
On a Stochastic Differential Equation with Correction Term

Governed by a Monotone and Lipschitz Continuous Operator

Radu Ioan Bot, ∗ Chiara Schindler †

Abstract

In our pursuit of finding a zero for a monotone and Lipschitz continuous operator M : Rn → Rn

amidst noisy evaluations, we explore an associated differential equation within a stochastic framework,
incorporating a correction term. We present a result establishing the existence and uniqueness of solutions
for the stochastic differential equations under examination. Additionally, assuming that the diffusion
term is square-integrable, we demonstrate the almost sure convergence of the trajectory process X(t)
to a zero of M and of ∥M(X(t))∥ to 0 as t → +∞. Furthermore, we provide ergodic upper bounds
and ergodic convergence rates in expectation for ∥M(X(t))∥2 and ⟨M(X(t), X(t) − x∗⟩, where x∗ is an
arbitrary zero of the monotone operator. Subsequently, we apply these findings to a minimax problem.
Finally, we analyze two temporal discretizations of the continuous-time models, resulting in stochastic
variants of the Optimistic Gradient Descent Ascent and Extragradient methods, respectively, and assess
their convergence properties.
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1 Introduction

For a monotone and L-Lipschitz continuous operator M : Rn → Rn, we examine the equation

M(x) = 0. (1)

We assume that the set of solutions of (1), denoted by zerM := {x ∈ Rn : M(x) = 0}, is nonempty. The
operator M : Rn → Rn is said to be monotone if ⟨M(x)−M(y), x− y⟩ ≥ 0 for all x, y ∈ Rn.

For M := ∇f , where f : Rn → R is a convex and differentiable function with a Lipschitz continuous
gradient, solving equation (1) is equivalent to finding the global solutions of the optimization problem

min
x∈Rn

f(x). (2)

On the other hand, if we define

M(x, y) := (∇xΦ(x, y),−∇yΦ(x, y)),
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where Φ : Rp × Rq → R is a convex-concave function with Lipschitz continuous gradient, solving equation
(1) is equivalent to finding the saddle points of the minimax problem

min
x∈Rp

max
y∈Rq

Φ(x, y). (3)

Inspired by the Newton and the Levenberg-Marquardt methods, Attouch and Svaiter introduced in [3]
the following continuous time equation associated to (1) in the setting of a real Hilbert space{

ẋ(t) + µ(t) d
dtM(x(t)) + µ(t)M(x(t)) = 0 ∀t > 0,

x(0) = x0,
(4)

where µ : [0,+∞) → (0,+∞) was assumed to be bounded, continuous and absolutely continuous on bounded
intervals. Besides proving the existence and uniqueness of strong global solutions, they showed, under suitable
assumptions on the parameter function, that x(t) converges weakly to a zero of M as well as M(x(t)) → 0
as t→ +∞.

In many instances, the evaluation of the operator is subject to noise, which motivates us to transfer (4)
to a stochastic setting. To achieve this, we consider the formal expression of a continuous time system{

dX(t) + µ(t)dM(X(t)) = −γ(t)M(X(t))dt+ σ(t,X(t))dW (t) ∀t > 0,

X(0) = X0,
(5)

which can consistently with Itô’s chain rule be understood as{
d(X(t) + µ(t)M(X(t))) = −(γ(t)− µ̇(t))M(X(t))dt+ σ(t,X(t))dW (t) ∀t > 0,

X(0) = X0,
(SDE-M)

defined over a filtered probability space (Ω,F , {Ft}t≥0,P) with the diffusion term σ : R+ × Rn → Rn×m

being matrix-valued and measurable, W a m-dimensional Brownian motion, and X(·) as well as M(X(·))
are stochastic Itô processes with the same m-dimensional Brownian motion W . The parameter functions
µ : [0,+∞) → (0,+∞) and γ : [0,+∞) → (0,+∞) are assumed to be continuous differentiable and,
respectively, integrable. For the diffusion term we assume{

∃cσ > 0 such that ∥σ(t, x′)− σ(t, x)∥F ≤ cσ∥x′ − x∥ ∀t > 0,

σ∞(t) := supx∈Rn ∥σ(t, x)∥F ≤ σ∗ ∀t > 0,
(6)

where ∥ · ∥F denotes the Frobenius norm on Rn×m.
Then, (SDE-M) can be rewritten as the system

dM(X(t)) = Y (t)dt+ σM (t)dW (t),

dX(t) = (−µ(t)Y (t)− γ(t)M(X(t)))dt+ σX(t)dW (t) ∀t > 0,

X(0) = X0,

where
σ(t,X(t)) = σX(t) + µ(t)σM (t) ∀t ≥ 0

and σX , σM : R+ → Rn×m are measurable.
Our goal is to explore the existence and uniqueness of trajectory solutions for (SDE-M), along with

their long-term behavior in terms of both almost sure convergence and convergence rates. Furthermore, we
demonstrate how these properties transfer to convergence rates for stochastic numerical methods obtained
through temporal discretizations of the stochastic differential equation.
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1.1 Related works

The simplest continuous time approach associated to the optimization problem (2), for a convex and differ-
entiable function f : Rn → R with L∇f -Lipschitz continuous gradient, is the gradient flow{

ẋ(t) = −∇f(x(t)) ∀t > 0,

x(0) = x0.

Its trajectory solution x(t) converges to a global minimizer of f , while f(x(t)) converges to the minimal
function value min f of f with a convergence rate of o( 1t ) as t→ +∞.

Its discrete time counterpart, the gradient method,

xk+1 = xk − γ∇f(xk) ∀k ≥ 0,

where x0 ∈ Rn and γ ∈
(
0, 1

L∇f

]
, shares the same convergence properties. Specifically, the sequence (xk)k≥0

converges to a minimizer of f , and f(xk)−min f = o( 1k ) as k → +∞.
In [25], to accommodate instances where the gradient input is subject to noise, Maulen-Soto, Fadili and

Attouch proposed the following stochastic differential equation{
dX(t) = −∇f(X(t))dt+ σ(t,X(t))dW (t) ∀t > 0,

X(0) = X0,
(7)

defined over a filtered probability space (Ω,F , {Ft}t≥0,P) with σ : R+ × Rn → Rn×m being a matrix-
valued measurable diffusion term fulfilling (6), and W a m-dimensional Brownian motion. They derived for

f
(∫ t

0
X(s)ds

)
−min f and 1

t

∫ t

0
f(X(s))ds−min f upper bounds in expectation ofO( 1t )+O(σ2

∗). Additionally,

assuming that σ∞ is square-integrable, they demonstrated the almost sure convergence of the trajectory
process to a minimizer of f and of f(X(t)) to min f as t → +∞, and that the two above quantities exhibit
convergence rates of O( 1t ) as t→ +∞.

There is a strong link between this stochastic differential equation and the stochastic gradient descent
algorithm with constant stepsize ([9], [19], [22], [23], [29], [32])

xk+1 := xk − γ∇f(xk, ξk) ∀k ≥ 0,

where (Fk)k≥0 is an increasing family of σ-fields, x0 ∈ Rn is F0-measurable, (ξk)k≥0 is such that ∇f(x, ξk)
corresponds to a noisy observation of ∇f(x), with the properties that E(∇f(x, ξk+1)|Fk) = ∇f(x) for all
x ∈ Rn and all k ≥ 0, and E(∥∇f(x∗, ξk+1)∥2|Fk) ≤ σ2

∗∗ for a global minimizer x∗ of f and all k ≥ 0. Then

(see, for instance, [4]) the upper bound in expectation of f
(

1
k

∑k−1
i=0 x

i
)
−min f is of O( 1k ) +O(σ2

∗∗).

Recently, in [26], (7) has been enhanced with a Tikhonov regularization term, resulting in a stochastic
differential equation which, under the same upper bounds and convergence rates in expectation, in the case
when σ∞ is square-integrable, exhibits strong convergence of the trajectory process to the global minimizer
of f of minimum norm.

Furthermore, in [27], the properties of first order stochastic differential equations have been transferred to
second order ones using the time scaling and averaging methodology developed in [2]. The latter generalize
the second order Langevin process, and and demonstrate rapid convergence in expectation of the function
values along the trajectory process to the minimal function value.

As for the monotone equation (1), one could replicate the gradient flow approach and associate with it
the following continuous dynamics {

ẋ(t) = −M(x(t)) ∀t > 0,

x(0) = x0.
(8)
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However, only the ergodic trajectory 1
t

∫ t

0
x(s)ds converges to a zero of M as t → +∞ ([5]), while the

trajectory x(t) does not converge in general, as can be easily seen for the case of the counterclockwise
rotation operator by π

2 radians in R2 ([11]).
If the operator M is ρ-cocoercive with constant ρ > 0, meaning that

⟨M(x)−M(y), x− y⟩ ≥ ρ∥M(x)−M(y)∥2 ∀x, y ∈ Rn,

which obviously implies that M is monotone and 1
ρ -Lipschitz continuous, then the asymptotic behaviour of

the trajectory of (8) improves substantially, even in the presence of small perturbations. Precisely, according
to [2, Theorem 11], in this case, the trajectory solution of{

ẋ(t) = −M(x(t)) + g(t) ∀t > 0,

x(0) = x0,
(9)

where g : [0,+∞) → Rn is such that∫ +∞

t0

∥g(t)∥dt < +∞ and

∫ +∞

t0

t∥g(t)∥2dt < +∞, (10)

converges to a zero of M , and it holds ∥M(x(t))∥ = o( 1√
t
) as t→ +∞.

In the case when M is a ρ-cocoercive operator with constant ρ > 0, the following stochastic counterpart
to (8) has been proposed in [25]{

dX(t) = −M(X(t))dt+ σ(t,X(t))dW (t) ∀t > 0,

X(0) = X0,
(11)

defined over a filtered probability space (Ω,F , {Ft}t≥0,P), where σ : R+ ×Rn → Rn×m fulfills (6), and W a
m-dimensional Brownian motion. Alongside the existence and uniqueness of the trajectory process for (11),

upper bounds in expectation of O( 1t )+O(σ2
∗) for ∥ 1

t

∫ t

0
M(X(s))ds∥2 and 1

t

∫ t

0
∥X(s)∥2ds have been derived.

In case M is κ-strongly monotone with constant κ > 0, upper bounds in expectation of O(e−2κt) + O(σ2
∗)

for ∥X(t) − x∗∥2, where x∗ is the unique zero of M , have been also provided. Additionally, assuming that
σ∞ is square-integrable, it has been proved that there is almost sure convergence of X(t) towards a zero

of M and of ∥M(X(t))∥ towards 0 as t → +∞. Moreover, ∥ 1
t

∫ t

0
M(X(s))ds∥2 and 1

t

∫ t

0
∥X(s)∥2ds exhibit

convergence rates of O( 1t ) as t→ +∞.
If M is only monotone and Lipschitz continuous, [3] suggests that incorporating a correction term into

the formulation of the differential equation, such as the time derivative of t 7→ M(x(t)) in (4), is crucial to
improve the convergence properties of the dynamical system associated with (1). We have extended this
idea to the stochastic domain, resulting in the formulation of (SDE-M), and assuming that M(X(·)) is an
stochastic Itô process.

