
HOTT SEMINAR LECTURE NOTES - COVERING 4.1 - 4.5

(AND A BIT OF 4.8) FROM THE BOOK

ALEXANDER YOM DIN

Contents

0. Recollections 1: Basics 1
0.1. Types and terms 1
0.2. Identity types 2
0.3. Function, product and sum types 2
0.4. Path induction 3
0.5. Pointwise identities 4
1. The various variants of invertibility 4
1.1. Various inverses 4
1.2. Equivalence 5
2. Recollections 2: Truncated types 6
2.1. The hierarchy of truncatedness 6
2.2. Contractible fibers 6
3. Plan 6
4. Inhabiting LRInvpfq Ñ QInvpfq 7
5. Inhabiting QInvpfq Ñ HAInvpfq 7
6. Inhabiting IsContrF ibpfq Ñ QInvpfq 8
7. Inhabiting HAInvpfq Ñ IsContrF ibpfq 8
8. Establishing IsProppLRInvpfqq 10
9. Establishing IsProppHAInvpfqq 12
10. QInvpfq is not a mere proposition in general 13
11. Straightening-Unstraightening (Grothendieck construction) 14

0. Recollections 1: Basics

0.1. Types and terms. The basic axiomatic object in type theory is a type. A
type has terms (or inhabitants). We write x : X to denote that x is a term of the
type X.

By a statement (resp. supposition) of the form a : X we mean that we will
construct (resp. suppose already constructed) a term of the type X and we name
that term a. By a statement of the form X, we mean the same, except that we
don’t want to introduce a notation for the constructed term (thus, the difference is
just a matter of exposition, the real meaning is the same).

All what we do in the type-theoretical approach is to construct terms of types,
when given previously constructed terms of types, by some rules. Thus, one contrast
with set theory is that claims themselves are simply the announcements of terms

1

2 ALEXANDER YOM DIN

to be constructed given terms already constructed, and proofs of claims are the
constructions1. Using the function type, one can even contract this into saying that
a claim is a type, and a proof of it is the inhabitation of that type (by inhabiting
a type we mean constructing a term of that type).

It is convenient to have the type of types Types, whose terms are types, and we
ignore here the obvious need of some hierarchy for such a notion to be acceptable.

0.2. Identity types. Given X : Types and x1, x2 : X, one axiomatially introduces
the identity type x1 “ x2. As far as I understand, this is the main departure from set
theory; Roughly speaking, one first (even historically, I think - ancient Greece and
so on) sees the need in studying manipulations with truth values (True and False,
or contractible and empty in the topological situtation). In a set, the inter-relations
between (or identifications of) two inhabitants are described by a truth value. Then
one has a 1-groupoid, where the inter-relations between two inhabitants form a set,
and so on, leading to the notion of an 8-groupoid. In a type, the inter-relations
between two inhabitants form again a type - making types suitable for an definition
of 8-groupoids which will be “at once”.

We think of a type X as a space/8-groupoid in the sense of homotopy the-
ory/higher category theory (and of terms of a type as the points/objects of the
space/8-groupoid respectively). Of x1 “ x2 we think as the space of paths from
x1 to x2 (in the space interpretation), or the 8-groupoid of isomorphisms between
x1 and x2 (in the 8-groupoid interpretation).

0.3. Function, product and sum types. Given X,Y : Types, one axiomatically
introduces the function type X Ñ Y . One has some standard rules, such as given
f : X Ñ Y and x : X, an fpxq : Y is constructed.

Given X : Types and Y : X Ñ Types (an “X-parametrized type”), one axiomat-
ically introduces the product type

ś

x:X Y pxq and the sum type
ř

x:X Y pxq, we some
standard rules.

In the space interpretation, the product
ś

x:X Y pxq is the homotopy limit over
the fundamental 8-groupoid corresponding to the space X, of spaces Y pxq (and
similarly for sums and homotopy colimits).

One can define composition of functions with some standard rules, i.e.

composition :
ź

X,Y,Z:Types

ź

f :XÑY,g:YÑZ

ˆ

X Ñ Z

˙

.

