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OPTIMALITY CONDITIONS FOR PORTFOLIO OPTIMIZATION
PROBLEMS WITH CONVEX DEVIATION MEASURES

AS OBJECTIVE FUNCTIONS

Radu Ioan Boţ, Nicole Lorenz and Gert Wanka

Abstract. In this paper we derive by means of the duality theory necessary and
sufficient optimality conditions for convex optimization problems having as
objective function the composition of a convex function with a linear mapping
defined on a finite-dimensional space with values in a Hausdorff locally convex
space. We use the general results for deriving optimality conditions for two
portfolio optimization problems having as objective functions different convex
deviation measures.

1. INTRODUCTION

The portfolio optimization theory is an important field of the optimization theory
having its roots in the work [5] of Markowitz published in 1952. The problem
considered there is to find an optimal portfolio in the sense of maximizing the
expected profit of the portfolio while minimizing its risk, which leads actually to a
multiobjective optimization problem. In this classical framework one can meet some
quiet natural requirements: risk is measured by the classical variance or standard
deviation, short sales are excluded and the sum of the portfolio fractions is equal 1.

Since this paper has been published by Markowitz many authors extended or
changed the form of the feasible set in the classical case. Another direction of
research consisted in using different objective functions, besides the variance and
standard deviation, for measuring the risk of a portfolio. Some important functions
used in the literature for this purpose are the so-called risk and deviation measures.
The class of coherent risk measures was introduced in an axiomatic way in 1998
in [1]. Other papers written on this topic in the last time are due to Rockafellar,
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Uryasev and Zabarankin (cf. [9, 11]), Ruszczynski and Shapiro (cf. [12]), Pflug
(cf. [6]) and Föllmer and Schied (cf. [4]).

The classical portfolio optimization problem is a vector optimization problem,
one way to treat it being the use of different scalarization techniques. One can
also avoid dealing with the expected profit of the portfolio as a component of
the objective function, by including it as a constraint in the feasible set of the
optimization problem (cf. [8], [10]). Thus besides the classical constraints for the
portfolio optimization problem one can integrate different assumptions for feasible
portfolios.

In this paper we consider the following optimization problem

(P ) inf
g(x)�0,

x∈S

f(Ax),

where Z is a Hausdorff locally convex space, S ⊆ R
n a nonempty convex set,

f : Z → R a convex function, A : R
n → Z is a linear mapping and g : R

n → R
m

is a vector-valued function with the components being convex functions. To (P )
we assign a conjugate dual problem and prove weak and strong duality theorems,
the latter under the fulfillment of a regularity condition. Furthermore, for the primal
and dual problem we derive necessary and sufficient optimality conditions by means
of strong duality.

Particular instances of the general optimization problem (P ) have been con-
sidered in the framework of the portfolio optimization theory, where x has been
interpreted as a portfolio vector of some given assets and Ax has been providing
its random return. Rockafellar and Uryasev considered in [8] the minimization of
the variance, of the Value-at-Risk and of the Conditional-Value-at-Risk regarding
the classical constraints. In [10] additional affine constraints have been introduced,
sometimes under the claim of having positive portfolio fractions. Sufficient opti-
mality conditions have been formulated by means of the so-called risk envelope.
In the same paper portfolio optimization problems containing a riskless asset have
been considered.

This paper is organized as follows. In the following section we introduce some
definitions and notations from the convex analysis and stochastic theory we use
within the paper. In section 3 we construct a conjugate dual for the optimization
problem (P ) and prove the weak and strong duality theorems. By using the latter we
derive necessary and sufficient optimality conditions. In the last section we present
some special portfolio optimization problems with the objective function defined
by means of two convex deviation measures, namely the generalized variance and
the generalized lower semivariance, respectively. We introduce for these problems
their conjugate duals and derive by using the general results developed in section 3
necessary and sufficient optimality conditions.
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2. NOTATIONS AND PRELIMINARIES

Let Z be a Hausdorff locally convex space and Z∗ its topological dual space
which we endow with the weak∗ topology. We denote by 〈x∗, x〉 := x∗(x) the value
of the linear continuous functional x∗ ∈ Z∗ at x ∈ Z .

For a set D ⊆ Z we denote by δD : Z → R = R∪{±∞} the indicator function
of the set D, that is defined by

δD(x)=

{
0, x ∈ D,

+∞, otherwise.

When D is a non-empty subset of Z and f : Z → R we denote by f∗
D : Z∗ → R

the function defined by

f∗
D(x∗) = (f + δD)∗(x∗) = sup

x∈D
{〈x∗, x〉 − f(x)}.

One can see that for D = Z , f∗
D becomes the (Fenchel-Moreau) conjugate function

of f which we denote by f∗. The effective domain of a function f : Z → R is
dom(f) = {x ∈ Z : f(x) < +∞} and we say that f is proper if dom(f) �= ∅ and
f(x) > −∞, ∀x ∈ Z .

For an optimization problem (P ) we denote by v(P ) its optimal objective value.
We write min (max) instead of inf (sup) if the infimum (supremum) is attained.