The significance of the correction term in solving equations governed by monotone and L-Lipschitz
continuous operators is well-reflected in the realm of numerical algorithms. On one hand, the forward
method,

xk+1 := xk − γM(xk) ∀k ≥ 0,

does not generally converge, as observed, for instance, with the counterclockwise rotation operator by π
2

radians in R2.
On the other hand, for the Optimistic Gradient Descent Ascent method ([31], [6])

xk+1 := xk − 2γM(xk) + γM(xk−1) = xk − γM(xk)− γ(M(xk)−M(xk−1)) ∀k ≥ 1,

which can be regarded as a natural discretization of (4), if 0 < γ < 1
2L , then the generated sequence of

iterates converges to a zero of M . Additionally, if 0 < γ < 1
16L , then the method exhibits a best-iterate
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convergence rate for the norm of the operator evaluated along the iterates of O
(

1√
k

)
as k → +∞ ([10], [14],

[15]).
Furthermore, for the Extragradient method ([1], [21]){

yk := xk − γM(xk)

xk+1 := xk − γM(yk)
∀k ≥ 0,

which also involves a correction term, if 0 < γ < 1
L , then the generated sequence of iterates converges to a

zero of M and ∥M(xk)∥ converges to 0 with a convergence rate of O
(

1√
k

)
as k → +∞ ([17]).

For completeness, we would like to mention that recently, in [7], a second-order dynamical system with
momentum term and correction term associated with a monotone equation has been introduced. Alongside
the convergence of the generated trajectory to a zero of the operator, the system exhibits convergence rates
of o

(
1
t

)
for the norm of the operator and the gap function along the trajectory as t → +∞. Furthermore,

an explicit numerical algorithm replicating the convergence properties of the continuous time dynamics has
been obtained. These are the best-known convergence rate results for continuous time and explicit discrete
time approaches for monotone equations.

1.2 Our contributions

In Section 2, we discuss the existence and uniqueness of a trajectory solution for the continuous time system
(SDE-M). The presence of the corrector term requires quite involved analysis. Under the assumption that
σ∞ is square-integrable, we also prove the almost sure convergence of X(t) to a zero of M and of ∥M(X(t))∥
to 0 as t→ +∞.

In Section 3, in the framework of assumption (6) for the diffusion term, we establish upper bounds

in expectation for 1
t

∫ t

0
∥M(X(s))∥2ds and 1

t

∫ t

0
⟨X(s) − x∗,M(X(s))⟩ds, where x∗ is a zero of M . These

bounds are of the form O( 1
tµ(t) ) + O(σ2

∗) and O( 1t ) + O(σ2
∗), respectively. Additionally, assuming that

σ∞ is square-integrable, we show that the squared norm of the operator ∥M(X(t))∥2 and the gap function
⟨X(t)−x∗,M(X(t))⟩ exhibit ergodic convergence rates in expectation of O( 1

tµ(t) ) and O( 1t ), respectively, as

t→ +∞. In caseM is κ-strongly monotone with constant κ > 0, we also derive upper bounds in expectation
of O(e−2κt) +O(σ2

∗) for ∥X(t)− x∗∥2, where x∗ is the unique zero of M .
In Section 4, we demonstrate how these results transfer from continuous time to discrete time settings

within the context of the stochastic Optimistic Gradient Descent Ascent (OGDA) method and of the stochas-
tic Extragradient (EG) method, designed to solve (1), in the circumstances that the evaluation ofM is subject
to noise.

2 Continuous time system: existence, uniqueness and almost sure
convergence

This section is dedicated to the study of (SDE-M) in the setting{
d(X(t) + µ(t)M(X(t))) = −(γ(t)− µ̇(t))M(X(t))dt+ σ(t,X(t))dW (t) ∀t > 0,

X(0) = X0.

Throughout this section, we will assume that the parameter functions satisfy the following conditions:

0 < µlow ≤ µ(t) ≤ µup := µ(0) and 0 < γlow ≤ γ(t) ≤ γup ∀t ≥ 0, and µ is nonincreasing on [0,+∞).
(12)

Throughout the paper, (Ω,F , {Ft}t≥0,P) is a filtered probability space. The expectation of a random
variable ξ : Ω → Rn is denoted by E(ξ) :=

∫
Ω
ξ(ω)dP(ω). An event E ∈ F happens almost surely (a.s.) if

P(E) = 1.
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An Rn-valued stochastic process is a function X : Ω × R+ → Rn. It is said to be continuous if X(ω, ·)
is continuous on R+ for almost all ω ∈ Ω. For simplicity, we will denote X(t) := X(·, t). Two stochastic
processes X,Y : [0, T ] → Rn, for T > 0, are said to be equivalent if X(t) = Y (t) almost surely for all
t ∈ [0, T ]. This allows the definition of the equivalence relation R which associates equivalent stochastic
processes to the same class.

Next, we will introduce some notions that will characterize the space where the trajectory solution of
(SDE-M) lies.

Definition 2.1. (i) A stochastic process X : Ω × R+ → Rn is called progressively measurable if for every
t ≥ 0, the mapping

Ω× [0, t] → Rn, (ω, s) 7→ X(ω, s)

is Ft ⊗ B([0, t])-measurable, where ⊗ denotes the product σ-algebra and B is the Borel σ-algebra. Further,
X is called Ft-adapted if X(·, t) is Ft-measurable for every t ≥ 0.

For T > 0, we define the quotient space as

S0
n[0, T ] := {X : Ω× [0, T ] → Rn : X is a progressively measurable continuous stochastic process}

/
R,

and set S0
n :=

⋂
T≥0 S

0
n[0, T ].

(ii) For ν > 0 and T > 0, we define Sν
n[0, T ] as the following subset of stochastic processes in S0

n[0, T ]

Sν
n[0, T ] :=

{
X ∈ S0

n[0, T ] : E

(
sup

t∈[0,T ]

∥X(t)∥ν
)
< +∞

}
.

Finally, we set Sν
n :=

⋂
T≥0 S

ν
n[0, T ].

The following results establishes the existence and uniqueness of a solution of (SDE-M).

Theorem 2.2. Let the diffusion term σ : R+ × Rn → Rn×m satisfy assumption (6). Then (SDE-M) has
a unique solution X ∈ Sν

n, where ν ≥ 2.

Proof. Let ν ≥ 2. First, we establish the result on [0, T ], for T > 0 fixed. We rewrite the stochastic
differential equations as

X(t) = (Id+µ(t)M)−1(X(t) + µ(t)M(X(t))︸ ︷︷ ︸
=:Z(t)

) =: Jµ(t)M (Z(t)) ∀t ∈ [0, T ],

where Jµ(t)M := (Id+µ(t)M)−1 : Rn → Rn denotes the resolvent of M with parameter µ(t) and Id denotes
the identity operator on Rn. Denoting the Yosida approximation of M with parameter µ(t) by

Mµ(t) :=
1

µ(t)
(Id−Jµ(t)M ),

a simple calculation yields that M(X(t)) =Mµ(t)(Z(t)) for all t ∈ [0, T ]. Hence,

dZ(t) = d(X(t) + µ(t)M(X(t))) = (−γ(t) + µ̇(t))Mµ(t)(Z(t))dt+ σ(t, Jµ(t)M (Z(t)))dW (t) ∀t ∈ [0, T ].
(13)

Now setting

F (t, z) := (µ̇(t)− γ(t))Mµ(t)(z), G(t, z) := σ(t, Jµ(t)M (z)) ∀z ∈ Rn ∀t ∈ [0, T ],

6



yields for all x, y ∈ Rn and all t ∈ [0, T ]

∥F (t, x)− F (t, y)∥+ ∥G(t, x)−G(t, y)∥F
= |γ(t)− µ̇(t)|∥Mµ(t)(x)−Mµ(t)(y)∥+ ∥σ(t, Jµ(t)M (x))− σ(t, Jµ(t)M (y))∥F

≤ (γup − µ̇low,T )
1

µ(t)
∥x− y∥+ cσ∥Jµ(t)M (x)− Jµ(t)M (y)∥

≤
(
(γup − µ̇low,T )

1

µlow
+ cσ

)
∥x− y∥,

where µ̇low,T := inf{µ̇(t) : t ∈ [0, T ]} ∈ R, since the continuous mapping µ̇ is bounded on the compact
interval [0, T ].

This allows us to use Theorem A.1 to obtain the existence of a unique stochastic process ZT ∈ Sµ
n [0, T ]

solving (13). Therefore, a reasonable candidate to solve (SDE-M), given by

XT (t) := Jµ(t)M (ZT (t)) ∀t ∈ [0, T ],

is uniquely defined. It remains to show that it does indeed solve (SDE-M) and lies in Sν
n[0, T ].

We define

ZT (t) := XT (t) + µ(t)M(XT (t)) ∀t ∈ [0, T ].

Since now M(XT (t)) =Mµ(t)(ZT (t)) and ZT is a solution of (13), it follows

d(XT (t) + µ(t)M(XT (t))) = (−γ(t) + µ̇(t))Mµ(t)(ZT (t))dt+ σ(t, Jµ(t)M (ZT (t)))dW (t)

= (−γ(t) + µ̇(t))M(XT (t))dt+ σ(t,XT (t))dW (t) ∀t ∈ [0, T ],

and thus, XT is indeed a solution of (SDE-M) on [0, T ].
Now, recall that Jµ(t)M is 1-Lipschitz continuous and observe that for all x ∈ Rn and all µ, λ > 0 it holds

∥JλM (x)− JµM (x)∥ =
∥∥∥JµM (µ

λ
x+

(
1− µ

λ

)
JλM (x)

)
− JµM (x)

∥∥∥
≤
∥∥∥(1− µ

λ

)
(x− JλM (x))

∥∥∥
≤ |λ− µ|∥Mλx∥.

