Infinite symmetric group and bordisms of pseudomanifolds

ALEXANDER A. GAIFULLIN¹, YURY A. NERETIN²

We consider a category whose morphisms are bordisms of *n*-dimensional pseudomanifolds equipped with a certain additional structure (coloring). On the other hand, we consider the product G of (n + 1) copies of infinite symmetric group. We show that unitary representations of G produce functors from the category of *n*-dimensional bordisms to the category of Hilbert spaces and bounded linear operators.

1 Introduction

1.1. The statement. Denote by S(k) the symmetric group of order k, by $S(\infty)$ the group of finitely supported permutations of $S(\infty)$. Consider the product $G = S(\infty)^{n+1}$ of n + 1 copies of \mathbb{N} , consider the diagonal subgroup $K = \text{diag}(\infty) \subset G$. Denote by $K(\alpha)$ the stabilizer of elements $1, \ldots, \alpha \in \mathbb{N}$ in $K \simeq S(\infty)$. Denote by $K(\alpha) \setminus G/K(\beta)$ double coset spaces.

We show that for any α , β , $\gamma = 0, 1, 2, ...$ there exists a natural operation (o-multiplication)

$$K(\alpha) \setminus G/K(\beta) \times K(\beta) \setminus G/K(\gamma) \to K(\alpha) \setminus G/K(\gamma).$$

The operation is associative, thus we get a category \mathcal{K} , whose objects are nonnegative integers and sets of morphisms $\beta \to \alpha$ are $K(\alpha) \setminus G/K(\beta)$.

REMARKS. a) Such phenomena are quite usual for infinite-dimensional ('large') groups, see, e.g., [16], [17], [11], [12]; apparently the first example was discovered by Ismagilov [10]. In particular, the object under the discussion was considered by Olshanski [16] for n = 1 and one of the authors [13] for n = 2.

b) Take two double cosets $\mathfrak{g} \in K(\alpha) \setminus G/K(\beta)$, $\mathfrak{h} \in K(\beta) \setminus G/K(\gamma)$. Choose their representatives $g \in \mathfrak{g}$, $h \in \mathfrak{h}$. Obviously, double cosets $K(\alpha)ghK(\beta)$ depend on a choice of g, h. However, 'usually' we fall to one distinguished double coset, namely $\mathfrak{g} \circ \mathfrak{h}$. Precise sense of the word 'usually' is explained in Subsection 3.6.

We obtain a geometric description of sets $K(\alpha) \setminus G/K(\beta)$, their elements are enumerated by *n*-dimensional pseudomanifolds equipped with special colorings. In particular, the set $K(0) \setminus G/K(0)$ is an obvious one-to-one correspondence with conjugacy classes of $S(\infty)^n$ with respect to the diagonal subgroup $S(\infty)$. So we get a geometric description of such classes.

We also obtain a geometric description of the product of double cosets, this is an operation similar to a product of bordisms.

 $^{^1}$ Supported by RFBR (project 14-01-92612), by grants of the President of the Russian Federation (NSh-4833.2014.1 and MD-2969.2014.1), and by Dmitri Zimin's "Dynasty" foundation.

²Supported by grants FWF, P22122, P25142.

Next, we construct a family of functors from our category to the category of Hilbert spaces and bounded operators. In fact, any unitary representation of G generates such a functor (and vice versa).

1.2. Structure of the paper. Section 2 contains preliminaries on pseudomanifolds and a description of a correspondence between the group $S(k)^{n+1}$ and colored *n*-dimensional pseudomanifolds with 2k cells. Equivalence of the category of double cosets and the category of bordisms is obtained in Section 3. In Section 4 we discuss representations of our category.

2 Pseudomanifolds and symmetric groups

First, we fix several definitions.

2.1. Simplcial cell complexes. Consider a disjoint union $\coprod \Xi_j$ of a finite collection of simplices Ξ_j . We consider a topological quotient space Σ of $\coprod \Xi_j$ with respect to certain equivalence relation. The quotient must satisfy the following properties

a) For any simplex Ξ_i , the tautological map $\xi_i : \Xi_i \to \Sigma$ is an embedding. Therefore we can think of Ξ_i as of a subset of Σ .

b) For any pair of simplices Ξ_i, Ξ_j , the intersection $\xi_i^{-1}(\xi_i(\Xi_i) \cap \xi_j(\Xi_j)) \subset \Xi_i$ is a union of faces of Ξ_i and the partially defined map

$$\Xi_i \xrightarrow{\xi_i} \Sigma \xrightarrow{\xi_j^{-1}} \Xi_j$$

is affine on each face.

We shall call such quotients simplicial cell complexes.

REMARK ON TERMINOLOGY. There are two similar (and more common) definitions of spaces composed from simplices (see, e.g., [9]). The first one is a more restrictive definition of "a simplicial complex". In this case, a non-empty intersection of two faces is a (unique) face. See examples of simplicial cell complexes, which are not simplicial complexes in Fig.2 and Fig.3.b. A more wide class of simplicial spaces are Δ -complexes, in this case gluing of a simplex with itself along faces is allowed (as for standard 1-vertex triangulations of two-dimensional surfaces), see Fig 1.

2.2. Pseudomanifolds. A *pseudomanifold* of dimension n is a simplicial cell complex such that

a) Each face is contained in an *n*-dimensional face. We call *n*-dimensional faces *chambers*.

b) Each (n-1)-dimensional face is contained in precisely two chambers.

See, e.g., [19], [6].

REMARK. Any cycle of singular \mathbb{Z} -homologies in a topological space can be realized as an image of a pseudo-manifold (this is more-or-less obvious). Recall that there are cycles in manifolds, which cannot be realized as images of manifolds. \Diamond

Figure 1: To the definition of simplicial cell complexes. The triangle a) is forbidden, the pair of triangles b) is allowed.

Figure 2: A non-normal two-dimensional pseudomanifold.

REMARK ON TERMINOLOGY. In literature, there exists another variant of a definition of a pseudomanifold. Seifert, Threlfall, [19] impose two additional requirements: a pseudomanifold must be a simplicial complex and must be 'strongly connected'. The latter conditions means that the complement of the union of faces of codimension 2 must be connected. \Diamond

2.3. Normal pseudomanifolds and normalization.

Links. Let Σ be a pseudomanifold, let Γ be its k-dimensional face. Consider all (k + 1)-dimensional faces Φ_j of Σ containing Γ and choose a point φ_j in the relative interior of each face Φ_j . For each face $\Psi_m \supset \Gamma$ we consider the convex hull of all points φ_j that are contained in Ψ_m . The link of Γ is the simplicial cell complex whose faces are such convex hulls.

Normal pseudomanifolds. A pseudomanifold is normal if the link of any face of codimension ≥ 2 is connected.

