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Abstract. In a Hilbert setting, we develop a gradient-based dynamic approach for fast

solving convex optimization problems. By applying time scaling, averaging, and per-

turbation techniques to the continuous steepest descent (SD), we obtain high-resolution

ODEs of the Nesterov and Ravine methods. These dynamics involve asymptotically

vanishing viscous damping and Hessian driven damping (either in explicit or implicit

form). Mathematical analysis does not require developing a Lyapunov analysis for

inertial systems. We simply exploit classical convergence results for (SD) and its exter-

nal perturbation version, then use tools of differential and integral calculus, including

Jensen’s inequality. The method is flexible and by way of illustration we show how it

applies starting from other important dynamics in optimization. We consider the case

where the initial dynamics is the regularized Newton method, then the case where the

starting dynamics is the differential inclusion associated with a convex lower semi-

continuous potential, and finally we show that the technique can be naturally extended

to the case of a monotone cocoercive operator. Our approach leads to parallel algo-

rithmic results, which we study in the case of fast gradient and proximal algorithms.

Our averaging technique shows new links between the Nesterov and Ravine methods.
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by the Austrian Science Fund (FWF), projects W 1260 and P 34922-N.

Key words: Fast convex optimization, Damped inertial dynamic, Time scaling,

Averaging, Nesterov and Ravine algorithms, Hessian driven damping, Proximal

algorithms

MSC2000 subject classification: Primary: 37N40, 90C25; secondary: 37M15,

46N10, 65K10

OR/MS subject classification: Primary: programming: nonlinear: convex;

secondary: programming: nonlinear: algorithms

1
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1. Introduction. In a real Hilbert space H , we develop a general dynamic approach whose

objective is the rapid resolution of convex optimization problems via first-order methods. We

consider the problem

min { 𝑓 (𝑥) : 𝑥 ∈ H} , (1)

where, throughout the paper, we make the following assumptions on the function 𝑓 to be minimized

(A)

𝑓 : H →R is a convex function of class C1; 𝑆 = arg minH 𝑓 ≠ ∅;

∇ 𝑓 is Lipschitz continuous on the bounded sets of H .

(2)

Our study is part of the close links between dissipative dynamical systems and optimization

algorithms, the latter being obtained by temporal discretization of the continuous dynamics. The

dynamic system approach makes it possible to harmoniously combine the ingredients of our

approach, namely time scaling, averaging, and perturbation techniques to finally obtain inertial

dynamics with proven fast optimization properties.

Let us recall the mainstream for the study of accelerated gradient methods. Then, in the next

section, we will describe our approach, which is novel in many aspects. The classical approach

can be traced back to Gelfand and Tsetlin [37], then Polyak [43, 44], and Attouch, Goudou and

Redont [18], where fast first-order optimization algorithms are naturally linked to damped inertial

dynamics via temporal discretization. In this approach, which is very inspired by mechanics, PDE’s,

and control theory the focus is on the design of the damping term of the inertial dynamic, and its

asymptotic stabilization effect.

In recent years, for the minimization of general convex differentiable functions, an in-depth

study has been carried out linking the accelerated gradient method of Nesterov [40, 41] to inertial

dynamics with vanishing viscosity (the viscous damping coefficient tends to zero as 𝑡 →+∞). That

is the Su-Boyd-Candés dynamical system [48]

¥𝑥(𝑡) + 𝛼

𝑡
¤𝑥(𝑡) + ∇ 𝑓 (𝑥(𝑡)) = 0, (3)

where fast optimization is obtained by taking 𝛼 ≥ 3. In addition to viscous damping, taking into

account geometric damping (in our situation it is driven by the Hessian of the function to be

minimized) makes it possible to improve the performance of these methods by attenuating the

oscillations. That is the dynamic

¥𝑥(𝑡) + 𝛼

𝑡
¤𝑥(𝑡) + 𝛽∇2 𝑓 (𝑥(𝑡)) ¤𝑥(𝑡) + ∇ 𝑓 (𝑥(𝑡)) = 0, (4)
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considered by Attouch, Peypouquet, and Redont in [22]. The central role played by these dynamics

has been confirmed by their recent interpretation as the low and high resolution of the Nesterov and

Ravine accelerated gradient methods, see Shi, Du, Jordan, and Su [47], Attouch, Chbani, Fadili,

and Riahi [9, 10]. The study of the fast convergence properties of these dynamics and algorithms

is based on Lyapunov analysis. But this approach does not give a simple explanation of the choice

of dynamics and algorithms. Moreover the Lyapunov analysis is not trivial, and there is no general

rule to find the Lyapunov functions. Still, these techniques have allowed a deep understanding of

dynamics and accelerated algorithms for optimization, see [3, 4, 6, 7, 9, 11, 12, 16, 20, 28, 30, 33–

35, 47, 48] for some recent contributions.

2. Time scaling and averaging approach. We propose a new approach to these questions

which is based on a combination of time scaling, averaging, and perturbation techniques. The basis

property which underlies our approach is the fact that by time scaling one can always accelerate

a dynamic. The kinematic interpretation is clear. By changing the time clock the trajectories are

travelled more or less quickly. The averaging technique shifts from a dynamic of order 𝑛 to a

dynamic of the immediately higher order 𝑛 + 1. While preserving the asymptotic convergence

properties, this makes it possible to achieve a dynamic where the coefficient in front of the gradient

is fixed, and therefore suitable for developing an accelerated gradient algorithm. The perturbation

technique gives flexibility to these methods, exploiting the fact that the convergence properties are

preserved when adding an external perturbation which vanishes asymptotically sufficiently fast.

As the basic starting dynamic used in this paper, we consider the classical continuous steepest

descent

(SD) ¤𝑧(𝑡) + ∇ 𝑓 (𝑧(𝑡)) = 0. (5)

Under the standing assumption (A) on 𝑓 we know that, for any 𝑧0 ∈ H , there exists a unique

classical global solution 𝑧 ∈ C1( [𝑡0,+∞[;H) of (SD) satisfying 𝑧(𝑡0) = 𝑧0, see [5, Theorem 17.1.1].

Throughout the paper we fix 𝑡0 > 0 as the origin of time due to the singularity at the origin of 𝛼
𝑡
,

which occurs in the formulation and the analysis of the second-order dynamical systems (see, for

instance, (3) and (4)).

2.1. Classical facts concerning the continuous steepest descent. We will have to

consider the gradient system with an external perturbation. The following theorem investigates its

asymptotic properties under appropriate conditions on the perturbation term. The proof is provided

in the Appendix.
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THEOREM 1. Suppose that 𝑓 : H → R satisfies (A). Let 𝑧 : [𝑡0,+∞[ → H be a solution

trajectory of the dynamical system

¤𝑧(𝑡) + ∇ 𝑓 (𝑧(𝑡)) = 𝑔(𝑡), (6)

where 𝑔 : [𝑡0,+∞[→H is such that∫ +∞

𝑡0

∥𝑔 (𝑡)∥ 𝑑𝑡 < +∞ and
∫ +∞

𝑡0

𝑡 ∥𝑔 (𝑡)∥2 𝑑𝑡 < +∞. (7)

Then the following statements are true:

(i) (integral estimate of the velocities)
∫ +∞
𝑡0

𝑡 ∥ ¤𝑧 (𝑡)∥2 𝑑𝑡 < +∞;

(ii) (integral estimate of the gradients)
∫ +∞
𝑡0

𝑡 ∥∇ 𝑓 (𝑧 (𝑡))∥2 𝑑𝑡 < +∞;

(iii) (integral estimate of the values)
∫ +∞
𝑡0

( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) 𝑑𝑡 < +∞;

(iv) (convergence of the values towards the minimal value) 𝑓 (𝑧 (𝑡)) − infH 𝑓 = 𝑜

(
1
𝑡

)
as 𝑡 →+∞;

(v) the solution trajectory 𝑧(𝑡) converges weakly as 𝑡 →+∞, and its limit belongs to 𝑆 = arg min 𝑓 .

If ∫ +∞

𝑡0

𝑡2 ∥𝑔 (𝑡)∥2 𝑑𝑡 < +∞,

then

(vi) (convergence of the gradients towards zero) ∥∇ 𝑓 (𝑧 (𝑡))∥ = 𝑜

(
1
𝑡

)
as 𝑡 →+∞.

2.2. General time scaling and averaging. Let us make the change of time variable

𝑡 = 𝜏(𝑠) in the dynamic (SD),

(SD) ¤𝑧(𝑡) + ∇ 𝑓 (𝑧(𝑡)) = 0 (8)

where 𝜏(·) is an increasing function from R+ to R+, which is continuously differentiable, and which

satisfies lim𝑠→+∞ 𝜏(𝑠) = +∞. Set 𝑦(𝑠) := 𝑧(𝜏(𝑠)) and 𝑠0 be such that 𝑡0 = 𝜏 (𝑠0). On the one hand,

by the derivation chain rule, we have

¤𝑦(𝑠) = ¤𝜏(𝑠) ¤𝑧(𝜏(𝑠)). (9)

On the other hand, setting 𝑡 = 𝜏(𝑠) in (SD) gives

¤𝑧(𝜏(𝑠)) + ∇ 𝑓 (𝑧(𝜏(𝑠))) = 0. (10)

According to (9) and (10), we obtain

¤𝑦(𝑠) + ¤𝜏(𝑠)∇ 𝑓 (𝑦(𝑠)) = 0. (11)
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The convergence rate becomes (take 𝑡 = 𝜏(𝑠) in (iv) of Theorem 1 with 𝑔 ≡ 0)

𝑓 (𝑦(𝑠)) − infH 𝑓 = 𝑜

(
1

𝜏(𝑠)

)
as 𝑠→+∞. (12)

By introducing a function 𝜏(𝑠) that grows faster than the identity (namely 𝜏(𝑠) ≥ 𝑠), we have

accelerated the dynamic, passing from the asymptotic convergence rate 1/𝑡 for (SD) to 1/𝜏(𝑠) for

(11). The price to pay is that we no longer have an autonomous dynamic in (11), with as major

drawback the fact that the coefficient in front of the gradient term tends to infinity as 𝑠→+∞. This

prevents from using gradient methods to discretize it. Recall that for gradient methods the step

size has to be less than or equal to twice the inverse of the Lipschitz constant of the gradient. To

overcome this we come with the second step of our method which is averaging.

Several recent papers have been devoted to the role of the averaging techniques in the acceleration

of optimization algorithms. In [42] Nesterov designed an algorithm that makes use of an averaging

step for the gradients of the generated sequence. In [46] Scieur, D’Aspremont, and Bach developed a

universal acceleration method based on averaging via polynomial techniques. In [45] Poveda and Li

developed another universal acceleration method via averaging technique for singularly perturbed

hybrid dynamical systems with restarting mechanisms. Let us explain some simple and, as far as

we know, new ideas concerning the averaging methods based on differential equations. The use

of differential equations allows us to use differential and integral calculus, which turns out to be a

flexible approach.

Let us attach to 𝑦(·) the new function 𝑥 : [𝑠0,+∞[→H defined by

¤𝑥(𝑠) + 1
¤𝜏(𝑠) (𝑥(𝑠) − 𝑦(𝑠)) = 0, (13)

with 𝑥(𝑠0) = 𝑥0 given in H .

This means that, given 𝑦(·), one can recover 𝑥(·) as an exponentially average of it as

𝑥(𝑠) =
𝑥0 +

∫ 𝑠

𝑠0

𝑦(𝑢)
¤𝜏(𝑢) exp

(∫ 𝑢

𝑠0
𝑑𝑟
¤𝜏(𝑟)

)
𝑑𝑢

exp
(∫ 𝑠

𝑠0
𝑑𝑢
¤𝜏(𝑢)

) . (14)

From

𝑦(𝑠) = 𝑥(𝑠) + ¤𝜏(𝑠) ¤𝑥(𝑠), (15)

by temporal derivation of (15) we get

¤𝑦(𝑠) = ¤𝑥(𝑠) + ¥𝜏(𝑠) ¤𝑥(𝑠) + ¤𝜏(𝑠) ¥𝑥(𝑠). (16)
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Replacing ¤𝑦(𝑠) as given by (16) in (11) we get

¤𝜏(𝑠) ¥𝑥(𝑠) + (1+ ¥𝜏(𝑠)) ¤𝑥(𝑠) + ¤𝜏(𝑠)∇ 𝑓 (𝑦(𝑠)) = 0. (17)

After simplification we obtain

¥𝑥(𝑠) + 1+ ¥𝜏(𝑠)
¤𝜏(𝑠) ¤𝑥(𝑠) + ∇ 𝑓

(
𝑥(𝑠) + ¤𝜏(𝑠) ¤𝑥(𝑠)

)
= 0. (18)

In doing so, we passed from the first-order differential equation (11) to the second-order differential

equation (18), with the advantage that now the coefficient in front of the gradient is fixed. Let us

now particularize the time scale 𝜏(·).

Open loop control: link with Nesterov method. According to the Su, Boyd, and Candés

[48] model for the Nesterov method we consider the case where the viscous damping coefficient in

(18) satisfies
1+ ¥𝜏(𝑠)
¤𝜏(𝑠) =

𝛼

𝑠
. (19)

For the solution of the second-order linear differential equation we get

𝜏(𝑠) = 𝑠2

2(𝛼− 1) +𝐶1𝑠
𝛼+1 +𝐶2, (20)

for 𝐶1,𝐶2 real constants. This leads to the choice 𝛼 > 1. To achieve orders of convergence indepen-

dent of the parameter 𝛼, we set 𝐶1 =𝐶2 := 0. This gives

𝜏(𝑠) = 𝑠2

2(𝛼− 1) . (21)

Equation (11) becomes

¤𝑦(𝑠) + 𝑠

𝛼− 1
∇ 𝑓 (𝑦(𝑠)) = 0, (22)

and (12) gives

𝑓 (𝑦(𝑠)) − infH 𝑓 = 𝑜

(
1
𝑠2

)
as 𝑠→+∞. (23)

From (18) we obtain

¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + ∇ 𝑓

(
𝑥(𝑠) + 𝑠

𝛼− 1
¤𝑥(𝑠)

)
= 0. (24)

In doing so, we passed from the first-order differential equation

¤𝑦(𝑠) + 𝑠

𝛼− 1
∇ 𝑓 (𝑦(𝑠)) = 0 (25)
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to the second-order differential equation (24), with the advantage that now the coefficient in front

of the gradient is fixed. Of course, we have to prove that the fast convergence rates are preserved.

The above dynamic (24) is a particular case of the Inertial System with Implicit Hessian Damping

(ISIHD) ¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + ∇ 𝑓

(
𝑥(𝑠) + 𝛽(𝑠) ¤𝑥(𝑠)

)
= 0, (26)

considered by Alecsa, László, and Pinţa in [2], see also Attouch, Fadili, and Kungurtsev [17] in the

perturbed case. The rationale justifying the use of the term “implicit” comes from the observation

that by Taylor expansion (as 𝑠→+∞ we have ¤𝑥(𝑠) → 0) one has

∇ 𝑓

(
𝑥(𝑠) + 𝛽(𝑠) ¤𝑥(𝑠)

)
≈ ∇ 𝑓 (𝑥(𝑠)) + 𝛽(𝑠)∇2 𝑓 (𝑥(𝑠)) ¤𝑥(𝑠),

hence making the Hessian damping appear indirectly. We can therefore expect the dynamic (24) to

have an asymptotic behavior similar to that of

¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + 𝑠

𝛼− 1
∇2 𝑓 (𝑥(𝑠)) ¤𝑥(𝑠) + ∇ 𝑓 (𝑥(𝑠)) = 0. (27)

Closed loop control. The continuous steepest descent system (SD) provides several quan-

tities which are strictly increasing and converge to +∞, so they are eligible for time scaling. Since

∥∇ 𝑓 (𝑧(𝑡))∥ is monotonically decreasing to zero, taking

𝑡 = 𝜏(𝑠) = 1
∥∇ 𝑓 (𝑧(𝑠))∥𝑝 ,

is eligible for any 𝑝 > 0. According to (SD) we have that the same holds true for

𝑡 = 𝜏(𝑠) = 1
∥ ¤𝑧(𝑠)∥𝑝 .

Since 𝜏 comes into the scaling technique via its derivative, we can also consider for 𝑝 > 0

𝑡 = ¤𝜏(𝑠) = 1
∥ ¤𝑧(𝑠)∥𝑝 .

Alternatively, we may also consider building 𝜏 with the help of the function values since 𝑓 (𝑧(·)) is

decreasing.

All these choices will lead to closed-loop dynamical systems which have attracted of many

researchers recently, see for instance [4, 38].
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2.3. Convergence rates. The above results suggest that similar results are valid for (18).

We will examine the convergence rates satisfied by the trajectories of (18) simply by using time

scale and averaging arguments. We do not make any other Lyapunov analysis, we just use the

Lyapunov analysis of the steepest descent, which was recalled in Subsection 2.1. Let us state our

first result which concerns the implicit Hessian driven damping dynamics.

THEOREM 2. Suppose that 𝑓 : H → R satisfies (A). Let 𝑥 : [𝑠0,+∞[→ H be a solution

trajectory of the dynamical system

¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + ∇ 𝑓

(
𝑥(𝑠) + 𝑠

𝛼− 1
¤𝑥(𝑠)

)
= 0. (28)

Assume that 𝛼 > 1. Then the following statements are true:

(i) (integral estimate of the gradients)
∫ +∞
𝑠0

𝑠3
∇ 𝑓

(
𝑥(𝑠) + 𝑠

𝛼−1 ¤𝑥(𝑠)
)2

𝑑𝑠 < +∞;

(ii) (convergence of the gradients towards zero)
∇ 𝑓

(
𝑥(𝑠) + 𝑠

𝛼−1 ¤𝑥(𝑠)
) = 𝑜

(
1
𝑠2

)
as 𝑠→+∞;

(iii) (convergence of the velocities towards zero) ∥ ¤𝑥 (𝑠)∥ = 𝑜

(
1
𝑠

)
as 𝑠→+∞;

(iv) the solution trajectory 𝑥(𝑠) converges weakly as 𝑠→+∞, and its limit belongs to 𝑆 = arg min 𝑓 .

If 𝛼 > 3, then

(v) (convergence of the values towards the minimal value) 𝑓 (𝑥(𝑠)) − infH 𝑓 = 𝑜

(
1
𝑠2

)
as 𝑠→+∞.

F irst observe that the time scaling and averaging operations allow us to obtain any solution

trajectory of (28). To this end we need to choose adequately the initial data in the first order evolution

equations (25) and (13) which are respectively attached to the scaling and averaging operations.

So let us give a solution trajectory 𝑥(·) of (28) which satisfies the Cauchy data 𝑥(𝑠0) = 𝑥0 and

¤𝑥(𝑠0) = 𝑥1. Let us verify that this solution is reached by taking successively
¤𝑦(𝑠) + 𝑠

𝛼−1∇ 𝑓 (𝑦(𝑠)) = 0

𝑦(𝑠0) = 𝑥0 + 𝑠0
𝛼−1𝑥1,

(29)

then 
¤𝑥(𝑠) + 𝛼−1

𝑠
(𝑥(𝑠) − 𝑦(𝑠)) = 0

𝑥(𝑠0) = 𝑥0.