This will allow us to establish the continuity of XT . Indeed, for all t, s ∈ [0, T ] it holds

∥XT (t)−XT (s)∥ ≤ ∥Jµ(t)M (ZT (t))− Jµ(s)M (ZT (t))∥+ ∥Jµ(s)M (ZT (t))− Jµ(s)M (ZT (s))∥
≤ |µ(t)− µ(s)|∥Mµ(t)(ZT (t))∥+ ∥ZT (t)− ZT (s)∥,

and, since ZT is continuous by Theorem A.1 and µ is continuous by assumption, the continuity of XT follows.
Next, consider

E

(
sup

t∈[0,T ]

∥XT (t)∥ν
)

= E

(
sup

t∈[0,T ]

∥Jµ(t)M (ZT (t))− 0∥ν
)

= E

(
sup

t∈[0,T ]

∥Jµ(t)M (ZT (t))− Jµ(t)M (µ(t)M(0))∥ν
)

≤ E

(
sup

t∈[0,T ]

∥ZT (t)− µ(t)M(0)∥ν
)

≤ E

(
2ν sup

t∈[0,T ]

(
1

2
∥ZT (t)∥+

µup

2
∥M(0)∥

)ν
)

≤ 2ν−1

(
E

(
sup

t∈[0,T ]

∥ZT (t)∥ν
)

+ µν
up∥M(0)∥ν

)
< +∞.
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Finally, in order to prove the progressive measurability of X, we first notice that the mapping

Ω× [0, T ] → [0, T ]× Rn, (ω, s) 7→ (s, ZT (ω, s)) (14)

is measurable. Indeed, the preimage of an element of the generating set I×O, where I ⊆ [0, T ] is an interval
and O ⊆ Rn an element of the generator of the Borel-σ-algebra on Rn, is given by

Z−1
T (O) ∩ (Ω× I),

which is measurable, due to the measurability of ZT and the fact that a finite intersection of measurable sets
is again measurable. On the other hand, from the above estimate for the resolvent operator and its Lipschitz
continuity, we see that the mapping

[0, T ]× Rn → Rn, (s, z) 7→ Jµ(s)M (z),

is continuous and therefore measurable. This means that its composition with the mapping in (14) is also
measurable. However, this composition is given by

Ω× [0, T ] → Rn, (ω, s) 7→ Jµ(s)M (ZT (ω, s)) = XT (ω, s),

which proves that XT is measurable, as claimed.
Since XT is uniquely defined on any [0, T ], where T > 0, for 0 < T1 < T2, we have XT2

|[0,T1] = XT1
.

Thus, there exists a unique solution X ∈ Sν
n of (SDE-M).

The following result establishes the almost sure convergence of X(t) to a zerM -valued random variable
as t→ +∞. The notion of a martingale will play an important role in its proof.

Definition 2.3. Let X be a real-valued stochastic process such that E(|X(t)|) < +∞ for all t ≥ 0.

(i) The σ-algebra generated by the random variables X(s) for 0 ≤ s ≤ t,

σ(t) := σ(X(s)|0 ≤ s ≤ t),

is called the history of the stochastic process X until (and including) time t.

(ii) If

X(s) = E(X(t)|σ(s)) a.s. ∀t ≥ s ≥ 0,

then X is called a martingale.

Theorem 2.4. Let zerM ̸= ∅, the diffusion term σ : R+ × Rn → Rn×m satisfy assumption (6), and X be

the unique trajectory process of (SDE-M). If, in addition to (12),
∫ +∞
0

σ∞(s)2ds < +∞, then the following
statements are true:

(i) supt≥0 E(∥X(t)∥2) < +∞;

(ii) it holds supt≥0 ∥X(t)∥ < +∞ a.s.

If, in addition, −∞ < µ̇up ≤ µ̇(t) for all t ≥ 0 and Lµup < 1, then:

(iii) almost surely limt→+∞ ∥M(X(t))∥ = 0 and limt→+∞ ∥X(t)−x∗∥ exists and is finite for all x∗ ∈ zerM ;

(iv) there exists a zerM -valued random variable x∗ such that limt→+∞X(t) = x∗ a.s.
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Proof. In order to perform the proof, we rewrite (SDE-M) as
dM(X(t)) = Y (t)dt+ σM (t)dW (t),

dX(t) = (−µ(t)Y (t)− γ(t)M(X(t)))dt+ σX(t)dW (t) ∀t > 0,

X(0) = X0,

where σ(t,X(t)) = σX(t) + µ(t)σM (t) for all t ≥ 0 and Y (t) is a stochastic process whose existence is
guaranteed by M(X(t)) being an Itô process. This alternative form will be essential in the upcoming
arguments, since we will be using Itô’s chain rule on an anchor function which takes an additional argument
to be filled by M(X(t)). Here, Itô’s formula requires the process Y (t) as an analogue to the derivative of
M(X(t)) in the deterministic setting. Let x∗ ∈ zerM , and define the anchor function ϕ : R+×Rn×Rn → R,

ϕ(t, x, z) := µ(t)⟨z, x− x∗⟩+ 1

2
∥x− x∗∥2 + µ(t)2

2
∥z∥2 =

1

2
∥x+ µ(t)z − x∗∥2.

The proposed anchor function takes an additional argument – this will be taken equal to M(X(t)) over the
course of the proof. For all (t, x, z) ∈ R+ × Rn × Rn it holds

d

dt
ϕ(t, x, z) = µ̇(t)⟨z, x− x∗⟩+ µ(t)µ̇(t)∥z∥2

∇xϕ(t, x, z) = µ(t)z + x− x∗

∇zϕ(t, x, z) = µ(t)(x− x∗) + µ(t)2z

∇2
xϕ(t, x, z) = I

∇x∇zϕ(t, x, z) = ∇z∇xϕ(t, x, z) = µ(t)I

∇2
zϕ(t, x, z) = µ(t)2I.

Observe that the remaining second partial derivatives of ϕ are identically 0. Hence, the Itô formula yields
for all t ≥ 0

ϕ(t,X(t),M(X(t))) = ϕ(0, X(0),M(X(0)))

+

∫ t

0

(
µ̇(s)⟨M(X(s)), X(s)− x∗⟩+ µ(s)µ̇(s)∥M(X(s))∥2

)
ds

+

∫ t

0

〈
(µ(s)M(X(s)) +X(s)− x∗), (−µ(s)Y (s)− γ(s)M(X(s)))

〉
ds

+

∫ t

0

〈
σ⊤
X(s)(µ(s)M(X(s)) +X(s)− x∗), dW (s)

〉
+

∫ t

0

〈
(µ(s)(X(s)− x∗) + µ(s)2M(X(s))), Y (s)

〉
ds

+

∫ t

0

〈
σ⊤
M (s)(µ(s)(X(s)− x∗) + µ(s)2M(X(s))), dW (s)

〉
+

1

2

∫ t

0

tr(σ⊤
X(s)σX(s)) + 2µ(s)tr(σ⊤

M (s)σX(s)) + µ(s)2tr(σ⊤
M (s)σM (s))ds.

We observe for all s ≥ 0

σ⊤
X(s)σX(s) + 2µ(s)σ⊤

M (s)σX(s) + µ(s)2(σ⊤
M (s)σM (s)) = σ⊤(s,X(s))σ(s,X(s)),

and denote this term by Σ(s,X(s)) for improved readability. Further, it holds for all s ≥ 0

⟨σ⊤
X(s)(µ(s)M(X(s)) +X(s)− x∗) + σ⊤

M (s)(µ(s)2M(X(s)) + µ(s)(X(s)− x∗)), dW (s)⟩
= ⟨(σX(s) + µ(s)σM (s))⊤(µ(s)M(X(s)) +X(s)− x∗), dW (s)⟩
= ⟨σ⊤(s,X(s))(µ(s)M(X(s)) +X(s)− x∗), dW (s)⟩.

9



Then, performing some elementary computations, we get for all t ≥ 0

ϕ(t,X(t),M(X(t))) = µ(0)⟨M(X0), X0 − x∗⟩+ 1

2
∥X0 − x∗∥2 + µ(0)2

2
∥M(X0)∥2︸ ︷︷ ︸

=:ξ

−
∫ t

0

(γ(s)− µ̇(s))
(
⟨M(X(s)), X(s)− x∗⟩+ µ(s)∥M(X(s))∥2

)
ds︸ ︷︷ ︸

=:U(t)

+

∫ t

0

⟨σ⊤(s,X(s))(µ(s)M(X(s)) +X(s)− x∗), dW (s)⟩︸ ︷︷ ︸
=:N(t)

+
1

2

∫ t

0

tr(Σ(s,X(s)))ds︸ ︷︷ ︸
=:A(t)

,

(15)

in other words

ϕ(t,X(t),M(X(t))) = ξ − U(t) +N(t) +A(t) ∀t ≥ 0.

(i) As X ∈ S2
n, it holds for all T > 0 that

E

(∫ T

0

∥σ⊤(s,X(s))(X(s)− x∗ + µ(s)M(X(s)))∥2ds

)

≤ E

(∫ T

0

2(∥σ⊤(s,X(s))(X(s)− x∗)∥2 + µ2
up∥σ⊤(s,X(s))(M(X(s))−M(x∗))∥2)ds

)

≤ E

(
2 sup
t∈[0,T ]

∥X(t)− x∗∥2
∫ T

0

σ2
∞(s)ds+ µ2

up sup
t∈[0,T ]

∥M(X(t))−M(x∗)∥2
∫ T

0

σ2
∞(s)ds

)

≤ 2(1 + µ2
upL

2)E

(
sup

t∈[0,T ]

∥X(t)− x∗∥2
)∫ T

0

σ2
∞(s)ds < +∞.

By Proposition A.2, this means that N is a square-integrable continuous martingale, and E(N(t)) = 0 for
all t ≥ 0. Taking the expectation of (15) and using that

0 ≤ tr(Σ(s,X(s)) ≤ σ2
∞(s), ⟨M(X(s)), X(s)− x∗⟩ ≥ 0, and ∥M(X(s))∥2 ≥ 0 ∀s ≥ 0,

yields for all t ≥ 0

E
(
1

2
∥X(t)− x∗∥2

)
≤ E(ϕ(t,X(t)))

=
1

2
∥X0 − x∗∥2 + µup⟨M(X0), X0 − x∗⟩+

µ2
up

2
∥M(X0)∥2

− E(U(t))︸ ︷︷ ︸
≥0

+E(N(t))︸ ︷︷ ︸
=0

+E(A(t))

≤ 1

2
∥X0 − x∗∥2 + µ(0)⟨M(X0), X0 − x∗⟩+ µ(0)2

2
∥M(X0)∥2 +

1

2

∫ t

0

σ2
∞(s)ds < +∞.