The following result is the so-called Fenchel duality theorem (for a general
version of this result one can consult [14]):

Theorem 2.1. Let h : R
n → R and f : Z → R be proper and convex functions

and A : R
n → Z a linear mapping. Assume that ∃x ′ ∈ dom(h) ∩ A−1(dom(f))

such that f is continuous at Ax ′. Then it holds:

inf
x∈Rn

{f(Ax) + h(x)} = max
x∗∈Z∗{−h∗(−A∗x∗) − f∗(x∗)}.

Consider now the probability space (Ω, F, P), where Ω is a basic space, F a
σ-algebra on Ω and P a probability measure on the measurable space (Ω, F). We
assume later (cf. Subsection 4.2 and 4.3) that Z is a space of measurable real-valued
random variables on Ω, more precisely Z = Lp(Ω, F, P, R) (cf. Subsection 4.1).

Equalities and inequalities between random variables are to be viewed in the
sense of holding almost surely (a.s.) regarding P. Thus for X, Y : Ω → R when
we write “X = Y ” or “X ≥ Y ” we mean “X = Y a.s.” or “X ≥ Y a.s.”,
respectively.

Having a random variable X : Ω → R which takes the constant value c ∈ R,
i.e. X = c a.s., we identify it with the real number c ∈ R.
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For an arbitrary random variable X : Ω → R, we also define X− : Ω → R as
being

X−(ω) := max(−X(ω), 0) ∀ω ∈ Ω.

3. OPTIMALITY CONDITIONS VIA STRONG DUALITY

In this section we consider a conjugate dual problem to an optimization problem
with the objective function being the composition of a convex function with a
linear mapping with respect to convex inequality constraints. We prove weak and
strong duality assertions and derive by means of the latter necessary and sufficient
optimality conditions. The primal optimization problem we consider is

(P ) inf
g(x)�0,

x∈S

f(Ax),

where S ⊆ R
n is a non-empty convex set and f : Z → R a proper and convex

function. Further we assume that A : R
n → Z is a linear mapping and g :

R
n → R

m, g = (g1, . . . , gm)T is such that gi : R
n → R, i = 1, . . . , m are

convex functions. For λ ∈ R
m let λTg : R

n → R be the function defined by
(λTg)(x) = λTg(x). By “�” we denote the partial ordering induced by the non-
negative orthant R

m
+ on R

m.
In the following we introduce a dual problem for (P ) and prove weak and strong

duality theorems. The dual problem (D) to (P ) we consider in this section is

(D) sup
λ∈Rm

+ ,

x∗∈Z∗

{−f∗(x∗)− (λTg)∗S(−A∗x∗)}.
(1)

For the beginning the following result can be easily proved.

Theorem 3.1. Between (P ) and (D) weak duality holds, namely v(P ) ≥
v(D).

Proof. Let x be feasible to (P ) and (λ, x∗) be feasible to (D). By the Young-
Fenchel-inequality one has:

f(Ax) ≥ 〈x∗, Ax〉 − f∗(x∗).

Since g(x) ∈ −R
m
+ and λ ∈ R

m
+ , we get λTg(x) ≤ 0. Thus one has ∀x ∈ S,

f(Ax) ≥ −f∗(x∗) + λTg(x) + 〈x∗, Ax〉,
from which follows

f(Ax) ≥ −f∗(x∗) + inf
x∈S

{λTg(x) + 〈x∗, Ax〉} = −f∗(x∗)− (λTg)∗S(−A∗x∗).
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Since x, λ and x∗ have been arbitrary chosen, we get

v(P ) = inf
x∈S,

g(x)≤0

f(Ax) ≥ sup
λ∈R

m
+ ,

x∗∈Z∗

{−f∗(x∗) − (λTg)∗S(−A∗x∗)} = v(D).

Remark 3.1. As the proof shows, the assertion of Theorem 3.1 applies without
any convexity assumptions for the problem (P ).

In order to close the gap between the primal and the dual problem and to
guarantee the existence of an optimal solution for the dual problem we need a
so-called regularity condition. For (P ) the regularity condition we assume looks
like

(CQ) ∃x′ ∈ ri(S) ∩ A−1(dom(f)) :




gi(x′) ≤ 0, i ∈ L,

gi(x′) < 0, i ∈ N,
f is continuous at Ax′,

where L = {i ∈ {1, . . . , m} : gi is affine} and N = {1, . . . , m} \L. We can prove
now the strong duality theorem.

Theorem 3.2. Assume that (CQ) is fulfilled and v(P ) > −∞. Then strong
duality between (P ) and (D) holds, namely v(P ) = v(D) and (D) has an optimal
solution.

Proof. The Lagrange dual problem (DL) to (P ) is

(DL) sup
λ∈R

m
+

inf
x∈S

{f(Ax) + λTg(x)}.

Since f ◦A and gi, i = 1, . . . , m, are convex functions defined on R
n and (CQ) is

fulfilled, strong duality between (P ) and (DL) follows (cf. Theorem 28.2 in [7]),
i.e. (DL) has an optimal solution λ and we have

v(P ) = v(DL) = max
λ∈R

m
+

inf
x∈S

{f(Ax) + λTg(x)}

= inf
x∈S

{f(Ax) + λ
T
g(x)} = inf

x∈Rn
{f(Ax) + λ

T
g(x) + δS(x)}.