(30)

Indeed, (30) gives ¤𝑥(𝑠0) = 𝛼−1
𝑠0

(𝑦(𝑠0) − 𝑥(𝑠0)), which, by the second equation of (29), leads to

¤𝑥(𝑠0) = 𝑥1.
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Let us first interpret the passage from 𝑦 to 𝑥 as an averaging process. To this end rewrite (30) as

𝑠 ¤𝑥(𝑠) + (𝛼− 1)𝑥(𝑠) = (𝛼− 1)𝑦(𝑠). (31)

After multiplication of (31) by 𝑠𝛼−2, we get equivalently

𝑠𝛼−1 ¤𝑥(𝑠) + (𝛼− 1)𝑠𝛼−2𝑥(𝑠) = (𝛼− 1)𝑠𝛼−2𝑦(𝑠), (32)

that is
𝑑

𝑑𝑠

(
𝑠𝛼−1𝑥(𝑠)

)
= (𝛼− 1)𝑠𝛼−2𝑦(𝑠). (33)

By integrating (33) from 𝑠0 to 𝑠, and according to 𝑥(𝑠0) = 𝑥0, we obtain

𝑥(𝑠) =
𝑠𝛼−1

0
𝑠𝛼−1 𝑥0 +

𝛼− 1
𝑠𝛼−1

∫ 𝑠

𝑠0

𝑢𝛼−2𝑦(𝑢)𝑑𝑢 (34)

=
𝑠𝛼−1

0
𝑠𝛼−1 𝑦(𝑠0) +

𝛼− 1
𝑠𝛼−1

∫ 𝑠

𝑠0

𝑢𝛼−2𝑦(𝑢)𝑑𝑢 − 𝑠0
𝛼

(𝛼− 1)𝑠𝛼−1 𝑥1 (35)

where the last equality follows from the choice of 𝑦(𝑠0) as given by (29). Then, observe that 𝑥(𝑠)
can be simply written as follows

𝑥(𝑠) =
∫ 𝑠

𝑠0

𝑦(𝑢) 𝑑𝜇𝑠 (𝑢) + 𝜉 (𝑠), (36)

where 𝜇𝑠 is the positive Radon measure on [𝑠0, 𝑠] defined by

𝜇𝑠 =
𝑠𝛼−1

0
𝑠𝛼−1 𝛿𝑠0 + (𝛼− 1)𝑢

𝛼−2

𝑠𝛼−1 𝑑𝑢,

where 𝛿𝑠0 is the Dirac measure at 𝑠0, and

𝜉 (𝑠) := − 𝑠0
𝛼

(𝛼− 1)𝑠𝛼−1 𝑥1

is considered as a small perturbation for large values of 𝑠.

(i) & (ii) According to the energy estimates for the continuous steepest descent system, see

Theorem 1, we have that for any solution trajectory of

(SD) ¤𝑧(𝑡) + ∇ 𝑓 (𝑧(𝑡)) = 0 (37)



Attouch, Boţ and Nguyen: Fast Convex Optimization via Time Scale and Averaging of the Steepest Descent
10 Article submitted to Mathematics of Operations Research

it holds∫ +∞

𝑡0

𝑡 ∥ ¤𝑧 (𝑡)∥2 𝑑𝑡 < +∞,

∫ +∞

𝑡0

𝑡∥∇ 𝑓 (𝑧(𝑡))∥2𝑑𝑡 < +∞, and ∥∇ 𝑓 (𝑧 (𝑡))∥ = 𝑜

(
1
𝑡

)
as 𝑡 →+∞. (38)

Notice that from the unperturbed (SD) we also have

∥ ¤𝑧 (𝑡)∥ = 𝑜

(
1
𝑡

)
as 𝑡 →+∞. (39)

After making the change of time variable

𝑡 = 𝜏(𝑠) = 𝑠2

2(𝛼− 1) ,

and setting 𝑧(𝜏(𝑠)) = 𝑦(𝑠), the second integral estimate above becomes∫ +∞

𝑠0

𝜏(𝑠)∥∇ 𝑓 (𝑧(𝜏(𝑠))∥2 ¤𝜏(𝑠)𝑑𝑠 < +∞, (40)

that is ∫ +∞

𝑠0

𝑠3∥∇ 𝑓 (𝑦(𝑠))∥2𝑑𝑠 < +∞. (41)

Replacing 𝑦 by its equivalent formulation 𝑦(𝑠) = 𝑥(𝑠) + 𝑠
𝛼−1 ¤𝑥(𝑠) in (38) and (41) gives the claims.

(iii) From (39) we have that there exists a positive function 𝜀0(·) which satisfies lim𝑠→+∞ 𝜀0(𝑠) = 0

such that

∥ ¤𝑧(𝜏(𝑠))∥ = 𝜀0(𝜏(𝑠))
𝜏(𝑠) , (42)

and since ¤𝑦(𝑠) = ¤𝜏(𝑠) ¤𝑧(𝜏(𝑠)) we get

∥ ¤𝑦(𝑠)∥ = 𝜀0(𝜏(𝑠)) ¤𝜏(𝑠)
𝜏(𝑠) . (43)

From 𝜏(𝑠) = 𝑠2

2(𝛼−1) , we get

∥ ¤𝑦(𝑠)∥ = 𝜀1(𝑠)
𝑠

, (44)

with 𝜀1(𝑠) = 2𝜀0(𝜏(𝑠)) which tends to zero as 𝑠→+∞. Let us now establish a similar estimate for

∥ ¤𝑥(𝑠)∥. According to (34)

𝑥(𝑠) =
𝑠𝛼−1

0
𝑠𝛼−1 𝑥0 +

𝛼− 1
𝑠𝛼−1

∫ 𝑠

𝑠0

𝑢𝛼−2𝑦(𝑢)𝑑𝑢. (45)

Let us derivate this expression. We get

¤𝑥(𝑠) = −
(𝛼− 1)𝑠𝛼−1

0
𝑠𝛼

𝑥0 −
(𝛼− 1)2

𝑠𝛼

∫ 𝑠

𝑠0

𝑢𝛼−2𝑦(𝑢)𝑑𝑢 + (𝛼− 1)1
𝑠
𝑦(𝑠). (46)
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Let us reformulate this expression in terms of ¤𝑦(𝑠), which is the quantity whose speed of convergence

is known by (44). Indeed, by integration by parts we have∫ 𝑠

𝑠0

𝑢𝛼−1 ¤𝑦(𝑢)𝑑𝑢 = 𝑠𝛼−1𝑦(𝑠) − 𝑠𝛼−1
0 𝑦(𝑠0) − (𝛼− 1)

∫ 𝑠

𝑠0

𝑢𝛼−2𝑦(𝑢)𝑑𝑢.

After multiplication of the above expression by 𝛼−1
𝑠𝛼

, and according to 𝑦(𝑠0) = 𝑥0+ 𝑠0
𝛼−1𝑥1, we get

𝛼− 1
𝑠𝛼

∫ 𝑠

𝑠0

𝑢𝛼−1 ¤𝑦(𝑢)𝑑𝑢 = (𝛼− 1) 1
𝑠
𝑦(𝑠) −

(𝛼− 1)𝑠𝛼−1
0

𝑠𝛼
𝑥0−

𝑠𝛼0
𝑠𝛼

𝑥1 −
(𝛼− 1)2

𝑠𝛼

∫ 𝑠

𝑠0

𝑢𝛼−2𝑦(𝑢)𝑑𝑢. (47)

Comparing (46) and (47) we get

¤𝑥(𝑠) = 𝛼− 1
𝑠𝛼

∫ 𝑠

𝑠0

𝑢𝛼−1 ¤𝑦(𝑢)𝑑𝑢+
𝑠𝛼0
𝑠𝛼

𝑥1.

According to (44), we obtain successively

∥ ¤𝑥(𝑠)∥ ≤ 𝛼− 1
𝑠𝛼

∫ 𝑠

𝑠0

𝑢𝛼−1 ∥ ¤𝑦(𝑢)∥ 𝑑𝑢+
𝑠𝛼0
𝑠𝛼

∥𝑥1∥ =
𝛼− 1
𝑠𝛼

∫ 𝑠

𝑠0

𝑢𝛼−2𝜀1(𝑢)𝑑𝑢+
𝑠𝛼0
𝑠𝛼

∥𝑥1∥. (48)

After multiplication of (48) by 𝑠, we obtain

𝑠∥ ¤𝑥(𝑠)∥ ≤ 𝛼− 1
𝑠𝛼−1

∫ 𝑠

𝑠0

𝑢𝛼−2𝜀1(𝑢)𝑑𝑢 +
𝑠𝛼0
𝑠𝛼−1 ∥𝑥1∥ ,

and Lemma 4 gives us lim𝑠→+∞ ∥𝑠 ¤𝑥(𝑠)∥ = 0.

(iv) For trajectory convergence, following the approach of the paper, we do not perform a

Lyapunov analysis, but take advantage of the fact that the trajectory 𝑧 (𝑠) of the steepest descent

dynamics converges weakly towards a solution 𝑥∗ ∈ 𝑆 as 𝑠 →+∞. This immediately implies that

𝑦(𝑠) = 𝑧(𝑢(𝑠)) converges weakly to 𝑥∗ as 𝑠→+∞. In other words, for each 𝑣 ∈ H

⟨𝑦 (𝑠) , 𝑣⟩ → ⟨𝑥∗, 𝑣⟩ as 𝑠→+∞.

To pass from the convergence of 𝑦 to that of 𝑥, we use the interpretation of 𝑥 as an average of

𝑦 plus a negligible term. The convergence then results from the general property which says that

convergence entails ergodic convergence. Let us make this precise. Since the perturbation term 𝜉

is negligible as 𝑠→+∞, we have by definition of 𝑥(𝑠)

𝑥(𝑠) ∼
𝑠𝛼−1

0
𝑠𝛼−1 𝑦(𝑠0) +

𝛼− 1
𝑠𝛼−1

∫ 𝑠

𝑠0

𝑢𝛼−2𝑦(𝑢)𝑑𝑢.
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After elementary calculus, we just need to prove that for 𝑎(·) be a positive real valued function

which verifies lim𝑠→+∞ 𝑎(𝑠) = 0, then lim𝑠→+∞ 𝐴(𝑠) = 0, where

𝐴(𝑠) = 1
𝑠𝛼−1

∫ 𝑠

𝑠0

𝑢𝛼−2𝑎(𝑢)𝑑𝑢,

which is true according to Lemma 4.

(v) First, let us get rid of the perturbation term. From (iv) we deduce that 𝑥(·) is also bounded.

Since ∇ 𝑓 is Lipschitz continuous on the bounded sets, it follows that ∇ 𝑓 is bounded on the bounded

sets, which immediately implies that 𝑓 is also Lipschitz continuous on the bounded sets. Therefore

there exists 𝐿 𝑓 > 0 such that

𝑓 (𝑥(𝑠)) − 𝑓

(∫ 𝑠

𝑠0

𝑦(𝑢) 𝑑𝜇𝑠 (𝑢)
)
≤ 𝐿 𝑓 ∥𝜉 (𝑠)∥ ≤

𝐶 𝑓

𝑠𝛼−1 ∀𝑠 ≥ 𝑠0,

for 𝐶 𝑓 := 𝐿 𝑓 𝑠0
𝛼

𝛼−1 ∥𝑥1∥, which leads to

𝑓 (𝑥(𝑠)) − infH 𝑓 ≤ 𝑓

(∫ 𝑠

𝑠0

𝑦(𝑢) 𝑑𝜇𝑠 (𝑢)
)
− infH 𝑓 +

𝐶 𝑓

𝑠𝛼−1 ∀𝑠 ≥ 𝑠0. (49)

We are therefore reduced to examining the convergence rate of 𝑓
(∫ 𝑠

𝑠0
𝑦(𝑢)𝑑𝜇𝑠 (𝑢)

)
− inf 𝑓 towards

zero as 𝑠→+∞. We have that 𝜇𝑠 is a positive Radon measure on [𝑠0, 𝑠] whose total mass is equal to

1. It is therefore a probability measure, and
∫ 𝑠

𝑠0
𝑦(𝑢) 𝑑𝜇𝑠 (𝑢) is obtained by averaging the trajectory

𝑦(·) on [𝑠0, 𝑠] with respect to 𝜇𝑠. From there, we can deduce fast convergence properties for the

solution trajectories of (28). According to the convexity of 𝑓 , and Jensen’s inequality, we obtain

that

𝑓

(∫ 𝑠

𝑠0

𝑦(𝑢) 𝑑𝜇𝑠 (𝑢)
)
− infH 𝑓 ≤

∫ 𝑠

𝑠0

( 𝑓 (𝑦(𝑢)) − infH 𝑓 ) 𝑑𝜇𝑠 (𝑢). (50)

It follows from (23) that there exists a positive function 𝜀(·) which satisfies lim𝑠→+∞ 𝜀(𝑠) = 0

such that

𝑓 (𝑦 (𝑠)) − infH 𝑓 =
𝜀(𝑠)
𝑠2 . (51)

According to the definition of 𝜇𝑠, it yields for all 𝑠 ≥ 𝑠0

𝑓

(∫ 𝑠

𝑠0

𝑦(𝑢) 𝑑𝜇𝑠 (𝑢)
)
− infH 𝑓 ≤

∫ 𝑠

𝑠0

𝜀(𝑢)
𝑢2 𝑑𝜇𝑠 (𝑢) =

𝑠𝛼−3
0
𝑠𝛼−1 + 𝛼− 1

𝑠𝛼−1

∫ 𝑠

𝑠0

𝜀(𝑢)𝑢𝛼−4𝑑𝑢.

By making use of (49), we deduce

𝑠2 ( 𝑓 (𝑥(𝑠)) − infH 𝑓 ) ≤
𝐶 𝑓 + 𝑠𝛼−3

0
𝑠𝛼−3 + 𝛼− 1

𝑠𝛼−3

∫ 𝑠

𝑠0

𝜀(𝑢)𝑢𝛼−4𝑑𝑢.
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Therefore, for 𝛼 > 3 we get

lim sup
𝑠→+∞

𝑠2( 𝑓 (𝑥(𝑠)) − infH 𝑓 ) ≤ (𝛼− 1) lim sup
𝑠→+∞

1
𝑠𝛼−3

∫ 𝑠

𝑠0

𝜀(𝑢)𝑢𝛼−4𝑑𝑢.

Finally, we just need to apply Lemma 4 to prove the claim. Q.E.D.

REMARK 1. We emphasize the fact that the convergence of the solution trajectories of the

damped inertial system (28) is valid under the condition 𝛼 > 1. This contrasts with the stronger

condition 𝛼 > 3 which is required to obtain the convergence of the trajectories for the system without

Hessian driven damping

¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + ∇ 𝑓 (𝑥(𝑠)) = 0, (52)

and which is the low-resolution ODE of Nesterov’s accelerated gradient method. This property is

related to the presence of the Hessian driven damping and the particular form of the corresponding

coefficient 𝑠
𝛼−1 . Moreover, it has been established in [11, 20] that the choice 𝛼 > 3 provides a

convergence rate of the values of 𝑜
(
1/𝑠2) as 𝑠→+∞, and therefore it improves the convergence

rate of Nesterov’s accelrated gradient method of O
(
1/𝑠2) as 𝑠→+∞. As seen, the time scale and

averaging approach is flexible enough to also provide the convergence rate 𝑜
(
1/𝑠2) as 𝑠→+∞, in

the case 𝛼 > 3.

REMARK 2. We also emphasize that, taking 𝐶1 > 0 in (20), for every given 𝛼 > 1, a second-

order dynamical system of the form (18) with a damping coefficient of 𝛼
𝑠

and convergence rate

for the function values of 𝑜
(
1/𝑠𝛼+1) , as 𝑠→+∞, can be defined. Its asymptotic properties can be

derived from those of the first-order dynamical system (11) by using the representation (14) and

techniques similar to those in the proof of Theorem 2. However, there would be no guarantee that

argument 𝑥(𝑠) + ¤𝜏(𝑠) ¤𝑥(𝑠) of the gradient in (18) is bounded, which could lead to major instabilities.

This is because, as for the velocities of 𝑧(·) and 𝑦(·), the convergence rate of ¤𝑥(𝑠) is of 𝑜(1/𝑠) as

𝑠→+∞, while ¤𝜏(𝑠) ∼ 𝑠𝛼 for 𝛼 > 1.

REMARK 3. The time scale and averaging technique provides a new approach which allows to

transfer the convergence rate of the function value along the trajectory 𝑦(𝑠) obtained via the time

scaling of (SD) to the function value along the trajectory 𝑥(𝑠) that can be seen as the average of the

initial one. This phenomenon can be seen in analogy with the manner the Nesterov method and the

Ravine method behave to each other.
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Recall that the Nesterov’acceleration gradient [40, 41] reads

(∀𝑘 ≥ 1)

𝑦𝑘 := 𝑥𝑘 +𝛼𝑘 (𝑥𝑘 − 𝑥𝑘−1)

𝑥𝑘+1 := 𝑦𝑘 −𝜆∇ 𝑓 (𝑦𝑘 )
, (53)

where 𝑥0 = 𝑥1 ∈ H , 0 < 𝜆 ≤ 1
𝐿

and

𝛼𝑘 :=
𝑡𝑘 − 1
𝑡𝑘+1

with


𝑡1 := 1

𝑡2
𝑘+1 − 𝑡𝑘+1 ≤ 𝑡2

𝑘
∀𝑘 ≥ 1

.

The so-called Ravine sequence (𝑦𝑘 )𝑘≥1 is the one generated by the Ravine method introduced

by Gelfand and Tsetlin [16, 37]. The values of 𝑓 along the Ravine sequence converge fast towards

infH 𝑓 . In analogy with the continuous time approach, the rate of convergence can be transferred

to the values of 𝑓 along (𝑥𝑘 )𝑘≥0, which represents average sequence of (𝑦𝑘 )𝑘≥1.

Indeed, by induction arguments, we have for every 𝑘 ≥ 1

𝑥𝑘+1 =
1

1+𝛼𝑘+1
𝑦𝑘+1 +

𝛼𝑘+1
1+𝛼𝑘+1

𝑥𝑘 =
1

1+𝛼𝑘+1
𝑦𝑘+1 +

𝛼𝑘+1
1+𝛼𝑘+1

(
1

1+𝛼𝑘

𝑦𝑘 +
𝛼𝑘

1+𝛼𝑘

𝑥𝑘−1

)
= · · · =

𝑘+1∑︁
𝑖=1

𝜃𝑘+1,𝑖𝑦𝑖,

where the nonnegative weights
(
𝜃𝑘+1,𝑖

)
1≤𝑖≤𝑘+1 defined by

𝜃𝑘+1,𝑖 :=
1

1+𝛼𝑘+1

𝑘+1−𝑖∏
𝑗=1

𝛼𝑘+2− 𝑗

1+𝛼𝑘+1− 𝑗

∀1 ≤ 𝑖 ≤ 𝑘 and 𝜃𝑘+1,𝑘+1 :=
1

1+𝛼𝑘+1

fulfill
∑𝑘+1

𝑖=1 𝜃𝑘+1,𝑖 = 1.