Finally, by taking the supremum over t ≥ 0, we establish the validity of the first claim.
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(ii) A and U are continuous adapted increasing processes with A(0) = U(0) = 0 a.s., while limt→+∞A(t)
< +∞ holds due to the integrability condition for the diffusion term. Thus, we can use Theorem A.3 to
obtain almost surely that limt→+∞ ϕ(t,X(t),M(X(t))) exists and is finite, and∫ +∞

0

(γ(s)− µ̇(s))
(
⟨M(X(s)), X(s)− x∗⟩+ µ(s)∥M(X(s))∥2

)
ds < +∞. (16)

In other words, for all x∗ ∈ zerM there exists Ωx∗ ∈ F such that P(Ωx∗) = 1 and for all ω ∈ Ωx∗ it holds
that

lim
t→+∞

µ(t)⟨M(X(ω, t)), X(ω, t)− x∗⟩+ 1

2
∥X(ω, t)− x∗∥2 + µ(t)2

2
∥M(X(ω, t))∥2 exists and is finite. (17)

This implies that for all x∗ ∈ zerM there exists Ωx∗ ∈ F such that P(Ωx∗) = 1 and ∥X(ω, ·)− x∗∥ remains
bounded for all ω ∈ Ωx∗ . This proves that supt≥0 ∥X(t)∥ < +∞ a.s.

(iii) Using the monotonicity of M and the fact that µ and γ are bounded from below by a positive

constant, by (16), it follows
∫ +∞
0

∥M(X(ω, s))∥2ds < +∞ a.s. We denote by ΩI the set of probability one

for which it holds
∫ +∞
0

∥M(X(ω, s))∥2ds < +∞ for all ω ∈ ΩI .

Let R(t) =
∫ t

0
σ(s,X(s))dW (s). This is a continuous martingale with respect to Ft, which, according to

the Itô isometry property, satisfies

E(∥R(t)∥2) = E
(∫ t

0

∥σ(s,X(s))∥2F ds
)

≤ E
(∫ ∞

0

σ2
∞(s)ds

)
< +∞ ∀t ≥ 0.

By Theorem A.5, there exists a Rn-valued random variable R∞ with respect to F∞, the σ-algebra generated
by ∪t≥0Ft, which satisfies E(∥R∞∥2) < +∞, and

lim
t→+∞

R(ω, t) = R∞(ω) for every ω ∈ ΩR,

where ΩR ∈ F is such that P(ΩR) = 1.
Then P(ΩI ∩ΩR) = 1 and, as we will see below, limt→+∞ ∥M(X(ω, t))∥ = 0 for all ω ∈ ΩI ∩ΩR. Indeed,

for all ω ∈ ΩI∩ΩR, since
∫ +∞
0

∥M(X(ω, s))∥2ds < +∞, it holds lim inft→+∞ ∥M(X(ω, t))∥ = 0. In addition,
for all ω ∈ ΩI ∩ ΩR, lim supt→+∞ ∥M(X(ω, t))∥ = 0.

Suppose by contradiction that there exists ω0 ∈ ΩI ∩ ΩR such that lim supt→+∞ ∥M(X(ω0, t))∥ > 0.
Then, by Lemma A.4, there exist δ > 0 satisfying

0 = lim inf
t→+∞

∥M(X(ω0, t))∥ < δ < lim sup
t→+∞

∥M(X(ω0, t))∥,

and a sequence (tk)k≥0 ⊆ R+ such that

lim
k→∞

tk = +∞, ∥M(X(ω, tk))∥ > δ, and tk+1 − tk > 1 ∀k ≥ 0.

Let α > 0 such that 1− (1 + α)L2µ2
up > 0 and ε > 0 such that

ε

2(|µ̇low|2 + γ2up)
< 1 and

(
3 +

3

α

)
εL2

1− (1 + α)L2µ2
up

<
δ2

2
.

Then
[
tk, tk + ε

2(|µ̇low|2+γ2
up)

]
are disjoint intervals for any two distinct k ≥ 0.

Also, by the convergence property of R(ω0, ·) and the fact that
∫ +∞
0

∥M(X(ω0, s))∥ds < +∞, there exists
k0 ≥ 0 such that for every k ≥ k0,

sup
t≥tk

∥R(ω0, t)−R(ω0, tk)∥2 <
ε

2
and

∫ +∞

tk

∥M(X(ω0, s))∥2ds < 1.
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For all k ≥ k0 and all t ∈
[
tk, tk + ε

2(µ̇low|2+γ2
up)

]
, it holds

∥X(ω0, t)−X(ω0, tk)∥2

= ∥X(ω0, t) + µ(t)M(X(ω0, t))−X(tk)− µ(tk)M(X(ω0, tk)) + µ(tk)M(X(ω0, tk))− µ(t)M(X(ω0, t))∥2

≤ (1 + α)∥µ(tk)(M(X(ω0, tk))−M(X(ω0, t)))∥2

+

(
1 +

1

α

)∥∥∥∥∫ t

tk

(µ̇(s)− γ(s))M(X(ω0, s))ds+

∫ t

tk

σ(s,X(ω0, s))dW (s) + (µ(tk)− µ(t))M(X(ω0, t))

∥∥∥∥2
≤ (1 + α)µ2

up∥M(X(ω0, tk))−M(X(ω0, t))∥2

+

(
3 +

3

α

)(∥∥∥∥∫ t

tk

(µ̇(s)− γ(s))M(X(ω0, s))ds

∥∥∥∥2 + ∥∥∥∥∫ t

tk

σ(s,X(ω0, s))dW (s)

∥∥∥∥2

+ |µ(tk)− µ(t)|2∥M(X(ω0, t))∥2
)

≤ (1 + α)µ2
up∥M(X(ω0, tk))−M(X(ω0, t))∥2

+

(
3 +

3

α

)(
2(|µ̇low|2 + |γup|2)(t− tk)

∫ t

tk

∥M(X(ω0, s))∥2ds+ ∥R(ω0, t)−R(ω0, tk)∥2 +

+ 4µ2
up∥M(X(ω0, t))∥2

)
≤ (1 + α)µ2

up∥M(X(ω0, tk))−M(X(ω0, t))∥2

+

(
3 +

3

α

)(
2(t− tk)(|µ̇low|2 + γ2up) +

ε

2
+ 4µ2

up∥M(X(ω0, t))∥2
)

≤ (1 + α)µ2
up∥M(X(ω0, tk))−M(X(ω0, t))∥2 +

(
3 +

3

α

)(
ε+ 4µ2

up∥M(X(ω0, t))∥2
)
,

where the first inequality is the one between the geometric and the arithmetic mean, the second inequality
follows from the Cauchy-Schwarz inequality and the third inequality follows from the Hölder inequality for
integrals.

By making use of the Lipschitz continuity of M , it yields

∥M(X(ω0, tk))−M(X(ω0, t))∥2

≤ (1 + α)L2µ2
up∥M(X(ω0, tk))−M(X(ω0, t))∥2 +

(
3 +

3

α

)
L2
(
ε+ 4µ2

up∥M(X(ω0, t))∥2
)
,

consequently,

∥M(X(ω0, tk))−M(X(ω0, t))∥2 ≤
(
3 +

3

α

)
L2

1− (1 + α)L2µ2
up

(
ε+ 4µ2

up∥M(X(ω0, t))∥2
)
.

Therefore, for all k ≥ k0 and all t ∈
[
tk, tk + ε

2(|µ̇low|2+γ2
up)

]
, from

∥M(X(ω0, t))∥2 ≥ 1

2
∥M(X(ω0, tk))∥2 − ∥M(X(ω0, t)−M(X(ω0, tk))∥2,

we get (
1 +

(
3 +

3

α

)
4µ2

upL
2

1− (1 + α)L2µ2
up

)
∥M(X(ω0, t))∥2 ≥ δ2

2
−
(
3 +

3

α

)
εL2

1− (1 + α)L2µ2
up

.
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Finally, (
1 +

(
3 +

3

α

)
4µ2

upL
2

1− (1 + α)L2µ2
up

)∫ +∞

0

∥M(X(ω0, s))∥2ds

≥
∑
k≥k0

∫ tk+
ε

2(|µ̇low|2+γ2
up)

tk

∥M(X(ω0, s))∥2ds

≥
∑
k≥k0

ε

2(|µ̇low|2 + γ2up)

(
δ2

2
−
(
3 +

3

α

)
εL2

1− (1 + α)L2µ2
up

)
= +∞,

which contradicts
∫ +∞
0

∥M(X(ω0, s))∥2ds < +∞. This means that for all ω ∈ ΩI ∩ ΩR

0 = lim inf
t→+∞

∥M(X(ω, t))∥ = lim sup
t→+∞

∥M(X(ω, t))∥ = lim
t→+∞

∥M(X(ω, t))∥ = 0.

Then, for all x∗ ∈ zerM and all ω ∈ Ωx∗ ∩ ΩI ∩ ΩR, the Cauchy-Schwarz inequality gives

0 ≤ lim
t→+∞

⟨M(X(ω, t)), X(ω, t)− x∗⟩ ≤ lim
t→+∞

∥M(X(ω, t))∥︸ ︷︷ ︸
→0

∥X(ω, t)− x∗∥︸ ︷︷ ︸
is bounded

= 0.

Using (17) and that µ(t) ≥ µlow > 0 for all t ≥ 0, it follows that limt→+∞ ∥X(ω, t)− x∗∥ exists and is finite.
Next, we will employ an argument from [25] to demonstrate the existence of a subset of Ω of probability

one, which is independent of a previously chosen x∗ ∈ zerM , such that for all ω in this subset and all
x∗ ∈ zerM the limit limt→+∞ ∥X(ω, t)− x∗∥ exists and is finite.

Taking into account that zerM is closed, by the separability of Rn there exists a countable set S ⊆ Rn

which is dense in zerM . Because S is countable,

P

(⋂
s∈S

Ωs

)
= 1− P

(⋃
s∈S

Ωc
s

)
≥ 1−

∑
s∈S

P(Ωc
s) = 1.

Then P
(⋂

s∈S Ωs ∩ ΩI ∩ ΩR

)
= 1. Let ω ∈

⋂
s∈S Ωs ∩ ΩI ∩ ΩR be fixed and choose x∗ ∈ zerM . Then there

exists a sequence (sk)k≥0 ⊆ S such that sk → x∗ as k → +∞. For every k ≥ 0, since ω ∈ Ωsk ,

lim
t→+∞

∥X(ω, t)− sk∥ exists and is finite.

Applying the triangle inequality, it follows

|∥X(ω, t)− sk∥ − ∥X(ω, t)− x∗∥| ≤ ∥sk − x∗∥ ∀k ≥ 0 ∀t ≥ 0.

This gives for all k ≥ 0

−∥sk − x∗∥+ lim
t→+∞

∥X(ω, t)− sk∥ ≤ lim inf
t→+∞

∥X(ω, t)− x∗∥

≤ lim sup
t→+∞

∥X(ω, t)− x∗∥ ≤ lim
t→+∞

∥X(ω, t)− sk∥+ ∥sk − x∗∥.

Letting k → +∞, we get

lim
t→+∞

∥X(ω, t)− x∗∥ = lim
k→+∞

lim
t→+∞

∥X(ω, t)− sk∥ ∈ R.