EXAMPLE. Consider a triangulated compact two-dimensional surface Σ . Let a, b be two vertices that are not connected by an edge. Gluing together a and b we get a pseudomanifold which is not normal, see Fig.2.

Normalization. For any pseudomanifold Σ there is a unique normalization ([8]), i.e. a normal pseudomanifold $\widetilde{\Sigma}$ and a map $\pi : \widetilde{\Sigma} \to \Sigma$ such that

— restriction of π to any face of $\tilde{\Sigma}$ is an affine bijective map of faces.

— the map π send different *n*-dimensional and (n-1)-dimensional faces to different faces.

A construction of the normalization. To obtain a normalization of Σ we cut a pseudomanifold Σ into a disjoint collection of chambers Ξ_i . As above, denote by $\xi_i : \Xi_i \to \Sigma_j$ the embedding of Ξ_i to Σ . Let $x \in \Xi_i$, $y \in \Xi_j$. We say that $x \sim y$ if $\xi_i(x) = \xi_j(y)$ and this point is contained in a common (n-1)-dimensional

Figure 3: Reference to the definition of colored pseudomanifolds: a) a colored two-dimensional pseudomanifold; b) a double chamber.

face of the chambers $\xi_i(\Xi_i)$ and $\xi_j(\Xi_j)$. We extend ~ to an equivalence relation by the transitivity. The quotient of $\prod \Xi_i$ is the normalization of Σ .

The following way of normalization is more visual. Let Σ be non-normal. Let Ξ be a face of codimension 2 with link consisting of m connected components. Consider a small closed neighborhood \mathcal{O} of Ξ in Σ . Then $\mathcal{O} \setminus \Xi$ is disconnected and consists of m components, say $\mathcal{O}_1, \ldots, \mathcal{O}_m$. Let $\overline{\mathcal{O}}_j$ be the closure of \mathcal{O}_j in Σ , $\overline{\mathcal{O}}_j = \mathcal{O}_j \cup \Xi_j$. We replace \mathcal{O} by the disjoint union of $\overline{\mathcal{O}}_j$ and get a new pseudomanifold Σ' (in Fig.2, we duplicate the upper vertex). Then we repeat the same operation to another stratum with disconnected link. These operation enlarges number of strata of codimension ≥ 2 , the strata of dimension n and (n-1) remain the same (and the incidence of these strata is preserved). Therefore the process is finite and we get a normal pseudomanifold. \diamond

2.4. Colored pseudomanifolds. Choose n + 1 colors (say, red, blue, green, orange, etc.). Consider an *n*-dimensional *normal* pseudomanifold Σ . A coloring of Σ is the following structure

a) To any chamber we assign a sign (+) or (-). Chambers adjacent to plus-chambers are minus-chamber and vise versa.

b) Each vertex of the complex is colored in such a way that the colors of vertices of each chamber are pairwise different.

c) All (n-1)-dimensional faces are colored, in such a way that colors of faces of a chamber are pairwise different, and a color of a face coincides with a color of the opposite vertex of any chamber containing this face.

We say that a *double-chamber* is a colored *n*-dimensional pseudomanifold obtained from two identical copies Δ_1 , Δ_2 of an *n*-dimensional simplex by identification of the corresponding $x \in \Delta_1$, $x \in \Delta_2$ of the boundaries of Δ_1 , Δ_2 .

REMARK. Colored pseudomanifolds were introduced by Pezzana and Ferri in 1975-1976, see [18], [3], [4], [5].

2.5. A correspondence between pseudomanifolds and symmetric groups. Denote by S(L) the symmetric group of order L. Denote by

$$S(L)^{n+1} := S(L) \times \dots \times S(L)$$

the direct product of n + 1 copies of S(L), we assign n + 1 colors, say, red, blue, orange, etc., to copies of S(L).

Consider a colored pseudomanifold Σ with 2L chambers. We say that a labeling of Σ is a bijection of the set $\{1, 2, \ldots, L\}$ with the set of plus-chambers of Σ and a bijection of $\{1, 2, \ldots, L\}$ with the set of minus-chambers of Σ .

Theorem 2.1 There is a canonical one-to-one correspondence between the group $S(L)^{n+1}$ and the set of all labeled colored normal n-dimensional pseudo-manifolds with 2L chambers.

REMARK. This correspondence for n = 2 was proposed in [13]. Earlier there was a construction of Pezzana–Ferri (1975-1976), [18], [3], [4]. They considered bipartite (n + 1)-valent graphs whose edges are colored in (n + 1) colors, edges adjacent to a given vertex have pairwise different colors. Such graphs correspond to colored pseudomanifolds. In [5]–[7] there was considered an action of free product $\mathbb{Z}_2 * \cdots * \mathbb{Z}_2$ of n copies of \mathbb{Z}_2 on the set of chambers of a colored pseudomanifold. A construction relative to the present construction was considered in [1].

CONSTRUCTION OF THE CORRESPONDENCE. Indeed, consider a labeled colored normal pseudomanifold Σ with 2L chambers. Fix a color (say, blue). Consider all blue (n-1)-dimensional faces A_1, A_2, \ldots . Each blue face A_j is contained in the plus-chamber with some label p(j) and in the minus-chamber with some label q(j). We take an element of the symmetric group S(L) setting $p(j) \mapsto q(j)$ for all blue faces A_j . We repeat the same construction for all colors and obtain a tuple $(g^{(1)}, \ldots, g^{(n+1)}) \in S(L)^{n+1}$.

Conversely, consider an element of the group $S(L)^{n+1}$. Consider L labeled copies of a colored chamber (plus-chambers) and another collection of L labeled copies of the same chamber with another orientation (minus-chambers). Let the blue permutation send $\alpha \mapsto \beta$. Then we glue the the plus-chamber with label α with the minus-chamber with label β along the blue face (preserving colorings of vertices). The same is done for all colors. The obtained pseudomanifold Σ is normal because the normalization procedure from Subsection 2.3 applied to Σ produces Σ itself.

2.6. The multiplication in symmetric group and pseudomanifolds. Describe the multiplication in $S(L)^{n+1}$ in a geometric language. Consider two labeled colored pseudomanifolds Σ , Ξ . Remove interiors of minus-chambers of Σ remembering a minus-label on each face of a removed chamber, denote the topological space obtained in this way by Σ_- . All (n-1)-faces of Σ_- are colored and labeled. In the same way, we remove plus-chambers from Ξ and get a complex Ξ_+ . Next, we glue the corresponding faces of Σ_- and Ξ_+ (with coinciding colors and labels according coloring of vertices). In this way, we get a pseudomanifold and consider its normalization.

2.7. Colored quasibordisms. Fix $n \ge 1$. We define a category Bor of quasibordisms. Its objects are nonnegative integers. A morphism $\beta \to \alpha$ is the following collection of data

1) A colored *n*-dimensional normal pseudomanifold (generally, disconnected).

