —
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such that for every M satisfying A (a,c,s) < A < A(a,c,s) one can find an integer
ky. = 1 with the property that for all k > k; the following inequality holds

Re =27 @1k +©2) (i1 = 2k virr) + 8y (04k + ook + 206 + swg ) [ve1 11
+ 25 (w3k + Vs + D) + 7 ) lzcs — 2%l @.15)
<05
(ii) there exists ko > 2 such that for all k > ky it holds
i = 0. (2.16)

We are now in a position to prove a proposition that allows us to make initial statements
about convergence rates.

Proposition 2.7 Let z, € Zer(M +F) and (zx) >0 be the sequence generated by Algorithm 1.
The following statements are true:

(i) it holds

D ek — 2 Fa) + &) < +00, Y K luggr — well? < +oo,

k>1 k>1

2 2
D KIF@) + &1 > < +oo. Y kllzirr — wll* < +oo;
k>1 k>1

(ii) the sequence (zx)y > is bounded and it holds as k — +00

’

1
lzxe — zk—1ll = O (%) v &+ F(w—pll =0 (

==

1 1
€& + F z)ll = O (E) v Gk =z &+ F () =0 <%> ;
(iii) foralls € (1 + 5 2), there exist 0 < A (a, ¢, s) < A (a, ¢, 5) < 5% such that, for all

Aa,c,8) < i <A(a,c,s), the sequences (5)L’S’k)k>] and (g)‘,s,k),&z are convergent.

Proof Let s € (1 + ﬁ,Z), and § € (0,1) such that (2.14) is satisfied. Accord-
ing to Lemma 2.6(i) there exist 0 < A(a,c,s) < A, c,s) < % such that for all
A€ (A (a, ¢, ), x(a,c, s)) there exists an integer k) > 1 with the property that (2.15)
holds for all k& > k,. In addition, according to Lemma 2.6(ii), we get a positive integer
kp > 2 such that (2.16) holds for all k > k».

This means that for all k > ko := max {ky, k1, k2}, where & is the positive integer given
by Lemma 2.5(ii), according to Lemma 2.5(i) it holds

gl,s,k+l - g)»,s,k

B /‘\4 Zk+ T 4 C 1 /‘\, Tk+ Ty é —+ 1 Zk+

— ey e = vl + (1 = 8) 7% (@3k + ook + 206 + s ) i1 1

+2(1 = 8) (03k + Vs + D+ o7) ke =zl
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Since w3, wyq < 0, there exists k3 > kg such that for all kK > k3

4(c—-D* 5
Grsk+l SOk + ———————A |lzkt1 — 2« — 4 (c — D Ay (2k+1 — 24,
s k1 5,k TERW S lzk+1 — z«l ( )AY 2kl — Zuo Ektl

1
+F (zk41)) — iy ? llogsr — vell* + 5 1=9) y2wak [logr1 1%

+ (1 — &) wsk llzes1 — zel*

2.17)
In view of (2.12), we get that G x > O for every k > 2. By setting
4@—1)_\"
Co := 21 (c — 1)? <a— 1 —MQ >0,
Y04
it holds forall k > 1
dc—-1* ) Co ( 4(ax—1) )
— A7 Iz -z = 22|la—1— ——=AX
GrnvarT e sl =g e sat
lzkt1 — zell?
Co
< ———F——Gh s.k+1-
(k+]) ,7]{-%1 A, k41
Under these premises, we deduce from (2.17) that for all k > k3
Co
e S ) <Gusk—4(c—Dar — Zx, F
( T 1)m> Goskt1 < Gnsk —4(c— DAY {zig1 — 2o Ek1 + F (2541))

— wy? o — we|?
1 2 2 2
+ 3 (=8 y wk lvrg1]” + (1 = &) w3k |2k — 2k

(2.18)
2
Choosing k4 := max {k3, ’VC(f — l—‘ }, we have that for all k > k4
(1 Co )‘1 (k+ 1) Vk+1 . Co 1
— = = > 1.
k+DVk+1 k+DVk+1-Cy k+DVk+1-Co

Hence, using the monotonicity of M + F and that w3, w4 < 0, (2.18) leads for all k > k4 to

Co
<|l1l+— —4(c—1DAr — Zx, F
Gx.s.k+1 ( + (k+l)\/m7C0>g)hS'k (¢ = DAy (kg1 — 240 kg1 + F (2k41))

1
— mey? [vrt1 — vi ||2 +3 (1—8) y wsk [vrt1 ||2 + (1 — &) w3k |zxt1 — 2 ||2

Denoting
bask =40 — DAy (Zkp1 — 2o, Gkl + F (1)) + iy ? lloggr — vkl

1
—501=9 y2osk logs1 12 — (1 — 8) w3k llzes1 — zel?

>0,
Co

dy sk = > 0,
BT R ) VEF L= Co
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we see that we are in the context of Lemma A.2. From here we get the summability statements
in (i) as well as the convergence of the sequence (QA, s,k) k>

Since (g,\, s,k) >y converges, it is also bounded from above, thus, for all £ > 2

1
—awp [[4h (zx — z4) + 2k (2 — z5—1) + 25y kv ||

4s
2
o 4@—1)
+ 982 2k — ze—1 1?4 24 <a 11— 7k> lzk — zll?
4s s
< Gask SSUp Gy sk < +00.

k=1

From here we obtain that the sequences
(A (2 — zs) + 2k (zk — 2k—1) + 25V kvk)g>y s (kK (2 — Ze—1)e>1 and (Zk)gzo

are bounded. In particular, for all k > 2

4s
14X (zk — z4) + 2k (zk — z—1) + 2sykvel| < Cp := [ —sup Gy k,
w0 k>1
4s
klizk — ze—1ll < C2:= [ — sup Gy x,
wy k>1
1

lzk — z4ll < C3 := sup Gx k.,
23, (a - MA) k1
so
(2.19)
therefore
1
lokll < =— 114X (2 — zs) + 2k (zk — zk—1) + 2sy kv ||
2syk
1 2\ Cy
+ — llzk — ze—1ll + — llzk — z«ll < —, (2.20)
sy syk k
where

1 _
Cs:==—(C1+2C2 + 41 (a, ¢, 5) C3) > 0.

2sy
From (i) we have
lim kllvipr —wll =0 = Cs:=sup{k|vit1 — vell} < +o0, (2.21)
k—+00

k=1

which, together with (2.6), implies that for all k > 1
lEk+1 + F e+l < k41 + F (2k+1) — k1l + vkl
Ce (2.22)
< wkgr — vl + vk Il < =

where

Co:=Cs4+Cs5>0.
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The Cauchy-Schwarz inequality and the boundedness of (zk) > allow us to provide a similar
estimate for (zx — z«, & + F (zx)). This proves (ii). To complete the proof, we are going to
show that

lim & = lim Gyox €R.
k— 400 k——+00

Indeed, we have already seen that

lim kg — ve—1ll =0,
k—+00

which, by the Cauchy-Schwarz inequality and (2.6), yields

0< lim Kk [(zx — zk—1, F (zx) — F (wr—1))| < C2 Jim KIF @) = F we-

k—+00

< Cy lim k|lvg —ve—1] = 0.
k—+o00
It is from here that we get the statement we want. O

Next we will prove the convergence of the sequence of iterates generated by Algorithm 1.

Theorem 2.8 Let Zer(M + F) # . The sequence (z1)>¢ generated by Algorithm I con-
verges weakly to a solution of (1.3).

Proof Let z, € Zer(M + F). Further, let s € (1 + ﬁ,Z), and 0 < A(a,c,8) <
Ao, c,s) < % be the parameters provided by Proposition 2.7(iii) with the property that,

forall A (o, ¢, s) < A < A (e, c, §), the sequence (8;\,5,1{) is convergent.

k1
Forallk > 1 andany A € (A (o, c,s), A (, ¢, 5)) we have

1
Ensk = = 2% (zk — z4) + 2k (zk — zk—1) + sykvel® +2x (@ — 1 — A) llzx — 2«12
2

+ 24y (2 =)k +2 (o —©)) {2k — 24> Vi) + %y2 (RQ—=s)k+2(@—c)
(sk + 2¢) [lve]?