Finally, we recall that there exists Ωcont ∈ F such that P(Ωcont) = 1 and X(ω, ·) is continuous for every
ω ∈ Ωcont. Let ω ∈ Ωconverge :=

⋂
s∈S Ωs ∩ ΩI ∩ ΩR ∩ Ωcont. It holds P(Ωconverge) = 1. For x∗ ∈ zerM ,
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there exists C(ω) ∈ R and T (ω) ≤ 0 such that ∥X(ω, t) − x∗∥ ≤ C(ω) for all t ≥ T (ω). Because X(ω, ·) is
continuous, it holds

sup
t∈[0,T (ω)]

∥X(ω, t)∥ < +∞.

Thus,

sup
t≥0

∥X(ω, t)∥ ≤ max

(
sup

t∈[0,T (ω)]

∥X(ω, t)∥, C(ω) + ∥x∗∥

)
< +∞.

(iv) We will use Opial’s Lemma to prove the convergence of the trajectory process. We fix ω ∈ Ωconverge

and recall that above we proved that for every x∗ ∈ zerM the limit limt→+∞ ∥X(ω, t) − x∗∥ exists. In
addition, X(ω, ·) is bounded, therefore, its set of limit points is not empty. Let x(ω) be such a limit point,
which means that there exists a sequence (tk)k≥0 ⊆ R+ such that

lim
k→∞

X(ω, tk) = x(ω).

From limt→+∞ ∥M(X(ω, t))∥ = 0 and the continuity of M , we see that x(ω) ∈ zerM . Since both conditions
in Opial’s Lemma are satisfied, there exists x∗(ω) ∈ zerM such that limt→+∞X(ω, t) = x∗(ω).

Since ω ∈ Ωconverge was arbitrarily chosen, there exists a zerM -valued random variable x∗ such that
limt→+∞X(t) = x∗ almost surely.

3 Continuous time system: convergence rates in expectation

In this section we will provide upper bounds and convergence rates in expectation for the ergodic squared
norm of the operator and the ergodic gap function. In addition, in case M is κ-strongly monotone with
constant κ > 0, we derive upper bounds in expectation for the squared distance of the trajectory process to
the unique zero of M .

We recall that M : Rn → Rn is called κ-strongly monotone with constant κ > 0 if ⟨Mx−My, x− y⟩ ≥
κ∥x− y∥2 for all x, y ∈ Rn.

Regarding the parameter functions, throughout this section, we will assume that:

0 < µ(t) ≤ µup := µ(0) ∀t ≥ 0 and µ is nonincreasing on [0,+∞). (18)

Theorem 3.1. Let X be a trajectory process of (SDE-M) and x∗ ∈ zerM . Then the following statements
are true:

(i) Assume that γ is nonincreasing on [0,+∞). For all t > 0 it holds

E
(
1

t

∫ t

0

⟨X(s)− x∗,M(X(s))⟩ds
)

≤ 1

γ(t)t

(
µ2
upL

2

2
+ µupL+

1

2

)
dist(X0, zerM)2 +

σ2
∗

2γ(t)µ(t)

and

E
(
1

t

∫ t

0

∥M(X(s))∥2ds
)

≤ 1

γ(t)µ(t)t

(
µ2
upL

2

2
+ µupL+

1

2

)
dist(X0, zerM)2 +

σ2
∗

2γ(t)µ(t)
.

If, in addition,
∫ +∞
0

σ2
∞(s)ds < +∞, then

E
(
1

t

∫ t

0

⟨X(s)− x∗,M(X(s))⟩ds
)

= O
(

1

γ(t)t

)
as t→ +∞.

and

E
(
1

t

∫ t

0

∥M(X(s))∥2ds
)

= O
(

1

γ(t)µ(t)t

)
as t→ +∞
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(ii) Assume that 0 < γlow ≤ γ(t) for all t ≥ 0. For all t > 0 it holds

E
(
1

t

∫ t

0

⟨X(s)− x∗,M(X(s))⟩ds
)

≤ 1

γlowt

(
µ2
upL

2

2
+ µupL+

1

2

)
dist(X0, zerM)2 +

σ2
∗

2γlowµ(t)

and

E
(
1

t

∫ t

0

∥M(X(s))∥2ds
)

≤ 1

γlowµ(t)t

(
µ2
upL

2

2
+ µupL+

1

2

)
dist(X0, zerM)2 +

σ2
∗

2γlowµ(t)
.

If, in addition,
∫ +∞
0

σ2
∞(s)ds < +∞, then

E
(
1

t

∫ t

0

⟨X(s)− x∗,M(X(s))⟩ds
)

= O
(
1

t

)
as t→ +∞.

and

E
(
1

t

∫ t

0

∥M(X(s))∥2ds
)

= O
(

1

µ(t)t

)
as t→ +∞

(iii) Assume that 0 < γlow ≤ γ(t) for all t ≥ 0. If M is κ-strongly monotone with constant κ ≥ 1
2µup

and

X0 ̸= x∗, then for all t ≥ 0 it holds

E
(
1

2
∥X(t)− x∗∥2

)
≤

(
1

2
∥X0 − x∗∥2 + µup⟨M(X0), X0 − x∗⟩+

µ2
up

2
∥M(X0)∥2

)
e
− γlow

2µup
t
+
σ2
∗µup

γlow
.

If, in addition, σ∞ is decreasing and vanishes at +∞, then for all λ ∈ (0, 1) and all t > 0 it holds

E
(
1

2
∥X(t)− x∗∥2

)
≤

(
1

2
∥X0 − x∗∥2 + µup⟨M(X0), X0 − x∗⟩+

µ2
up

2
∥M(X0)∥2

)
e
− γlow

2µup
t

+
σ2
∗µup

γlow
e
− γlow

2µup
(1−λ)t

+
µup

γlow
σ2
∞(λt).

Proof. (i) For all t ≥ 0 we set (see (15))

ϕ(t,X(t),M(X(t))) = µ(0)⟨M(X0), X0 − x∗⟩+ 1

2
∥X0 − x∗∥2 + µ(0)2

2
∥M(X0)∥2

−
∫ t

0

(−µ̇(s) + γ(s))(⟨M(X(s)), X(s)− x∗⟩+ µ(s)∥M(X(s))∥2)ds

+

∫ t

0

⟨σ⊤(s,X(s))(µ(s)M(X(s)) +X(s)− x∗), dW (s)⟩

+
1

2

∫ t

0

tr(Σ(s,X(s)))ds

and G(t) := E(ϕ(t,X(t),M(X(t)))). Then, using that the expectation of the stochastic integral is equal to
zero and that µ̇(t) ≤ 0, for all t ≥ 0 it yields

G(t)−G(0) =− E
(∫ t

0

(−µ̇(s) + γ(s))(⟨M(X(s)), X(s)− x∗⟩+ µ(s)∥M(X(s))∥2)ds
)

+
1

2
E
(∫ t

0

tr(Σ(s,X(s)))ds

)
(19)

≤− γ(t)E
(∫ t

0

⟨M(X(s)), X(s)− x∗⟩ds
)
− γ(t)µ(t)E

(∫ t

0

∥M(X(s))∥2ds
)
+
σ2
∗t

2
.
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Rearranging and using that G(t) ≥ 0, we obtain for all t > 0

γ(t)E
(
1

t

∫ t

0

⟨M(X(s)), X(s)− x∗⟩ds
)
+ γ(t)µ(t)E

(
1

t

∫ t

0

∥M(X(s))∥2ds
)

≤ 1

t

(
µ(0)⟨M(X0), X0 − x∗⟩+ 1

2
∥X0 − x∗∥2 + µ(0)2

2
∥M(X0)∥2

)
+
σ2
∗
2

≤ 1

t

(
µ(0)L+

1

2
+
µ(0)2L2

2

)
∥X0 − x∗∥2 + σ2

∗
2
.

Taking the infimum over all x∗ ∈ zerM yields the result.
If
∫ +∞
0

σ2
∞(s)ds < +∞, then we have for all t > 0

G(t)−G(0)

≤ − γ(t)E
(∫ t

0

⟨M(X(s)), X(s)− x∗⟩ds
)
− γ(t)µ(t)E

(∫ t

0

∥M(X(s))∥2ds
)
+

1

2
E
(∫ +∞

0

σ2
∞(s)ds

)
,

which, after rearrangement, gives

γ(t)E
(
1

t

∫ t

0

⟨M(X(s)), X(s)− x∗⟩ds
)
+ γ(t)µ(t)E

(
1

t

∫ t

0

∥M(X(s))∥2ds
)

≤ 1

t

(
µ(0)⟨M(X0), X0 − x∗⟩+ 1

2
∥X0 − x∗∥2 + µ(0)2

2
∥M(X0)∥2

)
+

1

2t
E
(∫ +∞

0

σ2
∞(s)ds

)
,

thus proving

E
(
1

t

∫ t

0

⟨X(s)− x∗,M(X(s))⟩ds
)

= O
(

1

γ(t)t

)
as t→ +∞

and

E
(
1

t

∫ t

0

∥M(X(s))∥2ds
)

= O
(

1

γ(t)µ(t)t

)
as t→ +∞.

(ii) The proof follows in the same lines as that of statement (i).
(iii) By using the strong monotonicity of the operator, for all t2 > t1 ≥ 0 it holds

E
(∫ t2

t1

(µ̇(s)− γ(s))(⟨M(X(s)), X(s)− x∗⟩+ µ(s)∥M(X(s))∥2)ds
)

≤ E
(∫ t2

t1

(
−µ(s)γ(s)∥M(X(s))∥2 − γ(s)⟨X(s)− x∗,M(X(s))⟩

)
ds

)
≤ γlowE

(∫ t

0

(
−µ(s)∥M(X(s))∥2 − ⟨X(s)− x∗,M(X(s))⟩

)
ds

)
≤ γlow

2µup
E
(∫ t2

t1

(
−2µ(s)µup∥M(X(s))∥2 − 2µup⟨X(s)− x∗,M(X(s))⟩

)
ds

)
≤ γlow

2µup
E
(∫ t2

t1

(
−2µ(s)2∥M(X(s))∥2 − µ(s)⟨X(s)− x∗,M(X(s))⟩ − µupκ∥X(s)− x∗∥2

)
ds

)
≤ γlow

2µup
E
(∫ t2

t1

(
−µ(s)

2

2
∥M(X(s))∥2 − µ(s)⟨X(s)− x∗,M(X(s))⟩ − 1

2
∥X(s)− x∗∥2

)
ds

)
= − γlow

2µup

∫ t2

t1

G(s)ds.
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Hence, according to (15), for all t2 > t1 ≥ 0 it holds

G(t2) ≤ G(t1)−
γlow
2µup

∫ t2

t1

G(s)ds+
1

2

∫ t2

t1

σ2
∞(s)ds ≤ G(t1)−

γlow
2µup

∫ t2

t1

G(s)ds+
1

2

∫ t2

t1

σ2
∗ds.