2) An injective map of the set $\{1, 2, ..., \alpha\}$ to the set of plus-chambers and an injective map of the set $\{1, 2, ..., \beta\}$ to the set of minus-chambers In other words, we assign labels $1, ..., \alpha$ to some plus-chambers. and labels $1, ..., \beta$ to some minus-chambers.

We require that each double-chamber has at least one label.

Composition. Let $\Sigma \in \operatorname{Mor}(\beta, \alpha)$, $\Lambda \in \operatorname{Mor}(\gamma, \beta)$. We define their composition $\Sigma \diamond \Lambda$ as follows. Remove interiors of labeled minus-chambers of Σ and interiors of labeled plus-chambers of Λ . Next, for each $s \leq \beta$, we glue boundaries of the minus-chamber of Σ with label s with the boundary of the plus-chamber of Λ with label s according the simplicial structure of boundaries and colorings of (n-1)-simplices. Next, we normalize the resulting pseudomanifold.

Finally we remove label-less double chambers (such components can arise as a result of gluing of two label-keeping double chambers).

The identity morphism in $Mor(\alpha, \alpha)$ is a union of α double chambers with coinciding labels on its sides.

Involution. For a morphism $\Sigma \in \operatorname{Mor}(\beta, \alpha)$ we define the morphism $\Sigma^* \in \operatorname{Mor}(\alpha, \beta)$ by changing of signs on chambers. Thus we get an *involution* in the category Bor. For any $T \in \operatorname{Mor}(\beta, \alpha)$, $S \in \operatorname{Mor}(\gamma, \beta)$ we have

$$(S \diamond T)^* = T^* \diamond S^*$$

In the next section we show that this category is equivalent to the category of double cosets.

3 Multiplication of double cosets and quasibordisms

3.1. Symmetric groups. Notation. Denote by $K = S(\infty)$ the group of finitely supported permutations of \mathbb{N} . By $\overline{K} = \overline{S}(\infty)$ we denote the group of all permutations of \mathbb{N} . Denote by $K(\alpha) \subset K$, $\overline{K}(\alpha) \subset \overline{K}$ the stabilizers of points $1, \ldots, \alpha$. We equip $\overline{S}(\infty)$ with a natural topology assuming that the subgroups $K(\alpha)$ are open.

Sometimes we will represent elements of symmetric groups as 0-1-matrices.

3.2. Multiplication of double cosets. Denote the product of (n + 1) copies of $S(\infty)$ by G. Denote by $K \simeq S(\infty)$ the diagonal subgroup in G, its elements have the form (g, g, \ldots, g) .

Consider double cosets $K(\alpha) \setminus G/K(\beta)$, i.e., elements of G defined up to the equivalence

 $g \sim k_1 g k_2, \qquad k_1 \in K(\alpha), \, k_2 \in K(\beta)$

We wish to define product of double cosets

$$K(\alpha) \setminus G/K(\beta) \times K(\beta) \setminus G/K(\gamma) \to K(\alpha) \setminus G/K(\gamma).$$

For this purpose, define elements $\theta_{\sigma}[j] \in K(\sigma)$ by

$$\theta_{\sigma}[j] := \begin{pmatrix} \mathbf{1}_{\sigma} & 0 & 0 & 0\\ 0 & 0 & \mathbf{1}_{j} & 0\\ 0 & \mathbf{1}_{j} & 0 & 0\\ 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix},$$

where $\mathbf{1}_{j}$ denotes the unit matrix of order j.

Proposition 3.1 Let

$$\mathfrak{g} \in K(\alpha) \setminus G/K(\beta), \quad \mathfrak{h} \in K(\beta) \setminus G/K(\gamma)$$

be double cosets. Let $g, h \in G$ be their representatives. Then the sequence

$$\mathfrak{r}_j := K(\alpha) \cdot g\theta_\beta[j]h \cdot K(\gamma) \in K(\alpha) \setminus G/K(\gamma)$$
(3.1)

is eventually constant. The limit value of \mathfrak{r}_j does not depend on a choice of representatives $g \in \mathfrak{g}$ and $h \in \mathfrak{h}$. Moreover, if $g, h \in S(L)^{n+1} \subset S(\infty)^{n+1}$, then it is sufficient to consider $j = L - \beta$.

We define the product

$$\mathfrak{g} \circ \mathfrak{h} \in K(\alpha) \setminus G/K(\gamma)$$

of double cosets as the limit value of the sequence (3.1).

Proposition 3.2 The \circ -product is associative.

REMARK. Take two double cosets $\mathfrak{g} \in K(\alpha) \setminus G/K(\beta)$, $\mathfrak{h} \in K(\beta) \setminus G/K(\gamma)$. Choose their representatives $g \in \mathfrak{g}$, $h \in \mathfrak{h}$. Obviously, the double cosets $K(\alpha)ghK(\beta)$ depend on a choice of g, h. However, in a certain sense, 'for almost all' pairs of representatives we get $\mathfrak{g} \circ \mathfrak{h}$. A precise sense of this statement is explained below in Subs. 3.6. Before this, we give an operational formula for the o-product (which can be regarded as an alternative definition) and formal proofs of Propositions 3.1-3.2.

3.3. Formula for the product. Represent g as a collection of block matrices $(g^{(1)}, \ldots, g^{(n+1)})$ of size

$$(\alpha + (L - \alpha) + (L - \beta) + \infty) \times (\beta + (L - \beta) + (L - \beta) + \infty),$$

represent h as a collection of block matrices $(h^{(1)}, \ldots, h^{(n+1)})$ of size

$$\begin{pmatrix} \beta + (L - \beta) + (L - \beta) + \infty \end{pmatrix} \times \begin{pmatrix} \gamma + (L - \gamma) + (L - \beta) + \infty \end{pmatrix}$$

$$g^{(k)} = \begin{pmatrix} a^{(k)} & b^{(k)} & 0 & 0 \\ c^{(k)} & d^{(k)} & 0 & 0 \\ 0 & 0 & \mathbf{1}_{L-\beta} & 0 \\ 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix}, \qquad h^{(k)} = \begin{pmatrix} p^{(k)} & q^{(k)} & 0 & 0 \\ r^{(k)} & t^{(k)} & 0 & 0 \\ 0 & 0 & \mathbf{1}_{L-\beta} & 0 \\ 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix}.$$

$$(3.2)$$

Then we write a representative of the double coset $\mathfrak{g}\circ\mathfrak{h}$ as

$$(g \circ h)^{(k)} := g \cdot \theta_{\beta} [L - \beta] \cdot h = \begin{pmatrix} a^{(k)} p^{(k)} & a^{(k)} q^{(k)} & b^{(k)} & 0\\ c^{(k)} p^{(k)} & c^{(k)} q^{(k)} & d^{(k)} & 0\\ r^{(k)} & t^{(k)} & 0 & 0\\ 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix}.$$

