Infinite symmetric group and bordisms of
pseudomanifolds

ALEXANDER A. GAIFULLIN!, YURY A. NERETIN?

We consider a category whose morphisms are bordisms of n-dimensional pseudo-
manifolds equipped with a certain additional structure (coloring). On the other hand,
we consider the product G of (n 4 1) copies of infinite symmetric group. We show
that unitary representations of G produce functors from the category of n-dimensional
bordisms to the category of Hilbert spaces and bounded linear operators.

1 Introduction

1.1. The statement. Denote by S(k) the symmetric group of order k, by
S(00) the group of finitely supported permutations of S(co). Consider the
product G = S(c0)™*! of n + 1 copies of N, consider the diagonal subgroup
K = diag (00) C G. Denote by K () the stabilizer of elements 1, ..., a € N in
K ~ S(c0). Denote by K(a) \ G/K () double coset spaces.

We show that for any «, 5, v =0, 1, 2, ... there exists a natural operation
(o-multiplication)

K(a)\ G/K(B) x K(B)\G/K(y) = K(a)\ G/K(7).

The operation is associative, thus we get a category X, whose objects are non-
negative integers and sets of morphisms 8 — « are K(a) \ G/K(f).

REMARKS. a) Such phenomena are quite usual for infinite-dimensional
(’large’) groups, see, e.g., [16], [17], [11], [12]; apparently the first example was
discovered by Ismagilov [10]. In particular, the object under the discussion was
considered by Olshanski [16] for n = 1 and one of the authors [13] for n = 2.

b) Take two double cosets g € K(a)\ G/K(8), h € K(8)\ G/K (7). Choose
their representatives g € g, h € h. Obviously, double cosets K(«)ghK(5)
depend on a choice of g, h. However, 'usually’ we fall to one distinguished
double coset, namely g o h. Precise sense of the word ’'usually’ is explained in
Subsection 3.6. O

We obtain a geometric description of sets K () \ G/K (), their elements are
enumerated by n-dimensional pseudomanifolds equipped with special colorings.
In particular, the set K(0) \ G/K(0) is an obvious one-to-one correspondence
with conjugacy classes of S(co0)™ with respect to the diagonal subgroup S(c0).
So we get a geometric description of such classes.

We also obtain a geometric description of the product of double cosets, this
is an operation similar to a product of bordisms.
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Next, we construct a family of functors from our category to the category of
Hilbert spaces and bounded operators. In fact, any unitary representation of G
generates such a functor (and vice versa).

1.2. Structure of the paper. Section 2 contains preliminaries on pseu-
domanifolds and a description of a correspondence between the group S(k)*+!
and colored n-dimensional pseudomanifolds with 2k cells. Equivalence of the
category of double cosets and the category of bordisms is obtained in Section 3.
In Section 4 we discuss representations of our category.

2 Pseudomanifolds and symmetric groups

First, we fix several definitions.

2.1. Simplcial cell complexes. Consider a disjoint union [[Z; of a
finite collection of simplices =;. We consider a topological quotient space ¥ of
[1Z; with respect to certain equivalence relation. The quotient must satisfy the
following properties

a) For any simplex Z;, the tautological map §; : E; — X is an embedding.
Therefore we can think of Z; as of a subset of 2.

b) For any pair of simplices Z;, Z;, the intersection & ' (& (Z:)NE;(Z;)) C Z;
is a union of faces of Z; and the partially defined map

- & &' 2
= —)EZ b)) —)] ':j

is affine on each face.

We shall call such quotients simplicial cell complexes.

REMARK ON TERMINOLOGY. There are two similar (and more common)
definitions of spaces composed from simplices (see, e.g., [9]). The first one is
a more restrictive definition of “a simplicial complex”. In this case, a non-
empty intersection of two faces is a (unique) face. See examples of simplicial
cell complexes, which are not simplicial complexes in Fig.2 and Fig.3.b. A more
wide class of simplicial spaces are A-complexes, in this case gluing of a simplex
with itself along faces is allowed (as for standard 1-vertex triangulations of two-
dimensional surfaces), see Fig 1. O

2.2. Pseudomanifolds. A pseudomanifold of dimension n is a simplicial
cell complex such that

a) Each face is contained in an n-dimensional face. We call n-dimensional
faces chambers.

b) Each (n — 1)-dimensional face is contained in precisely two chambers.