We denote

g ˝ f :” compositionpX,Y, Z, f, gq.

We also have the identity function idX : X Ñ X, etc. All this is because to give
a function f : X Ñ Y is the same as to produce an element of Y each time an
element of X is given, and then it is clear how to define composition and the identity
function, and so on. Notice that associativity will be satisfied on the nose! In this
sense, types are already conveniently an p8, 1q-category.

1Although maybe one can modify set theory a bit to similarly emphasize this.

HOTT SEMINAR LECTURE NOTES - COVERING 4.1 - 4.5 (AND A BIT OF 4.8) FROM THE BOOK3

0.4. Path induction. One introduces axiomatically, for all types X : Types and
terms x : X, the “the path witnessing reflexivity” reflX : x “ x (thought of as
the constant path in the space interpretation and the identity automorphism in the
8-groupoid interpretation). What we really mean by this is that one axiomatically
inhabits

ś

X:Types

ś

x:Xpx “ xq. This is an indication to the line of thought, by
which all constructions in type theory are always “functorial”.

A very important principle for identity types is path induction:

Axiom 0.1 (Path induction). Let

X : Types, Y :
ź

x1,x2:X

ź

α:x1“x2

Types.

Then we have

pathindX,Y :
ź

x:X

Y px, x, reflxq Ñ Y

such that pathindpfqpx, x, reflxq :” fpxq2. In words: If for all x1, x2 : X and
α : x1 “ x2 we are given a type Y px1, x2, αq, and if we constructed terms of
Y px, x, reflxq for all x : X, then also constructed are terms of Y px1, x2, αq for all
x1, x2 : X and α : x1 “ x2.

In the space interpretation, path induction reflects the homotopy equivalence
X Ñ X ˆ

X
X (where the fiber product is the homotopy fiber product).

By using path induction one inhabits, for all types X,Y : Types and function

f : X Ñ Y , the type
ś

x1,x2:X

ˆ

px1 “ x2q Ñ pfpx1q “ fpx2qq

˙

. Intuitively,

functions between types are always functorial.

By using path induction, one can define concatenation of paths, i.e.

concatX :
ź

x1,x2,x3:X

ź

α:x1“x2,β:x2“x3

ˆ

x1 “ x3

˙

.

We then denote, given α : x1 “ x2, β : x2 “ x3,

β ‚ α :” concatXpx1, x2, x3, α, βq : x1 “ x3.

One can similarly define the inverse path:

invX :
ź

x1,x2:X

ź

α:x1“x2

ˆ

x2 “ x1

˙

(we denote the inverse of α : x1 “ x2 by α´1 : x2 “ x1), and verify the various
identities one expects, such as associativity of concatenation and so on (in the
homotopical sense).

2The symbol :” means that the left hand side is equal to the right hand side by a meta-

theoretical decree, i.e. one has a complete identification, part of the rules of the game, not

constituting an inhabitation of a type but rather a complete interchangeability on the level of
what strings can be written - so not related to the internal notion of equality types using the ““”

symbol.

4 ALEXANDER YOM DIN

0.5. Pointwise identities. Let

Y : X Ñ Types, f, g :
ź

x:X

Y pxq.

The type of pointwise identities (or homotopies) is

f
pw
“ g :”

ź

x:X

ˆ

fpxq “ gpxq

˙

.

One defines reflpwf , concatenation, inverses, application of a function to a point-
wise identity, and so on - in an evident way.

Let us reiterate the meaning of some notation which we will use. Given f : X Ñ

Y and g, h : Z Ñ X and α : g
pw
“ h, we will denote by fpαq : f ˝ g

pw
“ f ˝ h the

obvious inhabitant, and given f : X Ñ Y and g, h : Y Ñ Z and α : g
pw
“ h, we will

denote by αpfq : g ˝ f
pw
“ h ˝ f the obvious inhabitant.

Lemma 0.2 (Naturality). Let α : f
pw
“ g. Then

ź

x1,x2:X

ź

ξ:x1“x2

ˆ

gpξq ‚ αpx1q “ αpx2q ‚ fpξq

˙

.