In the following we give a direct proof for the fast convergence rate of the Ravine method, which

can be seen as an alternative approach to [16]. Let 𝑧∗ ∈ 𝑆. We define for every 𝑘 ≥ 2 the discrete

energy function

𝐸𝑘 := 𝑡2𝑘

(
𝑓 (𝑦𝑘−1) − infH 𝑓 −𝜆

(
1− 𝐿𝜆

2

)
∥∇ 𝑓 (𝑦𝑘−1)∥2

)
+ 1

2𝜆
∥(𝑡𝑘 − 1) (𝑥𝑘 − 𝑥𝑘−1) + 𝑥𝑘 − 𝑧∗∥2 ≥ 0.
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Let 𝑘 ≥ 2. By the convexity of 𝑓 , it yields

𝑓 (𝑥𝑘 ) ≥ 𝑓 (𝑦𝑘 ) + ⟨∇ 𝑓 (𝑦𝑘 ) , 𝑥𝑘 − 𝑦𝑘⟩ and infH 𝑓 ≥ 𝑓 (𝑦𝑘 ) + ⟨∇ 𝑓 (𝑦𝑘 ) , 𝑧∗ − 𝑦𝑘⟩ .

By multiplying the first inequality by 𝑡2
𝑘+1 − 𝑡𝑘+1 > 0 and the second one by 𝑡𝑘+1 > 0 and summing

the resulting inequalities, it yields

(
𝑡2𝑘+1 − 𝑡𝑘+1

)
( 𝑓 (𝑥𝑘 ) − infH 𝑓 )

≥ 𝑡2𝑘+1 ( 𝑓 (𝑦𝑘 ) − infH 𝑓 ) − 𝑡𝑘+1 ⟨∇ 𝑓 (𝑦𝑘 ) , (𝑡𝑘+1 − 1) (𝑦𝑘 − 𝑥𝑘 ) + 𝑦𝑘 − 𝑧∗⟩ . (54)

Since 𝑡𝑘+1𝑦𝑘 = 𝑡𝑘+1𝑥𝑘 + (𝑡𝑘 − 1) (𝑥𝑘 − 𝑥𝑘−1), by denoting

𝑢𝑘 := (𝑡𝑘+1 − 1) (𝑦𝑘 − 𝑥𝑘 ) + 𝑦𝑘 − 𝑧∗ = 𝑡𝑘+1 (𝑦𝑘 − 𝑥𝑘 ) + 𝑥𝑘 − 𝑧∗ = (𝑡𝑘 − 1) (𝑥𝑘 − 𝑥𝑘−1) + 𝑥𝑘 − 𝑧∗,

we have

−𝜆𝑡𝑘+1∇ 𝑓 (𝑦𝑘 ) = 𝑡𝑘+1 (𝑥𝑘+1 − 𝑦𝑘 ) = 𝑡𝑘+1 (𝑥𝑘+1 − 𝑥𝑘 ) − (𝑡𝑘 − 1) (𝑥𝑘 − 𝑥𝑘−1) = 𝑢𝑘+1 − 𝑢𝑘 .

Therefore

− 𝑡𝑘+1 ⟨∇ 𝑓 (𝑦𝑘 ) , (𝑡𝑘+1 − 1) (𝑦𝑘 − 𝑥𝑘 ) + 𝑦𝑘 − 𝑧∗⟩

=
1
𝜆
⟨𝑢𝑘+1 − 𝑢𝑘 , 𝑢𝑘⟩ =

1
2𝜆

(
∥𝑢𝑘+1∥2 − ∥𝑢𝑘+1 − 𝑢𝑘 ∥2 − ∥𝑢𝑘 ∥2

)
=

1
2𝜆

(
∥(𝑡𝑘+1 − 1) (𝑥𝑘+1 − 𝑥𝑘 ) + 𝑥𝑘+1 − 𝑧∗∥2 − ∥(𝑡𝑘 − 1) (𝑥𝑘 − 𝑥𝑘−1) + 𝑥𝑘 − 𝑧∗∥2

)
− 1

2
𝜆𝑡2𝑘+1 ∥∇ 𝑓 (𝑦𝑘 )∥2 .
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Replacing this expression into (54), after some rearrangements we obtain

𝐸𝑘+1 ≤
1

2𝜆
∥(𝑡𝑘 − 1) (𝑥𝑘 − 𝑥𝑘−1) + 𝑥𝑘 − 𝑧∗∥2+

(
𝑡2𝑘+1 − 𝑡𝑘+1

)
( 𝑓 (𝑥𝑘 ) − infH 𝑓 )

− 1
2
𝜆 (1− 𝐿𝜆) 𝑡2𝑘+1 ∥∇ 𝑓 (𝑦𝑘 )∥2 .

In addition, the Descent Lemma gives

𝑓 (𝑥𝑘 ) − infH 𝑓 ≤ 𝑓 (𝑦𝑘−1) − infH 𝑓 + ⟨∇ 𝑓 (𝑦𝑘−1) , 𝑥𝑘 − 𝑦𝑘−1⟩ +
𝐿

2
∥𝑥𝑘 − 𝑦𝑘−1∥2

= 𝑓 (𝑦𝑘−1) − infH 𝑓 −𝜆

(
1− 𝐿𝜆

2

)
∥∇ 𝑓 (𝑦𝑘−1)∥2 , (55)

which further leads to the inequality

𝐸𝑘+1 ≤ 𝐸𝑘 −
1
2
𝜆 (1− 𝐿𝜆) 𝑡2𝑘+1 ∥∇ 𝑓 (𝑦𝑘 )∥2

+
(
𝑡2𝑘+1 − 𝑡𝑘+1 − 𝑡2𝑘

) (
𝑓 (𝑦𝑘−1) − infH 𝑓 −𝜆

(
1− 𝐿𝜆

2

)
∥∇ 𝑓 (𝑦𝑘−1)∥2

)
,

and it also proves that 𝐸𝑘 ≥ 0 for every 𝑘 ≥ 2. Therefore, when 0 < 𝜆 < 1
𝐿

, we can deduce

𝑓 (𝑦𝑘 ) − infH 𝑓 = O
(

1
𝑡2
𝑘+1

)
= O

(
1

(𝑘 + 1)2

)
as 𝑘 →+∞,

which immediately transfers to

𝑓 (𝑥𝑘 ) − infH 𝑓 = O
(

1
𝑡2
𝑘+1

)
= O

(
1

(𝑘 + 1)2

)
as 𝑘 →+∞.

3. Applications to various continuous dynamics. In this section we will show that

the proposed approach which combines time scaling with averaging can be successfully applied

beyond the classical steepest descent dynamical system.

3.1. Explicit Hessian damping. We consider an explicit Hessian driven damping version

of the Su-Boyd-Candés dynamical system (3). As explained in (27) the following dynamic

¥𝑦 (𝑠) + 𝛼

𝑠
¤𝑦 (𝑠) + 𝑠

𝛼 + 1
𝑑

𝑑𝑠
(∇ 𝑓 (𝑦 (𝑠))) + ∇ 𝑓 (𝑦 (𝑠)) = 0 (56)
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comes naturally by performing a Taylor expansion in (28). Just note that to match the general

writing of inertial dynamics for optimization, the above formula is obtained by taking 𝛼 +1 instead

of 𝛼− 1.

The dynamic (56) is a particular case of the general dynamic on [𝑠0,+∞[

(DIN-AVD)𝛼,𝛽,𝑏 ¥𝑦(𝑠) + 𝛼

𝑠
¤𝑦(𝑠) + 𝛽(𝑠)∇2 𝑓 (𝑦(𝑠)) ¤𝑦(𝑠) + 𝑏(𝑠)∇ 𝑓 (𝑦(𝑠)) = 0,

studied by Attouch, Chbani, Fadili and Riahi in [9, 10]. Let us recall the convergence results

obtained in [9, 10] by performing a Lyapunov analysis for (DIN−AVD)𝛼,𝛽,𝑏. They will serve as a

comparison with our results.

THEOREM 3. Assume that 𝛼 ≥ 1. Set 𝑤(𝑠) := 𝑏(𝑠) −
(
¤𝛽(𝑠) + 𝛽(𝑠)

𝑠

)
and suppose that the

following conditions are satisfied for every 𝑠 ≥ 𝑠0

(G2) 𝑏(𝑠) > ¤𝛽(𝑠) + 𝛽(𝑠)
𝑠

;

(G3) 𝑠 ¤𝑤(𝑠) ≤ (𝛼− 3)𝑤(𝑠).

Then, for every solution trajectory 𝑦 : [𝑠0,+∞[→H of (DIN−AVD)𝛼,𝛽,𝑏, the following statements

are true:

(i) 𝑓 (𝑦(𝑠)) − infH 𝑓 = O
(

1
𝑠2𝑤(𝑠)

)
as 𝑠→+∞;

(ii)
∫ +∞
𝑠0

𝑠2𝛽(𝑠)𝑤(𝑠)∥∇ 𝑓 (𝑦(𝑠))∥2𝑑𝑠 < +∞;

(iii)
∫ +∞
𝑠0

𝑠

(
(𝛼− 3)𝑤(𝑠) − 𝑠 ¤𝑤(𝑠)

)
( 𝑓 (𝑦(𝑠)) − infH 𝑓 )𝑑𝑠 < +∞.

Let us specialize the above result to (28) by taking 𝑏(𝑠) = 1 and 𝛽(𝑠) = 𝑠
𝛼−1 for every 𝑠 ≥ 𝑠0. We

get 𝑤(·) ≡ 𝛼−3
𝛼−1 . Thus (G2) is satisfied for 𝛼 > 3, while (G3) reduces to 0 ≤ (𝛼−3)2

𝛼−1 , which is also

satisfied. We thus get ffor the trajectories of (28)

𝑓 (𝑦(𝑠)) − infH 𝑓 = O
(

1
𝑠2

)
as 𝑠→+∞,

and ∫ +∞

𝑠0

𝑠3∥∇ 𝑓 (𝑦(𝑠))∥2𝑑𝑠 < +∞ and
∫ +∞

𝑠0

𝑠( 𝑓 (𝑦(𝑠)) − infH 𝑓 )𝑑𝑠 < +∞.

In this particular setting we can deduce further (see [10, Theorem 2.1])∫ +∞

𝑠0

𝑠∥ ¤𝑦(𝑠)∥2𝑑𝑠 < +∞; 𝑓 (𝑦(𝑠)) − infH 𝑓 = 𝑜

(
1
𝑠2

)
and ∥ ¤𝑦(𝑠)∥ = 𝑜

(
1
𝑠

)
as 𝑠→+∞.
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Let us show that this dynamic can be reached by time scaling of a perturbed version of the

continuous steepest descent dynamical system. As for the implicit case, we make in the latter the

change of time variable

𝜏(𝑠) = 𝑠2

2(𝛼 + 1) .

Thus we obtain the rescaled steepest descent

¤𝑦(𝑠) + 𝑠

𝛼 + 1
∇ 𝑓 (𝑦(𝑠)) = 0, (57)

with the convergence rate

𝑓 (𝑦(𝑠)) − infH 𝑓= 𝑜

(
1
𝑠2

)
as 𝑠→+∞. (58)

To obtain an explicit Hessian driven damping term, we take the derivative with respect to 𝑠 in (57)

¥𝑦 (𝑠) + 1
𝛼 + 1

∇ 𝑓 (𝑦 (𝑠)) + 𝑠

𝛼 + 1
𝑑

𝑑𝑠
(∇ 𝑓 (𝑦 (𝑠))) = 0.

On the other hand, for every 𝑠 ≥ 𝜎0, by multiplying both sides of (57) by 𝛼
𝑠
> 0, we get

𝛼

𝑠
¤𝑦 (𝑠) + 𝛼

𝛼 + 1
∇ 𝑓 (𝑦 (𝑠)) = 0.

Summing up the two above equations above yields

¥𝑦 (𝑠) + 𝛼

𝑠
¤𝑦 (𝑠) + 𝑠

𝛼 + 1
𝑑

𝑑𝑠
(∇ 𝑓 (𝑦 (𝑠))) + ∇ 𝑓 (𝑦 (𝑠)) = 0,

which is precisely (56).

THEOREM 4. Suppose that 𝑓 : H → R satisfies (A). Let 𝑦 : [𝑠0,+∞[→ H be a solution

trajectory of the dynamical system

¥𝑦 (𝑠) + 𝛼

𝑠
¤𝑦 (𝑠) + 𝑠

𝛼 + 1
𝑑

𝑑𝑠
(∇ 𝑓 (𝑦 (𝑠))) + ∇ 𝑓 (𝑦 (𝑠)) = 0. (59)

Assume that 𝛼 > 1. Then the following statements are true:

(i) (integral estimate of the velocities)
∫ +∞
𝑠0

𝑠 ∥ ¤𝑦 (𝑠)∥2 𝑑𝑠 < +∞;

(ii) (integral estimate of the values)
∫ +∞
𝑠0

𝑠 ( 𝑓 (𝑦 (𝑠)) − infH 𝑓 ) 𝑑𝑠 < +∞;

(iii) (integral estimate of the gradients)
∫ +∞
𝑠0

𝑠3 ∥∇ 𝑓 (𝑦 (𝑠))∥2 𝑑𝑠 < +∞;

(iv) (convergence of the values towards the minimal value) 𝑓 (𝑦 (𝑠)) − infH 𝑓 = 𝑜

(
1
𝑠2

)
as 𝑠→+∞;

(v) the solution trajectory 𝑦(𝑠) converges weakly as 𝑠→+∞, and its limit belongs to 𝑆 = arg min 𝑓 .

If 𝛼 > 2, then
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(vi) (convergence of the velocities towards zero) ∥ ¤𝑦 (𝑠)∥ = 𝑜

(
1
𝑠

)
as 𝑠→+∞;

(vii) (convergence of the gradients towards zero) ∥∇ 𝑓 (𝑦 (𝑠))∥ = 𝑜

(
1
𝑠2

)
as 𝑠→+∞.

The proof consists in reversing the process described above which has permitted us to pass

from (SD) to the damped inertial dynamic with explicit Hessian driven damping (59). Let 𝑦 be an

arbitrary solution trajectory of (59) which satisfies the Cauchy data 𝑦 (𝑠0) := 𝑦0 and ¤𝑦 (𝑠0) := 𝑦1.

Observe that

𝑑

𝑑𝑠
(𝑠𝛼 ¤𝑦 (𝑠)) = 𝑠𝛼 ¥𝑦 (𝑠) +𝛼𝑠𝛼−1 ¤𝑦 (𝑠)

𝑑

𝑑𝑠

(
𝑠𝛼+1

𝛼 + 1
∇ 𝑓 (𝑦 (𝑠))

)
=

𝑠𝛼+1

𝛼 + 1
𝑑

𝑑𝑠
∇ 𝑓 (𝑦 (𝑠)) + 𝑠𝛼∇ 𝑓 (𝑦 (𝑠)) .

Hence, by multiplying both sides of (59) by 𝑠𝛼 > 0, we deduce that

𝑑

𝑑𝑠

(
𝑠𝛼 ¤𝑦 (𝑠) + 𝑠𝛼+1

𝛼 + 1
∇ 𝑓 (𝑦 (𝑠))

)
= 0.

This gives, equivalently

¤𝑦 (𝑠) + 𝑠

𝛼 + 1
∇ 𝑓 (𝑦 (𝑠)) = 𝑐0

𝑠𝛼
, (60)

where 𝑐0 ∈ H is a constant that can be determined from the Cauchy condition. Precisely, taking

𝑠 := 𝑠0 in (60) it yields
𝑐0 = 𝑠𝛼0 𝑦1 +

𝑠𝛼+1
0

𝛼 + 1
∇ 𝑓 (𝑦0) . (61)

Next we show that time scaling makes it possible to link the solution trajectory 𝑦(·) of (59) to the

solution trajectory of a perturbation of (SD). Set 𝑧 (𝑡) = 𝑦 (𝜎 (𝑡)), where

𝜎 (𝑡) =
√︁

2 (𝛼 + 1) 𝑡.

Therefore,

¤𝜎 (𝑡) =
√︂

𝛼 + 1
2𝑡

and ¤𝑧 (𝑡) = ¤𝜎 (𝑡) ¤𝑦 (𝜎 (𝑡)) .

Moreover, notice that (60) can be equivalently written as

𝛼 + 1
𝑠

¤𝑦 (𝑠) + ∇ 𝑓 (𝑦 (𝑠)) = 𝑐0(𝛼 + 1)
𝑠𝛼+1 .

Setting 𝑠 = 𝜎 (𝑡) gives with 𝑐 := 𝑐0(𝛼 + 1) ∈ H

𝛼 + 1
𝜎 (𝑡)

1
¤𝜎 (𝑡) ¤𝑧 (𝑡) + ∇ 𝑓 (𝑧 (𝑡)) = 𝑐

𝜎 (𝑡)𝛼+1
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or, equivalently,

¤𝑧 (𝑡) + ∇ 𝑓 (𝑧 (𝑡)) = 𝑐

𝑡
𝛼+1

2
.

This is nothing else than the perturbed continuous steepest descent system with the perturbation

function 𝑔 : [𝑡0,+∞[→H , 𝑔(𝑡) = 𝑐

𝑡
𝛼+1

2
, which obviously fulfills∫ +∞

𝑡0

∥𝑔 (𝑡)∥ 𝑑𝑡 < +∞ and
∫ +∞

𝑡0

𝑡 ∥𝑔 (𝑡)∥2 𝑑𝑡 < +∞,

for every 𝛼 > 1.

Furthermore, ∫ +∞

𝑡0

𝑡2 ∥𝑔 (𝑡)∥2 𝑑𝑡 =

∫ +∞

𝑡0

∥𝑐∥2

𝑡𝛼−1 𝑑𝑡 < +∞,

whenever 𝛼 > 2. All statements excepting (vi) follow from Theorem 1.

Going back to the perturbed continuous steepest descent (6), we see that

∥ ¤𝑧 (𝑡)∥ ≤ ∥∇ 𝑓 (𝑧 (𝑡))∥ + ∥𝑔 (𝑡)∥ = 𝑜

(
1
𝑡

)
+ 𝑜

(
1

𝑡
𝛼+1

2

)
= 𝑜

(
1
𝑡

)
as 𝑡 →+∞.

Taking 𝑡 = 𝜏 (𝑠) = 𝑠2

2(𝛼+1) , it yields

∥ ¤𝑧 (𝜏 (𝑠))∥ = 𝑜

(
1
𝑠2

)
as 𝑠→+∞,

which gives (vi), since ¤𝑦(𝑠) = ¤𝜏(𝑠) ¤𝑧(𝜏(𝑠)) = 𝑠
𝛼+1 ¤𝑧(𝜏(𝑠)). Q.E.D.

REMARK 4. As in in Theorem 2, we see that the convergence of trajectory can be guaranteed

for 𝛼 > 1, which is less restrictive than for the Su-Boyd-Candés system, the trajectory of which is

known to convergence for 𝛼 > 3. This is another positive effect of the approach that combines time

scaling and averaging.