=2x (@ — 1) llzx — zall® + 4Ak {2k — Z4r 2k — Zk—1 + Y VK)
2
+ = 112 (2 = 2-1) + sy vel? +4 (@ — ¢) Ay (zk — Z4, V)

(2.23)

F372(@ = k420~ 0) 5k +20) Il

We choose A (o, ¢, s) < Aj < A2 < A (a, ¢, §), and get
Engusik — Enpusik
=42 — A1) (% @ =D llzk =zl + k {2k — 24, 2 — 2kt + yor) + ¥ (@ — ©) {2k — 2z vk)>
= 402 =) (pr+ v (@ —0) (zk — 75, 0k)),

where forall £k > 1

1
pei= > (@ — 1) llzk — zall® + k (zk — Za, 2k — Zh1 + YVK) -
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According to (2.19) and (2.20), we have

0< lim [{zx — zs, v} < C3 lim gl =0,
k—+00 k——+00

which, together with the fact that the limit limg_, 4 (5A2, sk — &, s,k) € R exists, leads to

lim p; € R exists. (2.24)

k——+00

We define for all k > 1

||Zl<—Z*| —l—yz = Zu, Vi)

and notice that for all £ > 2 it holds

1
Gk — Gr—1 = {2k — Z#» Tk — Tk—1) — 5 lzk = zk—1lI* + ¥ {2k — z4 k)

thus
k

k
@ = Dge+ k(g —gqe1) = pe+ @ =1y D {ai = 2o vi) = 5 e =z I
i=1

Thanks to Proposition 2.7(i), we have limg_, o0 & [|2k+1 — 2k I> = 0. So if we can show that
the sequence (Zi:l (Zi — Zx, v,~))k>1 also converges, then we know that
=

lim (¢ — 1)gx +k (gr — qi—1) € R exists. (2.25)
k— 400

To show that the series above converges, we first observe that for every k > 2

k k
D e =z Fwic) = F @) < Y llzi = 24l I1F (wi—1) = F ()]
i=2 i=2

k k

1 1 I .
<52l a4 53 R IF @) - Fel?
i=2 i=2
1 1 1 .
S5 Z 7 llzi = zl* + 2 le IF (wi—1) — F)I?
i>2 i22
oo (2.26)

where the first series in (2.26) converges due to (2.19), and the second series converges due
to(2.6) and Proposition 2.7(i). This proves that the series } ;> (zk — z«, F (wk—1) — F (21))
is absolutely convergent, so convergent. Again using Proposition 2.7(i), we see that the limit

k
Jim 1<z,-—z*,v, = ETOOZ — 20§ + F (2)
i=
k
+ lim (zi — 2, F (wiz1) — F (zi)) €R
k——+0c0

i=1

exists. Consequently, (2.25) holds. Therefore, we can apply Lemma A.l to guarantee that
the limit limg—, 400 gx € R also exists. The required boundedness of (z);>( follows from
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Proposition 2.7(ii) and the fact that limg_ 400 Zf:l (zi — 7%, v;) € R exists. Given the
definition of (gx )« 1, the latter property also guarantees that limg_, 4 ||zx — z«|l € Rexists.
The hypothesis (i) in the Opial Lemma (see Lemma A.3) is therefore fulfilled.

Let z be a weak sequential cluster point of (zx)x>0, Which means that there exists a
subsequence (zk,) 10 which converges weakly to z as [ — +-oc0. It follows from Proposi-
tion 2.7(ii) that &, + F (zz,) strongly converges to 0 as [ — +o00. Since F: H — H is a
single-valued monotone and L-Lipschitz continuous operator, it is a maximally monotone
operator (see [5, Corollary 20.28]) with full domain. Therfore, the sum M + F is also a max-
imally monotone operator, (see [5, Corollary 25.5]), given that M is maximally monotone.
The fact that &, € M (zy,) foralll > 0, and the maximal monotonicity of M 4 F implies that
0 € (M + F) (2), see [5, Proposition 20.33], meaning that hypothesis (ii) of Lemma A.3 is
also verified. The weak convergence of the iterates to an element in Zer(M + F) is therefore
a consequence of the Opial Lemma. O

We will conclude the convergence analysis by proving that the Fast RFB algorithm does
indeed have convergence rates of 0(%) as k — +o0.

Theorem 2.9 Let 7, € Zer(M + F) and (zx) >0 be the sequence generated by Algorithm 1.
The following holds as k — +00

1 1 1
lzk — z%—=1]| =0 (E) s &+ Fpl=o <E) ok + Fzp), 2k — zx) =0 <E> ,

1 1
Fran(zk) = dist(0, M(zx) + F(z)) = o0 (E) . rrix(@) = |z — Jym(ze — v F @) | =0 <E) .

Proof Let s € (1 + 2), and 0 < A(a,c,s) < A, c,8) < 7 be the parameters

provided by Proposition 2.7(iii) with the property that, for all A (a, ¢, s) < A < A (a, c, §)
the sequence (&), k), is convergent.

We choose A € (A (a,c,8), A (a,c, s)) and set forall k > 1

k2
= o (12 (2 = 2k-1) + syvell® + 2 — $)sy? uell?) -

We are going to show that
lim Ay =0. (2.27)
k— 400
This assertion will immediately imply
lim k|12 (zk — zk—1) +sywll = Lim kflve] =0,
k— 400 k— 400
and further limg_, 4o k ||zk — zxk—1]| = 0. The fact that
lim & |[|§ + F (z)ll =0

k—+o00

will follow from (2.6), (2.21) and (2.22), since
0< lim k|§+ F @l < lm kllvg —ve—ill+ lim kvl = 0.
k——+o00 k—+00 k—+00

The convergence statement above will imply that

lim & dist (0, M(zx) + F (zx)) =0,
k— 400
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and, by using the boundedness of (zx)r>0,

lim k(& + F(zx), zx — 2+) = 0.
k— 400

The convergence rate

1
rriv(@) = |z = Jym(ze =y F @) =0 (E) as k — +00

is a consequence of (1.8).
What remains to be shown is that (2.27) does in fact hold. In view of (2.23), we have for
allk > 1

By =Ensk —4pe — v (2 =)+ (@ =) )k +2 (@ —c)c) ol
—4 (@ — ) Ay {zk — Zx, Vk).

From Proposition 2.7(iii) and (2.24), we have limy—, yo0 & 5.k € R and limg—, 40 pi € R,
respectively. From (2.20) it yields

lim k& ||vk||2 =0 and lim ||vk||2 =0,
k——+00 k——+00

which implies the existence of

lim hy €R.

k—+00

To get the precise value, we recall that the summability results in Proposition 2.7(i) guarantee
that

1 1
D phek 4D Nz =z P+ 5@ 9)sy? kel < oo,
k>1 k>1 k>1

We must have limy_, + o hx = 0, and the proof is finished. ]

3 A fast primal-dual full splitting algorithm

In this section we will apply the Fast RFB algorithm to the solution of the saddle point problem
and further to a convex optimization problem with linear cone constraints. For the resulting
primal-dual full splitting methods, we will formulate the convergence and convergence rates
statements that follow from those proved in the general setting.

3.1 Convex-concave saddle point problems with smooth coupling term

First, we consider the application the proposed fast algorithm to the saddle point problem

(1.1)
)Iggg max V(x,A):=f(x)+D(x,A) —g),

where X" and ) are two real Hilbert spaces, f: X - RU{+oc}and g: Y — RU{+o0} are
proper, convex, and lower semicontinuous functions, and ®: X x )) — R is a differentiable
function with Lipschitz continuous gradient, convex in x and concave in A.