3.4. Proof of Proposition 3.1. First, we show that the result does not depend on a choice of j Denote

$$\mu = L - \beta, \quad \nu = L - \alpha, \quad \varkappa = L - \gamma.$$

Preserving the previous notation for $g^{(k)}, h^{(k)}$, we write

$$(g \cdot \theta_{\beta}[\mu+j] \cdot h)^{(k)} = \begin{pmatrix} a^{(k)}p^{(k)} & a^{(k)}q^{(k)} & 0 & b^{(k)} & 0 & 0\\ c^{(k)}p^{(k)} & c^{(k)}q^{(k)} & 0 & d^{(k)} & 0 & 0\\ 0 & 0 & 0 & 0 & \mathbf{1}_{j} & 0\\ r^{(k)} & t^{(k)} & 0 & 0 & 0 & 0\\ 0 & 0 & \mathbf{1}_{j} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix}.$$

This coincides with

$$\begin{pmatrix} \mathbf{1}_{\alpha} & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{1}_{\nu} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1}_{j} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1}_{j} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1}_{j} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1}_{j} & 0 \\ \end{pmatrix} \begin{pmatrix} a^{(k)}p^{(k)} & a^{(k)}q^{(k)} & b^{(k)} & 0 & 0 & 0 \\ c^{(k)}p^{(k)} & c^{(k)}q^{(k)} & d^{(k)} & 0 & 0 & 0 \\ r^{(k)} & t^{(k)} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{1}_{j} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1}_{j} & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix} \times \\ \times \begin{pmatrix} \mathbf{1}_{\gamma} & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{1}_{\varkappa} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1}_{j} & 0 & 0 \\ 0 & 0 & \mathbf{1}_{j} & 0 & 0 & 0 \\ 0 & 0 & \mathbf{1}_{j} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix} .$$

Next, we show that (3.1) does not depend on the choice of representatives of double cosets. To be definite, replace a collection $\{g^{(k)}\}$ in (3.2) by

$$\begin{pmatrix} \mathbf{1}_{\alpha} & 0 & 0\\ 0 & u & 0\\ 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix} \begin{pmatrix} a^{(k)} & b^{(k)} & 0\\ c^{(k)} & d^{(k)} & 0\\ 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix} \begin{pmatrix} \mathbf{1}_{\alpha} & 0 & 0\\ 0 & v & 0\\ 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix} = \begin{pmatrix} a^{(k)} & b^{(k)}v & 0\\ uc^{(k)} & ud^{(k)}v & 0\\ 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix}.$$

Then $(g \circ h)^{(k)}$ is

$$\begin{pmatrix} a^{(k)}p^{(k)} & a^{(k)}q^{(k)} & b^{(k)}v & 0\\ uc^{(k)}p^{(k)} & uc^{(k)}q^{(k)} & ud^{(k)}v & 0\\ r^{(k)} & t^{(k)} & 0 & 0\\ 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix} = \\ = \begin{pmatrix} \mathbf{1}_{\alpha} & 0 & 0 & 0\\ 0 & u & 0 & 0\\ 0 & 0 & \mathbf{1}_{\mu} & 0\\ 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix} \begin{pmatrix} a^{(k)}p^{(k)} & a^{(k)}q^{(k)} & b^{(k)} & 0\\ c^{(k)}p^{(k)} & c^{(k)}q^{(k)} & d^{(k)} & 0\\ r^{(k)} & t^{(k)} & 0 & 0\\ 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix} \begin{pmatrix} \mathbf{1}_{\gamma} & 0 & 0 & 0\\ 0 & \mathbf{1}_{\varkappa} & 0 & 0\\ 0 & 0 & v & 0\\ 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix}$$

This completes the proof.

3.5. Proof of Proposition 3.2. PROOF. Let $g, h \in G$ be as above, and let $w = (w^{(1)}, \ldots, w^{(n+1)}) \in G$ be given by

$$w^{(k)} = \begin{pmatrix} x^{(k)} & z^{(k)} & 0\\ y^{(k)} & u^{(k)} & 0\\ 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix}.$$

Evaluating $(g \circ h) \circ w$ and $g \circ (h \circ w)$ we get the matrices

$$\begin{pmatrix} a^{(k)}p^{(k)}x^{(k)} & a^{(k)}p^{(k)}y^{(k)} & a^{(k)}q^{(k)} & b^{(k)} & 0 & 0 \\ c^{(k)}p^{(k)}x^{(k)} & c^{(k)}p^{(k)}y^{(k)} & c^{(k)}q^{(k)} & d^{(k)} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ r^{(k)}x^{(k)} & r^{(k)}y^{(k)} & t^{(k)} & 0 & 0 & 0 \\ 2^{(k)} & u^{(k)} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1_{\infty} \end{pmatrix} ,$$

$$\begin{pmatrix} a^{(k)}p^{(k)}x^{(k)} & a^{(k)}p^{(k)}y^{(k)} & a^{(k)}q^{(k)} & 0 & b^{(k)} & 0 \\ c^{(k)}p^{(k)}x^{(k)} & c^{(k)}p^{(k)}y^{(k)} & c^{(k)}q^{(k)} & 0 & d^{(k)} & 0 \\ r^{(k)}x^{(k)} & r^{(k)}y^{(k)} & t^{(k)} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1_{\infty} \end{pmatrix} .$$

$$(3.4)$$

Both matrices are elements of the double coset containing

$$\begin{pmatrix} a^{(k)}p^{(k)}x^{(k)} & a^{(k)}p^{(k)}y^{(k)} & a^{(k)}q^{(k)} & b^{(k)} & 0 & 0\\ c^{(k)}p^{(k)}x^{(k)} & c^{(k)}p^{(k)}y^{(k)} & c^{(k)}q^{(k)} & d^{(k)} & 0 & 0\\ r^{(k)}x^{(k)} & r^{(k)}y^{(k)} & t^{(k)} & 0 & 0 & 0\\ z^{(k)} & u^{(k)} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & \mathbf{1} & 0\\ 0 & 0 & 0 & 0 & 0 & \mathbf{1}_{\infty} \end{pmatrix},$$
(3.5)

matrix (3.3) is obtained from (3.5) by a permutation of rows, and matrix (3.4)is obtained from (3.5) by a permutation of columns. **3.6.** Concentration of convolutions. A phenomenon of concentration of convolutions for 'large' groups firstly was observed by Olshanski in [15].

Fix α . Let $L \ge \alpha$. Let L < L'. We regard the symmetric group S(L)as a subgroup in S(L') embedded as $h \mapsto \begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix}$. Denote by G_L the group $S(L)^{n+1}$; for L < L' we have a canonical embedding

$$i_{L,L'}: G_L \to G_{L'}$$

To simplify notation, we denote $i_{L,L'}(g)$ by the same symbol g.