3.2. Combining implicit and explicit Hessian driven damping. As a starting dynamic

we consider the regularized Newton dynamical system
𝜆 ¤𝑧(𝑡) + ¤𝑣(𝑡) + 𝑣(𝑡) = 0

𝑣(𝑡) = ∇ 𝑓 (𝑧(𝑡))
. (62)

It is a special case of the regularized Newton dynamic

𝜆(𝑡) ¤𝑧(𝑡) + ∇2 𝑓 (𝑧(𝑡)) ¤𝑧(𝑡) + ∇ 𝑓 (𝑧(𝑡)) = 0. (63)
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This system has been studied by Attouch and Svaiter [24], Attouch, Redont, and Svaiter [23],
Attouch, Marques Alves, and Svaiter [19] to solve monotone inclusions (that is, with a general
maximally monotone operator 𝐴 instead of ∇ 𝑓 ). In this approach, the central question is the
adjustment of the Levenberg-Marquardt regularization parameter 𝜆(·) in front of the velocity
term. Indeed, taking lim𝑡→+∞ 𝜆(𝑡) = 0 allows to be asymptotically close to the Newton method.
Our situation concerns the simpler case 𝜆(𝑡) ≡ 𝜆 > 0 constant, which fits with the convergence
properties proved in these papers, and the fact that this dynamic is well-posed. For precise statements
concerning the asymptotic behavior of this system see [24, Theorem 4.1, Remark 4.2] and [24,
Theorem 3.9]. For the sake of completeness, we provide below its convergence properties, that
shows some improvements compared to the results in [24]. The proof of Theorem 5 is provided in
the Appendix.

THEOREM 5. Suppose that 𝑓 : H → R satisfies (A). Let 𝑧 : [𝑡0,+∞[→ H be a solution

trajectory of the dynamical system (62). Then the following statements are true:

(i) (integral estimate of the values)
∫ +∞
𝑡0

( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) 𝑑𝑡 < +∞;
(ii) (convergence of the values towards the minimal value) 𝑓 (𝑧 (𝑡)) − infH 𝑓 = 𝑜

(
1
𝑡

)
as 𝑡 →+∞;

(iii) (integral estimates of the velocities and the gradients)
∫ +∞
𝑡0

𝑡 ∥ ¤𝑧 (𝑡)∥2 𝑑𝑡 < +∞ and∫ +∞
𝑡0

𝑡 ∥ ¤𝑣 (𝑡)∥2 𝑑𝑡 < +∞, which lead to
∫ +∞
𝑡0

𝑡 ∥𝑣 (𝑡)∥2 𝑑𝑡 =
∫ +∞
𝑡0

𝑡 ∥∇ 𝑓 (𝑧 (𝑡))∥2 𝑑𝑡 < +∞;
(iv) (convergence of the velocities and the gradients towards zero) ∥𝑣 (𝑡)∥ = ∥∇ 𝑓 (𝑧 (𝑡))∥ =

𝑜

(
1
𝑡

)
as 𝑡 →+∞, which lead to ∥ ¤𝑧 (𝑡)∥ = ∥ ¤𝑣 (𝑡)∥ = 𝑜

(
1
𝑡

)
as 𝑡 →+∞;

(v) the solution trajectory 𝑧(𝑡) converges weakly as 𝑡 →+∞, and its limit belongs to 𝑆 = arg min 𝑓 .

REMARK 5. In [24, Theorem 4.1], the authors show that both ¤𝑧 (·) and ¤𝑣 (·), and consequently
𝑣 (·), belong to L2 ( [𝑡0,+∞[ ;H). Since 𝑡 ↦→ ∥𝑣 (𝑡)∥ is nonincreasing, in [24, Theorem 3.9] it is
shown that ∥𝑣 (𝑡)∥ = 𝑜

(
1√
𝑡

)
as 𝑡 →+∞. By improving some integral estimates for the velocity and

the gradient, we can provide a faster convergence rate, namely of 𝑜
(

1
𝑡

)
as 𝑡 →+∞.

Let us make the change of time variable 𝑡 = 𝜏(𝑠) = 1
2𝛾𝑠

2 in the dynamic (62), where 𝛾 is a positive
constant to be adjusted later. Set 𝑦(𝑠) := 𝑧(𝜏(𝑠)), 𝑤(𝑠) := 𝑣(𝜏(𝑠)) = ∇ 𝑓 (𝑦(𝑠)), and 𝑠0 > 0 be such
that 𝑡0 = 𝜏 (𝑠0). On the one hand, by the derivation chain rule, we have for every 𝑠 ≥ 𝑠0

¤𝑦(𝑠) = ¤𝜏(𝑠) ¤𝑧(𝜏(𝑠)), ¤𝑤(𝑠) = ¤𝜏(𝑠) ¤𝑣(𝜏(𝑠)). (64)

On the other hand, setting 𝑡 = 𝜏(𝑠) in (62) gives
𝜆 ¤𝑧(𝜏(𝑠)) + ¤𝑣(𝜏(𝑠)) + 𝑣(𝜏(𝑠)) = 0

𝑣(𝜏(𝑠)) = ∇ 𝑓 (𝑧(𝜏(𝑠))).
(65)
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According to (64), (65), and ¤𝜏(𝑠) = 𝛾𝑠, we obtain
𝜆
𝑐𝑠
¤𝑦(𝑠) + 1

𝛾𝑠
¤𝑤(𝑠) +𝑤(𝑠) = 0

𝑤(𝑠) = ∇ 𝑓 (𝑦(𝑠))
(66)

or, equivalently, 
𝜆 ¤𝑦(𝑠) + ¤𝑤(𝑠) + 𝛾𝑠𝑤(𝑠) = 0

𝑤(𝑠) = ∇ 𝑓 (𝑦(𝑠)).
(67)

The convergence rate becomes

𝑓 (𝑦(𝑠)) − infH 𝑓 = 𝑜

(
1
𝑠2

)
as 𝑠→+∞. (68)

So, we have accelerated the dynamic for the values, passing from the convergence rate 1/𝑡 to 1/𝑠2.

Moreover, by proceeding as in Subsection 3.1, we can return from (67) to the dynamics (65).

Let us now come with the averaging process. Given 𝑠0 > 0, we attach to 𝑦(·) the new function

𝑥 : [𝑠0,+∞[→H defined by

¤𝑥(𝑠) + 𝛿

𝑠
(𝑥(𝑠) − 𝑦(𝑠)) = 0, (69)

with 𝑥(𝑠0) = 𝑥0 given in H , and where 𝛿 is a positive coefficient to adjust. Equivalently

𝑦(𝑠) = 𝑥(𝑠) + 𝑠

𝛿
¤𝑥(𝑠). (70)

Let us formulate (67) in terms of 𝑥 by eliminating 𝑦. We first obtain
𝜆

(
¤𝑥(𝑠) + 𝑠

𝛿
¥𝑥(𝑠) + 1

𝛿
¤𝑥(𝑠)

)
+ ¤𝑤(𝑠) + 𝛾𝑠𝑤(𝑠) = 0

𝑤(𝑠) = ∇ 𝑓
(
𝑥(𝑠) + 𝑠

𝛿
¤𝑥(𝑠)

)
.

(71)

After reduction we obtain 
¥𝑥(𝑠) + 𝛿+1

𝑠
¤𝑥(𝑠) + 𝛿

𝜆𝑠
¤𝑤(𝑠) + 𝛿𝛾

𝜆
𝑤(𝑠) = 0

𝑤(𝑠) = ∇ 𝑓
(
𝑥(𝑠) + 𝑠

𝛿
¤𝑥(𝑠)

)
.

(72)

Take 𝛿 = 𝛼− 1, 𝛾 = 𝜆
𝛼−1 in (72). We have 𝛿𝛾 = 𝜆, which gives

¥𝑥(𝑠) + 𝛼
𝑠
¤𝑥(𝑠) + 𝛼−1

𝜆𝑠
¤𝑤(𝑠) +𝑤(𝑠) = 0

𝑤(𝑠) = ∇ 𝑓
(
𝑥(𝑠) + 𝑠

𝛼−1 ¤𝑥(𝑠)
)
.

(73)
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According to the general properties of the averaging process

𝑦(𝑠) = 𝑥(𝑠) + 𝑠

𝛼− 1
¤𝑥(𝑠), (74)

which has been already studied, see (30), we obtain the following theorem for a dynamics which

combines explicit and implicit Hessian driven damping in a new way.

THEOREM 6. Suppose that 𝑓 : H → R satisfies (A). Let 𝑥 : [𝑠0,+∞[→ H be a solution

trajectory of the dynamical system
¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + 𝛼− 1

𝜆𝑠
¤𝑤(𝑠) +𝑤(𝑠) = 0

𝑤(𝑠) = ∇ 𝑓

(
𝑥(𝑠) + 𝑠

𝛼− 1
¤𝑥(𝑠)

)
.

(75)

Assume that 𝛼 > 1. Then the following statements are true:

(i) (integral estimate of the gradients)
∫ +∞
𝑠0

𝑠3 ∥𝑤 (𝑠)∥2 𝑑𝑠 < +∞;

(ii) (convergence of the gradients towards zero) ∥𝑤 (𝑠)∥ = 𝑜

(
1
𝑠2

)
as 𝑠→+∞;

(iii) (convergence of the velocities towards zero) ∥ ¤𝑥 (𝑠)∥ = 𝑜

(
1
𝑠

)
as 𝑠→+∞;

(iv) the solution trajectory 𝑥(𝑠) converges weakly as 𝑠→+∞, and its limit belongs to 𝑆 = arg min 𝑓 .

If 𝛼 > 3, then

(v) (convergence of the values towards the minimal value) 𝑓 (𝑥(𝑠)) − infH 𝑓 = 𝑜

(
1
𝑠2

)
as 𝑠→+∞.

Let 𝑥(·) be a solution trajectory of (75) which satisfies the Cauchy data 𝑥(𝑠0) = 𝑥0, ¤𝑥(𝑠0) = 𝑥1,

and 𝑤 (𝑠0) := ∇ 𝑓
(
𝑥0 + 𝑠0

𝛼−1𝑥1
)
. In the same way as in the proof of Theorem 2, we first show that

such a solution is reached by considering first the solution 𝑦(·) of the system
𝜆 ¤𝑦(𝑠) + ¤𝑤(𝑠) + 𝜆𝑠

𝛼−1𝑤(𝑠) = 0

𝑤(𝑠) = ∇ 𝑓 (𝑦(𝑠))

𝑦(𝑠0) = 𝑥0 + 𝑠0
𝛼−1𝑥1,

(76)

and then 
¤𝑥(𝑠) + 𝛼−1

𝑠
(𝑥(𝑠) − 𝑦(𝑠)) = 0

𝑥(𝑡0) = 𝑥0.

(77)

Indeed, (77) gives ¤𝑥(𝑠0) = 𝛼−1
𝑠0

(𝑦(𝑠0) − 𝑥(𝑠0)), which, by the second equation of (76), equals to 𝑥1.

We have already seen that 𝑥 can be seen as an averaging process (77) of 𝑦 as follows

𝑥(𝑠) =
∫ 𝑠

𝑠0

𝑦(𝑢) 𝑑𝜇𝑠 (𝑢) + 𝜉 (𝑠), (78)



Attouch, Boţ and Nguyen: Fast Convex Optimization via Time Scale and Averaging of the Steepest Descent
24 Article submitted to Mathematics of Operations Research

where 𝜇𝑠 is the measure on [𝑠0, 𝑠] defined by

𝜇𝑠 =
𝑠𝛼−1

0
𝑠𝛼−1 𝛿𝑠0 + (𝛼− 1)𝑢

𝛼−2

𝑠𝛼−1 𝑑𝑢,

where 𝛿𝑠0 is the Dirac measure at 𝑠0 and

𝜉 (𝑠) := − 𝑠0
𝛼

(𝛼− 1)𝑠𝛼−1 𝑥1.

The statements (i) and (ii) follow from Theorem 5 after time rescaling and integration by sub-

stitution. In order to show (iv), we need to pass from the convergence of 𝑦 to that of 𝑥 by using

the interpretation of 𝑥 as an average of 𝑦 plus a negligible term. Moreover, we know that 𝑦 con-

verges weakly to an element in 𝑆 thanks to Theorem 5. The convergence of 𝑥 follows from similar

arguments as in Theorem 2.

Finally, since the averaging process is the same as in Theorem 2, the convergence rate of 1/𝑠2

for the values (v) follows by the same arguments. Q.E.D.

3.3. General Hessian damping coefficient: extension to bilevel convex optimiza-

tion. Given 𝛽0 a positive damping coefficient, consider the more general form of the dynamic

¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + ∇ 𝑓

(
𝑥(𝑠) + 𝛽0

𝑠

𝛼− 1
¤𝑥(𝑠)

)
= 0. (79)

Our study in the previous subsections concerned the case 𝛽0 = 1. This section shows that the

time rescaling and averaging technique links the dynamical system (79) with a bilevel convex

optimization problem and thus emphasizes the versatility of the approach proposed in this paper.

Let us introduce

𝑦(𝑠) := 𝑥(𝑠) + 𝛽0
𝑠

𝛼− 1
¤𝑥(𝑠), (80)

so that (79) is written equivalently

¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + ∇ 𝑓 (𝑦(𝑠)) = 0. (81)

Let us reformulate (81) as a differential equation with 𝑦(𝑠) as the state variable. According to (80)

we have

¤𝑥(𝑠) = 𝛼− 1
𝛽0𝑠

(𝑦(𝑠) − 𝑥(𝑠)), (82)

which after derivation gives

¥𝑥(𝑠) = 𝛼− 1
𝛽0𝑠

( ¤𝑦(𝑠) − ¤𝑥(𝑠)) − 𝛼− 1
𝛽0𝑠2 (𝑦(𝑠) − 𝑥(𝑠)). (83)
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Combining (81) and (83) we obtain

𝛼− 1
𝛽0𝑠

( ¤𝑦(𝑠) − ¤𝑥(𝑠)) − 𝛼− 1
𝛽0𝑠2 (𝑦(𝑠) − 𝑥(𝑠)) + 𝛼

𝑠
¤𝑥(𝑠) + ∇ 𝑓 (𝑦(𝑠)) = 0. (84)

By replacing ¤𝑥(𝑠) by its formulation given in (82) we obtain

𝛼− 1
𝛽0𝑠

¤𝑦(𝑠) +
(
𝛼

𝑠
− 𝛼− 1

𝛽0𝑠

)
𝛼− 1
𝛽0𝑠

(𝑦(𝑠) − 𝑥(𝑠)) − 𝛼− 1
𝛽0𝑠2 (𝑦(𝑠) − 𝑥(𝑠)) + ∇ 𝑓 (𝑦(𝑠)) = 0.

After reduction we get

𝛼− 1
𝛽0𝑠

¤𝑦(𝑠) + (𝛼− 1)2(𝛽0 − 1)
𝛽2

0𝑠
2

(𝑦(𝑠) − 𝑥(𝑠)) + ∇ 𝑓 (𝑦(𝑠)) = 0. (85)

Equivalently

¤𝑦(𝑠) + 𝛽0𝑠

𝛼− 1
∇ 𝑓 (𝑦(𝑠)) + (𝛼− 1) (𝛽0 − 1)

𝛽0𝑠
(𝑦(𝑠) − 𝑥(𝑠)) = 0. (86)

Putting together (82) and (86) we obtain the system
¤𝑦(𝑠) + 𝛽0𝑠

𝛼− 1
∇ 𝑓 (𝑦(𝑠)) + (𝛼− 1) (𝛽0 − 1)

𝛽0𝑠
(𝑦(𝑠) − 𝑥(𝑠)) = 0

¤𝑥(𝑠) + 𝛼− 1
𝛽0𝑠

(𝑥(𝑠) − 𝑦(𝑠)) = 0.
(87)

Let us now consider time scaling of the above system as in (21). Set

𝑠 =
√︁

2(𝛼− 1)𝑡 and 𝑦(
√︁

2(𝛼− 1)𝑡) =𝑌 (𝑡), 𝑥(
√︁

2(𝛼− 1)𝑡) = 𝑋 (𝑡).

A similar calculation as in Subsection 2.2 gives
¤𝑌 (𝑡) + 𝛽0∇ 𝑓 (𝑌 (𝑡)) + (𝛼− 1) (𝛽0 − 1)

2𝛽0𝑡
(𝑌 (𝑡) − 𝑋 (𝑡)) = 0

¤𝑋 (𝑡) + 𝛼− 1
2𝛽0𝑡

(𝑋 (𝑡) −𝑌 (𝑡)) = 0.
(88)

This is a perturbation of the steepest descent dynamical system in the product space H × H .

Precisely, setting 𝑍 (𝑡) = (𝑌 (𝑡), 𝑋 (𝑡)) ∈ H ×H , we have

¤𝑍 (𝑡) + 𝛽0∇Ψ (𝑍 (𝑡)) + (𝛼− 1)
2𝛽0𝑡

𝐴(𝑍 (𝑡)) = 0, (89)

where Ψ(𝑍) = 𝑓 (𝑌 ) and 𝐴 : H ×H →H ×H is the linear operator whose matrix is given by

𝐴 =
©«
𝛽0 − 1 −(𝛽0 − 1)
−1 +1

ª®¬
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The case 𝛽0 = 2 is of particular interest since then 𝐴 is a symmetric operator which is positive

semidefinite. The study of this system then follows from classical results concerning gradient

dynamical systems with multiscale aspects, see for example the work of Attouch and Czarnecki

[15].

The dynamical system (89) for 𝛽0 = 2 fits in the dynamics

¤𝑍 (𝑡) + 𝛽0∇Ψ (𝑍 (𝑡)) + 𝜀 (𝑡) ∇Φ (𝑍 (𝑡)) = 0, (90)

with 𝜀 (𝑡) := (𝛼−1)
2𝛽0𝑡

and Φ (·) = 1
2 ∥·∥

2
𝐴, where ∥·∥𝐴 is the seminorm induced by the symmetric and

positive semidefinite operator 𝐴. The differential equation (90) can be seen as a continuous time

approach of the bilevel optimization problem

min
H×H

{
Φ (𝑍) | 𝑍 ∈ 𝐷 := arg min

H×H
Ψ

}
. (91)

Let 𝑍∗ be a solution of (91), meaning that Φ (𝑍∗) = inf𝐷 Φ and Ψ (𝑍∗) = infH×H Ψ. Define for

𝑡 ≥ 𝑡0

ΨΦ (𝑡) := 𝛽0 (Ψ (𝑍 (𝑡)) − infH×H Ψ) + 𝜀 (𝑡) (Φ (𝑍 (𝑡)) − inf𝐷 Φ) ≥ 0.

Indeed the above quantity is nonnegative because we are in the particular simple case where

Φ(𝑌, 𝑋) = 1
2 ∥𝑌 − 𝑋 ∥2 is nonnegative, 𝐷 = arg minH 𝑓 ×H and hence inf𝐷 Φ= 0. Let us compute

𝑑

𝑑𝑡

(
1
2
∥𝑍 (𝑡) − 𝑍∗∥2

)
=
〈
𝑍 (𝑡) − 𝑍∗, ¤𝑍 (𝑡)

〉
=−𝛽0 ⟨𝑍 (𝑡) − 𝑍∗,∇Ψ (𝑍 (𝑡))⟩ − 𝜀 (𝑡) ⟨𝑍 (𝑡) − 𝑍∗,∇Φ (𝑍 (𝑡))⟩

≤ −𝛽0 (Ψ (𝑍 (𝑡)) − infH×H Ψ) − 𝜀 (𝑡) (Φ (𝑍 (𝑡)) − inf𝐷 Φ)

= −ΨΦ (𝑡) .

This shows that lim𝑡→+∞ ∥𝑍 (𝑡) − 𝑍∗∥ ∈ R exists and that∫ +∞

𝑡0

ΨΦ (𝑡) 𝑑𝑡 < +∞.