The solution of the ordinary differential equation{
φ′(t) = − γlow

2µup
φ(t) +

σ2
∗
2 ∀t > 0

φ(0) = G(0)

is

φ(t) = G(0)e
− γlow

2µup
t
+
σ2
∗µup

γlow
(1− e

− γlow
2µup

t
) ∀t ≥ 0,

hence, invoking Lemma A.6, it holds

E
(
1

2
∥X(t)− x∗∥2

)
≤ G(t) ≤ G(0)e

− γlow
2µup

t
+
σ2
∗µup

γlow
∀t ≥ 0,

and the claim follows.
For σ∞ decreasing and vanishing at +∞, we consider the ordinary differential equations{

φ′(t) = − γlow

2µup
φ(t) +

σ2
∞(t)
2 ∀t > 0

φ(0) = G(0).

Employing a technique used in [25], we choose λ ∈ (0, 1) and derive for its solution the following estimates,
that hold for all t ≥ 0

φ(t) = G(0)e
− γlow

2µup
t
+ e

− γlow
2µup

t
∫ t

0

σ2
∞(s)

2
e

γlow
2µup

s
ds

≤ G(0)e
− γlow

2µup
t
+ e

− γlow
2µup

t

(∫ λt

0

σ2
∞(s)

2
e

γlow
2µup

s
ds+

∫ t

λt

σ2
∞(s)

2
e

γlow
2µup

s
ds

)

≤ G(0)e
− γlow

2µupt + e
− γlow

2µup
t

(
σ2
∗
2

∫ λt

0

e
γlow
2µup

s
ds+

σ2
∞(λt)

2

∫ t

λt

e
γlow
2µup

s
ds

)

≤ G(0)e
− γlow

2µup
t
+ e

− γlow
2µup

t
(
σ2
∗µup

γlow
e

γlow
2µup

λt
+

2µup

γlow

σ2
∞(λt)

2
e

γlow
2µup

t
)
.

Hence, invoking again Lemma A.6, it holds

G(t) ≤ G(0)e
− γlow

2µup
t
+
σ2
∗µup

γlow
e
− γlow

2µup
(1−λ)t

+
µup

γlow
σ2
∞(λt) ∀t ≥ 0,

proving the desired result.

Remark 3.2. While the boundedness of γ from above is essential in the proof of Theorem 2.4, the conver-
gence rates in Theorem 3.1 hold also for γ not bounded from above.

Remark 3.3. Finding the saddle points of the minimax problem (3)

min
x∈Rp

max
y∈Rq

Φ(x, y),
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where Φ : Rp × Rq → R is a convex-concave function with L-Lipschitz continuous gradient, is equivalent to
solving equation (1) for

M : Rp × Rq → R, M(x, y) := (∇xΦ(x, y),−∇yΦ(x, y)).

The corresponding stochastic differential equation (SDE-M) reads
d(X(t) + µ(t)∇xΦ(X(·), Y (·))) = −(γ(t)− µ̇(t))∇xΦ(X(·), Y (·))dt+ σ1(t,X(t), Y (t))dW (t),

d(Y (t)− µ(t)∇yΦ(X(·), Y (·))) = (γ(t)− µ̇(t))∇yΦ(X(·), Y (·))dt+ σ2(t,X(t), Y (t))dW (t) ∀t > 0,

X(0) = X0, Y (0) = Y0,

(SDE-minimax)

and is defined over a filtered probability space (Ω,F , {Ft}t≥0,P) with σ1 : R+ × Rp × Rq → Rp×m and

σ2 : R+ × Rp × Rq → Rq×m measurable such that

(
σ1
σ2

)
: R+ × Rp × Rq → R(p+q)×m satisfies (6), W a m-

dimensional Brownian motion, X(·), Y (·), ∇xΦ(X(·), Y (·)), and ∇yΦ(X(·), Y (·)) are stochastic Itô processes
with the same m-dimensional Brownian motion W , and parameter functions µ : [0,+∞) → (0,+∞) and
γ : [0,+∞) → (0,+∞) assumed to be continuous differentiable and, respectively, integrable and to fulfill
(12).

The system (SDE-minimax) has a unique trajectory solution (X,Y ) ∈ Sν
p+q, for all ν ≥ 2. The trajectory

(X,Y ) satisfies all the statements of Theorem 2.4 under the corresponding hypotheses. Furthermore, for the
gap function it holds almost surely limt→+∞ Φ(X(t), y∗)− Φ(x∗, Y (t)) = 0 for any saddle point (x∗, y∗) of
(3). This is a straightforward consequence of the fact that for all t ≥ 0

∥(∇xΦ(X(t), Y (t)),−∇yΦ(X(t), Y (t)))∥∥(X(t), Y (t))− (x∗, y∗)∥
≥ ⟨(∇xΦ(X(t), Y (t)),−∇yΦ(X(t), Y (t))), (X(t), Y (t))− (x∗, y∗)⟩
= ⟨∇xΦ(X(t), Y (t)), X(t)− x∗⟩+ ⟨−∇yΦ(X(t), Y (t)), Y (t)− y∗⟩
≥ Φ(X(t), Y (t))− Φ(x∗, Y (t))− Φ(X(t), Y (t)) + Φ(X(t), y∗)

= Φ(X(t), y∗)− Φ(x∗, Y (t)) ≥ 0.

(20)

The trajectory (X,Y ) satisfies also all the statements of Theorem 3.1 under the corresponding hypotheses.
Furthermore, for any saddle point (x∗, y∗) of (3) it holds

E
(
Φ

(
1

t

∫ t

0

X(s)ds, y∗
)
− Φ

(
x∗,

1

t

∫ t

0

Y (s)ds

))
≤ 1

γ(t)t

(
µ2
upL

2

2
+ µupL+

1

2

)
dist((X0, Y0), zerM)2 +

σ2
∗

2γ(t)µ(t)
∀t > 0,

if γ is nonincreasing on [0,+∞), and

E
(
Φ

(
1

t

∫ t

0

X(s)ds, y∗
)
− Φ

(
x∗,

1

t

∫ t

0

Y (s)ds

))
≤ 1

γlowt

(
µ2
upL

2

2
+ µupL+

1

2

)
dist((X0, Y0), zerM)2 +

σ2
∗

2γlowµ(t)
∀t > 0,

if 0 < γlow ≤ γ(t) for all t ≥ 0. If, in addition,
∫ +∞
0

σ2
∞(s)ds < +∞, then

E
(
Φ

(
1

t

∫ t

0

X(s)ds, y∗
)
− Φ

(
x∗,

1

t

∫ t

0

Y (s)ds

))
= O

(
1

γ(t)t

)
as t→ +∞
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and

E
(
Φ

(
1

t

∫ t

0

X(s)ds, y∗
)
− Φ

(
x∗,

1

t

∫ t

0

Y (s)ds

))
= O

(
1

γ(t)t

)
as t→ +∞,

respectively.
Indeed, invoking Jensen’s inequality and (20), we have for all t > 0

0 ≤ E
(
Φ

(
1

t

∫ t

0

X(s)ds, y∗
)
− Φ

(
x∗,

1

t

∫ t

0

Y (s)ds

))
≤ E

(
1

t

∫ t

0

(Φ(X(s), y∗)− Φ(x∗, Y (s)))ds

)
≤ E

(
1

t

∫ t

0

⟨(∇xΦ(X(s), Y (s)),−∇yΦ(X(s), Y (s))), (X(s), Y (s))− (x∗, y∗)⟩ ds
)
.

4 Discrete time considerations

The aim of this section is to show how the ergodic upper bound results in expectation for the squared
norm of the operator and for the gap function transfer to the stochastic variants of the Optimistic Gradient
Descent Ascent (OGDA) method and the Extragradient (EG) method with constant step sizes, which can
be interpreted as temporal discretizations of (SDE-M).

We will consider only equations governed by operators which are monotone, but not necessarily strongly
monotone. For a stochastic variant of the Optimistic Gradient Descent Ascent (OGDA) method designed to
solve variational inequalities, ergodic upper bound results for the gap function in expectation have also been
derived in [6]. For the stochastic Extragradient (EG) method, ergodic upper bound results in expectation
for the squared norm of the operator have also been derived in [16] (see also [8, 20]), and for the gap function
[6]. As seen in Remark 3.3, the upper bound results for the gap function can be straightforwardly transferred
via Jensen’s inequality and the gradient inequality for convex functions to the ergodic primal-dual gap when
solving convex-concave minimax problems.

Throughout this section, we will assume that only a stochastic estimator M(·, ξ) is accessible instead of
M itself. The stochastic estimator is assumed to be unbiased, meaning that Eξ(M(x, ξ)) = M(x) for all
x ∈ Rn. Further, it is required to have bounded variance, i.e., Eξ(∥M(x, ξ)−M(x)∥2) < σ2

∗ for all x ∈ Rn.

4.1 Stochastic Optimistic Gradient Descent Ascent (OGDA) method

Recalling the stochastic differential equation (SDE-M)

d(X(t) + µ(t)M(X(t))) = −(γ(t)− µ̇(t))M(X(t))dt+ σ(t,X(t))dW (t),

and fixing the parameter functions µ(t) = γ(t) := γ > 0 to be constant for all t ≥ 0, we consider the temporal
discretization

xk+1 − xk + γM(xk, ξk)− γM(xk−1, ξk−1) = −γM(xk, ξk) ∀k ≥ 1.

Equivalently,

xk+1 := xk − 2γM(xk, ξk) + γM(xk−1, ξk−1) ∀k ≥ 1, (Stochastic OGDA)

where x0, x1 ∈ Rn are given vectors and ξk encodes the stochasticity appearing at iteration k.
We consider the approximation errors

Wk :=M(xk, ξk)−M(xk) ∀k ≥ 0,

and the sub-sigma algebras
Fk := σ(x0, x1, ξ0, ξ1, ..., ξk−1) ∀k ≥ 2.
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Lemma 4.1. Let x∗ ∈ zerM and γ < 1
2L . For all k ≥ 2 it holds

∥xk+1 + γM(xk, ξk)− x∗∥ ≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2

− 2γ⟨M(xk, ξk), x
k − x∗⟩+ γ2(16γ2L2 − 1)

2(1− 4γ2L2)
∥M(xk−1)∥2

+
12γ4L4

1− 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
+ 3γ2∥Wk∥2 +

γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 +

12γ4L2

1− 4γ2L2
∥Wk−2∥2.