Next, we consider a subgroup $K_L(\alpha) \subset G(L)$ defined as a subgroup of the diagonal $S(L) \subset G_L$ consisting of $(\alpha + (L - \alpha)) \times (\alpha + (L - \alpha))$ -matrices of the form $\begin{pmatrix} 1 & 0 \\ 0 & z \end{pmatrix}$.

Consider the group algebras $\mathbb{C}[G_L]$, equip them by ℓ_1 -norms,

$$\|\sum_{g\in G_L} c_g g\|_{\mathbb{C}[G_L]} := \sum_{g\in G_L} |c_g|.$$

Denote by * the convolution in the group algebra. Evidently,

$$\|\psi * \theta\|_{\mathbb{C}[G_L]} \leqslant \|\psi\|_{\mathbb{C}[G_L]} \|\theta\|_{\mathbb{C}[G_L]}.$$

For any L we define an element π_L of the group algebra $\mathbb{C}[K_L(\alpha)]$ by

$$\pi_L := \pi_L^{\alpha} := \frac{1}{\# K_L(\alpha)} \sum_{k \in K_L(\alpha)} k, \qquad (3.6)$$

where #X denotes the number of elements of a set X.

For any $L \ge N$ we define an element $\varphi_L(g)$ of the group algebra $\mathbb{C}[G_L]$ by

$$\varphi_L(g) := \pi_L * g * \pi_L = \frac{1}{\# (K_L(\alpha) \, g \, K_L(\alpha))} \sum_{r \in K_L(\alpha) \, g \, K_L(\alpha)} r.$$
(3.7)

Theorem 3.3 Fix $g, h \in G_N$. For any $\varepsilon > 0$ there exists L_0 such that for any $L > L_0$, we have

$$\|\varphi_L(g) * \varphi_L(h) - \varphi_L(g \circ h)\|_{\mathbb{C}[G_L]} < \varepsilon.$$

REMARK. Formally, the \circ -operation was defined for double cosets. Let us define it for elements of G_N . Let $g = (g^{(1)}, \ldots, g^{(n+1)}), h = (h^{(1)}, \ldots, h^{(n+1)}) \in G_N$. Represent $i_{N,L}(g), i_{N,L}(h)$ as block matrices of size $\alpha + (N - \alpha) + (N - \alpha) + (L - 2N + \alpha)$:

$$g^{(j)} = \begin{pmatrix} a^{(j)} & b^{(j)} & 0 & 0\\ c^{(j)} & d^{(j)} & 0 & 0\\ 0 & 0 & \mathbf{1} & 0\\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix}, \qquad h^{(j)} = \begin{pmatrix} p^{(j)} & q^{(j)} & 0 & 0\\ r^{(j)} & t^{(j)} & 0 & 0\\ 0 & 0 & \mathbf{1} & 0\\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix}.$$
 (3.8)

Then $g \circ h$ is the collection of matrices

$$egin{pmatrix} a^{(j)}p^{(j)} & a^{(j)}q^{(j)} & b^{(j)} & 0 \ c^{(j)}p^{(j)} & c^{(j)}q^{(j)} & d^{(j)} & 0 \ r^{(j)} & t^{(j)} & 0 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}.$$

PROOF. Represent

$$\varphi_L(g) * \varphi_L(h) = \pi_L * g * \pi_L * h * \pi_L = \frac{1}{\#K_L(\alpha)} \sum_{k \in K_L(\alpha)} \pi_L * gkh * \pi_L.$$

We wish to show that a large majority of summands of this sum coincide with $\pi_L(g \circ h)\pi_L$. We write $k \in K_L(\alpha)$ as

$$k = \begin{pmatrix} \mathbf{1} & 0 & 0 & 0\\ 0 & u & v_1 & v_2\\ 0 & w_1 & x_{11} & x_{12}\\ 0 & w_2 & x_{21} & x_{22} \end{pmatrix}.$$
 (3.9)

Denote by R the set of all matrices $k \in K_L(\alpha)$ such that u = 0. Notice that the block u has a fixed size $N - \alpha$, the whole 0–1-matrix $\begin{pmatrix} u & v \\ w & x \end{pmatrix}$ has size $L - \alpha$. Therefore

$$\frac{\#R}{\#K_L(\alpha)} \to 1 \qquad \text{as } L \to \infty.$$

Next, we show that for all $k \in R$ elements gkh are contained in one double coset. Thus we set u = 0 and evaluate gkh:

$$g^{(j)}kh^{(j)} = \begin{pmatrix} a^{(j)}p^{(j)} & a^{(j)}q^{(j)} & b^{(j)}v_1 & b^{(j)}v_2\\ c^{(j)}p^{(j)} & c^{(j)}q^{(j)} & d^{(j)}v_1 & d^{(j)}v_2\\ w_1r^{(j)} & w_1t^{(j)} & x_{11} & x_{12}\\ w_2r^{(j)} & w_2t^{(j)} & x_{21} & x_{22}. \end{pmatrix}$$
(3.10)

We are interested in a double coset containing ghk. For this purpose, consider a tuple $y \cdot gkh \cdot z$, where $y, z \in K_L(\alpha)$ have the form

$$y = \begin{pmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & y_{11} & y_{12} \\ 0 & 0 & y_{21} & y_{22} \end{pmatrix}, \qquad z = \begin{pmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & z_{11} & z_{12} \\ 0 & 0 & z_{21} & z_{22} \end{pmatrix}.$$

Then the tuple (3.10) transforms to a tuple of the same form with new v_1 , v_2 , w_1 , w_2 , x_{ij} , namely

$$\begin{pmatrix} v_1 & v_2 \end{pmatrix} \mapsto \begin{pmatrix} v_1 & v_2 \end{pmatrix} \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix}, \qquad \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \mapsto \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix},$$
$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \mapsto \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix}.$$

In this way we can get

$$\begin{pmatrix} v_1 & v_2 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & 0 \end{pmatrix}, \qquad \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} \mathbf{1} \\ 0 \end{pmatrix}.$$

After this, in the 0-1-matrix k (see (3.9)), we have u = 0, $v_1 = w_1 = 1$, $v_2 = 0$, $w_2 = 0$. This implies $x_{11} = 0$, $x_{12} = 0$, $x_{21} = 0$, and we get

$$y \cdot g^{(j)}kh^{(j)} \cdot z = \begin{pmatrix} a^{(j)}p^{(j)} & a^{(j)}q^{(j)} & b^{(j)} & 0\\ c^{(j)}p^{(j)} & c^{(j)}q^{(j)} & d^{(j)} & 0\\ r^{(j)} & t^{(j)} & 0 & 0\\ 0 & 0 & 0 & x_{22}. \end{pmatrix}$$

Clearly, we can also can make $x_{22} = 1$. Thus for all k with u = 0 the product gkh is contained in $K_L(\alpha) \cdot (g \circ h) \cdot K_L(\alpha)$.