See, e.g., [19], [6].

REMARK. Any cycle of singular Z-homologies in a topological space can
be realized as an image of a pseudo-manifold (this is more-or-less obvious).

Recall that there are cycles in manifolds, which cannot be realized as images of
manifolds. O
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Figure 1: To the definition of simplicial cell complexes. The triangle a) is
forbidden, the pair of triangles b) is allowed.

Figure 2: A non-normal two-dimensional pseudomanifold.

REMARK ON TERMINOLOGY. In literature, there exists another variant of
a definition of a pseudomanifold. Seifert, Threlfall, [19] impose two additional
requirements: a pseudomanifold must be a simplicial complex and must be
‘strongly connected’. The latter conditions means that the complement of the
union of faces of codimension 2 must be connected. O

2.3. Normal pseudomanifolds and normalization.

Links. Let ¥ be a pseudomanifold, let I' be its k-dimensional face. Consider
all (k + 1)-dimensional faces ®; of ¥ containing I' and choose a point ¢; in the
relative interior of each face ®;. For each face ¥,, D I' we consider the convex
hull of all points ¢; that are contained in ¥,,. The link of I is the simplicial
cell complex whose faces are such convex hulls.

Normal pseudomanifolds. A pseudomanifold is normal if the link of any face
of codimension > 2 is connected.

ExaMPLE. Consider a triangulated compact two-dimensional surface . Let
a, b be two vertices that are not connected by an edge. Gluing together a and
b we get a pseudomanifold which is not normal, see Fig.2. O

Normalization. For any pseudomanifold 3 there is a unique normalization
([8]), i-e. a normal pseudomanifold ¥ and a map 7 : ¥ — ¥ such that

— restriction of 7 to any face of ¥ is an affine bijective map of faces.

— the map 7 send different n-dimensional and (n — 1)-dimensional faces to
different faces.

A construction of the normalization. To obtain a normalization of ¥ we cut a
pseudomanifold ¥ into a disjoint collection of chambers =;. As above, denote by
& 1 E; = X, the embedding of Z; to X. Let z € 5;, y € ;. We say that x ~ y
if &(z) = &;(y) and this point is contained in a common (n — 1)-dimensional



\o

Figure 3: Reference to the definition of colored pseudomanifolds:
a) a colored two-dimensional pseudomanifold;
b) a double chamber.

face of the chambers &;(Z;) and &;(Z;). We extend ~ to an equivalence relation
by the transitivity. The quotient of []Z; is the normalization of X.

The following way of normalization is more visual. Let ¥ be non-normal. Let
= be a face of codimension 2 with link consisting of m connected components.
Consider a small closed neighborhood O of Z in 3. Then O \ = is disconnected
and consists of m components, say O1,..., O,,. Let 6j be the closure of O;
in X, 6j = 0; UE;. We replace O by the disjoint union of 6j and get a
new pseudomanifold ¥’ (in Fig.2, we duplicate the upper vertex). Then we
repeat the same operation to another stratum with disconnected link. These
operation enlarges number of strata of codimension > 2, the strata of dimension
n and (n — 1) remain the same (and the incidence of these strata is preserved).
Therefore the process is finite and we get a normal pseudomanifold. O

2.4. Colored pseudomanifolds. Choose n + 1 colors (say, red, blue,
green, orange, etc.). Consider an n-dimensional normal pseudomanifold ¥. A
coloring of ¥ is the following structure

a) To any chamber we assign a sign (+) or (—). Chambers adjacent to
plus-chambers are minus-chamber and vise versa.

b) Each vertex of the complex is colored in such a way that the colors of
vertices of each chamber are pairwise different.
¢) All (n—1)-dimensional faces are colored, in such a way that colors of faces

of a chamber are pairwise different, and a color of a face coincides with a color
of the opposite vertex of any chamber containing this face.

We say that a double-chamber is a colored n-dimensional pseudomanifold
obtained from two identical copies A1, Ay of an n-dimensional simplex by iden-
tification of the corresponding x € Ay, x € Ay of the boundaries of Aj, As.