Finding a solution to (1.1) reduces to the solving of the monotone inclusion (1.3), for
Hi=XXxV,M:H—> 2" Mx,1 = (@f(x),0gX),and F : H — H, F(x,A) =

@ Springer



73  Page 20 of 46 Journal of Scientific Computing (2025) 105:73

(Vi ®(x, 1), =V, D(x, A)).Let L > 0be the Lipschitz constant of F'. Applying the Fast RFB
algorithm to this particular setting leads to the following full splitting algorithms, which have
the feature that each function is evaluated separately: the non-smooth tones f and g via their
proximal operators, and the smooth one via a gradient step.

Algorithm 2 Let

o 1
a>2, —<c<a-—1, and O<y < —.

2 2L
For initial points Xxo, wi,0, ¥1,0 S X, Ao, w2,0, ¥2,0 € Y, x1

= prox,, s (yLo —yV,® (wl,o, wz,o)) and A = prox,,, (yz,o +yV, o (wl,o, wz,o)),
we set

Yk =Xk + (1 - ﬁ) (k= xp—1) + (1 - kﬁ) (V1k—1 — xt) ,
Y2k = ki + (1 - ﬁ) ke = A=) + (1 k+a) (V2h—1 = 24)
~Vk > 1) Wik = Y1,k — (yl,k—l - xk)»

wak = yok — (y2k-1 — M),

Xk41 = Prox,, ¢ (vik — ¥ Ve® (wik wak)),

M1 = Prox,, (yak + ¥ Vi@ (wik, wak)).

The following result is based on the theorems 2.8 and 2.9.

Theorem 3.1 Let (x4, A+) € X X Y be a saddle point of (1.1), and (xi, )i >0 the sequence
generated by Algorithm 2. The following statements are true:

(i) the sequence (xi, A )x>q converges weakly to a saddle point of (1.1);
(ii) the following holds as k — 400

1
lxx — xk—1ll =0 <%> and ||Ax — Ag—1ll =

(X = X, g + Vi @ (g, M) + (A — Ay, vk — Vi @ (g, Ap)) =

W (g, As) — W (x4, Ap) =

1
||l4k+vx(b(xka}~k)”:0(%> and |lvg — V3, @ (xg, M)l = o (

= = = e —

(1)
)
(2)
(®)

where, for all k > 0

1 1
Ukl = ;YI,k — Vi ® (wi, wak) — ;xkﬂ € 9 f (Xk+1)

1 1
Vk41 ;)’Z,k + Vi ® (w1 k. wok) — ;)»k+1 € 98 (M+1) -

Proof Algorithm 2 is a special instance of Algorithm 1 when applied to the monotone inclu-

sion (1.2), for zx := (xk, Ak), Yk = (V1,k, Y2.k) and wy = (w1, wa ) forall k£ > 0. The
third block Algorithm 1 is obviously equivalent for all £ > 1 to

Xk41 = Prox,, ¢ (yik — ¥ Ve® (wik wak)),
Ak+1 = prox,,, (2 + ¥ Va®@ (wik, wak)) -
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The sequence (&x)x>1 introduced in Proposition 2.1, and defined for all k > 1 as

1
& = " k-1 — 2k) — F(wg—1)

plays a crucial role in the formulation of the convergence rates. In the context Algorithm 2,
we have for & := (uy, vx) and all k > 1

1 1
—y1k=1 — Ve ® (Wi g1, w2k—1) — — X,
Y 4

1 1
vk = ;)’Q,k—] + Vi@ (i k-1, wak-1) — ;)»k-

Uk

3.1

Furthermore, & € M (zx) becomes for all k > 1
ug € 9 f(xp),
vk € 0g(Ag).

The weak convergence of the sequence (x, Ax)g>o to a saddle point of (1.1) is a direct
consequence of Theorem 2.8. In addition, Theorem 2.9 yields

k k k
k — +o0,

1 1 1
lzk — zk—1ll =0 (*) , Nk +F@ll=o <*> v ek =z, &k + F(zp)) =0 (*) as

where z4 := (x4, Ay). From the first statement, we obtain

1 1
lxx — xk—1ll =0 (E) and Ak — Ak—1ll =0 (%>

as k — +o0.

For z; = (x, Ax) and & = (ug, vk), given by (3.1), the other two statements become
|| (uk + VD (xx, M), v — Vi (xg, kk))|| =0 (%) as k — 400,
and
((ork = X Ak = 2i) s (e + Vi @, i), vk — Vi@, A))) = 0 <%) as k — +o00,

respectively. Obviously,

1 1
lug + Vi ® (G, M)l = 0 (%) and |lvg — Vi @ (xg, Al = o (;) as k — +o0.

Using the convexity of f and g, and the convexity and concavity of @ in its first and second
variables respectively, it follows for all k£ > 1 that
(k= X Ak = Ai) s (s + Vi @, i), vk — Va®(x, k)
= (uk + Ve @(xk, Ak), Xk — xi) + (v — VaP(xk, Ai), A — As)
= (U, Xk = %) + (Ve @Ok, Ak, X — X) + (v, Ak — A} + (= V@ (g, Ak), Ak — As)
2 [ () = f ) + @ (xx, Ae) — P (X, As) + 8(0k) — g (A4)
= D (x4, k) + P (x4, As)
=W (xk, Ax) = W (xs, Ag) 2 0.
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This yields

1
W (X, Ay) — W (Xy, Ak) =0 (%) as k — +oo.

3.2 Composite convex optimization problems

The aim of this subsection is to show that the algorithm proposed in this paper leads to a fast
primal-dual full splitting algorithm which solves the composite convex optimization problem

min f(x) + g(Ax) + h(x), (3.2)

where X’ and Y are two real Hilbert spaces, f, g: X — R U {400} are proper, convex, and
lower semicontinuous functions, # : X — R is a convex and differentiable function such
that Vi is Lyj,-Lipschitz continuous, and A : X — ) is a linear continuous operator. The
corresponding Fenchel dual problem is

I}}lea;]( —(f + h)*( - A*A) —g*). (3.3)

If (x4, X4) € X x Y is a primal-dual solution of (3.2)-(3.3), in other words, a solution of the
KKT system

0€df(x)+Vh(x)+ A*A

Ax € 3g*(L), 34

then x, € X is an optimal solution of the primal problem, A, € ) is an optimal solution of
the dual problem, and strong duality holds. Viceversa, under suitable constraint qualification
(see [5, 8]), if x, € X is a solution of (3.2), then there exists an optimal solution A, € ) of
(3.3) such that (x,, A,) solves (3.4). It is easy to see that the solutions of (3.4) are nothing
else than the saddle points of the Lagrangian

Lx,2):=f@x)+h&x)+ (A, Ax) — g* D), (3.5)

which provides a compelling motivation for treating this problem as a specific instance of the
framework developed in the previous subsection. Thus, the algorithm and the convergence
theorem of the previous subsection lead to the following statements, respectively.
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Algorithm 3 Let
1
2V (Lyn + IAD? + A

For initial points xo, w10, ¥1,0 S X, Ao, w2,0, ¥2,0 € Y, xi

= prox, s (y1.0 — ¥ VA (w1,0) — yA*wz0) and A = prox, . (y2.0 + yAwi o), we
set

o > 2, %<c<a—1, and 0 <y <

Yik =Xk + (1 - k_%) (xk = Xk—1) + (1 - k%a) (V-1 — xt) ,
Yok =M+ (1 - k_%) Ak = Ae—1) + (1 - k%a) (V2k-1 — M)
~Vk=1) Wik = Y1,k — ()’l,kfl - xk),

wak = yax — (V2h—1 — M),

Xkt = prox, o (yix — ¥y Vh (wix) — yA*wa),

M1 = ProX, g« (y2k + Yy Awig) .