Next, fix α , β , N and $L \ge \max(\alpha, \beta, N)$. For any $g \in G_N$ we define an element $\varphi_L^{\alpha,\beta}(g)$ of $\mathbb{C}[G(L)]$ by

$$\varphi_L^{\alpha,\beta}(g) = \pi_L^\alpha * g * \pi_L^\beta.$$

Proposition 3.4 Fix α , β , γ . Fix g, $h \in G_N$. For any $\varepsilon > 0$ there exists L_0 such that for any $L > L_0$, we have

$$\|\varphi_L^{\alpha,\beta}(g) * \varphi_L^{\beta,\gamma}(h) - \varphi_L^{\alpha,\gamma}(g \circ h)\|_{\mathbb{C}[G_L]} < \varepsilon$$

PROOF is the same. We must indicate sizes of matrices and write more superscripts and subscripts. $\hfill \Box$

ANOTHER PROOF OF PROPOSITION 3.2 (ASSOCIATIVITY). Consider two products

$$\varphi_L(g) * (\varphi_L(h) * \varphi_L(z)) = (\varphi_L(g) * \varphi_L(h)) * \varphi_L(z).$$

For large L the first convolution is concentrated (up to ε) on $K_L(\alpha) \cdot g \circ (h \circ z) \cdot K_L(\alpha)$ and the second convolution is concentrated on $K_L(\alpha) \cdot (g \circ h) \circ z \cdot K_L(\alpha)$. Thus the two \circ -products coincide.

3.7. Involution. The map $g \mapsto g^{-1}$ induces the map $\mathfrak{g} \mapsto \mathfrak{g}^*$ of double cosets

$$K(\alpha) \setminus G/K(\beta) \to K(\beta) \setminus G/K(\alpha).$$

Evidently, $(\mathfrak{g} \circ \mathfrak{h})^* = \mathfrak{h}^* \circ \mathfrak{g}^*$.

3.8. Correspondence between symmetric groups and pseudomanifolds. Infinite case. We say that an *infinite pseudo-manifold* is a disjoint union of a countable collection of compact pseudomanifolds such that all but a finite number of its components are double-chambers.

We define a colored infinite pseudo-manifold as above. A labeled pseudomanifold is a colored pseudomanifold with a numbering of plus-chambers by natural numbers and a numbering of minus-chambers by natural numbers such that all but a finite number of double-chambers have the same labels on both chambers. **Theorem 3.5** There is a canonical one-to-one correspondence between the group $S(\infty)^{n+1}$ and the set of all labeled colored normal infinite pseudomanifolds.

The correspondence is given by the same construction obtained as in Subsection 2.5.

3.9. Equivalence of categories.

Theorem 3.6 The category \mathcal{K} of double cosets and the category Bor of quasibordisms are equivalent. The equivalence is given by the following construction.

CORRESPONDENCE $\operatorname{Mor}_{\mathcal{K}}(\beta, \alpha) \longleftrightarrow \operatorname{Mor}_{\operatorname{Bor}}(\beta, \alpha)$. Let $\mathfrak{g} \in K(\alpha) \setminus G/K(\beta)$ be a double coset. Let $g \in \mathfrak{g}$ be its representative. Consider the corresponding labeled colored pseudomanifold. A left multiplication $g \mapsto ug$ by an element $u \in K(\alpha)$ is equivalent to a permutation u of labels $\alpha + 1, \alpha + 2, \ldots$ on pluschambers. A right multiplication $g \mapsto gv$ by an element $v \in K(\beta)$ is equivalent to a permutation of labels $\beta + 1, \beta + 2, \ldots$ on minus-chambers.

Thus passing to double cosets is equivalent to forgetting labels > α on pluschambers and labels > β on minus-chambers. Notice that all but a finite number of double-chambers are label-less. Such label-less double chambers can be forgotten. Thus we get a quasibordism.

CORRESPONDENCE OF PRODUCTS. Let g, h be representatives of double cosets. Let Σ , Ξ be the corresponding infinite labeled colored pseudomanifolds. Let Σ' correspond to $g\theta_{\beta}[j]$, where j is large. We multiply $g\theta_{\beta}[j]$ by h according to the rule in Subsection 2.5.

Notice that minus-chambers of Σ' with labels > β are glued with doublechambers. Plus-chambers of Ξ with labels > β are also glued with double chambers. Both operations yield a changing of labels on chambers. This means that in fact we glue together only chambers with labels $\leq \beta$, in remaining cases we change labels on chambers only. Afterwards we forget all labels which are grater than β and get the operation described in Subsection 2.7.

4 Representations

Here we construct a family of representations of the group G. This produces representations of the category of double cosets and therefore representations of the category of quasibordisms. The construction is an extension of [13] (where the case n = 2 was considered), more ways of constructions of representations of the group G, see in [12], [13].

4.1. The group \mathbb{G} **.** We define an 'intermediate' group \mathbb{G} ,

$$S(\infty)^{n+1} \subset \mathbb{G} \subset \overline{S}(\infty)^{n+1},$$

consisting of tuples $(g_1, \ldots, g_{n+1}) \in \overline{S}(\infty)^{n+1}$ such that $g_i g_j^{-1} \in S(\infty)$ for all i, j. Denote by $\mathbb{K} \simeq \overline{S}(\infty)$ the diagonal subgroup consisting of tuples (g, \ldots, g) . Define the subgroup $\mathbb{K}(\alpha)$ to be the group of all (h, \ldots, h) , where h fixes $1, \ldots, \alpha$. Define the topology on \mathbb{G} assuming that subgroups $\mathbb{K}(\alpha)$ are open.

Obviously, there is the identification of double cosets

$$K(\alpha) \setminus G/K(\beta) \simeq \mathbb{K}(\alpha) \setminus \mathbb{G}/\mathbb{K}(\beta)$$

4.2. A family of representation of \mathbb{G} . Consider (n + 1) Hilbert spaces³ V_{red} , V_{orange} , V_{blue} , Consider their tensor product

$$\mathcal{V} = V_{red} \otimes V_{blue} \otimes V_{green} \otimes \dots$$

Fix a unit vector $\xi \in \mathcal{V}$. Consider a countable tensor product of Hilbert spaces

$$\mathfrak{V} = (\mathcal{V}, \xi) \otimes (\mathcal{V}, \xi) \otimes (\mathcal{V}, \xi) \otimes \dots =$$
$$= (V_{red} \otimes V_{blue} \otimes \dots, \xi) \otimes (V_{red} \otimes V_{blue} \otimes \dots, \xi) \otimes \dots \quad (4.1)$$

(for a definition of tensor products, see [20]). Denote

$$\mathfrak{v}=\xi\otimes\xi\otimes\cdots\in\mathfrak{V}.$$

We define a representation ν of \mathbb{G} in \mathfrak{V} in the following way. The 'red' copy of $S(\infty)$ acts by permutations of factors V_{red} . The 'blue' copy S_{∞} acts by permutation of factors V_{blue} , etc. Thus we get an action of the group $S(\infty)^{n+1}$. The diagonal $\mathbb{K} = \overline{S}(\infty)$ acts by permutations of factors \mathcal{V} .