This yields lim inf𝑡→+∞ 𝑡ΨΦ (𝑡) = 0. On the other hand, we have

𝑑

𝑑𝑡
ΨΦ (𝑡) = 𝛽0

〈
∇Ψ (𝑍 (𝑡)) , ¤𝑍 (𝑡)

〉
+ 𝜀 (𝑡)

〈
∇Φ (𝑍 (𝑡)) , ¤𝑍 (𝑡)

〉
+ ¤𝜀 (𝑡)

(
Φ (𝑍 (𝑡)) − inf

𝐷
Φ

)
≤ −

 ¤𝑍 (𝑡)
2
.
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This means that ΨΦ is decreasing and furthermore

𝑑

𝑑𝑡
(𝑡ΨΦ (𝑡)) = ΨΦ (𝑡) + 𝑡 𝑑

𝑑𝑡
ΨΦ (𝑡) ≤ ΨΦ (𝑡) − 𝑡

 ¤𝑍 (𝑡)
2
.

Since ΨΦ ∈ L1 ( [𝑡0,+∞[), we conclude that 𝑡∥ ¤𝑍 (𝑡) ∥2 ∈ L1 ( [𝑡0,+∞[) and lim𝑡→+∞ 𝑡ΨΦ (𝑡) = 0.

Consequently,

lim
𝑡→+∞

𝑡 (Ψ (𝑍 (𝑡)) − infH×H Ψ) = 0 and lim
𝑡→+∞

(Φ (𝑍 (𝑡)) − inf𝐷 Φ) = 0.

Since Ψ and Φ are convex and lower semicontinuous, the second condition of Opial’s lemma is

fulfilled. Thus 𝑍 (𝑡) converges weakly to a solution of (91) as 𝑡 →+∞.

Moreover, according to the definition of Φ and 𝐴, it holds

Φ (𝑍 (𝑡)) = 1
2
⟨𝑍 (𝑡), 𝐴 (𝑍 (𝑡))⟩ = 1

2
∥𝑋 (𝑡) −𝑌 (𝑡)∥2 =

2𝛽2
0

(𝛼− 1)2 𝑡
2  ¤𝑋 (𝑡)

2 → 0 as 𝑡 →+∞.

According to the definitions of Ψ and Φ we conclude that there exists 𝑥∗ ∈ arg minH 𝑓 such that

(𝑌 (𝑡), 𝑋 (𝑡)) converges weakly to (𝑥∗, 𝑥∗) as 𝑡 →+∞,

𝑓 (𝑌 (𝑡)) − infH 𝑓 = 𝑜

(
1
𝑡

)
and lim

𝑡→+∞
∥𝑋 (𝑡) −𝑌 (𝑡)∥ = lim

𝑡→+∞
𝑡∥ ¤𝑋 (𝑡)∥ = 0.

This means that 𝑥(𝑠) converges weakly to 𝑥∗ as 𝑠→+∞,

𝑓

(
𝑥(𝑠) + 2𝑠

𝛼− 1
¤𝑥(𝑠)

)
− infH 𝑓 = 𝑜

(
1
𝑠2

)
and lim

𝑠→+∞
𝑠∥ ¤𝑥(𝑠)∥ = 0.

In the following theorem we collect the convergence properties of the trajectory of the dynamical

system (79) in case 𝛽0 = 2.

THEOREM 7. Suppose that 𝑓 : H → R satisfies (A). Let 𝑥 : [𝑠0,+∞[→ H be a solution

trajectory of the dynamical system

¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + ∇ 𝑓

(
𝑥(𝑠) + 2𝑠

𝛼− 1
¤𝑥(𝑠)

)
= 0.

Assume that 𝛼 > 1. Then the following statements are true:

(i) (convergence of the values towards the minimal value) 𝑓

(
𝑥(𝑠) + 2𝑠

𝛼−1 ¤𝑥(𝑠)
)
− infH 𝑓 =

𝑜

(
1
𝑠2

)
as 𝑠→+∞;

(ii) (convergence of the velocities towards zero) ∥ ¤𝑥 (𝑠)∥ = 𝑜

(
1
𝑠

)
as 𝑠→+∞;

(iii) the solution trajectory 𝑥(𝑠) converges weakly as 𝑠→+∞, and its limit belongs to 𝑆 = arg min 𝑓 .
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3.4. From second-order to third-order accelerated systems. Let us develop the time-

scale and averaging technique, starting from a second-order evolution system. According to the

general properties of this process, this will provide a third-order in time evolution system. This

section is inspired by recent articles by Attouch-Chbani-Riahi [13], [14], who first introduced fast

third-order damped inertial systems by considering the time-scale technique. In fact, we will show

that these results fall within the general framework that we have developed in the previous sections.

As a starting point for our study, consider the second-order dynamic with Asymptotic Vanishing

Damping

(AVD)𝛼 ¥𝑧(𝑡) + 𝛼

𝑡
¤𝑧(𝑡) + ∇ 𝑓 (𝑧(𝑡)) = 0

which was introduced by Su-Boyd-Candès [48]. The importance of this dynamic comes from the

fact that the accelerated gradient method of Nesterov can be obtained as a temporal discretization

by taking 𝛼 = 3. Let us briefly recall the convergence properties of this system:

• For 𝛼 ≥ 3, each trajectory 𝑧(·) of (AVD)𝛼 satisfies the asymptotic convergence rate of the

values 𝑓 (𝑧(𝑡)) − infH 𝑓 = O
(
1/𝑡2

)
as 𝑡 →+∞, see [6], [11], [39], [48].

• For 𝛼 > 3, it has been shown in [11] that each trajectory converges weakly to a minimizer. The

corresponding algorithmic result has been obtained by Chambolle-Dossal [35]. In addition, it is

shown in [20] and [39] that the asymptotic convergence rate of the values is 𝑜(1/𝑡2).

These rates are optimal, that is, they can be reached, or approached arbitrarily close. For further

results concerning the system (AVD)𝛼 one can consult [6, 7, 11, 20, 39, 48].

Let’s make the time rescaling of (AVD)𝛼 given by

𝑡 = 𝜏(𝑠) = 2
3
𝑠

3
2 , 𝑦(𝑠) = 𝑧(𝜏(𝑠)).

According to the classical derivation chain rule we first obtain

¥𝑦(𝑠) + 𝛼 ¤𝜏(𝑠)2 − 𝜏(𝑠) ¥𝜏(𝑠)
𝜏(𝑠) ¤𝜏(𝑠) ¤𝑦(𝑠) + ¤𝜏(𝑠)2∇ 𝑓 (𝑦(𝑠)) = 0. (92)

Then replacing 𝜏(𝑠) by its expression 𝜏(𝑠) = 2
3 𝑠

3
2 , we obtain the rescaled dynamic

¥𝑦(𝑠) + 3𝛼− 1
2𝑠

¤𝑦(𝑠) + 𝑠∇ 𝑓 (𝑦(𝑠)) = 0. (93)
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Since 𝛼 > 3 is equivalent to 3𝛼−1
2 > 4, we obtain from here that, for 𝛼 > 3, for any solution trajectory

𝑦(·) of

¥𝑦(𝑠) + 𝛼 + 1
𝑠

¤𝑦(𝑠) + 𝑠∇ 𝑓 (𝑦(𝑠)) = 0, (94)

we have

𝑓 (𝑦(𝑠)) − inf
H

𝑓 = 𝑜

(
1
𝑠3

)
as 𝑠→+∞, (95)

and that the trajectory 𝑦(𝑠) converges weakly to an element in infH 𝑓 as 𝑠 tends to +∞. Let us now

proceed with the averaging process, and introduce the new variable 𝑥(·) defined by

1
4
𝑠 ¤𝑥(𝑠) + 𝑥(𝑠) = 𝑦(𝑠).

Then

¤𝑦(𝑠) = 1
4
𝑠 ¥𝑥(𝑠) + 5

4
¤𝑥(𝑠) and ¥𝑦(𝑠) = 1

4
𝑠𝑥(𝑠) + 3

2
¥𝑥(𝑠).

As a consequence, (94) becomes the following third-order evolution system where we have replaced

4 𝑓 by 𝑓 , which does not affect the convergence rates:

𝑥(𝑠) + 𝛼 + 7
𝑠

¥𝑥(𝑠) + 5(𝛼 + 1)
𝑠2 ¤𝑥(𝑠) + ∇ 𝑓

(
𝑥(𝑠) + 1

4
𝑠 ¤𝑥(𝑠)

)
= 0.

According to the general properties of the averaging process, which preserves the convergence

rate of the values, we obtain the following result.

THEOREM 8. Let 𝑥 : [𝑡0,+∞[→H be a solution trajectory of the evolution system

𝑥(𝑠) + 𝛼 + 7
𝑠

¥𝑥(𝑠) + 5(𝛼 + 1)
𝑠2 ¤𝑥(𝑠) + ∇ 𝑓

(
𝑥(𝑠) + 1

4
𝑠 ¤𝑥(𝑠)

)
= 0. (96)

Suppose that 𝛼 > 3. Then, as 𝑠→+∞
(i) 𝑓 (𝑥(𝑠)) − infH 𝑓 = 𝑜

(
1
𝑠3

)
;

(ii) the trajectory converges weakly as 𝑠→+∞, that is 𝑥(𝑠)⇀𝑥∞, and 𝑥∞ ∈ arg minH 𝑓 .

Proof. Let 𝑥 : [𝑡0,+∞[→H be a solution trajectory of the evolution system (96) which satisfies

the Cauchy data 𝑥(𝑠0) = 𝑥0, ¤𝑥(𝑠0) = 𝑥1, and ¥𝑥(𝑠0) = 𝑥2. Let us verify that this solution comes from

the dynamic 
¥𝑦(𝑠) + 𝛼 + 1

𝑠
¤𝑦(𝑠) + 𝑠∇ 𝑓 (𝑦(𝑠)) = 0

𝑦(𝑠0) = 𝑥0 +
𝑠0
4
𝑥1

¤𝑦(𝑠0) =
1
4
𝑠0𝑥2 +

5
4
𝑥1

(97)
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then by averaging 
¤𝑥(𝑠) + 4

𝑠
(𝑥(𝑠) − 𝑦(𝑠)) = 0

𝑥(𝑠0) = 𝑥0.

(98)

The first equation in (98) gives ¤𝑥(𝑠0) = 4
𝑠0
(𝑦(𝑠0) − 𝑥(𝑠0)), which, by the second equation of (97),

gives ¤𝑥(𝑠0) = 𝑥1. On the other hand, taking time derivative of yields ¤𝑦(𝑠0) = 1
4 𝑠0 ¥𝑥(𝑠0) + 5

4 ¤𝑥(𝑠0).
Taking into account the third equation of (97), and that ¤𝑥(𝑠0) = 𝑥1 as we just showed, we get

¥𝑥(𝑠0) = 𝑥2.

Multiplying both sides of the first equation in (98) by 𝑠4, we get

𝑑

𝑑𝑠

(
𝑠4𝑥(𝑠)

)
= 4𝑠3𝑦(𝑠). (99)

Integration of (99) from 𝑠0 to 𝑠, then using the data 𝑥(𝑠0) = 𝑥0 and 𝑦(𝑠0) = 𝑥0 + 𝑠0
4 𝑥1, we obtain,

𝑥 (𝑠) =
𝑠4

0
𝑠4 𝑥0 +

4
𝑠4

∫ 𝑠

𝑠0

𝑟3𝑦 (𝑟) 𝑑𝑟 =
𝑠4

0
𝑠4 𝑦 (𝑠0) +

4
𝑠4

∫ 𝑠

𝑠0

𝑟3𝑦 (𝑟) 𝑑𝑟 −
𝑠5

0
4𝑠4 𝑥1.

Let 𝜇𝑠 be the measure on [𝑠0, 𝑠] defined by

𝜇𝑠 =
𝑠4

0
𝑠4 𝛿𝑡0 +

4𝑟3

𝑠4 𝑑𝑟,

where 𝛿𝑡0 is the Dirac measure at 𝑡0, and set

𝜉 (𝑠) := −
𝑠5

0
4𝑠4 𝑥1

Then, observe that 𝑥(𝑠) can be written as follows

𝑥(𝑠) =
∫ 𝑠

𝑠0

𝑦(𝑟)𝑑𝜇𝑠 (𝑟) + 𝜉 (𝑠). (100)

Since 𝑦(𝑠) converges weakly as 𝑠→+∞, we have that the trajectory 𝑦(·) remains bounded. From

(34) we deduce that 𝑥(·) is also bounded. Since ∇ 𝑓 is Lipschitz continuous on the bounded sets, it

follows that ∇ 𝑓 is bounded on the bounded sets, which immediately implies that 𝑓 is also Lipschitz

continuous on the bounded sets. Therefore

𝑓 (𝑥(𝑠)) − 𝑓

(∫ 𝑠

𝑠0

𝑦(𝑟)𝑑𝜇𝑠 (𝑟)
)
≤ 𝐶∥𝑤(𝑠)∥ ≤ 𝐶

𝑠4 . (101)
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On the other hand, we have from (95) that there exists a positive function 𝜀(·) such that

lim𝑠→+∞ 𝜀(𝑠) = 0 and

𝑓 (𝑦 (𝑠)) − infH 𝑓 =
𝜀(𝑠)
𝑠3

This, together with the convexity of 𝑓 and Jensen’s inequality, allow us to deduce that for every

𝑠 ≥ 𝑠0

𝑓

(∫ 𝑠

𝑠0

𝑦(𝑟)𝑑𝜇𝑠 (𝑟)
)
− infH 𝑓 ≤

∫ 𝑠

𝑠0

( 𝑓 (𝑦(𝑟)) − infH 𝑓 ) 𝑑𝜇𝑠 (𝑟) =
∫ 𝑠

𝑠0

𝜀(𝑠)
𝑟3 𝑑𝜇𝑠 (𝑟).

According to the definition of 𝜇𝑠, we deduce that

𝑓 (𝑥(𝑠)) − infH 𝑓 =
𝑠4

0
𝑠4 + 4

𝑠4

∫ 𝑠

𝑠0

𝜀(𝑟)𝑑𝑟. (102)

Combining (101) with (102) we obtain the fast convergence of the values, as

lim sup
𝑠→+∞

𝑠3 ( 𝑓 (𝑥(𝑠)) − infH 𝑓 ) ≤ lim sup
𝑠→+∞

(
𝐶

𝑠
+ 4
𝑠

∫ 𝑠

𝑠0

𝜀(𝑟)𝑑𝑟
)
, (103)

and the first statement follows from Lemma 4.

The proof of the second statement is similar to the one given in Theorem 2. Q.E.D.

REMARK 6. Given that the coefficient in front of the gradient in the dynamic (96) is fixed,

one can anticipate deriving associated gradient algorithms with similar convergence rates through

explicit discretization, namely 𝑜(1/𝑘3) as 𝑘 →+∞. Further research will be dedicated to elucidating

the discrepancy between the continuous-time convergence rate of 𝑜(1/𝑡3) and the lower complexity

bound of 1/𝑘2 for first-order algorithms in the minimization of convex differentiable functions,

as demonstrated by Nesterov (refer to [41, Theorem 2.1.7]). Explicit discretization of (96) would

necessitate the evaluation of the function gradient at 𝑥𝑘 + 𝑘
4 (𝑥𝑘 − 𝑥𝑘−1). It’s worth noting that this

extrapolation is reasonable, given that, according to classical estimates of the velocity vector, we

have lim𝑠→+∞ 𝑠 ¤𝑥(𝑠) = 0.

4. The nonsmooth case. In this section, we show that the approach proposed in this paper

extends to the case when 𝑓 : H → R ∪ {+∞} is assumed to be a (possibly nonsmooth) proper,

convex and lower semicontinuous function.
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4.1. The continuous dynamics. As a basic property of the dynamical system (28), the

couple of variables (𝑥, 𝑦) defined in Subsection 2.3 satisfies the following differential system, which

involves only first-order derivatives in time and space
¤𝑦(𝑠) + 𝑠

𝛼−1∇ 𝑓 (𝑦(𝑠)) = 0

¤𝑥(𝑠) + 𝛼−1
𝑠
(𝑥(𝑠) − 𝑦(𝑠)) = 0.

(104)

This naturally suggests the extension of the above results to the nonsmooth case (replace the gradient

of 𝑓 by its subdifferential). We thus get the differential inclusion system
¤𝑦(𝑠) + 𝑠

𝛼−1𝜕 𝑓 (𝑦(𝑠)) ∋ 0

¤𝑥(𝑠) + 𝛼−1
𝑠
(𝑥(𝑠) − 𝑦(𝑠)) = 0.

(105)

Solving this system gives generalized solutions to the second-order differential inclusion

¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + 𝜕 𝑓

(
𝑥(𝑠) + 𝑠

𝛼− 1
¤𝑥(𝑠)

)
∋ 0 (106)

whose direct study raises several difficulties, recalling that 𝑥(𝑠0) = 𝑥0 and ¤𝑥(𝑠0) = 𝑥1. To extend

the results of the previous section to this nonsmooth case, we need to avoid the arguments using

the Lipschitz continuity of ∇ 𝑓 . So, we are led to consider the Cauchy problem for (106) with

initial data 𝑥0 ∈ dom 𝑓 and 𝑥1 = 0, that is with initial velocity equal to zero. So doing we have

𝑦(𝑠0) = 𝑥(𝑠0) = 𝑥0, which allows to interpret 𝑥 as an average of 𝑦 without correcting term (𝜉 = 0

with the notations of Subsection 2.6).

The existence and uniqueness of a strong solution to the associated Cauchy problem relies on

the equivalent formulation of (105) as a perturbation of the generalized steepest descent dynamical

system in the product space H ×H . Precisely, define 𝐹 : H ×H →R∪ {+∞}, for any 𝑍 = (𝑦, 𝑥) ∈
H ×H by

𝐹 (𝑍) = 𝑓 (𝑦),

and let 𝐺 : H ×H →H ×H be the operator defined by

𝐺 (𝑍) = (0, 𝑥 − 𝑦). (107)

Then (105) is written equivalently as

¤𝑍 (𝑠) + 𝑠

𝛼− 1
𝜕𝐹 (𝑍 (𝑠)) + 𝛼− 1

𝑠
𝐺 (𝑍 (𝑠)) ∋ 0. (108)
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The initial condition becomes 𝑍 (𝑡0) = (𝑥0, 𝑥0) which belongs to dom𝐹 = dom 𝑓 ×H . According

to the classical results concerning the Lipschitz perturbation of evolution equations governed

by subdifferentials of convex functions, see [31, Proposition 3.12], we obtain the existence and

uniqueness of a global strong solution of the Cauchy problem associated with (105). As a major

advantage of the time scaling and averaging techniques, the arguments used in the previous section

still work in this more general nonsmooth situation. The rules of differential calculus are still valid

for strong solutions, see [32, chapter VIII.2], and Jensen’s inequality is still valid for a nonsmooth

function 𝑓 (see e.g. [27, Proposition 9.24]). Indeed Jensen’s inequality is classical for a smooth

convex function 𝑓 . Its extension to the nonsmooth convex case can be obtained by first writing it

for the Moreau-Yosida regularization 𝑓𝜆 of 𝑓 , then passing to the limit when 𝜆 ↓ 0. According to

the monotone convergence of 𝑓𝜆 towards 𝑓 , we can pass to the limit in the integral term thanks to

the Beppo Levi monotone convergence theorem. Therefore we obtain the following theorem.