In a diagram:

fpx1q
αpx1q +3

fpξq

��

gpx1q

gpξq

��
fpx2q

αpx2q +3 gpx2q

is commutative.

Proof. By path induction, it is enough to inhabit

ź

x:X

ˆ

gpreflxq ‚ αpxq “ αpxq ‚ fpreflxq

˙

.

But gpreflxq :” reflgpxq and fpreflxq :” reflfpxq, so this becomes the question of
inhabiting αpxq “ αpxq, which we can do with reflαpxq. �

Remark 0.3 (Iterated pointwise identities). Notice that fpxq “ gpxq is itself an

X-parametrized type. Therefore, we can iterate and, given α, β : f
pw
“ g, speak

about α
pw
“ β, etc.

1. The various variants of invertibility

1.1. Various inverses. Let f : X Ñ Y . Our goal is to study the property of f
being an equivalence. This is the term corresponding to a homotopy equivalence
(in the space interpretation) or an equivalence of categories (in the 8-groupoid
interpretation).

We can speak about left and right inverses:

LInvpfq :”
ÿ

g:YÑX

ˆ

idX
pw
“ g ˝ f

˙

,

HOTT SEMINAR LECTURE NOTES - COVERING 4.1 - 4.5 (AND A BIT OF 4.8) FROM THE BOOK5

RInvpfq :”
ÿ

g:YÑX

ˆ

f ˝ g
pw
“ idY

˙

.

We can also speak about a two-sided inverse, which we call a “quasi-inverse”
(because it is not really a good notion, more about this later) and about a pair
consisting of a left inverse and a right inverse:

QInvpfq :”
ÿ

g:YÑX

ˆ

pidX
pw
“ g ˝ fq ˆ pf ˝ g

pw
“ idY q

˙

,

LRInvpfq :” LInvpfq ˆRInvpfq.

We also have an yet another type of inverse datum, that of a half-adjoint inverse.
For pg, εl, εrq : QInvpfq denote by

haattemptf,g,εl,εr :” εrpfq ‚ fpεlq : f
pw
“ f.

In a diagram, this is the concatenation:

fpxq
fpεlpxqq+3 fpgpfpxqqq

εrpfpxqq +3 fpxq .

We then define

HAInvpfq :”
ÿ

pg,εl,εrq:QInvpfq

ˆ

haattemptf,g,εl,εr
pw
“ reflpwf

˙

.

1.2. Equivalence. Let X,Y : Types. For f : X Ñ Y we define

IsEquivpfq :” LRInvpfq.

We will see later that one could replace this also by HAInvpfq or IsContrF ibpfq,
obtaining “equivalent” results. We define

X – Y :”
ÿ

f :XÑY

IsEquivpfq.

Equivalence is an equivalence relation in an obvious sense.

By path induction, one easily inhabits

idtoequiv :
ź

X,Y :Types

ˆ

pX “ Y q Ñ pX – Y q

˙

.

Voevodsky concieved the following axiom:

Axiom 1.1 (Univalence). One inhabits

ź

X,Y :Types

IsEquivpidtoequivX,Y q.

6 ALEXANDER YOM DIN

2. Recollections 2: Truncated types

2.1. The hierarchy of truncatedness. For a type X, we define

IsTrunc´2pXq :”
ÿ

c:X

ź

x:X

ˆ

c “ x

˙

.

If we have defined already IsTruncnpXq for some n P Zě´2, we define

IsTruncn`1pXq :”
ź

x1,x2:X

IsTruncnpx1 “ x2q.

A type X is said to be n-truncated if IsTruncnpXq is inhabited. To be p´2q-
truncated we also call to be contractible, and write IsContrpXq :” IsTrunc´2pXq,
and to be p´1q-truncated we also call to be a mere proposition, and write IsProppXq :”
IsTrunc´1pXq. In the world of analogies with 8-groupoids, to be 0-truncated
should be thought of as being a set, to be 1-truncated as being a 1-groupoid, and
so on.