REMARK. For type I groups H_1 , H_2 irreducible unitary representations of $H_1 \times H_2$ are tensor products of representations of H_1 and H_2 (see, e.g., [2] 13.1.8). However, $S(\infty)$ is not a type I group. Representations of $S(\infty)^{n+1}$ constructed above are not tensor products of representations of $S(\infty)$.

4.3. Representations of the category \mathcal{K} . Consider a unitary representation ρ of the group \mathbb{G} in a Hilbert space H. For $\alpha = 0, 1, 2, \ldots$ consider the subspace H_{α} of $\mathbb{K}(\alpha)$ -fixed vectors in H. Denote by P_{α} the operator of orthogonal projection to H_{α} . Let $\mathfrak{g} \in \mathbb{K}(\alpha) \setminus \mathbb{G}/\mathbb{K}(\beta)$ be a double coset, and let $g \in \mathbb{G}$ be its representative. We define an operator

$$\overline{\rho}(\mathfrak{g}): H_{\beta} \to H_{\alpha}$$

by

$$\overline{\rho}(\mathfrak{g}) = P_{\alpha}\rho(g)\Big|_{H_{\beta}}$$

Theorem 4.1 The operator $\overline{\rho}(\mathfrak{g})$ does not depend on the choice of a representative $g \in \mathfrak{g}$. For any α , β , γ ,

 $\mathfrak{g} \in \mathbb{K}(\alpha) \setminus \mathbb{G}/\mathbb{K}(\beta), \quad \mathfrak{h} \in \mathbb{K}(\beta) \setminus \mathbb{G}/\mathbb{K}(\gamma)$

we have

$$\overline{\rho}(\mathfrak{g})\overline{\rho}(\mathfrak{h}) = \overline{\rho}(\mathfrak{g}\circ\mathfrak{h})$$

³We admit arbitrary, finite-dimensional or infinite-dimensional, separable Hilbert spaces.

See a proof for n = 2 in [13], the general case is similar. In the next subsection we present an independent proof.

Theorem 4.2 Let π be a representation of the category \mathcal{K} in Hilbert spaces compatible with the involution and satisfying $\|\pi(\mathfrak{g})\| \leq 1$ for all \mathfrak{g} . Then π is equivalent to some representation $\overline{\rho}$, where ρ is a unitary representation of \mathbb{G} .

This is a special case⁴ of [11], Theorem VIII.1.10.

In particular, for any representation of \mathbb{G} constructed above we obtain a representation of the category of colored quasibordisms.

4.4. Proof of Theorem 4.1. We use notation and statements of Subsection 3.6. The group \mathbb{G} contains a family of subgroups $S(L)^{n+1}$. Therefore the group algebras $\mathbb{C}[S(L)^{n+1}]$ act in H. Since the representation ρ is unitary, for any element $\psi \in \mathbb{C}[S(L)^{n+1}]$ we have the following upper bound for the operator norm of $\rho(\psi)$:

$$\|\rho(\psi)\| \leqslant \|\psi\|_{\mathbb{C}[S(L)^{n+1}]} \tag{4.2}$$

Denote by $H_{\alpha,L}$ the subspace of $K_L(\alpha)$ -fixed vectors. Denote by $P_{\alpha,L}$ the operator of orthogonal projection to $H_{\alpha,L}$. Evidently

$$H_{\alpha,L} \supset H_{\alpha,L+1}, \qquad P_{\alpha,L} P_{\alpha,L+1} = P_{\alpha,L+1}.$$

Also,

$$H_{\alpha} = \cap_L H_{\alpha}^L.$$

Hence the sequence $P_{\alpha,L}$ tends to P_{α} in the strong operator topology as $L \to \infty$. Therefore for any $g \in \mathbb{G}$, α, β we have a strong convergence

$$P_{\alpha,L}\rho(g)P_{\beta,L} \xrightarrow{s} P_{\alpha}\rho(g)P_{\beta}$$
 as $L \to \infty$.

Hence, for any $g, h \in \mathbb{G}$ and α, β, γ we have a weak operator convergence

$$P_{\alpha,L}\rho(g)P_{\beta,L} \cdot P_{\beta,L}\rho(h)P_{\gamma,L} \xrightarrow{w} P_{\alpha}\rho(g)P_{\beta} \cdot P_{\beta}\rho(h)P_{\gamma} \quad \text{as } L \to \infty.$$
(4.3)

On the other hand,

$$P_{\alpha,L} = \rho(\pi_L^{\alpha})$$

(see 3.6) and we can write (4.3) as

$$\rho(\varphi_L^{\alpha,\beta}(g))\rho(\varphi_L^{\beta,\gamma}(h)) \longrightarrow P_\alpha\rho(g)P_\beta \cdot P_\beta\rho(h)P_\gamma \quad \text{as } L \to \infty$$

see (3.7).

⁴Consider a representation of \mathcal{K} , for each α we have a Hilbert space $H[\alpha]$. The semigroup $\operatorname{Mor}(\alpha, \alpha)$ contains the group $S(\alpha)^{n+1}$ and therefore we have a representation of $S(\alpha)^{n+1}$ in $H[\alpha]$. On the other hand, $\operatorname{Mor}(\alpha, \alpha)$ admits a natural embedding to $\operatorname{Mor}(\alpha + 1, \alpha + 1)$ (we add two double chambers, one contains the label $\alpha + 1$ on plus-side, another contains the label $\alpha + 1$ on minus side). It is possible to construct an inductive limit of spaces $H[\alpha]$ and a limit of representations of $S(\alpha)^{n+1}$. A proof is not difficult but a verification of details is long.

Figure 4: Arrangement of basis elements on a pseudomanifold

Keeping in mind Proposition 3.4 and (4.2) we get

$$\left\|\rho\big(\varphi_L^{\alpha,\beta}(g)\big)\rho\big(\varphi_L^{\beta,\gamma}(h)\big)-\rho\big(\varphi_L^{\alpha,\gamma}(g\circ h)\big)\right\|\longrightarrow 0\qquad\text{as }L\to\infty.$$

This implies a weak convergence

$$\rho(\varphi_L^{\alpha,\gamma}(g \circ h)) \xrightarrow{w} P_\alpha \rho(g) P_\beta \cdot P_\beta \rho(h) P_\gamma.$$

On the other hand,

$$\rho(\varphi_L^{\alpha,\gamma}(g \circ h)) \xrightarrow{w} P_\alpha \rho(g \circ h) P_\beta.$$

Comparing the last two convergences, we get the desired statement.