Theorem 3.2 Let (x4, Ax) € X X Y be a primal-dual optimal solution of (3.2)-(3.3), and
(xk, M)k >0 the sequence generated by Algorithm 3. The following statements are true:

(i) the sequence (xi, Ai)x>o converges weakly to a primal-dual optimal solution of (3.2)-
(3.3);
(ii) the following holds as k — +00

1 1
lxx — xk—1ll =0 (2) and ||Ap — Ag—1ll =0 (E)

||uk + Vh (xp) + A%y || =0 <%> and |vg — Axill =0 (%

£ (ks 2) — £ (tas 1) = 0 (%) ,

where, for every k > 0

1 1
Ugt] i= ;yl,k — Vh (wik) — Afwak — ;xk+l € 9 f (Xk+1),

1 1
Vil 1= ;)Q,k +Awy g — ;)Lkﬂ € 98" (Mig1).

Remark 3.3 To the best of our knowledge, these are the strongest convergence rate results
among primal dual full-splitting algorithms for composite convex optimization problems.
In the merely convex case, the algorithms proposed in the literature typically achieve an
ergodic convergence rate of O (%) as k — +oo for the primal dual gap (see, e.g., [17]). In
contrast, Algorithm 3 establishes two advances: (i) global convergence of the entire primal
dual sequence to a primal dual optimal solution, and (ii) a nonergodic convergence rate of
0 (%) as k — +oo for the primal and dual discrete velocities, the tangent residual and the
primal-dual gap.

3.3 Convex optimization problems with linear cone constraints

In this subsection, we will study the optimization problem (1.15)

min f (x) +h (x),
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subjectto Ax —b € —K

where X and ) are real Hilbert spaces, K is a nonempty, convex and closed cone in ),
[+ X - RU{+o0} is a proper, convex, and lower semicontinuous function, 2: X — Risa
convex and differentiable function such that Vi is Lyy-Lipschitz continuous,and A: X — Y
is a linear continuous operator.

We aim to design efficient algorithms for detecting primal-dual optimal solutions (X, Ax)
of (1.15), which correspond to solutions of the associated system of optimality conditions

{0 €df (x)+ Vh (x) + A*A G6)

Ax —b € Nic=(),

where K* :={A € Y : (A, {) > 0V € K} denotes the dual cone of K. Given a primal-dual
optimal solution (x,, A4) of (1.15), x, is an optimal solution of (1.15) and A, is an optimal
solution of the Lagrange dual problem of (1.15).

Solving (3.6) is equivalent to finding the saddle points of the associated Lagrangian

Lx,A):=fx)+h&x)+ A, Ax —b) — k= (1),

which is a specific case of (3.5). Therefore, it follows from Algorithm 3 and Theorem 3.2
that obtain the following statements.

Algorithm 4 Let

1
o> 2, g<c<a—l, and O <y < 5 -
2V/(Lwi + 1AI? + IA]l

2
For initial points xp, wi,0, ¥1,0 S X, Ao, w2,0, ¥2,0 € Y, x1

= pIOX, s (y1.0 — ¥Vh (w10) — yA*wap) and A1 = P« (y2,0 + ¥ (Awi,0 — b)).
We set

Yik =Xk + (1 - kj';,) (xk — xk—1) + (1 - ﬁ) (V1k-1—xx),
Y2 =M+ (1 - k%o,) Mk — Ag—1) + (1 - kfa) (Y2.h—1 = M)
~Vk>=1) Wik = Y1,k — (yl,k—l - Xk),

wak = y2k — (V2k—1 — M),

X1 = prox,, ¢ (yix — ¥ Vi (wix) — y A*wag),

Mea1 =Pres (v2x + v (Awix — b)) .

Theorem 3.4 Let (x4, M) € X X Y be a primal-dual optimal solution of (1.15), and
(xk> A)r>0 the sequence generated by Algorithm 4. The following statements are true:

(i) the sequence (xi, M) converges weakly to a primal-dual optimal solution of (1.15);
(ii) the following holds as k — 400

1 1
lxx —xk—1ll =0 (E) and ||Ap — M—1ll =0 (E)

]!uk—i-Vh(xk)—i-A*)»k]]:o(%) and ||vk—Axk+b||=o<%>

L (xp, Ay) — L (X, Ag) =0 (%) s
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1 1
|(f+h)(Xk)—(f+h)(x*)|=0<%> and |()Lkank_b)|:0<z)a

where, for every k > 0

1 1
Uikl 7= 21k Vh (wik) — A*wox — e € 0 f (Xk+1),

1 1
Vil 1= ;YZ,k +Awy g — ;)\k+l —b € Nicx (Ag41)-

Proof Given a primal-dual optimal solution (x,, A,) € X x Y of (1.15), it holds (see, for
instance, [5, Proposition 27.17]) A, € K*, Ax, —b € —K and (A4, Axy — b) = 0. The weak
convergence of the sequence of primal-dual iterates to a primal-dual solution of (1.15), and
the statements in the first three blocks of (ii) follow directly from Theorem 3.1.

In addition, we have for all k > 1 that vy € Nix(A), which implies that Az € K¥,
v € —K and (Ag, vg) = 0. Therefore,

[(Ak, Axp = b)| = [{Ax, Axk — b — o) | < [[ArllAxg — b — el

Since (Ak)k>0is bounded and vy — Ax; + bl =0 (%), we conclude that | (Ag, Axy — b)| =
0 (%) as k — 4oo0.
Since uy € 0 f (xx), we have forall k > 1

(f +h) (i) — (f + 1) (x) < (up + Vh(xp), Xk — Xy)
= (ug + Vh(xr) + A" Ag, xx — i) + (A, b — Axy)
< Nuk + Vh(xr) + A" A llllxe — xell + 1Ak, b — Axg)|.

On the other hand, since —A*A, € 3(f + h) (x4), (Ax, Axy — b) = 0 and (A4, vr) < 0, we
forallk > 1

(f + 1) () = (f +h) (x) = (A" A, 1k — x5) = (f + 1) (x0) — (s, Axg — b)
= (f +h)(xs) — (Ay, —vx + Axg — D) — (Ay, vg)
2 (f +h)(xe) — Asllllve — Axe + Dl

Therefore, we obtain for every k > 1

I(f +h) (i) — (F +h)(x)]
< max{llux + VA + A" Akl lxe — xsll + [k, b — Ax)l, I Allllve — Ax + b}

Since (xx)r>0 is bounded, the right-hand side converges to zero with a convergence rate of

o(%)ask—>+oo. u]

4 Numerical experiments
In this section, we present numerical experiments to illustrate the convergence rates estab-

lished for the proposed fast method and compare our algorithm with those in the existing
literature.

@ Springer



73  Page 26 of 46 Journal of Scientific Computing (2025) 105:73

4.1 The role of the algorithm parameters

In this subsection, we investigated the influence of the parameters « and c on the algorithm’s
convergence behavior. Consider the convex optimization problem

1
min || x||; + E(x, Hx) — (x, h),
such that Ax — b € —R,,

where R’ denotes the nonnegative orthant of in R”,

~11 1
| L | 1
A:=Z 11 eR"X”,H:=2ATA,19:=Z : | eR" and
-1 1 1
1 —4
0
0
h—1 |l eR”
=2 |:
0

The associated Lagrangian is
1
L(x,n) = lxlly + E(x, Hx) — (x,h) + (&, Ax — b) — égr ().