I omit for now various things one can say about contractible types and mere
propositions (obviously, look in the book). Maybe one thing to record is that given
a type X, one axiomatically introduces the type ||X||, which is a mere proposition
(the “propositional reduction” of X). Thus, intuitively, if X is non-empty then
||X|| is contractible, and if X is empty then ||X|| is empty.

Also, let us note that inhabiting a mere proposition might be called establishing
it.

2.2. Contractible fibers. We will need the following terminologies. Let X,Y be
types and let f : X Ñ Y . For y : Y we define

Fibf pyq :”
ÿ

x:X

ˆ

fpxq “ y

˙

and

IsContrF ibpfq :”
ź

y:Y

IsContrpFibf pyqq.

3. Plan

We will inhabit the following function types in the following sections:

IsContrF ibpfq

��
LRInvpfq

**
QInvpfq

jj

**
HAInvpfq

jj

jj .

Notice that inhabiting QInvpfq Ñ LRInvpfq and HAInvpfq Ñ QInvpfq is clear.

We will also show that the types

IsContrF ibpfq, LRInvpfq, HAInvpfq

are all mere propositions. Thus, since the above diagram is connected in the directed
sense, we deduce that the types

IsContrF ibpfq, LRInvpfq, HAInvpfq

HOTT SEMINAR LECTURE NOTES - COVERING 4.1 - 4.5 (AND A BIT OF 4.8) FROM THE BOOK7

are all equivalent mere propositions. Thus, in principle, each one of them could
serve as IsEquivpfq.

We will also explain that QInvpfq is not a mere proposition, in general. In other
words, ||QInvpfq|| is equivalent to IsEquivpfq, but QInvpfq is not, in general.

4. Inhabiting LRInvpfq Ñ QInvpfq

Lemma 4.1. Let f : X Ñ Y and let LRInvpfq. Then QInvpfq.

Proof. We denote the given inhabiting element pgl, gr, εl, εrq : LRInvpfq as usual.
Then we inhabit3

f ˝ gl
pw
“ f ˝ gl ˝ idY

pw
“ f ˝ gl ˝ f ˝ gr

pw
“ f ˝ idX ˝ gr

pw
“ f ˝ gr

pw
“ idY .

So we have gl : Y Ñ X and inhabitants of idX
pw
“ gl ˝ f and of f ˝ gl

pw
“ idY ,

therefore an inhabitant of QInvpfq. �

5. Inhabiting QInvpfq Ñ HAInvpfq

Proposition 5.1. Let f : X Ñ Y and let QInvpfq. Then HAInvpfq.

Proof. We denote the given inhabiting element pg, εl, εrq : QInvpfq as usual.

Given α : idX
pw
“ idX , let us redefine

ε1l :” εl ‚ α.

Then the new haattemptf,g,ε1
l,εr

will be the concatenation

fpxq
fpεlpxqq+3 fpgpfpxqqq

εrpfpxqq +3 fpxq

fpxq

fpαpxqq

KS
.

Therefore, if we can construct α for which fpαq
pw
“ haattepmt´1

f,g,εl,εr
, we see that

haattemptf,g,ε1
l,εr

will be pointwise identified with reflpwf , as desired. The con-
struction of such α is given by Lemma 5.2 that follows. �

Lemma 5.2. Let f : X Ñ Y and let QInvpfq and let β : f
pw
“ f . Then we

construct α : idX
pw
“ idX and fpαq

pw
“ β.

Proof. We denote the given inhabiting element pg, εl, εrq : QInvpfq as usual.

Let us first fix some γ : f
pw
“ f . We try to consider the following diagram with

some α : idX
pw
“ idX :

fpxq
fpεlpxqq +3

fpαpxqq

��

fpgpfpxqqq
εrpfpxqq +3

fpgpγpxqqq

��

fpxq

γpxq

��
fpxq

fpεlpxqq +3 fpgpfpxqqq
εrpfpxqq +3 fpxq

.