Let us consider the problem inf
x∈Rn

{f(Ax) + λ
T
g(x) + δS(x)}. Since dom(λT

g +

δS) = S and (CQ) is fulfilled, by Theorem 2.1 there exists x∗ ∈ Z∗ such that

inf
x∈Rn

{f(Ax) + λ
T
g(x) + δS(x)} = max

x∗∈Z∗{−f∗(x∗)− (λ
T
g + δS)∗(−A∗x∗)}

= −f∗(x∗)− (λ
T
g)∗S(−A∗x∗).
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In conclusion (λ, x∗) is an optimal solution of (D) and it holds

v(P ) = max
λ∈R

m
+ ,

x∗∈Z∗

{−f∗(x∗)−(λTg)∗S(−A∗x∗)} = −f∗(x∗)−(λT
g)∗S(−A∗x∗) = v(D).

This concludes the proof.

By means of the strong duality we derive necessary and sufficient optimality
conditions for the primal optimization problem (P ).

Theorem 3.3. (a) If (CQ) is fulfilled and (P ) has an optimal solution x, then
(D) has an optimal solution (λ, x∗) such that the following optimality conditions
are fulfilled:

(i) f(Ax) + f∗(x∗) − 〈Ax, x∗〉 = 0,

(ii) 〈Ax, x∗〉 + (λT
g)∗S(−A∗x∗) = 0,

(iii) (λ
T
g)(x) = 0.

(b) Let x be feasible to (P ) and (λ, x∗) be feasible to (D) fulfilling the optimality
conditions (i)− (iii). Then x is an optimal solution for (P ), (λ, x ∗) is an optimal
solution for (D) and v(P ) = v(D).

Proof. (a) Since (P ) has an optimal solution and (CQ) is fulfilled, Theorem
3.2 guarantees the existence of an optimal solution for (D), (λ, x∗), such that

v(P ) = v(D) ⇔ f(Ax) = −f∗(x∗) − (λ
T
g)∗S(−A∗x∗)

⇔ f(Ax) + f∗(x∗) − 〈Ax, x∗〉 = −〈Ax, x∗〉 − (λ
T
g)∗S(−A∗x∗),

which can be equivalently written as[
f(Ax) + f∗(x∗) − 〈Ax, x∗〉

]
−
[
(λT

g)(x)
]

+
[
〈Ax, x∗〉 + (λ

T
g)(x) − inf

x∈S
{〈x, A∗x∗〉 + (λ

T
g)(x)}

]
= 0.

(2)

On the other hand, by Young-Fenchel’s inequality it holds

f(Ax) + f∗(x∗) − 〈Ax, x∗〉 ≥ 0. (3)

Since x is feasible to (P ) and λ ∈ R
m
+ we have

−(λ
T
g)(x) ≥ 0. (4)
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Finally the following inequality is fulfilled:

〈Ax, x∗〉 + (λT
g)(x) − inf

x∈S
{〈x, A∗x∗〉 + (λT

g)(x)} ≥ 0. (5)

So formula (2) consists of 3 nonnegative terms, their sum being equal to zero. This
means that (3), (4) and (5) are fulfilled with equality, which is nothing else than
(i)− (iii) are fulfilled if we drop (λT

g)(x) in (5) based on (iii).
(b) All calculations done within part (a) can be carried out in reverse direction.

Thus it follows
f(Ax) = −f∗(x∗) − (λ

T
g)∗S(−A∗x∗),

which together with Theorem 3.1 guarantees that x is an optimal solution to (P ),
(λ, x∗) is an optimal solution to (D) and v(P ) = v(D).

Let us notice that for this statement no convexity assumption is needed.

In the following section we apply the results developed in this section to special
portfolio optimization problems.

4. APPLICATIONS TO PORTFOLIO OPTIMIZATION

4.1. Convex risk and convex deviation measures

In this subsection we consider some particular instances of the general optimiza-
tion problem (P ) coming from portfolio optimization with the objective function
being a so-called deviation measure. To this end some explanatory notions are first
necessary.

For a random variable X : Ω → R we define the expectation value with respect
to P by

E(X) =
∫
Ω

X(ω)dP(ω).

The essential supremum of X is

essupX = inf{a ∈ R : P(ω : X(ω) > a) = 0}.
Furthermore, for p ∈ (1, +∞) let Lp be the following space of random variables:

Lp := Lp(Ω, F, P, R) =
{

X : Ω → R, X measurable,
∫
Ω

|X(ω)|pdP(ω) < +∞
}

.