The numerical experiments were conducted with n = 1000 and a maximum of 10* iterations.
Guided by theoretical insights, various choices for « and ¢ were explored, with the stepsize
selected as

0.99
Yy = .
2V (H |+ 1AD? + A2

Figures 1,2,3,4 depict the convergence performance in terms of the discrete velocity,
tangent residual, primal-dual gap, and function values, for « = 3, 5, 10 and 20, and different
values of ¢ € (%, o — 1). All the results are plotted on a semilog scale, namely, by taking the
logarithm of the measured quantities. The results demonstrate that increasing ¢ within the
allowable range enhances the convergence behavior of the proposed algorithm. Furthermore,
larger values of « significantly improve the algorithm’s convergence, with the impact of ¢
lead to improved convergence of the algorithm and that for higher values of « the impact on
¢ on performance becoming more pronounced as « increases. We also adopt a convergence
rate of O (%) as a predefined reference standard. When compared against this baseline, our
methods exhibit substantially superior performance.

4.2 Comparisons with other algorithms

In this subsection, we will compare the performance of the Fast RFB algorithm with that of
other algorithms from the literature when it comes to finding saddle points of

L(x,x)=llxlly + %(x, Hx) —(x,h) + (%, Ax — D),
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Fig.1 The impact of the parameter ¢ on the convergence behavior of the discrete velocity, the tangent residual,
the primal-dual gap, and the function values when o = 3

which is the Lagrangian associated with the optimization problem with linear equality con-
straints

1
min [ x||; + 5()6, Hx) — (x, h).
such that Ax = b

The matrices A, H € R"*" and the vectors i, b € R" are chosen as in the previous subsection.
This problem amounts to solving the monotone inclusion problem (1.3) for M(x, 1) =
@@ - I1(x),0) and F(x,A) = (Hx —h + A*A, b — Ax). The Lipschitz constant L of the
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Fig.2 The impact of the parameter ¢ on the convergence behavior of the discrete velocity, the tangent residual,
the primal-dual gap, and the function values when o = 5

operator F' is taken as

L= \J(H + 141 + 141

In the following, we present the algorithms used in the numerical experiments together
with their corresponding parameters:
(1) EG: Extragradient method (1.7) (see [1, 29, 52]) with y = %2 and n = 1;
(2) OGDA: Optimistic Gradient Descent Ascent method (1.9) (see [47, 52]) with y = %
andn =1;
(3) FRB: Forward-Reflected-Backward method (1.12) (see [14, 40]) with y = %;
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Fig.3 The impact of the parameter ¢ on the convergence behavior of the discrete velocity, the tangent residual,
the primal-dual gap, and the function values when o = 10

(4) RFB: Reflected Forward-Backward method (1.13) (see [15]) with y = %;

(5) PEAG: Past Extra-Anchored Gradient method (see [49, 52]) with y = /& %22

(6) ARG: Accelerated Reflected Gradient method (see [14]) with y = %;

(7) Fast RFB: our Algorithm 3 (for K = {0}) with y = & and ¢ = H0-L=2) forg =5
and o = 10.

Figure 5 presents, on a semi-logarithmic scale, the convergence behavior of the discrete
velocity, tangent residual, primal-dual gap, and function values generated by each of the
above-mentioned algorithms for the case n = 1000 after 5 x 10° iterations per algorithm.
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Fig.4 The impact of the parameter ¢ on the convergence behavior of the discrete velocity, the tangent residual,
the primal-dual gap, and the function values when o = 20

We also included in our experiments Tseng’s Forward-Backward-Forward (FBF) method
(1.10) (see [39, 52, 56]) with y = %, and the Past Forward-Backward-Forward method
(1.11) (see [39]) with y = %. However, since their performance was quite similar to that
of EG and OGDA, respectively, we decided not to include them in the plots. From the plots,
it can be seen that, for the considered instance, Fast RFB achieves the best convergence
performance in most cases among all evaluated methods.

We also analyze the asymptotic behaviour of the residual

up + Vh(xy) + A*A uy + Hxy —h + A*A
V(Xk,)»k)=<k (xx) k>=<k k k)’

b — Axy b — Axy
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Fig.5 A comparison of various methods in terms of discrete velocity, tangent residual, primal-dual gap, and
function values for n = 1000

where uy € 9| - ||1(xx).

Figure 6 presents, on a semi-logarithmic scale, the convergence behaviour of the norm of the
residual for n = 200, 500, 800 and 1000 after 5 x 10° iterations per algorithm. Fast RFB
achieves the best convergence performance in all four instances.

Furthermore, we compare the performance of all algorithms with termination criterion
IV (xk, Ax)|l < € under varying precision thresholds ¢ € {101,102, 1073} for n = 200.
Each algorithm is terminated after 10° iterations, even if the stopping criterion is not satisfied.
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Fig. 6 A comparison of various methods in terms of the norm of the residual ||V (xg, Ar)ll for n =

200, 500, 800 and 1000

Table 1 Success rate of the methods in satisfying the stopping criterion ||V (xg, Ax)|| < 1071, along with the

corresponding runtimes and iteration counts

Method Success Avg. # iter. Std. dev. # iter. Avg. time Std. dev. time
EG 1.0 19501.2 956.464 15.191 4.188

OGDA 1.0 42866.6 1970.930 36.133 6.013

FRB 1.0 42878.3 1969.767 20.095 3.252

RFB 1.0 52768.7 2408.202 23.718 4.128

PEAG 1.0 215600.1 14.130 90.937 20.876

ARG 1.0 365924.6 24.359 158.859 37.623

Fast RFB: o = 5 1.0 32172.8 8.066 14.735 2.606

Fast RFB: o = 10 1.0 21439.8 5.007 9.683 1.555

We run the experiment with 10 different initializations and record the average number of
iterations, the standard deviation of the number of iterations, the average runtime, and the
standard deviation of the runtime (in seconds). The results are summarized in Tables 1,2,3.
For low-accuracy settings, such as ¢ = 107, EG requires the fewest iterations, whereas
our method reaches the solution in less computational time. As the accuracy requirement
increases, our method not only attains the stopping criterion faster than the others but also
consistently requires less computational time. Moreover, our method appears to be more
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Table2 Success rate of the methods in satisfying the stopping criterion ||V (xg, Ax)ll < 1072, along with the
corresponding runtimes and iteration counts

Method Success Avg. # iter. Std. dev. # iter. Avg. time Std. dev. time
EG 1.0 434690.7 1034.704 261.149 13.192
OGDA 0.0 NaN NaN NaN NaN

FRB 0.0 NaN NaN NaN NaN

RFB 0.0 NaN NaN NaN NaN

PEAG 0.0 NaN NaN NaN NaN

ARG 0.0 NaN NaN NaN NaN

Fast RFB: « = 5 1.0 76644.4 7.382 29.266 4.250

Fast RFB: « = 10 1.0 34052.0 6.976 13.393 1.418

Table 3 Success rate of the methods in satisfying the stopping criterion ||V (xg, Ar)ll < 1073, along with the
corresponding runtimes and iteration counts

Method Success Avg. # iter. Std. dev. # iter. Avg. time Std. dev. time
EG 1.0 881605.3 1719.348 579.387 10.389
OGDA 0.0 NaN NaN NaN NaN

FRB 0.0 NaN NaN NaN NaN

RFB 0.0 NaN NaN NaN NaN

PEAG 0.0 NaN NaN NaN NaN

ARG 0.0 NaN NaN NaN NaN

Fast RFB: « = 5 1.0 179003.7 6.993 67.637 1.640

Fast RFB: « = 10 1.0 51009.8 3.490 22.242 0.296

stable, in the sense that its performance does not vary significantly across different initial-
izations, as indicated by the standard deviation of both the number of iterations and the
runtime.

A Auxiliary results

In the first part of the appendix, we provide some basic auxiliary results for the analysis
carried out in the paper.
The following result was introduced as Lemma A.5 in [9].

LemmaA.l Lera > 1 and (qi)i > be a bounded sequence in H such that

. k

lim <q1<+1 + — (gk+1 — 61k)> =peH.
k——+00 a

Then limy—s 400 gk = P-

The following result concerns quasi-Féjer monotone sequences and is a particular instance
of Lemma 5.31 in [5].