3When we say that we inhabit something like X “ Y “ Z, we mean that we inhabit X “ Y ,
and inhabit Y “ Z, and then inhabit X “ Z using concatenation, etc.

8 ALEXANDER YOM DIN

The right square commutes by Lemma 0.2, while the left square will commute if
we set

α :” ε´1
l ‚ gpγq ‚ εl : idX

pw
“ idX .

Then, for this choice of α, we obtain

fpαq
pw
“ haattempt´1

f,g,εl,εr
‚ γ ‚ haattemptf,g,εl,εr .

Thus, setting

γ :” haattemptf,g,εl,εr ‚ β ‚ haattempt
´1
f,g,εl,εr

: f
pw
“ f,

we will obtain fpαq
pw
“ β.

Alternatively, we can use Lemma 9.1.
�

6. Inhabiting IsContrF ibpfq Ñ QInvpfq

Proposition 6.1. Let f : X Ñ Y and let IsContrF ibpfq. Then QInvpfq.

Proof. We have

IsContrF ibpfq – IsContr

ˆ

ź

y:Y

Fibf pyq

˙

.

Therefore, assuming the former, we obtain a term rg :
ś

y:Y Fibf pyq. Write rgpyq ”:

pgpyq, βpyqq so βpyq : fpgpyqq “ y. Then f ˝ g
pw
“ idY . For the other direc-

tion, we consider rg ˝ f :
ś

x:X Fibf pfpxqq. We also have another element taut :
ś

x:X Fibf pfpxqq sending tautpxq :” px, reflfpxqq. Since this type is contractible,

we obtain an inhabitant of rg ˝f “ taut, so in particular of rg ˝f
pw
“ taut. Composing

with
ź

x:X

Fibf pfpxqq Ñ
ź

x:X

X

inhabits g ˝ f
pw
“ idX . �

7. Inhabiting HAInvpfq Ñ IsContrF ibpfq

First, we will see how to manage identity types in fibers.

Lemma 7.1. Let f : X Ñ Y , and let y : Y and let px1, β1q, px2, β2q : Fibf pyq.
Then

ˆ

px1, β1q “ px2, β2q

˙

–

ˆ

ÿ

α:x1“x2

β2 ‚ fpαq “ β1

˙

.

In a diagram, given

x1 x2

fpx1q

β1 �%

fpx2q

β2y�
y

,

HOTT SEMINAR LECTURE NOTES - COVERING 4.1 - 4.5 (AND A BIT OF 4.8) FROM THE BOOK9

to inhabit the identity type px1, β1q “ px2, β2q we need to complement by an α and
a commutation of the lower triangle:

x1
α +3 x2

fpx1q
fpαq +3

β1 �%

fpx2q

β2y�
y

.

Proof (sketch). Earlier in the book, there was a description of identity types in sum
types, which gives here

ˆ

px1, β1q “ px2, β2q

˙

–
ÿ

α:x1“x2

ˆ

transαpβ1q “ β2

˙

.

One also inhabits, via path induction and so on,
ˆ

transαpβ1q “ β2

˙

–

ˆ

β2 ‚ fpαq “ β1

˙

,

and summing this up we obtain the desired inhabitation. �

Proposition 7.2. Let f : X Ñ Y and let HAInvpfq. Then IsContrF ibpfq.

Proof. Denote by pg, εl, εr, δq : HAInvpfq the given inhabitant (so g : Y Ñ X,

εl : idX
pw
“ g ˝ f, εr : f ˝ g

pw
“ idY and δ : haattemptf,g,εl,εr

pw
“ reflpwf) and fix y : Y .

Notice that Fibf pyq is inhabited by pgpyq, εrpyqq. Since one has CˆIsProppCq Ñ
IsContrpCq, it is left to show IsProppFibf pY qq. So fix px1, β1q, px2, β2q : Fibf pyq
and we need to inhabit px1, β1q “ px2, β2q. By using Lemma 7.1, it is enough to
find an inhabitant α : x1 “ x2 and then to inhabit β2 ‚ fpαq “ β1.