The space Lp equipped with the norm ||X ||p = (E(|X |p)) 1
p , X ∈ Lp, is a Banach

space. It is well-known that the dual space of Lp is Lq := Lq(Ω, F, P, R), where
q ∈ (1, +∞) fulfills 1

p + 1
q = 1.
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For X ∈ Lp and X∗ ∈ Lq we have 〈X∗, X〉 :=
∫
Ω

X∗(ω)X(ω)dP(ω) =

E(X∗X) as representation of the linear continuous functional (cf. [13]).
In the following we recall the notion of a convex deviation measure on Lp. The

convex deviation measures have been introduced for the first time in [9] in connec-
tion to the convex risk measures. The latter are nothing else than extensions of the
coherent risk measure which are widely used in practice. The following definition
introduces the notion of a convex deviation measure in an axiomatic way. Exam-
ples of convex deviation measures are the variance, the lower/upper semivariance,
the standard (lower/upper) semideviation, the (lower/upper) semideviation and the
Conditional Value-at-Risk Deviation (CVaRD).

Definition 4.1. The function d : Lp → R is called convex deviation measure
if the following properties are fulfilled:
(D1) Translation invariance: d(X + b) = d(X), ∀X ∈ Lp, ∀b ∈ R;
(D2) Strictness: d(X) ≥ 0, ∀X ∈ Lp;
(D3) Convexity: d(λX+(1−λ)Y ) ≤ λd(X)+(1−λ)d(Y ), ∀λ ∈ [0, 1], ∀X,Y ∈

Lp.

If d is a convex deviation measure, a so-called convex risk measure ρ : Lp → R,
is defined by ρ(X) = d(X)− E(X). The most prominent example of convex risk
measures is the Conditional Value-at-Risk (CVaR).

In [3] Fischer provides a nice argument for considering risk measures in Lp

spaces for an arbitrary p ∈ [1, +∞]. He proves that the well-known Value-at-Risk
(VaR) VaRα(X) = − inf{x : P(X ≤ x) > α)}, α ∈ [0, 1], can be represented by
means of the risk measure defined by ρp(X) = ||(X − E(X))−||p − E(X), in the
sense that there exists an unique p∗ ∈ [1, +∞] such that ρp∗(X) = VaRα(X). In
case 1 < p∗ < +∞ the risk measure is suitable for risk capital allocation ([3]). The
objective function of the optimization problem treated in subsection 4.3 is nothing
else than the deviation measure corresponding to ρp.

4.2. Minimization of the generalized variance

A natural aim in portfolio optimization is minimizing the risk of a portfolio
while maximizing its expected return/profit (cf. [5]). In the classical literature
on portfolio optimization risk is measured by the variance with respect to some
classical constraints ensuring positive fractions in the portfolio with the sum equal
1. A classical strategy of dealing with this multiobjective optimization problem
is to eliminate the maximizing function and to add a constraint for the expected
return. Thus, in practical applications, a special benchmark must be chosen, which
should be achieved by the return. In modern portfolio optimization different risk
and deviation measures can be considered when dealing with this problem.
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In [8] the portfolio optimization problem with the feasible set taken in the
following calculation was considered for different objective functions, such as the
classical variance, the Value-at-Risk and the Conditional Value-at-Risk.

In the first application we deal with the minimization of the generalized variance,
a problem which contains the minimization of the variance as a special case. Let
(Pv) be the following primal problem:

(Pv)

inf
x∈G

∣∣∣∣
∣∣∣∣

n∑
i=1

xiRi − E

(
n∑

i=1

xiRi

)∣∣∣∣
∣∣∣∣
a

p

G =

{
x ∈ R

n : x � 0,

n∑
i=1

xi − 1 = 0, B − E

(
n∑

i=1

xiRi

)
≤ 0

}
,

where a > 1 and Ri : Ω → R, Ri ∈ Lp, ∀i = 1, . . . , n. We define by
R(ω) = (R1(ω), . . . , Rn(ω)), ∀ω ∈ Ω, the n-tuple containing the random returns
for the considered assets and we assume that

B ≤ max
i∈{1,...,n}

E(Ri). (6)

Then we look for portfolios x with expected return E

(
n∑

i=1
xiRi

)
of at least equal to

B. The optimization variable x = (x1, . . . , xn)T can be interpreted as the portfolio
vector for n given assets. The constraints taken in (Pv) are most common in the
context of portfolio optimization. They forbid short sales and force that the portfolio
consists of the given assets.

Let us notice that (Pv) can be written as

(Pv) inf
x∈G

d1(Ax),

where d1 : Lp → R,

d1(X) = ||X − E(X)||ap (a > 1)

is the so-called generalized variance and A : R
n → Lp, Ax =

n∑
i=1

xiRi is a

linear mapping. Let g : R
n → R

n × R × R × R = R
n+3 be the following vector

function: g(x) =
(
−x,

n∑
i=1

xi − 1, 1−
n∑

i=1
xi, B − E

( n∑
i=1

xiRi

))
. For a = p = 2,

d1 becomes the classical variance. The generalized variance is a convex deviation
measure and its conjugate function d∗

1 : Lq → R is given by (cf. [2])

d∗1(X
∗) =

{
min
c∈R

{
(a − 1)

∣∣∣∣ 1
a(X∗ − c)

∣∣∣∣ a
a−1
q

}
, E(X∗) = 0,

+∞, otherwise.
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One can notice that for a portfolio vector x, Ax provides the random portfolio return.
For calculating its adjoint operator A∗ : Lq → R

n, take x ∈ R
n and X∗ ∈ Lq.