REMARK. A proof does not use the continuity of a representation ρ with respect to the topology of \mathbb{G} , and formally the conclusion of the theorem holds for all unitary representations of $S(\infty)^{n+1}$. However, the continuity on $\mathbb{K} = \overline{S(\infty)}$ is equivalent to the condition: $\cup H_{\alpha}$ is dense in H (see [15]). In a general case, the space H splits as

$$H = \overline{\cup_{\alpha} H_{\alpha}} \oplus \left(\cup_{\alpha} H_{\alpha} \right)^{\perp}.$$

It is easy to show that these summand are $S(\infty)^{n+1}$ -invariant. In the first summand the representation admits a continuation to the group \mathbb{G} , in the second summand all operators $\overline{\rho}(\cdot)$ are 0. Thus an extension of a generality makes no sense. \Diamond .

4.5. Spherical functions. In the above example we have

$$\mathfrak{V}_{\alpha} = \underbrace{(\mathcal{V}, \xi) \otimes \ldots (\mathcal{V}, \xi)}_{\alpha \text{ times}} \otimes \xi \otimes \xi \cdots \simeq \mathcal{V}^{\otimes \alpha},$$

in particular

$$\mathfrak{V}_0 = \mathfrak{v}$$

We wish to write an explicit formula for the spherical function

$$\Phi(g) = \langle \nu(g)\mathfrak{v}, \mathfrak{v} \rangle$$

Choose an orthonormal basis in each space V_{red} , V_{blue} , V_{green} , etc.

$$e_{red}^i \in V_{red}, \quad e_{blue}^j \in V_{blue}, \quad e_{green}^k \in V_{green}, \dots$$

This determines the basis

$$e^i_{red} \otimes e^j_{blue} \otimes e^k_{green} \otimes \dots$$

in \mathcal{V} . Expand ξ in this basis,

$$\xi = \sum x_{ijk\dots} e^i_{red} \otimes e^j_{blue} \otimes e^k_{green} \otimes \dots$$
(4.4)

Consider the double coset \mathfrak{g} containing g and the corresponding colored pseudomanifold Σ . Assign to each (n-1)-face an element of the basis of the corresponding color (in arbitrary way). Fix such arrangement. Consider a chamber Δ , on its faces we have certain basis vectors e_{red}^i , e_{blue}^j , e_{green}^k , Then we assign the number $x(\Delta) := x_{ijk...}$ (see the last formula) to Δ .

Proposition 4.3

Proof coincides with proof of Proposition 4.2 in [13].

References

- Bukhshtaber, V. M.; Gaifullin, A. A. Representations of m-valued groups on triangulations of manifolds. Russian Math. Surveys 61 (2006), no. 3, 560-562
- [2] Dixmier, J. Les C^{*}-algebrés et leurs representations. Gauthier Villars, 1964.
- [3] Ferri, M. Una rappresentazione delle n-varieta topologiche triangolabili mediante grafi (n+1)-colorati. Boll. Un. Mat. Ital. B (5) 13 (1976), no. 1, 250-260.
- [4] Ferri, M.; Gagliardi, C.; Grasselli, L. A graph-theoretical representation of PL-manifolds: a survey on crystallizations. Aequationes Math. 31 (1986), no. 2-3, 121-141.
- [5] Gaifullin, A. A. The Manifold of Isospectral Symmetric Tridiagonal Matrices and Realization of Cycles by Aspherical Manifolds, Proc. Steklov Inst. Math., 263 (2008), 38-56
- [6] Gaifullin, A. Universal realisators for homology classes. Geom. Topol. 17 (2013), no. 3, 1745-1772.

- [7] Gaifullin, A. Combinatorial realisation of cycles and small covers. European Congress of Mathematics (Kraków, 2–7 July, 2012), eds. R. Latala et al., European Mathematical Society, 2013, 315–330,
- [8] Goresky, M.; MacPherson, R., Intersection homology theory, Topology 19 (1980), no. 2, 135-162.
- [9] Hatcher, A. Algebraic topology. Cambridge University Press, Cambridge, 2002.
- [10] Ismagilov, R.S., Elementary spherical functions on the groups SL(2, P) over a field P, which is not locally compact with respect to the subgroup of matrices with integral elements. Math. USSR-Izvestiya, 1967, 1:2, 349-380.
- [11] Neretin, Yu. A. Categories of symmetries and infinite-dimensional groups. Oxford University Press, New York, 1996.
- [12] Neretin, Yu. A. Infinite symmetric group and combinatorial descriptions of semigroups of double cosets. arXiv:1106.1161
- [13] Neretin, Yu. Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories. Int. Math. Res. Not. IMRN 2012 (2012), no. 3, 501-523.
- [14] Neretin, Yu.A. A remark on representations of infinite symmetric groups.
 J. Math. Sci., New York 190, No. 3, 464-467 (2013); translation from Zap. Nauchn. Semin. POMI 403, 103-109 (2012).
- [15] Olshansky, G. I. Unitary representations of the infinite symmetric group: a semigroup approach. in Representations of Lie groups and Lie algebras (ed. A.A. Kirillov), 181-197, Akad. Kiadó, Budapest, 1985.
- [16] Olshanski, G. I. Unitary representations of (G, K)-pairs that are connected with the infinite symmetric group $S(\infty)$. Leningrad Math. J. 1 (1990), no. 4, 983-1014.
- [17] Olshanski, G. I. On semigroups related to infinite-dimensional groups. Topics in representation theory, 67-101, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991.
- [18] Pezzana, M. Diagrammi di Heegaard e triangolazione contratta. (Italian) Collection in memory of Enrico Bompiani. Boll. Un. Mat. Ital. (4) 12 (1975), no. 3, suppl., 98-105.
- [19] Seifert, H.; Threlfall, W. Lehrbuch der Topologie. Leipzig und Berlin: B.
 G. Teubner. VII, 353., 1934; English transl. Academic Press, 1980.
- [20] von Neumann, J. On infinite direct products. Compos. Math. 6, 1-77 (1938). Reprinted in von Neumann Collected works, V.3, Pergamon Press, 1963, 323-399.

A.Gaifullin: Steklov Mathematical Institute, Moscow, Russia; MechMath Dept., Moscow State University Kharkevich Institute for Information Transmission Problems, Moscow, Russia agaif@mi.ras.ru Yu.Neretin: Math. Dept., University of Vienna; Institute for Theoretical and Experimental Physics; MechMath Dept., Moscow State University neretin(at)mccme.ru