We have

x1 x2

fpx1q

β1 �%

fpx2q

β2y�
y

.

We then have

x1

εlpx1q

��

x2

εlpx2q

��
gpfpx1qq

gpβ1q (

gpfpx2qq

gpβ2qv~
gpyq

10 ALEXANDER YOM DIN

and therefore composing we obtain an inhabitant α : x1 “ x2. Next, we apply f to
this diagram and append an identity, obtaining

fpx1q
fpαq +3

fpεlpx1qq

��

fpx2q

fpεlpx2qq

��
fpgpfpx1qqq

fpgpβ1qq "*

fpgpfpx2qqq

fpgpβ2qqt|
fpgpyqq

εrpyq

��
y

.

Since by definition of α the diagram commutes (a 2-homotopy! i.e. an inhabitant
of the identity type between two inhabitants of the identity type fpx1q “ y), it is
enough to find an inhabitant of the identity type between the two inhabitants of
fpx2q “ y, one given by the right route in the diagram, and the other given by
β2. An analogous procedure will then identify the left route with β1, and we will
therefore find an inhabitant of β2 ‚ fpαq “ β1, as desired.

To that end, consider now the right route in the diagram and add to it an
appendage:

fpx2q

fpεlpx2qq

��
fpgpfpx2qqq

fpgpβ2qqt|
εrpfpx2qq

��
fpgpyqq

εrpyq

��

fpx2q

β2

t|
y

.

Notice that the parallelogram commutes by Lemma 0.2. Furthermore, we have an
identification of the composition of the upper right two arrows with the reflexive
inhabitant, by definition of an half-adjoint inverse. From this we obtain the desired.

�

8. Establishing IsProppLRInvpfqq

Lemma 8.1. Let f : X Ñ Y . Define

cf : pY Ñ Xq Ñ pX Ñ Xq

by

cf pgq :” g ˝ f.

Then

QInvpfq Ñ QInvpcf q.

HOTT SEMINAR LECTURE NOTES - COVERING 4.1 - 4.5 (AND A BIT OF 4.8) FROM THE BOOK11

Also,

Fibcf pidXq – LInvpfq.

Proof. The first claim is easy.

As for the second claim, we have

Fibcf pidXq :”
ÿ

g:YÑX

ˆ

g ˝ f “ idX

˙

–

and by function extensionality we continue

–
ÿ

g:YÑX

ˆ

g ˝ f
pw
“ idX

˙

”: LInvpfq.

�

Lemma 8.2. Let f : X Ñ Y and let QInvpfq. Then IsContrpLInvpfqq and
IsContrpRInvpfqq, or equivalently IsContrpLRInvpfqq.

Proof. Let us show QInvpfq Ñ IsContrpLInvpfqq (the other check is analogous).
Let us consider

cf : pY Ñ Xq Ñ pX Ñ Xq

as in the preceding Lemma. Then by this Lemma we have

QInvpfq Ñ QInvpcf q.

By Proposition 5.1 we have

QInvpcf q Ñ HAInvpcf q.

By Proposition 7.2 we have

HAInvpcf q Ñ IsContrpFibcf pidXqq.

By the preceding Lemma we have

IsContrpFibcf pidXqq Ñ IsContrpLInvpfqq.

Composing all those together, we obtain the desired. �

Proposition 8.3. Let f : X Ñ Y . Then

IsProppLRInvpfqq.

Proof. We have, for a type Z,

IsProppZq –
`

Z Ñ IsContrpZq
˘

,

So it suffices to assume that LRInvpfq is inhabited and show that IsContrpLRInvpfqq.
But if LRInvpfq is inhabited, then so isQInvpfq, and therefore so is IsContrpLRInvpfqq
by Lemma 8.2. �

12 ALEXANDER YOM DIN

9. Establishing IsProppHAInvpfqq

Lemma 9.1.

(1) Let Y,Z : Tpyes and let f : Y Ñ Z and suppose that f is an equivalence.
Then for all y1, y2, : Y the function in

py1 “ y2q Ñ pfpy1q “ fpy2qq

given by

α ÞÑ fpαq

is an equivalence.
(2) Let Y,Z : Types and let f : Y Ñ Z and suppose that f is an equivalence.