THEOREM 9. Let 𝑓 : H →R∪ {+∞} be a proper, lower semicontinuous, and convex function

such that 𝑆 = arg min 𝑓 ≠ ∅. Let 𝑥 : [𝑠0,+∞[→H be a solution trajectory of

¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + 𝜕 𝑓

(
𝑥(𝑠) + 𝑠

𝛼− 1
¤𝑥(𝑠)

)
∋ 0, (109)

which satisfies the initial conditions 𝑥(𝑠0) ∈ dom 𝑓 and ¤𝑥(𝑠0) = 0. Assume that 𝛼 > 1. Then

(i) the solution trajectory 𝑥(𝑠) converges weakly as 𝑠→+∞, and its limit belongs to 𝑆 = arg min 𝑓 .

If 𝛼 > 3, then

(ii) (convergence of the values towards the minimal value) 𝑓 (𝑦 (𝑠)) − infH 𝑓 = 𝑜

(
1
𝑠2

)
as 𝑠→+∞.

REMARK 7. As a consequence of (ii), we have that 𝑥(𝑠) remains in the domain of 𝑓 for all

𝑠 ≥ 𝑡0. This viability property strongly depends on the fact that the initial position belongs to the

domain of 𝑓 , and that the initial velocity has been taken equal to zero.

REMARK 8. The above theorem is valid in an infinite dimensional setting, which makes it

applicable to nonlinear PDEs. According to the classical theory for the steepest descent dynamic

in the nonsmooth convex case, we have that at each 𝑠 > 𝑠0 the right derivative of 𝑦(𝑠) exists and

satisfies

−
(
𝑑𝑦

𝑑𝑠

)+
(𝑠) = 𝑠

𝛼− 1
(𝜕 𝑓 (𝑦(𝑠)))0

where (𝜕 𝑓 (𝑦(𝑠)))0 is the element of minimum norm of 𝜕 𝑓 (𝑦(𝑠)). Thus, 𝑦 may exhibit shocks. By

contrast, 𝑥, which is an average of 𝑦, has a continuous derivative, hence does not exhibit shocks.

Still 𝑥 is not twice differentiable.
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4.2. A proximal type algorithm for nonsmooth minimization. Recall the second-

order differential inclusion (106) associated with (1) in Section 4

¥𝑥(𝑠) + 𝛼

𝑠
¤𝑥(𝑠) + 𝜕 𝑓

(
𝑥(𝑠) + 𝑠

𝛼− 1
¤𝑥(𝑠)

)
∋ 0, (110)

or equivalently formulated as a first order system (see (105))
¤𝑦(𝑠) + 𝑠

𝛼−1𝜕 𝑓 (𝑦(𝑠)) ∋ 0

¤𝑥(𝑠) + 𝛼−1
𝑠
(𝑥(𝑠) − 𝑦(𝑠)) = 0.

(111)

We consider the following implicit discretization in time of (111), written for every 𝑘 ≥ 0 as
𝑦𝑘+1 − 𝑦𝑘 + 𝑠𝑘+1

𝛼−1𝜕 𝑓 (𝑦𝑘+1) ∋ 0

𝑥𝑘+1 − 𝑥𝑘 + 𝛼−1
𝑠𝑘+1

(𝑥𝑘 − 𝑦𝑘+1) = 0.
(112)

This gives rise to the following numerical algorithm

(∀𝑘 ≥ 0)

𝑦𝑘+1 := prox 𝑠𝑘+1

𝛼−1 𝑓 (𝑦𝑘 )

𝑥𝑘+1 :=
(
1− 𝛼−1

𝑠𝑘+1

)
𝑥𝑘 + 𝛼−1

𝑠𝑘+1
𝑦𝑘+1,

(113)

where 𝑦0, 𝑥0 ∈ H are arbitrary initial points. This algorithm has some analogy with the relaxed

inertial proximal algorithm for maximally monotone operators in [8].

For the step size sequence (𝑠𝑘 )𝑘≥0 we impose the following recurrence condition

𝑠0 := 0 and 𝑠2
𝑘+1 − (𝛼− 1) 𝑠𝑘+1 = 𝑠2

𝑘 ∀𝑘 ≥ 0, (114)

which relates to the Nesterov step size rule. Indeed, by denoting 𝑡𝑘 := 𝑠𝑘
𝛼−1 , we have for every 𝑘 ≥ 0

𝑠𝑘+1 :=
𝛼− 1+

√︃
(𝛼− 1)2 + 4𝑠2

𝑘

2
or, equivalently, 𝑡𝑘+1 :=

1+
√︃

1+ 4𝑡2
𝑘

2
,

which is nothing but the classic step size rule of Nesterov’s accelerated gradient method [26, 40, 41].

We will nevertheless continue to work with the sequence (𝑠𝑘 )𝑘≥0 in order to emphasize that all

the convergence statements provided in this section are valid for 𝛼 > 1, contrary to the stronger

condition 𝛼 > 3 for the low resolution case (see Remark 1). We have that 𝑠𝑘 ∼ 𝑘 , precisely,

𝑠𝑘 ≥ (𝑘 + 1) (𝛼− 1) /2 for every 𝑘 ≥ 0 (see [26, Lemma 4.3]). Furthermore, by a telescoping sum

argument, we have from (114)

𝑠2
𝑘+1 − (𝛼− 1)

𝑘∑︁
𝑖=0

𝑠𝑖+1 = 𝑠2
0.
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Since 𝑠0 = 0, we can conclude that for every 𝑘 ≥ 0

𝑠2
𝑘 = (𝛼− 1)

𝑘∑︁
𝑖=0

𝑠𝑖 . (115)

Let us also notice that (113) can be written only in terms of the sequence (𝑥𝑘 )𝑘≥0

𝑥𝑘+1 − 𝑥𝑘 −
𝑠𝑘 − (𝛼− 1)

𝑠𝑘+1
(𝑥𝑘 − 𝑥𝑘−1) + 𝜕 𝑓

(
𝑥𝑘 +

𝑠𝑘+1
𝛼− 1

(𝑥𝑘+1 − 𝑥𝑘 )
)
∋ 0 ∀𝑘 ≥ 1,

which can be seen as a direct discretization of (110).

In the following we first analyze the convergence properties of the sequence (𝑦𝑘 )𝑘≥0 generated

by (113). Then, we transfer these to the sequence (𝑥𝑘 )𝑘≥0. One can easily observe the similarity

between this approach and the continuous time one, where we transferred the converge properties

of the trajectory 𝑦(·) generated by the continuous steepest descent system after time scaling to the

averaged trajectory 𝑥(·).

THEOREM 10. Let (𝑦𝑘 )𝑘≥0 be the sequence generated by (113). The following statements are

true:

(i) (summability of the function values)
∑

𝑘≥0 𝑠𝑘 ( 𝑓 (𝑦𝑘 ) − infH 𝑓 ) < +∞;

(ii) (summability of the subgradients) there exists a sequence (𝜂𝑘 )𝑘≥0 such that 𝜂𝑘 ∈ 𝜕 𝑓 (𝑦𝑘 ) for

every 𝑘 ≥ 0 and
∑

𝑘≥0 𝑠
2
𝑘
∥𝜂𝑘 ∥2 < +∞.

In particular, if 𝑓 is differentiable, then ∥∇ 𝑓 (𝑦𝑘 )∥ = 𝑜

(
1√︃∑𝑘
𝑖=0 𝑠

2
𝑖

)
= 𝑜

(
1

𝑘
√
𝑘

)
as 𝑘 →+∞;

(iii) (convergence of the values towards the minimal value) 𝑓 (𝑦𝑘 ) − infH 𝑓 = O
(

1∑𝑘
𝑖=0 𝑠𝑖

)
= 𝑜

(
1
𝑠2
𝑘

)
=

𝑜

(
1

(𝑘+1)2

)
as 𝑘 →+∞;

(iv) the sequence of iterates (𝑦𝑘 )𝑘≥0 converges weakly as 𝑘 → +∞, and its limit belongs to 𝑆 =

arg minH 𝑓 .

Proof. Let 𝑘 ≥ 0 be fixed. Take 𝑧∗ ∈ 𝑆 = arg min 𝑓 . According to (113) there exists 𝜂𝑘+1 ∈
𝜕 𝑓 (𝑦𝑘+1) such that 𝑦𝑘+1 − 𝑦𝑘 + 𝑠𝑘+1

𝛼−1𝜂𝑘+1 = 0. By convexity of 𝑓 we deduce that

1
2
∥𝑦𝑘+1 − 𝑧∗∥2 =

1
2
∥𝑦𝑘 − 𝑧∗∥2 + ⟨𝑦𝑘+1 − 𝑧∗, 𝑦𝑘+1 − 𝑦𝑘⟩ −

1
2
∥𝑦𝑘+1 − 𝑦𝑘 ∥2

=
1
2
∥𝑦𝑘 − 𝑧∗∥2 − 𝑠𝑘+1

𝛼− 1
⟨𝑦𝑘+1 − 𝑧∗, 𝜂𝑘+1⟩ −

1
2

𝑠2
𝑘+1

(𝛼− 1)2 ∥𝜂𝑘+1∥2

≤ 1
2
∥𝑦𝑘 − 𝑧∗∥2 − 𝑠𝑘+1

𝛼− 1
( 𝑓 (𝑦𝑘+1) − infH 𝑓 ) − 1

2
𝑠2
𝑘+1

(𝛼− 1)2 ∥𝜂𝑘+1∥2 . (116)
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The summability statements in (i) and (ii) follow from [25, Lemma 5.31]. In addition, the limit

lim𝑘→+∞ ∥𝑦𝑘 − 𝑧∗∥ ∈ R exists, which means that the first condition of the discrete Opial’s lemma is

fulfilled.

The convergence rate in (ii) follows from the fact that sequence (∥𝜂𝑘 ∥)𝑘≥0 is nonincreasing.

Indeed, we have from the monotonicity of 𝜕 𝑓

∥𝜂𝑘 ∥2 − ∥𝜂𝑘+1∥2 = −2 ⟨𝜂𝑘+1, 𝜂𝑘+1 − 𝜂𝑘⟩ + ∥𝜂𝑘+1 − 𝜂𝑘 ∥2

=
2 (𝛼− 1)
𝑠𝑘+1

⟨𝑦𝑘+1 − 𝑦𝑘 , 𝜂𝑘+1 − 𝜂𝑘⟩ + ∥𝜂𝑘+1 − 𝜂𝑘 ∥2 ≥ 0,

and the rate follows from [7, Lemma 22]. Similarly, we notice that the sequence ( 𝑓 (𝑦𝑘 ) − infH 𝑓 )𝑘≥0

is nonincreasing as well. Precisely, for every 𝑘 ≥ 0 we have

( 𝑓 (𝑦𝑘 ) − infH 𝑓 ) − ( 𝑓 (𝑦𝑘+1) − infH 𝑓 ) ≥ ⟨𝜂𝑘+1, 𝑦𝑘 − 𝑦𝑘+1⟩ =
𝛼− 1
𝑠𝑘+1

∥𝑦𝑘+1 − 𝑦𝑘 ∥2 ≥ 0.

According to [7, Lemma 22] we get

𝑓 (𝑦𝑘 ) − infH 𝑓 = 𝑜

(
1∑𝑘
𝑖=0 𝑠𝑖

)
,

which proves (iii), thanks to (115). Finally, since lim𝑘→+∞ 𝑓 (𝑦𝑘 ) = infH 𝑓 and 𝑓 is convex and

lower semicontinuous, the second condition of Opial’s lemma is also fulfilled. This gives the weak

convergence of the sequence (𝑦𝑘 )𝑘≥0 to an element in 𝑆 = arg min 𝑓 . Q.E.D.

Let us consider the convergence properties of (𝑥𝑘 )𝑘≥0 which are associated with the averaging

process.

THEOREM 11. Let (𝑥𝑘 )𝑘≥0 be the sequence generated by (113). The following statements are

true:

(i) (convergence of the values) 𝑓 (𝑥𝑘 ) − infH 𝑓 = O
(

1∑𝑘
𝑖=0 𝑠𝑖

)
= O

(
1
𝑠2
𝑘

)
= O

(
1

(𝑘+1)2

)
as 𝑘 →+∞;

(ii) the sequence of iterates (𝑥𝑘 )𝑘≥0 converges weakly as 𝑘 → +∞, and its limit belongs to 𝑆 =

arg minH 𝑓 .

Proof. We begin by interpreting (𝑥𝑘 )𝑘≥0 as an average of (𝑦𝑘 )𝑘≥0. Multiplying the second

equation in (113) by 𝑠2
𝑘+1 and using (114), we obtain for every 𝑘 ≥ 0

𝑠2
𝑘+1𝑥𝑘+1 =

(
𝑠2
𝑘+1 − (𝛼− 1) 𝑠𝑘+1

)
𝑥𝑘 + (𝛼− 1) 𝑠𝑘+1𝑦𝑘+1 = 𝑠2

𝑘𝑥𝑘 + (𝛼− 1) 𝑠𝑘+1𝑦𝑘+1.
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By a telescopic sum argument and using (115), we obtain from here the following expression for

each 𝑘 ≥ 0

𝑥𝑘+1 =
1

𝑠2
𝑘+1

𝑘+1∑︁
𝑖=0

(𝛼− 1) 𝑠𝑖𝑦𝑖 =
1∑𝑘+1

𝑖=0 𝑠𝑖

𝑘+1∑︁
𝑖=0

𝑠𝑖𝑦𝑖 .

Then, Jensen’s inequality gives for every 𝑘 ≥ 0

𝑓 (𝑥𝑘+1) − infH 𝑓 = ( 𝑓 − infH 𝑓 )
(

1∑𝑘+1
𝑖=0 𝑠𝑖

𝑘+1∑︁
𝑖=0

𝑠𝑖𝑦𝑖

)
≤ 1∑𝑘+1

𝑖=0 𝑠𝑖

𝑘+1∑︁
𝑖=0

𝑠𝑖 ( 𝑓 (𝑦𝑖) − infH 𝑓 ) ≤ 𝛼− 1
𝑠2
𝑘+1

∑︁
𝑖≥0

𝑠𝑖 ( 𝑓 (𝑦𝑖) − infH 𝑓 ) , (117)

where in the last equation we use (115). In Theorem 10 we have shown
∑

𝑖≥0 𝑠𝑖 ( 𝑓 (𝑦𝑖) − infH 𝑓 ) <
+∞, which gives the announced convergence rates. The fact that (𝑥𝑘 )𝑘≥0 converges weakly to

an element in 𝑆 = arg min 𝑓 as 𝑘 → +∞ follows from the fact that convergence entails ergodic

convergence. Q.E.D.

5. The operator case. What underlies our study is the first-order in time evolution system

taken as a starting point and its convergence properties. In this regard, it is natural to consider also

the evolution equation governed by a cocoercive operator. Indeed, gradients of convex functions and

cocoercive operators are the two basic examples of monotone operators ensuring the convergence

of the associated semi-groups of contractions. We will successively examine a general cocoercive

operator, then the additively structured case. For monotone operators, the convergence rates are

expressed in terms of velocities and residuals.

5.1. The general cocoercive case. Recall that a single-valued operator 𝑀 : H →H is

called 𝜌-cocoercive (with 𝜌 > 0) if

⟨𝑀 (𝑥) −𝑀 (𝑦), 𝑥 − 𝑦⟩ ≥ 𝜌 ∥𝑀 (𝑥) −𝑀 (𝑦)∥2 ∀𝑥, 𝑦 ∈ H .

We mention the following classical properties of cocoercive operators:

a) If 𝑀 is 𝜌-cocoercive, then it is monotone and 1
𝜌
-Lipschitz continuous, and hence maximally

monotone.

b) If 𝑓 is a convex differentiable function whose gradient is 𝐿-Lipschitz continuous, then the

operator ∇ 𝑓 is 1/𝐿-cocoercive (Baillon-Haddad theorem).
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Let us come to our study. Given 𝑀 : H →H a 𝜌-cocoercive operator, consider the monotone

equation

𝑀 (𝑥) = 0, (118)

and the associated evolution equation

¤𝑧 (𝑡) +𝑀 (𝑧 (𝑡)) = 0. (119)

We denote the solution set of (118) by 𝑆, which represents the set of zeros Zer 𝑀 of the operator

𝑀 and is assumed to be nonempty. We recall the results in [27, Theorems 11 and 16] which state

that 𝑧 (𝑡) converges weakly to a point in 𝑆. In addition∫ +∞

𝑡0

∥ ¤𝑧 (𝑡)∥2 𝑑𝑡 =

∫ +∞

𝑡0

∥𝑀 (𝑧 (𝑡))∥2 𝑑𝑡 < +∞ and ∥𝑀 (𝑧 (𝑡))∥ = 𝑜

(
1
√
𝑡

)
as 𝑡 →+∞. (120)

Further we develop an analysis similar to the one in Subsection 3.1 in the case of a gradient

operator. Set 𝑦 (𝑠) := 𝑧 (𝜏 (𝑠)), where 𝜏 : [𝑡0,+∞[→R+ is a continuously differentiable increasing

function satisfying lim𝑠→+∞ 𝜏 (𝑠) = +∞. According to the derivation chain rule, we have

¤𝑦 (𝑠) = ¤𝜏 (𝑠) ¤𝑧 (𝜏 (𝑠))

which, by setting 𝑡 := 𝜏 (𝑠) in (119), gives

¤𝑧 (𝜏 (𝑠)) +𝑀 (𝑧 (𝜏 (𝑠))) = 0.

Combining the two relations above gives

¤𝑦 (𝑠) + ¤𝜏 (𝑠)𝑀 (𝑦 (𝑠)) = 0. (121)

Taking the derivative with respect to 𝑠 of the above equation gives

¥𝑦 (𝑠) + ¥𝜏 (𝑠)𝑀 (𝑦 (𝑠)) + ¤𝜏 (𝑠) 𝑑

𝑑𝑠
(𝑀 (𝑦 (𝑠))) = 0. (122)

Multiplying both sides of (121) by 𝛼
𝑠
, then adding the result to (122), we obtain

¥𝑦 (𝑠) + 𝛼

𝑠
¤𝑦 (𝑠) + ¤𝜏 (𝑠) 𝑑

𝑑𝑠
(𝑀 (𝑦 (𝑠))) +

(
¥𝜏 (𝑠) + 𝛼

𝑠
¤𝜏 (𝑠)

)
𝑀 (𝑦 (𝑠)) = 0. (123)

As a subsequent result of (120) we have

∥𝑀 (𝑦 (𝑠))∥ = 𝑜

(
1√︁
𝜏 (𝑠)

)
as 𝑠→+∞.
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Taking
𝜏 (𝑠) = 𝑠2

2 (𝛼 + 1) ,

then (123) becomes

¥𝑦 (𝑠) + 𝛼

𝑠
¤𝑦 (𝑠) + 𝑠

𝛼 + 1
𝑑

𝑑𝑠
(𝑀 (𝑦 (𝑠))) +𝑀 (𝑦 (𝑠)) = 0. (124)

We obtain the rate
∥𝑀 (𝑦 (𝑠))∥ = 𝑜

(
1
𝑠

)
as 𝑠→+∞.