LemmaA.2 Let (ar)i>0, (D=0, and (di)k>0 be sequences of real numbers. Assume that
(ax)k>0 is bounded from below, and (by) >0 and (di)r>0 are nonnegative sequences such
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that 3 ~odi < +oo. If
ak+1 < (1 +di) ax — b Yk >0,
then the following statements are true:

(i) the sequence (by)r>o is summable, i.e., Zk>0 b < 400,
(ii) the sequence (ai)i>0 is convergent.

To show the convergence of the sequence of generated iterates we will use the following
so-called Opial Lemma [5].

LemmaA3 Let S € H be a nonempty set and (zx)k>0< H a sequence that satisfies the
following assumptions:

(i) forevery z, € S, limp_, y o ||zk — 2z« exists;
(ii) every weak sequential cluster point of (zx)k>0 belongs to S.

Then (zi)k>0 converges weakly to an element in S.
The convergence analysis also uses the following result.

LemmaA4 Leta,b, c € R such that a # 0 and b2 —ac <0. The following statements are
true:

(i) ifa > 0, then

alx>+2b(x,y) +clyl> >0 Vx,y e
(ii) ifa <O, then

allx|*4+2b(x,y) +clyl> <0 Vx,y e H.

B Missing proofs

Proof of Lemma 2.4 Recall that by (2.8), we have for all k > 1
sk =27 (2 — z24) + 2k (26 — 2k—1) + sy kvg.
Similarly,
Up,s k1 = 2h (Zpt1 — 24) +2(k + 1) @1 — 2k) + 5y (kK + 1) vegr. B.1)
After subtraction and by using (2.7), we find that

Up,s.k+1 — Up sk
=2+ 1—0a) @+ —z) + 2k + ) (Zp1 — 2k) — 2k (2k — 2k—1)
+ 5y Vi1 + syk (Vi1 — vr) (B.2)
=20+ 1 —a)@k+1 —2k) — 2c —8) Y Vi1

—y<(2—s)k+2(a—c))(vk+1—vk).

For all £ > 1 we have

1 2 2 1 2
5 (lnsat? = sk |?) = n st wnser = wn,sa) = 5 fsirr = st
(B.3)
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and forall k > 0

20 (@ — 1= 2) (lzkst — zl® = llzx — z4lI?)

, (B4
=4h (@ =1 = 2) (Zh+1 — Zos Tht1 — 2k) — 22 (@ — 1 = 2) llzg41 — 2™
We use (B.1) and (B.2) to derive forall k > 1
<M,s,k+1, U,s k+1 — M)\,s,k)
=40 A+ 1 — o) (Zkt1 — 24, Tht1 — 2k) — 2AY (2¢ — 8) {Thg1 — s Vit1)
— 2y (@ = )k +2(@ =) ) (2t = 2 Vo1 — %)
+40+1—a) k+ 1) llzgr — 2l
(B.5)

+2(s G 1= +5 = 20)y (6 + 1) {2kt — 2k ver1)
— 2y (@ =9k +2@ =) ) (+ 1) (21 = 26 v = 00)
—5Q2c—9)y* k+ 1) e | —syz((z — )k +2( —c))
(k+ 1) (kr, vegrr — e,
and
_1 ||ux,s.k+l — Uj,s,k ”2
2
=20+ 1= llzesr — 2l? +2Qc—5) A+ 1 — @) ¥ (21 — o Vit1)
1 1 2
— 5=V lu I = 572 (@ =k +2@=0) ) o —wl? (B
+2(+1 —oz)y((Z—S)k+2(a —C)) (Thk+1 — Zk> Vk+1 — k)
- J/Z((Z — )k +2(a—c) )(26 —8) (Ut 1, Vg1 — Vk) -
By plugging (B.5) and (B.6) into (B.3), we get forall k > 1
1 2 2
5 (s [* = Juns]?)

= 4A A+ 1 —0) (Zht1 — 2o Tkl — 2k)
—2Q2¢ — ) AY (Zk+1 — Z#» Vkt1)

_ 2((2 k42 (a — c)>xy (Tht1 — Zoo Ukt — 08
42004+ 1—a) @k +a+1—2)llzker — zl?

— (- okt2@=0) s - wl? (B.7)
+2y ((s A+l—o)+s— 2c)(k+ D+RA+1—-0a)c —S)) (2k+1 — Zks Vk+1)
—2y((2—s)k+2(a—c))(k+a—x) (Zht1 — Zks Ukl — UK)

- %yz (2c —5) 25k + 5 +20) l|lvip1 7

— yz((Z — )k +2(a — c))(sk + 2C) (Vk+1, Vk+1 — Vk) -
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Furthermore, for all k > 1 we have

2 (@ =D&+ 1D +2@ = ) ) {2kt — 2o, 1)
— 2y (@ =9k +2(@—0)) @ = 2o )

= ZM/((Z — 9k +2(a— C))( (Zk1 = 2o V1) — {2k — 25 1))
+ 20y (2 — ) {Zk+1 — Zs, Vkt1) (B.8)
=27 (2 —5) (Zk+1 — Za» Vk+1) + 2Ay<(2 — )k +2(x — C)) (Tkt1 — T Vi1 — Vk)

— 20y (@ = Ok +2@ =) ) (2t = 26, kst — W)

+ 2y (@ = Dk +2@ =€) ) (@t — 26, ),
and

1
s (@=9k+ D426 =) )(s e+ 1) +20) o2

_ %)ﬂ((z — 9k + 2 — o) ) (sk +2¢) flog]?

(B.9)
1
= )/2((2 — )k +2 (0 — C))(Sk + 2C)<(vk+1, Vk4l — Uk) — > lvk+1 — Uk||2)

1
+ 5yz((z — $)(2ks +2¢ +5) + 2(a — ©)s) llver1 11
Summing (B.4), (B.7), (B.8) and (B.9), yields (2.10) for every k > 1. m}
Proofof Lemma 2.5 (i) By the definition of G, s x in (2.9), we have for every k > 2

Gis.k+1 — G5,k
=Esitl —Ensk =2y [(Q=9)(k+D+2(@—0c)) (k+1)
(zk+1 — 2k, F (zk41) — F (wy))
—(Q=5)k+2(a—0c))k(zx — 2x—1, F (zx) — F (wx—1))] (B.10)

+y*L%c [((2—s) (k+D+2@—0))VC—s)(k+1)+2(@—0) v — vll?

~(@=9k+2@=0)C=9k+20 -0 lu - vt ]

+YL[(Q=)k+D+2(@—0))k+a+1—0)|vgsr — vl
—(C=9)k+2(@—0))k+a—0) v —ve1l’].
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From (2.10), using the notations in (2.11), we have that for all k > 2

Enskt1 — Ens ik

=-4(c— DAY (kg1 — 24 Vkt1) + 2<w3k +A+1—-a)(a+ 1)) lzks1 — zell?
+2y (@ik + @) (k1 — 2k vig1) — ¥2 (k + @) (wok + 2w6) vkg1 — vl
=2y (k + @) (wok + 2we) (Zk+1 — 2k, Vk+1 — Vk)
+ y*(wsk + (1 — ) 2c + ) + 506) V4112

< =4 (c = DAY (2ret — 2o V1) + 203k 2k — 2> + 2 (wsak + swe) ves1 |17
+2y (@1k + ©2) (21 — 2k Ver1) — ¥ (k + @) (w0k + 206) vrs1 — vl
— 2y (k + ) (wok + 2w6) (zk+1 — Zk» Vi1 — Vk) »

(B.11)

where the inequality follows from 0 < A < o — 1 and 1 < c. Plugging (B.11) into (B.10)
and using again (2.11), yields for all k > 2