Then we have

〈Ax, X∗〉 =
〈 n∑

i=1

xiRi, X
∗
〉

= E

((
n∑

i=1

xiRi

)
X∗
)

=
n∑

i=1

xiE(RiX
∗) = (E(X∗R1), . . . , E(X∗Rn))x = 〈x, A∗X∗〉

and so we get
A∗X∗ = (E(X∗R1), . . . , E(X∗Rn))T . (7)

For finding the dual of (Pv) (cf. (1), where Z = Lp, Z∗ = Lq and m = n + 3)

(Dv) sup
λ∈R

n+3
+ , X∗∈Lq

{−d∗1(X
∗) − (λTg)∗(−A∗X∗)},

we need to make first some calculations. For λ = (α, β1, β2, γ) ∈ R
n
+ × R+ ×

R+ × R+ = R
n+3
+ we have

(λTg)∗(−A∗X∗) = sup
y∈Rn

{yT (−A∗X∗) − (λTg)(y)}

= sup
y∈Rn

{ n∑
i=1

yi(−A∗X∗)i+
n∑

i=1

αiyi−β1

(
n∑

i=1

yi−1

)
−β2

(
1−

n∑
i=1

yi

)

−γ

(
B −

n∑
i=1

yiE(Ri)

)}

= sup
y∈Rn

{ n∑
i=1

yi(−A∗X∗)i +
n∑

i=1

αiyi − (β1 − β2)

(
n∑

i=1

yi − 1

)

−γ

(
B −

n∑
i=1

yiE(Ri)

)}

= sup
y∈Rn

{
n∑

i=1

yi(−(A∗X∗)i+αi−(β1−β2)+γE(Ri))

}
+(β1 − β2)−γB

(8)

=

{
β1−β2−γB, if −(A∗X∗)i + αi−(β1−β2) + γE(Ri) = 0, i = 1, . . . , n,

+∞, otherwise,

=

{
β1−β2−γB, if αi = β1−β2 + E(X∗Ri)−γE(Ri), i = 1, . . . , n,

+∞, otherwise.

(9)
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So one has the following dual problem:

(Dv)

sup
X∗∈Lq,E(X∗)=0,

α∈R
n
+,β1∈R+,β2∈R+,γ∈R+,

αi=β1−β2+E(X∗Ri)−γE(Ri),
i=1,...,n

{
−min

c∈R

{
(a− 1)

∣∣∣∣
∣∣∣∣ 1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

}
−β1 + β2 + γB

}

⇔ sup
X∗∈Lq,E(X∗)=0,

c∈R,β:=β1−β2∈R,γ∈R+,
−β≤E(X∗Ri)−γE(Ri),i=1,...,n

{
(1−a)

∣∣∣∣
∣∣∣∣1a(X∗−c)

∣∣∣∣
∣∣∣∣

a
a−1

q

−β+γB

}

⇔ sup
X∗∈Lq,E(X∗)=0,

c∈R,γ∈R+

{
(1−a)

∣∣∣∣
∣∣∣∣1a(X∗−c)

∣∣∣∣
∣∣∣∣

a
a−1

q

+ min
i∈{1,...,n}

(E(X∗Ri)− γE(Ri))+γB

}
.

Remark 4.1. For X∗ ∈ Lq, Y ∈ Lp we denote by cov(X∗, Y) = E((X∗ −
E(X∗))(Y − E(Y))) the covariance of the random variables X∗ and Y . If for
X∗ ∈ Lq, E(X∗) = 0 then one has for i = 1, ..., n

cov(X∗, Ri) = E
(
(X∗ − E(X∗))(Ri − E(Ri))

)
= E(X∗Ri)− E(X∗)E(Ri) = E(X∗Ri).

Thus the dual problem can be written as

(Dv) sup
X∗∈Lq,E(X∗)=0,

c∈R,γ∈R+

{
(1−a)

∣∣∣∣
∣∣∣∣1a(X∗−c)

∣∣∣∣
∣∣∣∣

a
a−1

q

+ min
i∈{1,...,n}

(cov(X∗, Ri)−γE(Ri))+γB

}
.

Since the inequality constraints of (Pv) are affine (the feasible set G is in fact a
polyhedral set) and x′ = (1, 0, . . . , 0)T is a feasible point to (Pv), (CQ) is fulfilled.
Moreover, one can easily see that v(Pv) ≥ 0.

By Theorem 3.2 we can state now the following strong duality theorem.

Theorem 4.1. Between (Pv) and (Dv) strong duality holds, i.e. v(Pv) =
v(Dv) and the dual problem (Dv) has an optimal solution.

Remark 4.2. Since the problem (Pv) has a compact feasible set and a contin-
uous objective function, the existence of an optimal solution x for it is guaranteed.

Next we derive necessary and sufficient optimality conditions for (Pv) and (Dv)
by using Theorem 3.3.