Proof. Let k ≥ 2 be fixed. We observe that

∥xk+1 + γM(xk, ξk)− x∗∥2

= ∥xk − γM(xk, ξk) + γM(xk−1, ξk−1)− x∗∥2

= ∥xk − γM(xk, ξk) + 2γM(xk−1, ξk−1)− x∗∥2 − γ2∥M(xk−1, ξk−1)∥2

− 2γ⟨xk − γM(xk, ξk) + γM(xk−1, ξk−1)− x∗,M(xk−1, ξk−1)⟩
= ∥xk + γM(xk−1, ξk−1)− x∗∥2 + ∥γM(xk−1, ξk−1)− γM(xk, ξk)∥2 − γ2∥M(xk−1, ξk−1)∥2

+ 2γ⟨xk + γM(xk−1, ξk−1)− x∗,M(xk−1, ξk−1)−M(xk, ξk)⟩
− 2γ⟨xk − γM(xk, ξk) + γM(xk−1, ξk−1)− x∗,M(xk−1, ξk−1)⟩

= ∥xk + γM(xk−1, ξk−1)− x∗∥2 + γ2(∥M(xk−1, ξk−1)−M(xk, ξk)∥2 − ∥M(xk−1, ξk−1)∥2)
− 2⟨γM(xk, ξk), x

k − x∗⟩
≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x

k − x∗⟩ − γ2∥M(xk−1, ξk−1)∥2

+ γ2
(
∥Wk−1 +M(xk−1 −M(xk)) +Wk∥2

)
≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x

k − x∗⟩ − γ2∥M(xk−1, ξk−1)∥2

+ 3γ2(∥Wk−1∥2 + ∥M(xk−1)−M(xk)∥2 + ∥Wk∥2).
≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x

k − x∗⟩ − γ2∥M(xk−1, ξk−1)∥2

+ 3γ2(∥Wk−1∥2 + L2∥xk−1 − xk∥2 + ∥Wk∥2). (21)

On the other hand,

∥xk − xk−1∥2 = γ2∥ − 2M(xk−1, ξk−1) +M(xk−2, ξk−2)∥2

= γ2∥ −M(xk−1, ξk−1) +Wk−1 +M(xk−2)−M(xk−1) +Wk−2∥2

≤ 4γ2(∥M(xk−1, ξk−1)∥2 + ∥Wk−1∥2 + L2∥xk−1 − xk−2∥2 + ∥Wk−2∥2),

therefore,

(1− 4γ2L2)∥xk − xk−1∥2 ≤ 4γ2(∥M(xk−1, ξk−1)∥2 + ∥Wk−1∥2 + ∥Wk−2∥2)
+ 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
. (22)
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Plugging (22) into (21), we obtain

∥xk+1 + γM(xk, ξk)− x∗∥2

≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x
k − x∗⟩ − γ2∥M(xk−1, ξk−1)∥2

+
12γ4L2

1− 4γ2L2
∥M(xk−1, ξk−1)∥2 + 3γ2∥Wk∥2 +

(
3γ2 +

12γ4L2

1− 4γ2L2

)
∥Wk−1∥2 +

12γ4L2

1− 4γ2L2
∥Wk−2∥2

+
12γ4L4

1− 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
= ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x

k − x∗⟩+ 16γ4L2 − γ2

1− 4γ2L2
∥M(xk−1, ξk−1)∥2

+ 3γ2∥Wk∥2 +
(
3γ2 +

12γ4L2

1− 4γ2L2

)
∥Wk−1∥2 +

12γ4L2

1− 4γ2L2
∥Wk−2∥2

+
12γ4L4

1− 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − 2γ⟨M(xk, ξk), x

k − x∗⟩+ γ2(16γ2L2 − 1)

2(1− 4γ2L2)
∥M(xk−1)∥2

+ 3γ2∥Wk∥2 +
γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 +

12γ4L2

1− 4γ2L2
∥Wk−2∥2

+
12γ4L4

1− 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
,

as claimed.

The following theorem provides ergodic upper bounds in expectation for the squared norm of the operator
and the gap function for (Stochastic OGDA).

Theorem 4.2. Let x∗ ∈ zerM and γ < 1
4L . For all K ≥ 0 it holds

min
k=1,...,K+1

E
(
∥M(xk)∥2

)
≤ E

(
1

K + 1

K+1∑
k=1

∥M(xk)∥2
)

≤ 1

K + 1

2(1− 4γ2L2)

γ2(1− 16γ2L2)

(
4∥x1 − x∗∥2 + 4γ2L2(1− γ2L2)

1− 4γ2L2
∥x1 − x0∥2 + 8γ2σ2

∗

)
+

16γ2L2 + 11

1− 16γ2L2
σ2
∗

and

E

(
1

K + 1

K+2∑
k=2

⟨M(xk), xk − x∗⟩

)
≤ 1

K + 1

(
2∥x1 − x∗∥2

γ
+

2γL2(1− γ2L2)

1− 4γ2L2
∥x1 − x0∥2 + 4γσ2

∗

)
+
γ(16γ2L2 + 11)

4(1− 4γ2L2)
σ2
∗.

Proof. Let K ≥ 0. According to Lemma 4.1, we have for all k ≥ 2

γ2(1− 16γ2L2)

2(1− 4γ2L2)
∥M(xk−1)∥2 + 2γ⟨M(xk, ξk), x

k − x∗⟩

≤ ∥xk + γM(xk−1, ξk−1)− x∗∥2 − ∥xk+1 + γM(xk, ξk)− x∗∥2

+
12γ4L4

1− 4γ2L2

(
∥xk−1 − xk−2∥2 − ∥xk − xk−1∥2

)
+

12γ4L2

1− 4γ2L2
∥Wk−2∥2 +

γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 + 3γ2∥Wk∥2.
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Summing the above inequality for k from 2 to K + 2 and multiplying by 1
K+1 yields

γ2(1− 16γ2L2)

2(1− 4γ2L2)

1

K + 1

K+1∑
k=1

∥M(xk)∥2 + 2γ

K + 1

K+2∑
k=2

⟨M(xk, ξk), x
k − x∗⟩

≤ 1

K + 1

(
∥x2 + γM(x1, ξ1)− x∗∥2 − ∥xK+3 + γM(xK+2, ξK+2)− x∗∥2

)
+

1

K + 1

12γ4L4

1− 4γ2L2

(
∥x1 − x0∥2 − ∥xK+2 − xK+1∥2

)
+

1

K + 1

K+2∑
k=2

(
12γ4L2

1− 4γ2L2
∥Wk−2∥2 +

γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 + 3γ2∥Wk∥2

)
≤ 1

K + 1

(
∥x2 + γM(x1, ξ1)− x∗∥2 + 12γ4L4

1− 4γ2L2
∥x1 − x0∥2

)
+

1

K + 1

K+2∑
k=2

(
12γ4L2

1− 4γ2L2
∥Wk−2∥2 +

γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 + 3γ2∥Wk∥2

)
.

For all k = 2, ...,K + 2 we have that

E(⟨M(xk, ξk), x
k−x∗⟩) = E(E(⟨M(xk, ξk), x

k−x∗⟩|Fk)) = E(⟨E(M(xk, ξk)|Fk), x
k−x∗⟩) = ⟨M(xk), xk−x∗⟩

and
E(∥Wk∥2) = E(E(∥Wk∥2|Fk)) ≤ σ2

∗.

This yields

γ2(1− 16γ2L2)

2(1− 4γ2L2)
E

(
1

K + 1

K+1∑
k=1

∥M(xk)∥2
)

+ 2γE

(
1

K + 1

K+2∑
k=2

⟨M(xk), xk − x∗⟩

)

≤ 1

K + 1

(
E(∥x2 + γM(x1, ξ1)− x∗∥2) + 12γ4L4

1− 4γ2L2
∥x1 − x0∥2

)
+

1

K + 1

K+2∑
k=2

E
(

12γ4L2

1− 4γ2L2
∥Wk−2∥2 +

γ2(16γ2L2 + 5)

2(1− 4γ2L2)
∥Wk−1∥2 + 3γ2∥Wk∥2

)
≤ 1

K + 1

(
4∥x1 − x∗∥2 + 4γ2L2∥x1 − x0∥2 + 8γ2σ2

∗ +
12γ4L4

1− 4γ2L2
∥x1 − x0∥2

)
+
γ2(16γ2L2 + 11)

2(1− 4γ2L2)
σ2
∗

=
1

K + 1

(
4∥x1 − x∗∥2 + 4γ2L2(1− γ2L2)

1− 4γ2L2
∥x1 − x0∥2 + 8γ2σ2

∗

)
+
γ2(16γ2L2 + 11)

2(1− 4γ2L2)
σ2
∗.

This concludes the proof.

4.2 Stochastic Extragradient (EG) method

The stochastic Extragradient method (EG) reads{
yk := xk − γM(xk, ξk)

xk+1 := xk − γM(yk, ηk)
∀k ≥ 0, (Stochastic EG)

where x0 ∈ Rn is a given vector and ξk and ηk encode the stochasticity appearing at iteration k when
evaluating M at xk and yk, respectively.

We consider the approximation errors

Wk :=M(xk, ξk)−M(xk) and Zk :=M(yk, ηk)−M(yk) ∀k ≥ 0
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and the sub-sigma algebras

F0 := σ(x0) and Fk := σ(x0, ξ0, ξ1, ..., ξk−1, η0, ..., ηk−1) ∀k ≥ 1.

and
F̂0 := σ(x0, ξ0) and F̂k := σ(x0, ξ0, ξ1, ..., ξk−1, ξk, η0, ..., ηk−1) ∀k ≥ 1.

First, establish an inequality that will be essential to the proof of the convergence rate:

Lemma 4.3. Let x∗ ∈ zerM . For all k ≥ 0 it holds

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γ⟨M(yk, ηk), y
k − x∗⟩+ 2(3L2γ2 − 1)∥M(xk)∥2

+ γ2(3∥Zk∥2 + (1 + 6L2γ2)∥Wk∥2).