REMARK. Colored pseudomanifolds were introduced by Pezzana and Ferri
in 1975-1976, see [18], [3], [4], [5]. O

2.5. A correspondence between pseudomanifolds and symmetric
groups. Denote by S(L) the symmetric group of order L. Denote by

S(L)" = S(L) x --- x S(L)



the direct product of n+ 1 copies of S(L), we assign n+ 1 colors, say, red, blue,
orange, etc., to copies of S(L).

Consider a colored pseudomanifold ¥ with 2L chambers. We say that a
labeling of 3 is a bijection of the set {1,2,..., L} with the set of plus-chambers
of ¥ and a bijection of {1,2,..., L} with the set of minus-chambers of X.

Theorem 2.1 There is a canonical one-to-one correspondence between the group
S(L)"*L and the set of all labeled colored normal n-dimensional pseudo-manifolds
with 2L chambers.

REMARK. This correspondence for n = 2 was proposed in [13]. Earlier there
was a construction of Pezzana-Ferri (1975-1976), [18], [3], [4]. They considered
bipartite (n + 1)-valent graphs whose edges are colored in (n 4 1) colors, edges
adjacent to a given vertex have pairwise different colors. Such graphs corre-
spond to colored pseudomanifolds. In [5]-[7] there was considered an action of
free product Zs * --- x Zg of n copies of Zy on the set of chambers of a col-
ored pseudomanifold. A construction relative to the present construction was
considered in [1]. O

CONSTRUCTION OF THE CORRESPONDENCE. Indeed, consider a labeled col-
ored normal pseudomanifold ¥ with 2L chambers. Fix a color (say, blue).
Consider all blue (n — 1)-dimensional faces A;, Ag, .... Each blue face A; is
contained in the plus-chamber with some label p(j) and in the minus-chamber
with some label ¢(j). We take an element of the symmetric group S(L) setting
p(j) — q(j) for all blue faces A;. We repeat the same construction for all colors
and obtain a tuple (g™, ... g*tD) e S(L)"*1,

Conversely, consider an element of the group S(L)"*!. Consider L labeled
copies of a colored chamber (plus-chambers) and another collection of L labeled
copies of the same chamber with another orientation (minus-chambers). Let the
blue permutation send « +— . Then we glue the the plus-chamber with label «
with the minus-chamber with label 8 along the blue face (preserving colorings
of vertices). The same is done for all colors. The obtained pseudomanifold ¥ is
normal because the normalization procedure from Subsection 2.3 applied to X
produces Y itself. O

2.6. The multiplication in symmetric group and pseudomanifolds.
Describe the multiplication in S(L)"*! in a geometric language. Consider two
labeled colored pseudomanifolds ¥, =. Remove interiors of minus-chambers of
3} remembering a minus-label on each face of a removed chamber, denote the
topological space obtained in this way by X_. All (n — 1)-faces of ¥_ are
colored and labeled. In the same way, we remove plus-chambers from = and
get a complex Z;. Next, we glue the corresponding faces of ¥_ and E; (with
coinciding colors and labels according coloring of vertices). In this way, we get
a pseudomanifold and consider its normalization.

2.7. Colored quasibordisms. Fix n > 1. We define a category Bor of
quasibordisms. Its objects are nonnegative integers. A morphism 5 — « is the
following collection of data



1) A colored n-dimensional normal pseudomanifold (generally, disconnected).

2) An injective map of the set {1,2,...,a} to the set of plus-chambers and
an injective map of the set {1,2,..., 5} to the set of minus-chambers In other
words, we assign labels 1, ..., a to some plus-chambers. and labels 1, ..., 8 to
some minus-chambers.

We require that each double-chamber has at least one label.

Composition. Let ¥ € Mor(8,«), A € Mor(y, 5). We define their compo-
sition ¥ ¢ A as follows. Remove interiors of labeled minus-chambers of 3 and
interiors of labeled plus-chambers of A. Next, for each s < 3, we glue boundaries
of the minus-chamber of ¥ with label s with the boundary of the plus-chamber
of A with label s according the simplicial structure of boundaries and colorings
of (n — 1)-simplices. Next, we normalize the resulting pseudomanifold.