Gisk+1 — Gusik
< —4(c = DAy (21 — 2o Vkp1) — 2y (k + @) (00k + 2w6) (241 — Zhs Vkg1 — Vk)
=2y [(wo (k + 1) + 2w6) (k + 1) (k41 — 2k, F (k1) — F (wp))
—(wok + 2w6)k {2k — zx—1, F (zk) — F (wg—1))]

42 [(a)o (k + 1) + 26)y/wo (k + 1) + 206 lvie1 — vl
—(wok + 2w6) v/ wok + 2ws [lvg — vk ||2] (B.12)

+ 2L (w0 (k + 1) + 206) (k + & + 1 — ) [log1 — vk
—(wok + 2w6) (k + o — ©) llvg — ve—111]
+ (2 (@1k + @2) ¥ (21 — 2k, V1) + 203k lzest — zll?
+7? (wk + s6) g1 1)
— 7 (k+ @) (wok + 206) llvirr — vl
Our next aim is to derive upper estimates for the first two terms on the right-hand side of

(B.12), which will eventually simplify the following three terms.
On the one hand, from the Cauchy-Schwarz inequality and (2.6), we have for all k > 1

—4(c = DAY (2ht1 — 25 V1) = =4 (¢ = DAY (Zkt1 — 2o, Ek+1 + F (wir))
=-4(c — DAy (zk+1 — Zas Sk+1 + F (zi+1)) +4(c — DAy
(Zht1 = 250 F (2h1) — F (wy))
< -4(c— DAy (Zr+1 — 20 Skl + F (@r41)) +4(c — DAy
lzk+1 — zall 1F (zk+1) — F (i)l
<-4 — DAy (zr41 — 2o Erp1 + F (ze41)) +4(c — D) Ay
lzk+1 — zZall g1 — vkl
< —4(c = DAy (Zk1 — za, k1 + F (2k41))

(B.13)

dc—-1* s o 2
+ — X1z -z + k+D~k+1]v —v .
W =i lzis1 — z«ll” + v~ ( )V lverr — vill
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On the other hand, the monotonicity of M + F, that & € M (zx) and &4+1 € M (zx+1), and
(2.7), yield for every k > 2

-2y (k4 @) (wok + 2w6) (zk+1 — 2k» Vkt1 — Vi)
<2y (k + @) (wok + 2w6) (zkt1 — 2k (k1 + F (2r41) — vi1) — Gr + F @) — )
=2y (k + ) (wok + 206) {zk+1 — 2k (F (2k41) = F (wp) — (F (z) = F (wg—1)))
=2y (k + @) (wok + 2wg) (2k+1 — 2k F (2k+1) — F (wp))
=2y (k + &) (wok + 206) (zk+1 — 2k, F (2x) — F (wi—1))
=2y (k + ) (wok + 2wg) (2k+1 — 2k F (2k+1) — F (wp))
— 2y (wok + 2w6 )k (2x — zk—1. F (2x) — F (wi—1))
+ 2y20(w0k + 206) (vkt1, F (k) — F (wg—1))
+2p% (k + @ — ©) (wok + 206) (vt — vk, F (2x) — F (wi—1))
=2y [(wo (k+ 1)+ 206) (k + D) {zk1 — 2k, F (2kg1) — F (wp))
—(wok + 2w )k (25 — zx—1, F (2x) — F (wi—1))]
+2y (w5 (k+ 1)+ w7) (zk+1 — 2k F (2p+1) — F (wy))
+ 2% c(wok + 206) (vg1. F (@x) — F (wi—1))
+ 2]/2 (k+a—c) (a)ok + 2w6) (ka — v, F(zg) — F (wk,])),

(B.14)

where we use that w7 = 2we — wo)(a — 1).
By Young’s inequality and (2.6), using that ws, @7 > 0, we obtain for all k > 2

2y (w5 (K + 1) + 1) (e = 26, F (@) = F ()
< Voos kD o1 (e = 2l + 7% @s Kk + D + o7 I F @) = F o)
< Vos e+ D o1 (i = 2l + 7% @s -+ D + 07) e = wl?).

(B.15)
In addition, by using (2.6), for all k > 2 we derive

2y%c(wok + 2we) (vit1, F (zk) — F (we—1))
e ((ok + 206)Veook + 206 | F (26) = F (wi)I + Veook + 25 [ve111?)
< 2 (v2L2 w0k + 206)y ok + 206 [k — ve-1 112 + Varok + 206 lvit 1)
= —y*L2¢ [ (w0 (k + 1) + 206) Voo (6 + 1) + 205 [ve1 — v
— @0k + 2006) V/ark + 206 llui = vi1 I

+y*L2c(wo (k + 1) + 2w6)y/wo (k + 1) + 26 [lvg+1 — vkl
+ y2evwok + 2w6 vt 117
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and

2y (wok + 2w6) (k +a — €) (V1 — ve, F (2) = F (wg—1))
< 2y  L(wok + 2w6) (k + & — ©) vkt — vell lvx — vl
< ¥ L{wok + 2w6) (k + o — ¢) (lvker — vill® + lloe — v 11%)
< =7 L (@0 (k+ 1) +206) (k + 1+ — ) llorgr — vl
—(@ok + 2w6) (k + & — €) lvx — vg—1 ]
+2y°L(wo (k + 1) + 2w6) (k + 1 +a — ) [log1 — vkl

(B.16)

By plugging (B.15) and (B.16) into (B.14), and then combining the resulting estimate with
(B.13), we obtain for all k > 2

~4(c = DAY (Zhg1 — 2o V1) — 2y (k + @) (00k + 206) (Zkt1 — 2k, Vi1 — Vk)
<2y [(wo (k + 1) 4 2w6) (k + 1) (zk41 — 2k, F @iy1) — F (wr))
—(wok + 2w6)k (zk — zk—1, F (zx) — F (wg—1))]

= y4 12 (0 (k + 1) + 206) Vo (k + 1) + 206 i1 — vl
—(wok + 2w6) v/ wok + 2we llvg — vk ||2]

— Y L[(wo (k + 1) + 2w6) (k +a + 1 — ¢) [log1 — vk l? (B.17)
~(wok +2w6) (k +a — ¢) llog = vi—1]I’]

4(c—1)ry( &1 + F (zig1)) + 41 A2 112
— Cc — —_ s R — —
Y AZk+1 — Zsx Sk+1 Zk+1 GrDVETT Zk+1 — Zx

+ ((k + ) (wok + 2we) — Mk))/2 lvert — vell® + Vostk + 1) + 7 llzks1 — zll®
+ v evwok + 26 v |

where

pk = (k + @) (wok + 2we) — 2y L(wo (k + 1) + 2we) (k + 1 + o — ¢)
—(k+DVk+1—(wstk+ 1) +wr)vVosk + 1) + w7
— y2ch(a)o(k + 1) + 2wg) v wo (k + 1) + 206

= wo(1 — 2y L)K* + (2we + woa )k + 2weat
— 2y L((2 (@0 + 206) = swo)k + (w0 + 206) (@ + 1 =) ) = (k + DV +1

—(wstk + 1) + won)vostk + 1) + w7 — yzLZC(wo(k + 1) + 2w¢)
X v/ wolk + 1) 4+ 2we.

Finally, by summing (B.12) and (B.17), we get the estimate we want.
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(i) We observe that for all k > 1

2k2

1
200hyk {2k = 24, vE) + 5008y llolI*

1 1
@0 <2sxyk (2k — 2o 1) + Eszyzk2 ||vk||2>

1 1
@ (5 12 (zx — z4) + sykvel* — 2% llzx — Z*IIZ)

and

sayzw%

4hy w6 {2k — Zas VK) + lloglI*

say we
=2Aywe (2 (2 — 2o k) + ———— ||Uk||2)

2(—2)A
2
2(ax—2) X1 sy we 2(a—2)A
=2Ayws @t | - ke — 2l
say we 2(x—2) X say we
By using the identity
el + 1y 112 = 5 L (x4 312+ e = yIP) Vv eH,

we obtain for all k > 1
Erk = 5 sk | + 22 @ = 1= ) ek = 2l + 207 @0k + 200 2k — 20, w0
+ %yz (wok + 2w6) (sk + 2¢) vel|?
= 5120 G~ 20+ 2 Gk — )+ vk

a(wg+s+2)—4
+2)\. (a—l—%k) ||Zk_z*||2

1
+ 5 @0 120 (2 = 2 + sykue|?