Theorem 4.2. (a) Let x be an optimal solution for (Pv), then (Dv) has an
optimal solution (X ∗

, c, γ) ∈ Lq × R × R+ such that the following optimality
conditions are fulfilled:
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(1)
∣∣∣∣
∣∣∣∣ n∑

i=1
xiRi − E

(
n∑

i=1
xiRi

) ∣∣∣∣
∣∣∣∣
a

p

+ (a − 1)
∣∣∣∣
∣∣∣∣1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

− cov
(

X∗
,

n∑
i=1

xiRi

)
= 0,

(2) E(X∗) = 0,

(3) min
c∈R

{
(a − 1)

∣∣∣∣
∣∣∣∣1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

}
= (a − 1)

∣∣∣∣
∣∣∣∣ 1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

,

(4)
n∑

i=1
cov(X∗

, Ri)xi − γB ≤ min
i∈{1,...,n}

{cov(X∗
, Ri) − γE(Ri)}.

(b) Let x be feasible to (Pv) and (X∗
, c, γ) be feasible to (Dv) fulfilling the

optimality conditions (1)-(4). Then x is an optimal solution for (P v), (X∗
, c, γ) is

an optimal solution for (D v) and v(Pv) = v(Dv).

Proof. (a) In order to prove the theorem we just have to particularize the
conditions (i)− (iii) in Theorem 3.3. By the latter, for x ∈ G there exists X

∗ ∈ Lq

and λ = (α, β
1
, β

2
, γ) ∈ R

n
+ × R+ × R+ × R+ and β := β

1 − β
2 ∈ R such that

(cf. (8))

(i)
∣∣∣∣
∣∣∣∣ n∑

i=1
xiRi − E

(
n∑

i=1
xiRi

) ∣∣∣∣
∣∣∣∣
a

p

+ min
c∈R

{
(a − 1)

∣∣∣∣
∣∣∣∣1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

}

− E

(
X

∗ n∑
i=1

xiRi

)
= 0,

E(X∗) = 0,

(ii) E

(
X

∗ n∑
i=1

xiRi

)
+ β − γB = 0,

αi = β + E(X∗
Ri) − γE(Ri), ∀i = 1, . . . , n,

(iii) −
n∑

i=1
αixi + β

(
n∑

i=1
xi − 1

)
+ γ

(
B −

n∑
i=1

xiE(Ri)
)

= 0.

Let now c ∈ R be such that

min
c∈R

{
(a − 1)

∣∣∣∣
∣∣∣∣1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

}
= (a − 1)

∣∣∣∣
∣∣∣∣1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

.

Since αi ≥ 0, i = 1, . . . , n, conditions (i) − (iii) can be equivalently written as
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(i)
∣∣∣∣
∣∣∣∣ n∑

i=1
xiRi − E

(
n∑

i=1
xiRi

) ∣∣∣∣
∣∣∣∣
a

p

+ (a − 1)
∣∣∣∣
∣∣∣∣ 1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

− E

(
X

∗ n∑
i=1

xiRi

)
= 0,

E(X∗) = 0,

min
c∈R

{
(a − 1)

∣∣∣∣
∣∣∣∣1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

}
= (a − 1)

∣∣∣∣
∣∣∣∣1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

,

(ii) E

(
X

∗ n∑
i=1

xiRi

)
+ β − γB = 0,

−β ≤ min
i∈{1,...,n}

{E(X∗
Ri) − γE(Ri)},

(iii) −
n∑

i=1
E(X∗

Ri)xi − β + γB = 0.

Observe that in (iii) we have substituted αi by β+E(X∗
Ri)−γE(Ri), i = 1, . . . , n.

Using that
n∑

i=1
E(X∗

Ri)xi = E

(
X

∗ n∑
i=1

xiRi

)
, the relations (i)− (iii) become

equivalently

(1)
∣∣∣∣
∣∣∣∣ n∑

i=1
xiRi − E

(
n∑

i=1
xiRi

) ∣∣∣∣
∣∣∣∣
a

p

+ (a − 1)
∣∣∣∣
∣∣∣∣ 1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

− E

(
X

∗ n∑
i=1

xiRi

)
= 0,

(2) E(X∗) = 0,

(3) min
c∈R

{
(a − 1)

∣∣∣∣
∣∣∣∣1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

}
= (a − 1)

∣∣∣∣
∣∣∣∣1a(X∗ − c)

∣∣∣∣
∣∣∣∣

a
a−1

q

,

(4)
n∑

i=1
E(X∗

Ri)xi − γB ≤ min
i∈{1,...,n}

{E(X∗
Ri) − γE(Ri)}.

Using Remark 4.1, this leads to the desired solution.
(b) The calculations given in part (a) can be done in reverse order and the

conclusion follows.