Let X : Types. Then for all f1, f2 : X Ñ Y the function in

pf1
pw
“ f2q Ñ pf ˝ f1

pw
“ f ˝ f2q

given by
ˆ

αx : f1pxq “ f2pxq

˙

x:X

ÞÑ

ˆ

fpαxq : fpf1pxqq “ fpf2pxqq

˙

x:X

is an equivalence.

Lemma 9.2.

(1) Let Y : Types and let y1, y2 : Y and let β : y1 “ y2. Then for all y : Y the
function

py “ y1q Ñ py “ y2q

given by

α ÞÑ β ‚ α

is an equivalence.

(2) Let X,Y : Types and let f1, f2 : X Ñ Y and let β : f1
pw
“ f2. Then for all

f : X Ñ Y the function

pf
pw
“ f1q Ñ pf

pw
“ f2q

given by
ˆ

αx : fpxq “ f1pxq

˙

x:X

ÞÑ

ˆ

βx ‚ αx : fpxq “ f2pxq

˙

x:X

is an equivalence.

Lemma 9.3. Let f : X Ñ Y and let pg, εl, εr, δq : HAInvpfq. Then the function

adj : pidX
pw
“ g ˝ fq Ñ pf

pw
“ fq

given by sending ε to haattemptf,g,ε,εr is an equivalence.

Proof. Thus, adj is the composition of the function in

pidX
pw
“ g ˝ fq Ñ pf

pw
“ f ˝ g ˝ fq

sending
ˆ

αx : x “ gpfpxqq

˙

x:X

ÞÑ

ˆ

fpαxq : fpxq “ fpgpfpxqqq

˙

x:X

and the function in

pf
pw
“ f ˝ g ˝ fq Ñ pf

pw
“ fq

HOTT SEMINAR LECTURE NOTES - COVERING 4.1 - 4.5 (AND A BIT OF 4.8) FROM THE BOOK13

sending
ˆ

βx : fpxq “ fpgpfpxqqq

˙

x:X

ÞÑ

ˆ

pεrqfpxq ‚ βx

˙

x:X

.

So, it is enough to check that each of those functions is an equivalence. The first
one is an equivalence by Lemma 9.1 and the second one is an equivalence by Lemma
9.2. �

Lemma 9.4. Let f : X Ñ Y and let pg, εl, εrq : QInvpfq. Denote by

frgt : HAInvpfq Ñ RInvpfq

the function which forgets information in the obvious way, and denote by

adj : pidX
pw
“ g ˝ fq Ñ pf

pw
“ fq

the function which sends ε to haattemptf,g,ε,εr . Then one has

Fibfrgtpg, εrq – Fibadjprefl
pw
f q.

Proof. This is clear from Lemma 7.1. �

Proposition 9.5. Let X,Y : Types and let f : X Ñ Y . Then HAInvpfq is a
mere proposition.

Proof. It is enough to assume thatHAInvpfq is inhabited, and show thatHAInvpfq
is contractible. We consider the forgetting function frgt : HAInvpfq Ñ RInvpfq.
Since HAInvpfq is inhabited, QInvpfq is inhabited as well, and thus by Lemma 8.2
we have that RInvpfq is contractible. Therefore, in order to show that HAInvpfq
is contractible, it is enough to show that frgt is an equivalence. We saw that this is
logically the same as showing that the fibers of frgt are contractible, for which by
Lemma 9.4 it is enough to show that all fibers of the function adj are contractible,
which again is equivalent to adj being an equivalence, which follows from Lemma
9.3. �

10. QInvpfq is not a mere proposition in general

Lemma 10.1. Let f : X Ñ Y and let QInvpfq. Then the fibers of the forgetful

function frgt : QInvpfq Ñ RInvpfq are all equivalent to the type idX
pw
“ idX .

Proof. The fiber of frgt over some pg, εrq : RInvpfq is equivalent to idX
pw
“ g ˝ f .