Proof. Let k ≥ 0. We have

∥xk+1 − x∗∥2 = ∥xk − γM(yk, ηk)− x∗∥2

= ∥xk − x∗∥2 − 2γ⟨xk − x∗,M(yk, ηk)−M(x∗)⟩+ γ2∥M(yk, ηk)−M(x∗)∥2

= ∥xk − x∗∥2 − 2γ⟨yk + γM(xk, ξk)− γM(x∗)− x∗,M(yk, ηk)−M(x∗)⟩
+ γ2∥M(yk, ηk)−M(x∗)∥2

= ∥xk − x∗∥2 − 2γ⟨yk − x∗,M(yk, ηk)−M(x∗)⟩
− γ2

(
2⟨M(xk, ξk)−M(x∗),M(yk, ηk)−M(x∗)⟩ − ∥M(yk, ηk)−M(x∗)∥2

)
= ∥xk − x∗∥2 − 2γ⟨yk − x∗,M(yk, ηk)−M(x∗)⟩ − γ2∥M(xk, ξk)∥2

+ γ2(∥M(yk, ηk)−M(xk, ξk)∥2)
≤ ∥xk − x∗∥2 − 2γ⟨yk − x∗,M(yk, ηk)−M(x∗)⟩ − γ2∥M(xk, ξk)∥2

+ γ2(3∥M(yk, ηk)−M(yk)∥2 + 3∥M(yk)−M(xk)∥2 + 3∥M(xk)−M(xk, ξk)∥2)
≤ ∥xk − x∗∥2 − 2γ⟨yk − x∗,M(yk, ηk)−M(x∗)⟩+ γ2(3L2 − 1)∥M(xk, ξk)∥2

+ γ2(3∥Zk∥2 + 3∥Wk∥2)
≤ ∥xk − x∗∥2 − 2γ⟨yk − x∗,M(yk, ηk)−M(x∗)⟩+ 2(3L2γ2 − 1)∥M(xk)∥2

+ γ2(3∥Zk∥2 + (1 + 6L2γ2)∥Wk∥2),

as claimed.

The following theorem provides ergodic upper bounds in expectation for the squared norm of the operator
in terms of the sequence (xk)k≥0 and the gap function in terms of the sequence (yk)k≥0.

Theorem 4.4. Let x∗ ∈ zerM and γ < 1√
3L

. For all K ≥ 0 it holds

min
k=0,...,K

E
(
∥M(xk)∥2

)
≤ E

(
1

K + 1

K∑
k=0

∥M(xk)∥2
)

≤ 1

K + 1

1

2(1− 3L2γ2)
∥x0 − x∗∥2 + γ2(2 + 3L2γ2)

1− 3L2γ2
σ2
∗

and

E

(
1

K + 1

K∑
k=0

⟨M(yk), yk − x∗⟩

)
≤ 1

K + 1

1

2γ
∥x0 − x∗∥2 + γ(2 + 3L2γ2)σ2

∗.

Proof. Let K ≥ 0. According to Lemma 4.3, we have for all k ≥ 0

2(1− 3L2γ2)∥M(xk)∥2 + 2γ⟨M(yk, ηk), y
k − x∗⟩ ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2

+ γ2(3∥Zk∥2 + (1 + 6L2γ2)∥Wk∥2).
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Summing the above inequality for k from 0 to K and multiplying by 1
K+1 it yields

2(1− 3L2γ2)

K + 1

K∑
k=0

∥M(xk)∥2 + 2γ

K + 1

K∑
k=0

⟨M(yk, ηk), y
k − x∗⟩

≤ 1

K + 1
(∥x0 − x∗∥2 − ∥xK+1 − x∗∥2) + γ2

K + 1

(
K∑

k=0

3∥Zk∥2 + (1 + 6L2γ2)∥Wk∥2
)

≤ 1

K + 1
∥x0 − x∗∥2 + γ2

K + 1

(
K∑

k=0

3∥Zk∥2 + (1 + 6L2γ2)∥Wk∥2
)
.

For all k = 0, ...,K we have that

E(⟨M(yk, ηk), y
k−x∗⟩) = E(E(⟨M(yk, ηk), y

k−x∗⟩|F̂k)) = E(⟨E(M(yk, ηk)|F̂k), y
k−x∗⟩) = ⟨M(yk), yk−x∗⟩,

and
E(∥Wk∥2) = E(E(∥Wk∥2|Fk)) ≤ σ2

∗ and E(∥Zk∥2) = E(E(∥Zk∥2|F̂k)) ≤ σ2
∗.

This yields

2(1− 3L2γ2)E

(
1

K + 1

K∑
k=0

∥M(xk)∥2
)

+ 2γE

(
1

K + 1

K∑
k=0

⟨M(yk), yk − x∗⟩

)

≤ 1

K + 1
∥x0 − x∗∥2 + 2γ2(2 + 3L2γ2)σ2

∗.

This concludes the proof.

4.3 Numerical experiments

In order to illustrate the convergence behaviour of the two stochastic algorithms, we consider the monotone
equation associated to the following minimax problem (see also [7, 30])

min
x∈Rn

max
y∈Rn

Φ(x, y),

where

Φ(x, y) :=
1

2
⟨x,Hx⟩ − ⟨x, h⟩ − ⟨y,Ax− b⟩,

with

A :=
1

4


−1 1

...
...

−1 1
−1 1
1

 ∈ Rn×n, H := 2A⊤A, b :=
1

4


1
1
...
1
1

 ∈ Rn and h :=
1

4


0
0
...
0
1

 ∈ Rn.

For n = 10, we performed the stochastic OGDA and EG methods with 50000 iterations for a total of 100
times. In Figure (1) we plot the averaged squared norm of the operator

M(x, y) = (∇xΦ(x, y),−∇yΦ(x, y))

for the stochastic OGDA and EG methods in loglog scale. The shaded areas represent the range between
the best and worst-case instances, while the strongly colored lines depict the average over all 100 runs of
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the algorithms. The error term in the k-th iteration was chosen as a
k
√
n
(1, ..., 1)T , where a is normally

distributed with mean 0 and standard deviation 10. While there does not seem to be much difference in
performance between the stochastic OGDA and EG methods, at least in the example considered for the
numerical experiments, the latter supports the O

(
1
k

)
convergence rates as being the fastest one can expect

from these methods.

Figure 1: The convergence behaviour of the averaged squared norm of the operator for the stochastic OGDA
and EG methods

Acknowledgements. The authors thank the anonymous reviewer for comments and suggestions that
improved the quality of the paper.

A Appendix

In the appendix, we present several auxiliary results utilized in the analysis conducted in this paper. The
following theorem will play a crucial role in establishing the existence and uniqueness of a solution to
(SDE-M).

Theorem A.1. ([25, Theorem A.7], [28, Theorem 5.2.1]) Let F : R+×Rn → Rn and G : R+×Rn → Rn×m

be measurable functions satisfying, for every T > 0

∥F (t, x)− F (t, y)∥+ ∥G(t, x)−G(t, y)∥F ≤ C1∥x− y∥, ∀x, y ∈ Rn ∀t ∈ [0, T ],

for some constant C1 ≥ 0. Then the stochastic differential equation{
dX(t) = F (t,X(t))dt+G(t,X(t))dW (t) ∀t ∈ [0, T ],

X(0) = X0,
(SDE-gen)
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where W is an Ft-adapted m-dimensional Brownian motion, has a unique solution X ∈ Sν
n[0, T ], for every

ν ≥ 2.

Next, we introduce Itô’s formula (see [13]).

Proposition A.2. Let X ∈ Sν
n be the solution of (SDE-gen){
dX(t) = F (t,X(t))dt+G(t,X(t))dW (t) ∀t ≥ 0,

X(0) = X0,

whereW is an Ft-adapted m-dimensional Brownian motion, and, for all T > 0, F = (F1, ..., Fn) : R+×Rn →
Rn satisfies

E

(∫ T

0

|Fi(t,X(t))|dt

)
< +∞,

and G = (Gij)i={1,...,n},j={1,...,n} : R+ × Rn → Rn×m satisfies

E

(∫ T

0

|Gij(t,X(t))|2dt

)
< +∞.

Further, let ϕ : R+×Rn → R be such that ϕ(·, x) ∈ C1(R+) for all x ∈ Rn and ϕ(t, ·) ∈ C2(Rn) for all t ≥ 0.
Then the process

X̃(t) = ϕ(t,X(t))

is an Itô process such that

dX̃(t) =
d

dt
ϕ(t,X(t))dt+

n∑
i=1

d

dxi
ϕ(t,X(t))dXi(t)

+
1

2

n∑
i,j=1

d2

dxidxj
ϕ(t,X(t))

m∑
ℓ=1

Giℓ(t,X(t))Gjℓ(t,X(t))dt ∀t ≥ 0.

Further, if, for all T > 0,

E

(∫ T

0

∥σ⊤(s, (X(s), Y (s)))∇xϕ(s,X(s))∥2ds

)
< +∞,

then
∫ t

0

〈
σ⊤(s, (X(s), Y (s)))∇xϕ(s, (X(s), Y (s))), dW (s)

〉
is for all t ≥ 0 a square-integrable continuous

martingale with expected value 0.

The proof of the convergence results in Theorem 2.4 relies on the following result.

Theorem A.3. ([24, Theorem 3.9], Theorem 3.9) Let {A(t)}t≥0 and {U(t)}t≥0 be two continuous adapted
increasing processes with A(0) = U(0) = 0 a.s. Let {N(t)}t≥0 be a real-valued continuous local martingale
with N(0) = 0 a.s. Let ξ be a nonnegative F0-measurable random variable. Define

X(t) := ξ +A(t)− U(t) +N(t) for ∀t ≥ 0.

If X(t) is nonnegative and limt→+∞A(t) < +∞ a.s., then a.s. limt→+∞X(t) exists and is finite, as well as
limt→+∞ U(t) < +∞.

In order to show that limt→+∞ ∥M(X(t))∥ = 0 a.s., we make use of the following lemma as well as of
Doob’s martingale convergence theorem presented below.
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Lemma A.4. ([25, Lemma A.4]) Let f : R+ → R be such that lim inft→+∞ f(t) ̸= lim supt→+∞ f(t). Then,
there exists a constant α such that lim inft→+∞ f(t) < α < lim supt→+∞ f(t), and for every β > 0 we can
define a sequence (tk)k∈N ⊆ R with the properties that

f(tk) > α and tk+1 > tk + β, ∀k ∈ N.

Theorem A.5. ([12]) Let {M(t)}t≥0 : Ω → R be a continuous martingale such that supt≥0 E(|M(t)|p) < +∞
for some p > 1. Then there exists a random variable M∞ such that E(|M∞|p) < +∞ and limt→+∞M(t) =
M∞ a.s.

The derivation of convergence rate in the strongly monotone case necessitates the following lemma.

Lemma A.6. ([25, Lemma A.2]) Let t0 ≥ 0 and T > t0. Assume that h : [t0,+∞) → R+ is measurable
with h ∈ L1([t0, T )), that ψ : R+ → R+ is continuous and nondecreasing, and the Cauchy problem{

φ′(t) = −ψ(φ(t)) + h(t) for almost all t ∈ [t0, T ]

φ(t0) = φ0 > 0

has an absolutely continuous solution φ : [t0, T ] → R+. If a bounded lower semicontinuous function ω :
[t0, T ] → R+ satisfies ω(t0) = φ0 and

ω(t2) ≤ ω(t1)−
∫ t2

t1

ψ(ω(s))ds+

∫ t2

t1

h(s)ds ∀t0 ≤ t1 < t2 ≤ T,

then

ω(t) ≤ φ(t) ∀t ∈ [t0, T ].
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