Moreover, it holds ∫ +∞

𝜏(𝑡0)
𝑠 ∥𝑀 (𝑦 (𝑠))∥2 𝑑𝑠 < +∞.

Now let us do the reverse, and start from a solution trajectory 𝑦(·) of (123) satisfying 𝑦 (𝑠0) := 𝑦0

and ¤𝑦 (𝑠0) := 𝑦1. Using similar arguments as in Theorem 4, we multiply both sides of (124) by

𝑠𝛼 > 0 and get
𝑑

𝑑𝑠

(
𝑠𝛼 ¤𝑦 (𝑠) + 𝑠𝛼+1

𝛼 + 1
𝑀 (𝑦 (𝑠))

)
= 0.

This leads to

¤𝑦 (𝑠) + 𝑠

𝛼 + 1
𝑀 (𝑦 (𝑠)) = 𝑐0

𝑠𝛼
, (125)

where 𝑐0 ∈ H is a constant that can be determined from the Cauchy condition. Set 𝑧 (𝑡) := 𝑦 (𝜎 (𝑡)),
where

𝜎 (𝑡) =
√︁

2 (𝛼 + 1) 𝑡. (126)

After calculations similar to those made previously, we arrive at

¤𝑧 (𝑡) +𝑀 (𝑧 (𝑡)) = 𝑐

𝑡
𝛼+1

2
,

where 𝑐 ∈ H is a constant. Our study therefore falls within the properties of the perturbed system

¤𝑧 (𝑡) +𝑀 (𝑧 (𝑡)) = 𝑔(𝑡), (127)

where, as 𝛼 > 1, the external perturbation 𝑔 : [𝑡0,+∞[→H , 𝑔(𝑡) = 𝑐

𝑡
𝛼+1

2
, is such that∫ +∞

𝑡0

∥𝑔 (𝑡)∥ 𝑑𝑡 < +∞ and
∫ +∞

𝑡0

𝑡 ∥𝑔 (𝑡)∥2 𝑑𝑡 < +∞. (128)

We have the following result.

THEOREM 12. Let 𝑧 : [𝑡0,+∞[→H be a solution trajectory of

¤𝑧 (𝑡) +𝑀 (𝑧 (𝑡)) = 𝑔(𝑡), (129)

where 𝑔 fulfils (128). Then the following statements are true:
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(i) (convergence rate of the operator norm) ∥𝑀 (𝑧 (𝑡))∥ = 𝑜

(
1√
𝑡

)
as 𝑡 →+∞;

(ii) (integral estimate of the operator norm)
∫ +∞
𝑡0

∥𝑀 (𝑧 (𝑡))∥2 𝑑𝑡 < +∞;

(iii) the solution trajectory 𝑧(𝑡) converges weakly as 𝑡 →+∞, and its limit belongs to 𝑆 = Zer 𝑀 .

Combining the above theorem with the time scaling defined in (126) gives the following result.

THEOREM 13. Let 𝑀 : H →H be a cocoercive operator and 𝑦 : [𝑠0,+∞[→H be a solution

trajectory of

¥𝑦 (𝑠) + 𝛼

𝑠
¤𝑦 (𝑠) + 𝑠

𝛼 + 1
𝑑

𝑑𝑠
(𝑀 (𝑦 (𝑠))) +𝑀 (𝑦 (𝑠)) = 0, (130)

where 𝛼 > 1. Then the following statements are true:

(i) (convergence rate of the operator norm) ∥𝑀 (𝑦 (𝑠))∥ = 𝑜

(
1
𝑠

)
as 𝑠→+∞;

(ii) (integral estimate of the gradients)
∫ +∞
𝑠0

𝑠 ∥𝑀 (𝑦 (𝑠))∥2 𝑑𝑠 < +∞;

(iii) the solution trajectory 𝑦(𝑠) converges weakly as 𝑠→+∞, and its limit belongs to 𝑆 = Zer 𝑀 .

REMARK 9. Theorem 13 is valid for an arbitrary cocoercive operator. By contrast, the corre-

sponding result without the Newton correction term requires that the coefficient of the cocoercive

operator asymptotically tends to infinity, see Attouch and Peypouquet [21].

REMARK 10. Recently, in [29] the closely related dynamics

¥𝑦 (𝑠) + 𝛼

𝑠
¤𝑦 (𝑠) + 2𝑠

𝛼 + 1
𝑑

𝑑𝑠
(𝑀 (𝑦 (𝑠))) +𝑀 (𝑦 (𝑠)) = 0 (131)

has been considered. Compared to (124), the difference lies in the coefficient of 𝑑
𝑑𝑠
(𝑀 (𝑦 (𝑠))).

According to [29, Theorem 4 and Theorem 7], the solution trajectory of (131) verifies∫ +∞

𝑡0

𝑠3 ∥𝑀 (𝑦 (𝑠))∥2 𝑑𝑠 < +∞, and ∥𝑀 (𝑦 (𝑠))∥ = 𝑜

(
1
𝑠2

)
as 𝑠→+∞.

It would be interesting to know if we can achieve the same convergence rate using time scaling and

perturbation techniques.

5.2. Additively structured monotone inclusions. Our interest now is to solve the struc-

tured monotone inclusion problem

0 ∈ 𝐴(𝑥) + 𝐵(𝑥),

where 𝐴 is maximally monotone, and 𝐵 is cocoercive with (𝐴+ 𝐵)−1(0) ≠ ∅. A favorable situation

occurs when one can compute the resolvent operator of 𝐴

𝐽𝜇𝐴 = (𝐼 + 𝜇𝐴)−1, 𝜇 > 0.
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In this case, we can develop a strategy parallel to the one which consists in replacing a maximally

monotone operator by its Yosida approximation. Indeed, given 𝜇 > 0, we have

(𝐴 + 𝐵) (𝑥) ∋ 0 ⇐⇒ 𝑥 − 𝐽𝜇𝐴 (𝑥 − 𝜇𝐵(𝑥)) = 0 ⇐⇒ 𝑀𝐴,𝐵,𝜇 (𝑥) = 0, (132)

where 𝑀𝐴,𝐵,𝜇 : H →H is the single-valued operator defined by

𝑀𝐴,𝐵,𝜇 (𝑥) =
1
𝜇

(
𝑥 − 𝐽𝜇𝐴 (𝑥 − 𝜇𝐵(𝑥))

)
. (133)

The operator 𝑀𝐴,𝐵,𝜇 is closely tied to the well-known forward-backward fixed point operator.

Moreover, when 𝐵 = 0, 𝑀𝐴,𝐵,𝜇 =
1
𝜇

(
𝐼 − 𝐽𝜇𝐴

)
which is nothing but the Yosida regularization of 𝐴

with index 𝜇. As a remarkable property, for the paremeter 𝜇 properly set, the operator 𝑀𝐴,𝐵,𝜇 is

cocoercive. This is made precise in the following result, whose proof relies on the relation between

cocoercivity and averaged property.

PROPOSITION 1. ([36, Proposition 4.4]) Let 𝐴 : H → 2H be a general maximally monotone

operator, and 𝐵 : H →H a monotone operator which is 𝜆-cocoercive. Assume that 𝜇 ∈]0,2𝜆[.
Then 𝑀𝐴,𝐵,𝜇 is 𝜌-cocoercive with

𝜌 = 𝜇

(
1− 𝜇

4𝜆

)
.

Therefore, we can develop a strategy parallel to that developed in [21], which consists in replacing

a maximally monotone operator by its Yosida approximation. This leads to the inertial dynamics

¥𝑦 (𝑠) + 𝛼

𝑠
¤𝑦 (𝑠) + 𝑠

𝛼 + 1
𝑑

𝑑𝑠

(
𝑀𝐴,𝐵,𝜇 (𝑦 (𝑠))

)
+𝑀𝐴,𝐵,𝜇 (𝑦 (𝑠)) = 0. (134)

It is immediate to apply Theorem 13 to (134). This open new perspectives for forward-backward

accelerated regularized Newton methods.

Let us illustrate our results by considering the following composite optimization problem

min
𝑦∈R𝑛

{
𝑓 (𝑦) :=

1
2
∥𝐴𝑦 − 𝑏∥2 + 𝑔 (𝑦)

}
,

where 𝐴 is a linear operator from R𝑛 to R𝑚, 𝑔 : R𝑛 → R ∪ {+∞} is a proper, convex and lower

semicontinuous function which acts as a regularizer. This class of problems covers many interesting

situations arising in the signal and image processing such as the LASSO problem. We are in the

setting of (133) with

𝑀𝐴,𝐵,𝜇 (𝑦) :=
1
𝜇

(
𝑦 − prox𝜇𝑔 (𝑦 + 𝜇𝐴∗ (𝑏 − 𝐴𝑦))

)
,
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where 0 < 𝜇 < 1
∥𝐴∥2 . Following [9], we can also interpret our problem as minimizing the Moreau

envelope of 𝑓 computed for an ad hoc metric. Precisely, if 𝑊 := 1
𝜇
I− 𝐴∗𝐴 and

𝑓𝑊 (𝑦) := arg min
𝑢∈R𝑛

{
𝑓 (𝑢) + 1

2
∥𝑦 − 𝑢∥2

𝑊

}
,

then ∇ 𝑓𝑊 (𝑦) =𝑀𝐴,𝐵,𝜇 (𝑦) and infH 𝑓 = infH 𝑓𝑊 . So, we can use this example to illustrate also the

convergence properties of the dynamic with explicit Hessian damping considered in Subsection

3.1. Thus, we can expect a convergence rate of 1/𝑠2 for 𝑓 (𝑦𝑊 (𝑠)) − infH 𝑓 , where

𝑦𝑊 (𝑠) := prox𝜇𝑔 (𝑦 (𝑠) + 𝜇𝐴∗ (𝑏 − 𝐴𝑦 (𝑠))) .

We conduct the experiment for a randomly generated matrix 𝐴 and by taking 𝑔 to be the ℓ1 norm

with various choices for 𝛼 ∈ {1.001,2,3,5}. Notice that we do not need need to solve (134) directly

but rather exploit the fact that it can be rewritten as the first order equation

¤𝑦 (𝑠) + 𝑠

𝛼 + 1
𝑀𝐴,𝐵,𝜇 (𝑦 (𝑠)) =

𝑠𝛼0
𝑠𝛼

(
𝑦1 +

𝑠0
𝛼 + 1

𝑦0

)
,

as shown previously. We then use the Runge-Kutta method to solve this equation numerically. Below

we plot for the different choices of 𝛼 the values of 𝑓 at 𝑦𝑊 (𝑠) and of the norm of the operator at

𝑦 (𝑠), respectively.

Figure 1. Convergence of the function values and of the norm of the operator values in logarithmic scale.

6. Conclusion and perspectives. Our study has shed new light on the acceleration of

gradient methods for general convex differentiable optimization. Based on a dynamical approach,

and using relatively elementary tools, namely time scaling and time averaging, we were able to
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introduce a large class of damped inertial dynamics with proven fast convergence rates. The method

is very flexible and can be adapted to various initial start-up dynamics. We paid particular attention

to the steepest continuous descent and the regularized Newton method. Our approach confirms the

important role played by the Hessian driven damping role in these questions. Our results open the

door to a systematic study of the corresponding fast proximal and gradient methods. Importantly, our

approach also works when we take a cocoercive operator instead of a gradient operator. Applications

to inertial forward-backward methods, ADMM, can therefore be expected, to cite some of the

most popular algorithms for convex structured optimization. Application to stochastic differential

equations can be considered as well.

Appendix A: Auxiliary results. Opial’s lemma in continuous form is a basic ingredient of

the asymptotic analysis of dynamical systems.

LEMMA 1. (Opial) Let 𝑆 be a nonempty subset of H and let 𝑥 : [𝑡0,+∞[→H . Assume that

(i) for every 𝑧 ∈ 𝑆, lim𝑡→∞ ∥𝑥(𝑡) − 𝑧∥ exists;

(ii) every weak sequential limit point of 𝑥(𝑡), as 𝑡 →∞, belongs to 𝑆.

Then 𝑥(𝑡) converges weakly as 𝑡 →+∞, and its limit belongs to 𝑆.

In the analysis of the perturbed dynamical systems Gronwall-Bellman’s lemma (see [31, Lemme

A.5]) plays an important role.

LEMMA 2. Let 𝑇 ≥ 𝛿 ≥ 0 and 𝑔 : [𝛿,𝑇] → R+ be integrable, and let 𝑐 ≥ 0. Suppose that

ℎ : [𝛿,𝑇] →R is continuous and
1
2
ℎ2 (𝑡) ≤ 1

2
𝑐2 +

∫ 𝑡

𝛿

ℎ (𝑡) 𝑔 (𝑡) 𝑑𝑡

for every 𝑡 ∈ [𝛿,𝑇]. Then |ℎ (𝑡) | ≤ 𝑐 +
∫ 𝑡

𝛿
𝑔 (𝑢) 𝑑𝑢 for every 𝑡 ∈ [𝛿,𝑇].

LEMMA 3. Let 𝛿 ≥ 0 and ℎ : [𝛿,+∞] → R+ be a nonincreasing function belonging to

L1 ( [𝛿,+∞[ ;R). It holds lim𝑡→+∞ 𝑡ℎ (𝑡) = 0.

Proof. The nonincreasing property of ℎ implies that 𝑑
𝑑𝑡
(𝑡ℎ (𝑡)) = ℎ (𝑡) + 𝑡 ¤ℎ (𝑡) ≤ ℎ (𝑡) for every

𝑡 ≥ 𝑡0. Since ℎ ∈ L1 ( [𝛿,+∞]), the result follows from [1, Lemma 5.2]. Q.E.D.

LEMMA 4. Let 𝛿 ≥ 0 and 𝑎 : [𝛿,+∞[→R+ be an integrable function such that lim𝑠→+∞ 𝑎(𝑠) =
0. Then lim𝑠→+∞ 𝐴(𝑠) = 0, where for 𝑝 > 0

𝐴(𝑠) = 1
𝑠𝑝

∫ 𝑠

𝑠0

𝑢𝑝−1𝑎(𝑢)𝑑𝑢.
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Proof. Given 𝜖 > 0, let 𝑇𝜖 such that 𝑠0 < 𝑇𝜖 and 𝑎(𝑢) ≤ 𝜖 for 𝑡 ≥ 𝑇𝜖 . For 𝑠 > 𝑇𝜖 , we have

𝐴(𝑠) = 1
𝑠𝑝

∫ 𝑇𝜖

𝑠0

𝑢𝑝−1𝑎(𝑢)𝑑𝑢 + 1
𝑠𝑝

∫ 𝑠

𝑇𝜖

𝑢𝑝−1𝑎(𝑢)𝑑𝑢 ≤ 1
𝑠𝑝

∫ 𝑇𝜖

𝑠0

𝑢𝑝−1𝑎(𝑢)𝑑𝑢 + 𝜖 .

Letting 𝑠 converge to +∞, it yields

lim sup
𝑠→+∞

𝐴(𝑠) ≤ 𝜖 .

This being true for any 𝜖 > 0, we infer that lim𝑠→+∞ 𝐴(𝑠) = 0, which gives the claim. Q.E.D.

Appendix B: Missing proofs.

Proof of Theorem 1. For sake of completeness, let us recall some of the arguments used in the

asymptotic analysis of the perturbed steepest descent system when the perturbation 𝑔 satisfies (7).

Given 𝑧∗ ∈ 𝑆, let 𝑇 > 𝑡0 be fixed and for every 𝑇 ≥ 𝑡 ≥ 𝑡0 consider

E𝑇 (𝑡) := 𝑡 ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) + 1
2
∥𝑧 (𝑡) − 𝑧∗∥2 +

∫ 𝑇

𝑡

⟨𝑧 (𝑢) − 𝑧∗ + 𝜏 ¤𝑧 (𝑢) , 𝑔 (𝑢)⟩ 𝑑𝑢.

Differentiating E𝑇 gives for every 𝑇 ≥ 𝑡 ≥ 𝑡0

𝑑

𝑑𝑡
E𝑇 (𝑡) = 𝑓 (𝑧 (𝑡)) − infH 𝑓 + 𝑡 ⟨∇ 𝑓 (𝑧 (𝑡)) , ¤𝑧 (𝑡)⟩ + ⟨𝑧 (𝑡) − 𝑧∗, ¤𝑧 (𝑡) − 𝑔 (𝑡)⟩ − 𝑡 ⟨¤𝑧 (𝑡) , 𝑔 (𝑡)⟩

= 𝑓 (𝑧 (𝑡)) − infH 𝑓 − 𝑡 ∥ ¤𝑧 (𝑡)∥2 − ⟨𝑧 (𝑡) − 𝑧∗,∇ 𝑓 (𝑧 (𝑡))⟩

≤ −𝑡 ∥ ¤𝑧 (𝑡)∥2 ,

where the second equality comes from (6) and the last inequality follows from the convexity of 𝑓 .

By integration from 𝑡0 to 𝑡 and by denoting 𝐶3 := 𝑡0 ( 𝑓 (𝑧 (𝑡0)) − infH 𝑓 ) + 1
2
∥𝑧 (𝑡𝑜) − 𝑧∗∥2 ≥ 0 we

deduce that

𝑡 ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) + 1
2
∥𝑧 (𝑡) − 𝑧∗∥2

≤ 𝐶3 +
∫ 𝑡

𝑡0

⟨𝑧 (𝑢) − 𝑧∗, 𝑔 (𝑢)⟩ 𝑑𝑢 +
∫ 𝑡

𝑡0

𝜏 ⟨¤𝑧 (𝑢) , 𝑔 (𝑢)⟩ 𝑑𝑢 −
∫ 𝑡

𝑡0

𝜏 ∥ ¤𝑧 (𝑢)∥2 𝑑𝑢

≤ 𝐶3 +
∫ 𝑡

𝑡0

∥𝑧 (𝑢) − 𝑧∗∥ ∥𝑔 (𝑢)∥ 𝑑𝑢 +
1
2

∫ +∞

𝑡0

𝜏 ∥𝑔 (𝑢)∥2 𝑑𝑢 − 1
2

∫ 𝑡

𝑡0

𝜏 ∥ ¤𝑧 (𝑢)∥2 𝑑𝑢. (135)

We obtain that there exists 𝐶4 ≥ 0 such that the following estimate is true for every 𝑡 ≥ 𝑡0

1
2
∥𝑧 (𝑡) − 𝑧∗∥2 ≤ 𝐶4 +

∫ 𝑡

𝑡0

∥𝑧 (𝑢) − 𝑧∗∥ ∥𝑔 (𝑢)∥ 𝑑𝑢.
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According to Gronwall’s lemma (see Lemma 2 in Appendix A), we conclude that for every 𝑡 ≥ 𝑡0

∥𝑧 (𝑡) − 𝑧∗∥ ≤
√︁

2𝐶4 +
∫ 𝑡

𝑡0

∥𝑔 (𝑢)∥ 𝑑𝑢 ≤
√︁

2𝐶4 +
∫ +∞

𝑡0

∥𝑔 (𝑢)∥ 𝑑𝑢 < +∞.