4.3. Minimization of the generalized lower semivariance

The minimization problem we treat in this subsection has the following formu-
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lation

(Ps) inf
x∈G

∣∣∣∣
∣∣∣∣
(

n∑
i=1

xiRi − E

(
n∑

i=1
xiRi

))
−

∣∣∣∣
∣∣∣∣
a

p

G =
{

x ∈ R
n :

n∑
i=1

xi − 1 = 0, B − E

(
n∑

i=1
xiRi

)
≤ 0
}

,

where a > 1, Ri : Ω → R, Ri ∈ Lp(i = 1, . . . , n), R(ω) = (R1(ω), . . . , Rn(ω))
is the n-tuple of random returns for the considered assets and B ∈ R is a constant
benchmark for the expected return of the portfolio represented by x ∈ G.

Further, the first asset is assumed to be riskless, namely 0 < E(R1) = R1 =
const. This assumption is not restricting the generality of the approach. We consider
it because in real capital markets besides risky assets like stocks and investment
funds etc. there are always available riskless securities e.g. fixed-interest securities
like bonds. And this has an important influence on the expected return and risk
of the portfolios that are combined with such a riskless asset and therefore on the
investment behavior of the different investors acting at the financial markets.

Usually, the expected values E(R1), . . . , E(Rn) of the components of R are
assumed to be positive, i.e. E(Ri) = 〈1, Ri〉 > 0, ∀i = 1, . . . , n. Moreover,
we assume that G is nonempty. Let us remark that this could be guaranteed by
assuming that (6) holds. The portfolio fractions have the sum equal to 1, but this
time we permit short sales, that arises for xi < 0. Optimization problems where
one can find similar formulations of the feasible set have been treated in [10].

Let us notice that (Ps) can be written as

(Ps) inf
x∈G

d2(Ax),

where d2 : Lp → R,

d2(X) = ||(X − E(X))−||ap (a > 1)

is the so-called generalized lower semivariance and the linear mapping A : R
n →

Lp is given by Ax =
n∑

i=1
xiRi. As we have seen in the previous section, for

X∗ ∈ Lp, A∗X∗ = (E(X∗R1), . . . , E(X∗Rn))T . Further we define g : R
n →

R × R × R = R
3, g(x) =

(
n∑

i=1
xi − 1, 1−

n∑
i=1

xi, B − E
( n∑

i=1
xiRi

))
.

The generalized variance as treated in the previous subsection has the disadvan-
tage of measuring both positive and negative deviation. In financial application often
only loss, represented by negative deviation, is important. This is the reason why
we use the generalized lower semivariance as deviation measure. For a = p = 2,
d2 becomes the classical lower semivariance.
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The generalized lower semivariance is a convex deviation measure and its con-
jugate d∗2 : Lq → R is given by (cf. [2])

d∗2(X
∗) =

{
(a − 1)

∣∣∣∣ 1
a(essupX∗ − X∗)

∣∣∣∣ a
a−1
q

, E(X∗) = 0,

+∞, otherwise.

For finding the dual of (Ps) we also need to make some calculations. For λ =
(α1, α2, β) ∈ R+ × R+ × R+ = R

3
+ we have

(λTg)∗(−A∗X∗) = sup
y∈Rn

{yT (−A∗X∗) − (λTg)(y)}

= sup
y∈Rn

{ n∑
i=1

yi (−A∗X∗)i − α1

(
n∑

i=1

yi − 1

)
− α2

(
1 −

n∑
i=1

yi

)

−β

(
B −

n∑
i=1

yiE(Ri)

)}

= sup
y∈Rn

{
n∑

i=1

yi (−A∗X∗)i − (α1 − α2)

(
n∑

i=1

yi − 1

)
− β

(
B −

n∑
i=1

yiE(Ri)

)}

= sup
y∈Rn

{
n∑

i=1

(− (A∗X∗)i − α1 + α2 + βE(Ri)
)
yi

}
+ α1 − α2 − βB

=

{
α1 − α2 − βB, if − (A∗X∗)i − α1 + α2 + βE(Ri) = 0, i = 1, . . . , n,

+∞, otherwise,

=
{

α1 − α2 − βB, if α1 − α2 = −E(X∗Ri) + βE(Ri), i = 1, . . . , n,
+∞, otherwise.

Now the dual problem turns out to be (cf. (1))

(Ds) sup
(X∗,α1,α2,β)∈Lq×R+×R+×R+,

E(X∗)=0,
α1−α2=−E(X∗Ri)+βE(Ri),

i=1,...,n

{
(1−a)

∣∣∣∣
∣∣∣∣1a(essupX∗−X∗)

∣∣∣∣
∣∣∣∣

a
a−1

q

−α1+α2+βB

}
.

Since for i = 1, Ri = R1 is constant and α := α1 − α2 ∈ R, if E(X∗) = 0 we
get

β =
α + E(X∗R1)

E(R1)
=

α

R1
.
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Because of β ≥ 0 we must have α ≥ 0 and as E(X∗Ri) = cov(X∗, Ri), for
X∗ ∈ Lq, E(X∗) = 0, the dual can be equivalently written as follows

(Ds) sup
(X∗,α)∈Lq×R+,

E(X∗)=0,

α
(

E(Ri)

R1
−1
)
=cov(X∗,Ri),i=2,...,n

{
(1−a)

∣∣∣∣
∣∣∣∣1a(essupX∗−X∗)

∣∣∣∣
∣∣∣∣

a
a−1

q

−α

(
1− B

R1

)}
.