2(@—2)A Sy W

2 —_—
+2Ayos soy we 2 (x —2)Avk

1 2saw?
+ E)/z (2(6{)06‘ + sa)())k + 4dwec — o 26> ||vk||2

s — wo
= 122 (@ — 2) + 2K @k — 21) + sykvll?

a(wg+s+2)—4 1
+ 22 (a —1- %A) lzk — 24> + ;wokz lzk — za—11?

1
+ 10 4 (zk — z4) + 2k (2 — zk—1) + 25y kvg||?

2
2 (oc 2) k say we
[ ————— (@ — 24) + 2(a—2)ka

+ 2 ywe
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2
Sow
+ )/2 ((a)()c + Swé)k + 2cwe — (X—62> ||vk||2 .

Consequently, for all k > 2

Grsk = Ensk — 2y (wok + 2we )k (zx — zk—1, F (zx) — F (wi—1))

+ y* L2 c(wok + 2w6)v/wok + 2we lve — ve—1 1

+ ¥ L{wok +206) (k + @ — ©) og — ve—1
S — wo 2
= 124 (zx — z%) + 2k (2 — zx—1) + sy kv

a(wg+s+2)—4
so

2, Ly 2
+2 (e —1-— M) Nz — z«ll +;wok lzk — zk—1l

1
+ e 42 (zx — z4) + 2k (2 — za—1) + 25y kvg ||

2
2(a 2)x sayws
Vs BNy e

sy
+ )/2 ((woc + sa)(,)k 4+ 2cwe — (x—) [lvg ||2

+ 2 ywe

2

— 2y (wok + 2w6)k (zk — zk—1, F (z) — F (wg—1))

+y* L c(wok + 206)v/wok + 206 llvk = vi—1 11
+ ¥*L(wok + 2we) (k + o — ¢) llug — vk—1 1% .

We use relation (2.6) and 0 < y < ﬁ to verify that for all k > 2

2w0k2 sz — Zk—1 ||2 — 2woyk2 (zk — Zk—1, F (zx) — F (wk—l)) + a)oy3Lk2 H Vg — Vk—1 ||2

1
> wok? (5 lzk = 2kt |* =27 ek — zkm1, F (@) = F (wi—1)) + 202 | F (@) — F (wk—l)Hz)

>0

and

1
gwékz lzk — zk—111* — 4weyk (zx — za—1, F (zx) — F (wg—1))

16w2s
+ =2y L e — v I

0
1 55 2
> 4sw0k lzk — zk—1 11" — dwevk (zx — zk—1, F (zk) — F (wi—1))

16w2s
n 6

Y2 IF(zi) — Fwg—1)|I?
O

= 0.

Since wy =2 — s,

s—wy s—1 0 alwg+s+2)—4 4da—-1)
—_— - — > . = N
2s s so so
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and
1 1 +1 2
—wy) = —w —awg.
so 20 250

Therefore there exists a positive integer k; > 2 such that for all k¥ > k; it holds

1
Grsk = —wo |[4h (zk — 24) + 2k (zk — zk—1) + 25y kvg||?

4s
1 4 —1)
+ @0k lzk — 2”4+ 22 (a -1- 7x> lzx = z«l?,
s so
which is the desired inequality. O

Proof of Lemma 2.6 (i) For k > 1 and the quadratic expression in Ry we calculate

A/
47’; = (wik + an)? — 26% (w3k +Vaosk+ 1)+ a)7) (a)4k + ey/aok + 2w6 + swﬁ)
= (w% — 282w3a)4) K2 — 282 (a)3 (c\/a)ok + 2we + sa)6) + w4/ sk + 1) + a)7)k
+ 2wiank + w% — 257 (c\/wok + 2w¢ + sw(,)\/a)s(k + 1) + w7y.

Since (a)% - 252a)3a)4) k? is the dominant term in the above polynomial, it suffices to guar-
antee that

w7 —28%w304 < 0, (B.18)

to ensure the existence of some integer k) > 1 such that Aj{ < 0 and wgk + co/wok + 2wg +
swg < 0 for all k > k,. By Lemma A.4 (ii), from here it would follow that Ry < 0 for all
k> k.

It remains to show that there exists a choice of 0 < A < « — 1 for which (B.18) is true.
Weseté :=A+1— o <0and get

v =Q2—-5)rA+sA+1—a)+s5s—2c=24+(@—-1)2—s)+s5 —2c,
wiwg=4s(1—c)(A+1—a)=—4s(c—1)&.

This means that we have in fact to guarantee that there exists a choice for £ < 0 such that
a)% — 262w3w4
=+ @—1)Q2—s)+5—2c) +8s (c — 1) &8>
=467 +4((@ -1 @2 =s)+s—2c+2s(c—1)8%)&
+(@=1)@=s)+s5—2¢)" <0. (B.19)
A direct computation shows that according to (2.14)
A =16(2—5) (@ — D +s—2c+25s(c—1)8) —16((@—1) 2 —s) +5 —2¢)’
=64s(c— D (2—s)(@—D+s—2c+s(—1)38)>0.

Hence, in order to get (B.19), we have to choose & between the two roots of the quadratic
function arising in this formula, in other words

£ (a,c, ) ;=é(—4((2—s)(a—1)+s—2c+2s(c—1)52)—\/Aj)
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<é=A+1-«a
<& (a,c,s) ::%(—4((2—.?)(0{—1)+s—20—|—2s(c—1)52)+\/ré).

Obviously £ («,c,s) < 0 and from Vieta’s formula & (a,c,s) - & (a,c,s)

2
Y. —2c
- w > 0, it follows that & (o, ¢, 5) < 0.

Therefore, going back to A, in order to be sure that a)% — 282w3 w4 < 0 this must be chosen
such that

a—1+& (a,c,8) <Ai<a—14+&(a,c, ).

Next, we will show that
1 2 os
0<(x—1—5((2—5)(a—1)+s—26+2s(c—1)8)<T. (B.20)

Indeed, the inequality on the left-hand side follows immediately, since

s —2)+2c
2s (c—1)

)

1
0<a—1—5((2—s)(ot—l)+s—26+2s(c—1)52) — § <

which is true according to (2.13) and (2.14). On the other hand, for the inequality on the
right-hand side of (B.20) we have

i
a—l—E((Z—s)(ot—l)—i—s—Zc—l—Zs(c—1)62)<% — 8>

s(a—2)+22c—y)
4s(c—1)

which is true according to (2.14). From (B.20) we immediately deduce that

O<a—-14+&(a,c,5) and o —1+4+§&(a,c,8) < O;—s,

which allows us to choose

M, c,s) =max {0, — 1+ & (o, c,8)} < A(a,c,s) :=min{¥,a—l+€2(a,c,s)].

In conclusion, for A chosen to satisfy A (o, ¢, 5) < A < A (a, ¢, s), we have
a)% — 2520)20)4 <0,

and therefore there exists some integer k; > 1 such that Ry < O forall k > k;.
(ii) For every k > 2 we have

k= wo (1 — 2y L) k> + Qg + woar) k + 2weat
— 2y L ((2(wo + 2wg) — swg) k + (wo + 2wg) (@ + 1 —¢)) — (k+ Dk + 1
— (ws(k + 1) + o7)vosk + 1) + w7 — y?L7c(wo(k + 1) + 2w6)
Voo + 1) + 2w,

and the conclusion follows since wyp > 0 and y < i O
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