The trajectory is therefore bounded. Using this property and condition (7) allow us to assert from

(135) that there exists 𝐶5 ≥ 0 such that for every 𝑡 ≥ 𝑡0

𝑡 ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) + 1
2
∥𝑧 (𝑡) − 𝑧∗∥2 + 1

2

∫ 𝑡

𝑡0

𝜏 ∥ ¤𝑧 (𝑢)∥2 𝑑𝑢 ≤ 𝐶5. (136)

Since 𝑡 ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) + 1
2 ∥𝑧 (𝑡) − 𝑧∗∥2 ≥ 0 for every 𝑡 ≥ 𝑡0, letting 𝑡 tend to +∞ in (136) we

deduce that ∫ +∞

𝑡0

𝑡 ∥ ¤𝑧 (𝑡)∥2 𝑑𝑡 < +∞.

According to the constitutive equation (6) we get item (ii)∫ +∞

𝑡0

𝑡 ∥∇ 𝑓 (𝑧(𝑡)∥2 𝑑𝑡 ≤ 2
∫ +∞

𝑡0

𝑡 ∥ ¤𝑧 (𝑡)∥2 𝑑𝑡 + 2
∫ +∞

𝑡0

𝑡 ∥𝑔 (𝑡)∥2 𝑑𝑡 < +∞.

Differentiate the anchor function, it yields for every 𝑡 ≥ 𝑡0

𝑑

𝑑𝑡

(
1
2
∥𝑧 (𝑡) − 𝑧∗∥2

)
= ⟨𝑧 (𝑡) − 𝑧∗, ¤𝑧 (𝑡)⟩

= − ⟨𝑧 (𝑡) − 𝑧∗,∇ 𝑓 (𝑧 (𝑡))⟩ − ⟨𝑧 (𝑡) − 𝑧∗, 𝑔 (𝑡)⟩

≤ − ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) + sup
𝑢≥𝑡0

∥𝑧 (𝑢) − 𝑧∗∥ · ∥𝑔 (𝑡)∥ (137)

≤ sup
𝑢≥𝑡0

∥𝑧 (𝑢) − 𝑧∗∥ · ∥𝑔 (𝑡)∥ . (138)

Recall that the trajectory 𝑧(·) is bounded. Now let us show that in fact

lim
𝑡→+∞

𝑡 ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) = 0,

meaning that the convergence rate of 𝑓 (𝑧 (𝑡)) − infH 𝑓 is actually 𝑜 (1/𝑡). To this end we integrate

(137) from 𝑡0 to 𝑡 > 𝑡0 and let then 𝑡 converge to +∞. This yields (iii)∫ +∞

𝑡0

( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) 𝑑𝑡 =
∫ +∞

𝑡0

1
𝑡
𝑡 ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) 𝑑𝑡 < +∞ (139)
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and thus lim inf𝑡→+∞ 𝑡 ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) = 0. It remains to show that the limit exists. To this end

we compute the time derivative of 𝑡 ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) for every 𝑡 ≥ 𝑡0

𝑑

𝑑𝑡
(𝑡 ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 )) = 𝑓 (𝑧 (𝑡)) − infH 𝑓 + 𝑡 ⟨∇ 𝑓 (𝑧 (𝑡)) , ¤𝑧 (𝑡)⟩

= 𝑓 (𝑧 (𝑡)) − infH 𝑓 − 𝑡 ∥ ¤𝑧 (𝑡)∥2 − 𝑡 ⟨𝑔 (𝑡) , ¤𝑧 (𝑡)⟩

≤ 𝑓 (𝑧 (𝑡)) − infH 𝑓 + 1
4
𝑡 ∥𝑔 (𝑡)∥2

and apply once again [1, Lemma 5.1]. Statement (iv) follows from assumption (7) and (139).

According to assumption (7), we deduce that the right hand side of (138) belongs toL1 ( [𝑡0,+∞[ ;R).
Therefore, from [1, Lemma 5.1] we obtain that lim𝑡→+∞ ∥𝑧 (𝑡) − 𝑧∗∥2 ∈ R exists, and so

lim𝑡→+∞ ∥𝑧 (𝑡) − 𝑧∗∥ ∈ R does. In other words, the first condition of Opial’s lemma (see Lemma

1 in Appendix A) is fulfilled. Furthermore, since lim𝑡→+∞ 𝑓 (𝑧 (𝑡)) = infH 𝑓 and 𝑓 is convex and

weakly lower semicontinuous, the second condition of Opial’s lemma is also fulfilled. This gives

the weak convergence of the trajectory 𝑧(𝑡) as 𝑡 →+∞ to an element in 𝑆 = arg min 𝑓 .

The proof of (vi) follows similarly. First, the assertion (ii) gives lim inf𝑡→+∞ 𝑡2 ∥∇ 𝑓 (𝑧 (𝑡))∥2 = 0.

Let 𝐿 be the Lipschitz constant of ∇ 𝑓 on a ball containing the trajectory 𝑧(·). We have for almost

every 𝑡 ≥ 𝑡0

𝑑

𝑑𝑡

(
𝑡2 ∥∇ 𝑓 (𝑧 (𝑡))∥2

)
= 2𝑡 ∥∇ 𝑓 (𝑧 (𝑡))∥2 + 𝑡2

〈
∇ 𝑓 (𝑧 (𝑡)) , 𝑑

𝑑𝑡
∇ 𝑓 (𝑧 (𝑡))

〉
= 2𝑡 ∥∇ 𝑓 (𝑧 (𝑡))∥2 − 𝑡2

〈
¤𝑧 (𝑡) , 𝑑

𝑑𝑡
∇ 𝑓 (𝑧 (𝑡))

〉
+ 𝑡2

〈
𝑔 (𝑡) , 𝑑

𝑑𝑡
∇ 𝑓 (𝑧 (𝑡))

〉
≤ 2𝑡 ∥∇ 𝑓 (𝑧 (𝑡))∥2 − 𝑡2

𝐿

 𝑑

𝑑𝑡
∇ 𝑓 (𝑧 (𝑡))

2
+ 4𝐿𝑡2 ∥𝑔 (𝑡)∥2 + 𝑡2

𝐿

 𝑑

𝑑𝑡
∇ 𝑓 (𝑧 (𝑡))

2

= 2𝑡 ∥∇ 𝑓 (𝑧 (𝑡))∥2 + 4𝐿𝑡2 ∥𝑔 (𝑡)∥2 .

The convergence rate follows by applying once again [1, Lemma 5.1] and by using that 𝑡 ↦→ 𝑡𝑔(𝑡) ∈
L2 ( [𝑡0,+∞[ ;H). Q.E.D.

Proof of Theorem 5. Given 𝑧∗ ∈ 𝑆, we define the following function for every 𝑡 ≥ 𝑡0, which is

nonnegative due to the convexity of 𝑓 and the fact that 𝑣 (𝑡) = ∇ 𝑓 (𝑧 (𝑡))
𝜙 (𝑡) := [ 𝑓 (𝑧∗) − 𝑓 (𝑧 (𝑡)) − ⟨𝑣 (𝑡) , 𝑧∗ − 𝑧 (𝑡)⟩] + 𝜆

2
∥𝑧∗ − 𝑧 (𝑡)∥2 .
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According to (62) and the convexity of 𝑓 we have for every 𝑡 ≥ 𝑡0

𝑑

𝑑𝑡
𝜙 (𝑡) = − ⟨𝑣 (𝑡) , ¤𝑧 (𝑡)⟩ − ⟨¤𝑣 (𝑡) , 𝑧∗ − 𝑧 (𝑡)⟩ + ⟨𝑣 (𝑡) , ¤𝑧 (𝑡)⟩ −𝜆 ⟨𝑧∗ − 𝑧 (𝑡) , ¤𝑧 (𝑡)⟩

= ⟨𝑣 (𝑡) , 𝑧∗ − 𝑧 (𝑡)⟩ ≤ infH 𝑓 − 𝑓 (𝑧 (𝑡)) ≤ 0.

We integrate from 𝑡0 to 𝑡 > 𝑡0 and let 𝑡 tend to +∞, and obtain (i).
The inequality above also implies that the function 𝜙 is nonincreasing on [𝑡0,+∞[, from which

we deduce that 𝜙(𝑡) converges as 𝑡 →+∞, and that the trajectory 𝑧(·) is bounded. Let 𝐿 > 0 be

the Lipschitz constant of ∇ 𝑓 on a ball that contains the trajectory 𝑧(·). It follows from (62) that for

every 𝑡 ≥ 𝑡0

𝑑

𝑑𝑡
( 𝑓 (𝑧 (𝑡)) − infH 𝑓 ) = ⟨𝑣 (𝑡) , ¤𝑧 (𝑡)⟩ = −𝜆 ∥ ¤𝑧 (𝑡)∥2 − ⟨¤𝑣 (𝑡) , ¤𝑧 (𝑡)⟩

= −𝜆 ∥ ¤𝑧 (𝑡)∥2 −
〈
𝑑

𝑑𝑡
(∇ 𝑓 (𝑧 (𝑡))) , ¤𝑧 (𝑡)

〉
≤ −𝜆 ∥ ¤𝑧 (𝑡)∥2 − 1

𝐿

 𝑑

𝑑𝑡
(∇ 𝑓 (𝑧 (𝑡)))

2
= −𝜆 ∥ ¤𝑧 (𝑡)∥2 − 1

𝐿
∥ ¤𝑣 (𝑡)∥2 ≤ 0.

Since 𝑡 ↦→ 𝑓 (𝑧 (𝑡)) − infH 𝑓 is nonincreasing, by applying Lemma 3 in the Appendix we obtain

(ii).
In addition, we derive that

𝑑

𝑑𝑡
(𝑡 ( 𝑓 (𝑧 (𝑡)) − infH 𝑓 )) = 𝑓 (𝑧 (𝑡)) − infH 𝑓 + 𝑑

𝑑𝑡
( 𝑓 (𝑧 (𝑡)) − infH 𝑓 )

≤ 𝑓 (𝑧 (𝑡)) − infH 𝑓 −𝜆𝑡 ∥ ¤𝑧 (𝑡)∥2 − 1
𝐿
𝑡 ∥ ¤𝑣 (𝑡)∥2

Integrating again from 𝑡0 to 𝑡 > 𝑡0 and letting 𝑡 tend to +∞, we obtain (iii). Indeed, for every

𝑡 ≥ 𝑡0 we have ∥𝑣 (𝑡)∥2 ≤ 2𝜆2 ∥ ¤𝑧 (𝑡)∥2 + 2 ∥ ¤𝑣 (𝑡)∥2, therefore∫ +∞

𝑡0

𝑡 ∥𝑣 (𝑡)∥2 𝑑𝑡 =

∫ +∞

𝑡0

𝑡 ∥∇ 𝑓 (𝑧 (𝑡))∥2 𝑑𝑡 < +∞. (140)

Consequently, for item 𝑖𝑣) we can use again Lemma 3. Precisely, observe that for every 𝑡 ≥ 𝑡0

𝑑

𝑑𝑡

(
1
2
∥𝑣 (𝑡)∥2

)
= ⟨𝑣 (𝑡) , ¤𝑣 (𝑡)⟩ = −𝜆 ⟨¤𝑧 (𝑡) , ¤𝑣 (𝑡)⟩ − ∥ ¤𝑣 (𝑡)∥2 ≤ 0,
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which means 𝑡 ↦→ 1
2 ∥𝑣 (𝑡)∥

2 is nonincreasing. The conclusion follows by using (140) and by noticing

that

∥𝑣 (𝑡)∥2 = ∥𝜆 ¤𝑧 (𝑡) + ¤𝑣 (𝑡)∥2 = 𝜆2 ∥ ¤𝑧 (𝑡)∥2 + ∥ ¤𝑣 (𝑡)∥2 + 2𝜆 ⟨¤𝑧 (𝑡) , ¤𝑣 (𝑡)⟩ ≥ 𝜆2 ∥ ¤𝑧 (𝑡)∥2 + ∥ ¤𝑣 (𝑡)∥2 .

Finally, let us recall that lim𝑡→+∞ 𝜙 (𝑡) ∈ R exists. Moreover, according to (ii), (iv), and the fact

that the trajectory 𝑧(·) is bounded, we conclude that

lim
𝑡→+∞

𝜆

2
∥𝑧∗ − 𝑧 (𝑡)∥2 = lim

𝑡→+∞
𝜙 (𝑡) ∈ R.

This yields the first condition of Opial’s lemma. Now let �̂� be a weak sequential cluster point of

the trajectory. Since 𝑣 (𝑡) = ∇ 𝑓 (𝑧 (𝑡)) for every 𝑡 ≥ 𝑡0, it follows from the sequential closedness

property of ∇ 𝑓 in the weak × strong topology on H ×H that �̂� ∈ 𝑆, which proves that the second

condition of Opial’s lemma is also satisfied. This completes the proof. Q.E.D.

Proof of Theorem 12. For the sake of completeness, we briefly sketch the Lyapunov analysis

of (127). Given 𝑧∗ ∈ 𝑆, let us first fix 𝑇 > 𝑡0, and for every 𝑇 ≥ 𝑡 ≥ 𝑡0 consider

E𝑇 (𝑡) :=
1
2
∥𝑧 (𝑡) − 𝑧∗∥2 +

∫ 𝑇

𝑡

⟨𝑧 (𝑢) − 𝑧∗, 𝑔 (𝑢)⟩ 𝑑𝑢.

For every 𝑇 ≥ 𝑡 ≥ 𝑡0 it holds

𝑑

𝑑𝑡
E𝑇 (𝑡) = ⟨𝑧 (𝑡) − 𝑧∗, ¤𝑧 (𝑡)⟩ − ⟨𝑧 (𝑡) − 𝑧∗, 𝑔 (𝑡)⟩ = − ⟨𝑧 (𝑡) − 𝑧∗, 𝑀 (𝑧 (𝑡))⟩ .

By integration from 𝑡0 to 𝑡, we get for 𝐶6 :=
1
2
∥𝑧 (𝑡0) − 𝑧∗∥2

1
2
∥𝑧 (𝑡) − 𝑧∗∥2 +

∫ 𝑡

𝑡0

⟨𝑧 (𝑡) − 𝑧∗, 𝑀 (𝑧 (𝑡))⟩ 𝑑𝑢 ≤ 𝐶6 +
∫ 𝑡

𝑡0

⟨𝑧 (𝑢) − 𝑧∗, 𝑔 (𝑢)⟩ 𝑑𝑢

≤ 𝐶6 +
∫ 𝑡

𝑡0

∥𝑧 (𝑢) − 𝑧∗∥ ∥𝑔 (𝑢)∥ 𝑑𝑢. (141)

By Gronwall’s lemma (see Lemma 2 in Appendix A), we conclude that for every 𝑡 ≥ 𝑡0

∥𝑧 (𝑡) − 𝑧∗∥ ≤
√︁

2𝐶6 +
∫ 𝑡

𝑡0

∥𝑔 (𝑢)∥ 𝑑𝑢 ≤
√︁

2𝐶6 +
∫ +∞

𝑡0

∥𝑔 (𝑢)∥ 𝑑𝑢 < +∞.
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This gives the boundedness of the trajectory. Using this assertion in (141), we deduce that for every

𝑡 ≥ 𝑡0

∫ 𝑡

𝑡0

⟨𝑧 (𝑢) − 𝑧∗, 𝑀 (𝑧 (𝑢))⟩ 𝑑𝑢 ≤ 𝐶6 + sup
𝑡≥𝑡0

∥𝑧 (𝑢) − 𝑧∗∥
∫ 𝑡

𝑡0

∥𝑔 (𝑢)∥ 𝑑𝑢

≤ 𝐶6 + sup
𝑡≥𝑡0

∥𝑧 (𝑢) − 𝑧∗∥
∫ +∞

𝑡0

∥𝑔 (𝑢)∥ 𝑑𝑢 < +∞.

According to the 𝜌-cocoercivity of 𝑀 , and by letting 𝑡 go to infinity, we obtain

𝜌

∫ +∞

𝑡0

∥𝑀 (𝑧 (𝑡))∥2 𝑑𝑡 ≤
∫ +∞

𝑡0

⟨𝑧 (𝑡) − 𝑧∗, 𝑀 (𝑧 (𝑡))⟩ 𝑑𝑡 < +∞. (142)

Therefore, lim inf𝑡→+∞ 𝑡 ∥𝑀 (𝑧 (𝑡))∥2 = 0. Let us now compute the time derivative for every 𝑡 ≥ 𝑡0

𝑑

𝑑𝑡

(
1
2
𝑡 ∥𝑀 (𝑧 (𝑡))∥2

)
=

1
2
∥𝑀 (𝑧 (𝑡))∥2 + 𝑡

〈
𝑀 (𝑧 (𝑡)) , 𝑑

𝑑𝑡
(𝑀 (𝑧 (𝑡)))

〉
=

1
2
∥𝑀 (𝑧 (𝑡))∥2 − 𝑡

〈
¤𝑧 (𝑡) , 𝑑

𝑑𝑡
(𝑀 (𝑧 (𝑡)))

〉
+ 𝑡

〈
𝑔 (𝑡) , 𝑑

𝑑𝑡
(𝑀 (𝑧 (𝑡)))

〉
.

Using the cocoercivity of 𝑀 and the Cauchy-Schwarz inequality, we deduce that

− 𝑡

〈
¤𝑧 (𝑡) , 𝑑

𝑑𝑡
(𝑀 (𝑧 (𝑡)))

〉
+ 𝑡

〈
𝑔 (𝑡) , 𝑑

𝑑𝑡
(𝑀 (𝑧 (𝑡)))

〉
≤ − 𝜌𝑡

 𝑑

𝑑𝑡
(𝑀 (𝑧 (𝑡)))

2
+ 𝑡 ∥𝑔 (𝑡)∥

 𝑑

𝑑𝑡
(𝑀 (𝑧 (𝑡)))


≤ 1

4𝜌
𝑡 ∥𝑔 (𝑡)∥2 .

The right hand side of the above inequality belongs to L1 ( [𝑡0,+∞[ ;R) thanks to (128) and (142).

According to [1, Lemma 5.1] we have that lim𝑡→+∞ 𝑡 ∥𝑀 (𝑧 (𝑡))∥2 ∈ R exists, and therefore it must

be equal to 0

∥𝑀 (𝑧 (𝑡))∥ = 𝑜

(
1
√
𝑡

)
as 𝑡 →+∞.

This also means that lim𝑡→+∞ 𝑀 (𝑧 (𝑡)) = 0. According to the sequential closedness property of the

graph of 𝑀 in the weak × strong topology on H ×H , every weak limit point of the trajectory 𝑧
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belongs to 𝑆. It remains to verify the first condition of Opial’s lemma. Given 𝑧∗ ∈ 𝑆, observe that

for every 𝑡 ≥ 𝑡0 it holds

𝑑

𝑑𝑡

(
1
2
∥𝑧 (𝑡) − 𝑧∗∥2

)
= ⟨𝑧 (𝑡) − 𝑧∗, ¤𝑧 (𝑡)⟩ = − ⟨𝑧 (𝑡) − 𝑧∗, 𝑀 (𝑧 (𝑡))⟩ + ⟨𝑧 (𝑡) − 𝑧∗, 𝑔 (𝑡)⟩

≤ sup
𝑡≥𝑡0

∥𝑧 (𝑡) − 𝑧∗∥ · ∥𝑔 (𝑡)∥ .

This shows that the limit lim𝑡→+∞ ∥𝑧 (𝑡) − 𝑧∗∥ ∈ R thanks to (128) and [1, Lemma 5.1]. Q.E.D.
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