Remark 4.3. A special case of the considered example arises if we choose
B=R1, i.e. the expected portfolio return should at least achieve the riskless return.

Optimization problems with the feasible set being defined like for (Ps) (for
B = R1 + ∆, ∆ > 0) have been treated in [10].

Since the constraints in (Ps) are affine and the feasible set is nonempty, (CQ)
is fulfilled. Moreover, let us notice that v(Ps) ≥ 0. By Theorem 3.2 we can state
now the following strong duality theorem.

Theorem 4.3. Between (Ps) and (Ds) strong duality holds, i.e. v(Ps) = v(Ds)
and the dual problem (Ds) has an optimal solution.

Now, by Theorem 3.3, we can derive necessary and sufficient optimality condi-
tions.

Theorem 4.4. (a) Let x be an optimal solution of (Ps), then (Ds) has an
optimal solution (X ∗

, α) ∈ Lq × R+ such that the following optimality conditions
are fulfilled:

(1)
∣∣∣∣
∣∣∣∣
(

n∑
i=1

xiRi − E

(
n∑

i=1
xiRi

))
−

∣∣∣∣
∣∣∣∣
a

p

+ (a − 1)
∣∣∣∣
∣∣∣∣1a(essupX∗ − X∗)

∣∣∣∣
∣∣∣∣

a
a−1

q

− cov

(
X∗

,
n∑

i=1

xiRi

)
= 0,

(2) E(X∗)=0,

(3) α
(
1 + B

R1

)
= cov

(
X∗

,
n∑

i=1

xiRi

)
,

(4) α
(

E(Ri)
R1

− 1
)

= cov(X∗
, Ri), i = 2, . . . , n,

(5) α ≥ 0,

(6) α

(
B −

n∑
i=1

xiE(Ri)
)

= 0.
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(b) Let x be feasible to (Ps) and (X∗
, α) be feasible to (Ds) fulfilling the

optimality conditions (1)-(6). Then x is an optimal solution for (P s), (X∗
, α) is an

optimal solution for (D s) and v(Ps) = v(Ds)

Proof. (a) By Theorem 3.3, for x ∈ G we get the existence of X
∗ ∈ Lq and

λ = (α1, α2, β) ∈ R+×R+×R+ such that the following conditions hold (cf. (10),
where α = α1 − α2 ∈ R)

(i)
∣∣∣∣
∣∣∣∣
(

n∑
i=1

xiRi − E

(
n∑

i=1
xiRi

))
−

∣∣∣∣
∣∣∣∣
a

p

+ (a− 1)
∣∣∣∣
∣∣∣∣1a(essupX∗ − X∗)

∣∣∣∣
∣∣∣∣

a
a−1

q

− cov

(
X∗

,

n∑
i=1

xiRi

)
= 0, E(X∗) = 0,

(ii) cov
(

X∗
,

n∑
i=1

xiRi

)
+ α − βB = 0,

α = −cov(X∗
, Ri) + βE(Ri), i = 1, . . . , n,

(iii) α

(
n∑

i=1
xi − 1

)
+ β

(
B −

n∑
i=1

xiE(Ri)
)

= 0.

For i = 1, from (ii) we get β = α
R1

and the optimality conditions become equiva-
lently

(i)
∣∣∣∣
∣∣∣∣
(

n∑
i=1

xiRi − E

(
n∑

i=1
xiRi

))
−

∣∣∣∣
∣∣∣∣
a

p

+ (a− 1)
∣∣∣∣
∣∣∣∣1a(essupX∗ − X∗)

∣∣∣∣
∣∣∣∣

a
a−1

q

− cov

(
X∗

,

n∑
i=1

xiRi

)
= 0, E(X∗) = 0,

(ii) α + βB = cov
(

X∗
,

n∑
i=1

xiRi

)
,

β =
α

R1
, β =

α + cov(X∗
, Ri)

E(Ri)
, i = 2, . . . , n,

(iii) α + βB = α
n∑

i=1
xi + β

n∑
i=1

xiE(Ri).

Since β ≥ 0 it follows that α ≥ 0 and the following conditions are equivalent to
the previous one:

(1)
∣∣∣∣
∣∣∣∣
(

n∑
i=1

xiRi − E

(
n∑

i=1
xiRi

))
−

∣∣∣∣
∣∣∣∣a
p

+ (a− 1)
∣∣∣∣
∣∣∣∣1a(essupX∗ − X∗)

∣∣∣∣
∣∣∣∣

a
a−1

q

− cov

(
X∗

,

n∑
i=1

xiRi

)
= 0,
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(2) E(X∗) = 0,

(3) α
(
1 + B

R1

)
= cov

(
X∗

,
n∑

i=1
xiRi

)
,

(4) α
(

E(Ri)
R1

− 1
)

= cov(X∗
, Ri), i = 2, . . . , n,

(5) α ≥ 0,

(6) α

(
B −

n∑
i=1

xiE(Ri)
)

= 0.

(b) The calculations given in part (a) can be done in reverse order and the
conclusion follows.
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