This type is inhabited since QInvpfq is inhabited. Using Lemma 9.2 we have an

equivalence between idX
pw
“ idX and idX

pw
“ g ˝ f . �

Remark 10.2. Recall that we saw that if QInvpfq is inhabited then RInvpfq
is contractible. Therefore, to exhibit f for which QInvpfq is not contractible, it

is enough to exhibit f for which QInvpfq is inhabited and idX
pw
“ idX is not

contractible (then, in view of Lemma 10.1, QInvpfq can’t be contractible because
otherwise the fibers of frgt : QInvpfq Ñ RInvpfq would be contractible). Taking

simply f :” idX , it is enough to exhibit a type X for which idX
pw
“ idX is not

contractible. Intuitively, the classifying space of Autp2q should be such a type, and
this can be checked, as below.

Lemma 10.3. Let X : Types be 1-truncated and connected. Let x : X. Then

pidX
pw
“ idXq –

ÿ

α:x“x

ź

β:x“x

ˆ

α ‚ β “ β ‚ α

˙

.

14 ALEXANDER YOM DIN

Lemma 10.4. The type 2 “ 2 is not connected, and the forgetting function in
ˆ

ÿ

α:2“2

ź

β:2“2

ˆ

α ‚ β “ β ‚ α

˙˙

Ñ

ˆ

2 “ 2

˙

is an equivalence.

Corollary 10.5. Consider the type

X :”
ÿ

Y :Types

||2 “ Y ||.

Then X is 1-truncated and connected, and pidX
pw
“ idXq –

ˆ

2 “ 2

˙

, so is not

connected, and in particular not contractible.

11. Straightening-Unstraightening (Grothendieck construction)

Proposition 11.1. Let X : Types. One has
ˆ

ÿ

Y :Types

pY Ñ Xq

˙

–

ˆ

X Ñ Types

˙

.

Proof. Given

Φ ” pY, πq :
ÿ

Y :Types

pY Ñ Xq

we construct
Ψ : X Ñ Types

by sending x : X to Fibπpxq. We claim that this is an equivalence. We construct
an inverse - given Ψ, we construct Φ by considering Y :”

ř

x:X Ψpxq and π :” pr1.
We have now maps

ˆ

ř

Y :TypespY Ñ Xq

˙

str -- ˆ

X Ñ Types

˙

unstr
nn

and we need to construct homotopies of compositions to identities.

The element punstr ˝ strqpΦq is given by
ˆ

ÿ

x:X

Fibπpxq, pr1

˙

.

We have
ÿ

x:X

Fibπpxq ”

ˆ

ÿ

x:X

ÿ

y:Y

pπpyq “ xq

˙

“
ÿ

y:Y

ÿ

x:X

pπpyq “ xq “
ÿ

y:Y

psomething contractibleq “ Y.

One checks that the transport along that of pr1 can be identified with π, giving the
desired homotopy.

Conversely, the element pstr ˝ unstrqpΨq is given by sending x : X to the fiber

of pr1 :

ˆ

ř

x:X Ψpxq

˙

Ñ X over x : X. This can be identified with Ψpxq.

�

	0. Recollections 1: Basics
	0.1. Types and terms
	0.2. Identity types
	0.3. Function, product and sum types
	0.4. Path induction
	0.5. Pointwise identities

	1. The various variants of invertibility
	1.1. Various inverses
	1.2. Equivalence

	2. Recollections 2: Truncated types
	2.1. The hierarchy of truncatedness
	2.2. Contractible fibers

	3. Plan
	4. Inhabiting LRInv (f) QInv (f)
	5. Inhabiting QInv(f) HAInv(f)
	6. Inhabiting IsContrFib (f) QInv (f)
	7. Inhabiting HAInv (f) IsContrFib (f)
	8. Establishing IsProp (LRInv(f))
	9. Establishing IsProp (HAInv (f))
	10. QInv (f) is not a mere proposition in general
	11. Straightening-Unstraightening (Grothendieck construction)