Finally we remove label-less double chambers (such components can arise as
a result of gluing of two label-keeping double chambers).

The identity morphism in Mor(a, «) is a union of « double chambers with
coinciding labels on its sides.

Involution. For a morphism ¥ € Mor(8,a) we define the morphism X* €
Mor(a, 8) by changing of signs on chambers. Thus we get an involution in the
category Bor. For any T € Mor(8, «), S € Mor(y, 8) we have

(SoT) =T*0 8"

In the next section we show that this category is equivalent to the category
of double cosets.

3 Multiplication of double cosets and quasibor-
disms

3.1. Symmetric groups. Notation. Denote by K = S(o0) the group of
finitely supported permutations of N. By K = S(c0) we denote the group of all
permutations of N. Denote by K(a) C K, K(a) C K the stabilizers of points
1,..., a. We equip S(0o) with a natural topology assuming that the subgroups
K () are open.

Sometimes we will represent elements of symmetric groups as 0 — 1-matrices.

3.2. Multiplication of double cosets. Denote the product of (n + 1)
copies of S(o0) by G. Denote by K ~ S(co0) the diagonal subgroup in G, its
elements have the form (g,¢,...,9).

Consider double cosets K (o) \ G/K(8), i.e., elements of G defined up to the
equivalence

g ~ kigks, ki € K(a), ko € K(B)
We wish to define product of double cosets

K(a)\G/K(B) x K(B)\G/K(y) = K(a)\G/K(7).



For this purpose, define elements 0,[j] € K (o) by
1, 0

0

. 0 0 1
belil:=10 1, 0
0 0 0 1.

<
o O O

<

where 1; denotes the unit matrix of order j.

Proposition 3.1 Let
g€ K(a)\G/K(B), beK(B)\G/K(v)

be double cosets. Let g, h € G be their representatives. Then the sequence

vj o= K(a) - gbp[jlh- K(v) € K(a)\ G/K(7) (3.1)

is eventually constant. The limit value of tv; does not depend on a choice of
representatives g € g and h € h. Moreover, if g, h € S(L)" ™! C S(co)" ™!, then
it s sufficient to consider j = L — .

We define the product
goh € K(a)\ G/K(y)

of double cosets as the limit value of the sequence (3.1).

Proposition 3.2 The o-product is associative.

REMARK. Take two double cosets g € K (o) \ G/K(8), h € K(8)\ G/K (7).
Choose their representatives g € g, h € h. Obviously, the double cosets
K(a)ghK (8) depend on a choice of g, h. However, in a certain sense, "for almost
all’ pairs of representatives we get go . A precise sense of this statement is
explained below in Subs. 3.6. Before this, we give an operational formula for
the o-product (which can be regarded as an alternative definition) and formal
proofs of Propositions 3.1-3.2. O

3.3. Formula for the product. Represent g as a collection of block
matrices (g(1),..., g™+ of size

(a+(L—a)+(L—-pB)+00)x (B+(L—PB)+(L—p)+ o),

represent h as a collection of block matrices (h(l), el h("+1)) of size
(B+(L=B)+ (L= pB)+00) x (v+ (L =)+ (L—B)+o0)
alk)  pk) 0 0 p®) k) 0 0
g = c® 4k 0 , B k) k) 0
0 0 1,53 O 0 0 1.3 O
0 0 0 1 0 0 0 1



Then we write a representative of the double coset go b as

a®p®)  qWg®) k) g

cBpk) (kg k)

k) t(k) 0 0
0 0 0 1

(gom)® :=g-65[L—p]-h=

3.4. Proof of Proposition 3.1. First, we show that the result does not
depend on a choice of j Denote

uw=L—-p, v=L—-—a »x=L-r.

Preserving the previous notation for ¢*), h(%) we write

a®p®  omg®k) o pk o

cFpk)  (Rgk) g gk o g

. 0 0 0 0 1; 0

0 0 1, 0 0 0

0 0 0 0 0 14

This coincides with
1, 0 0 0 0 O a®p®) gk pk) 90 0 0
0 1, 0 0 0 0 cFpk) c®gk) gk 9 0 0
0 0 0 1, 0 O 7(F) (k) 0 0 0 0
0 0 1, 0 0 0 0 0 0o 1, 0 o]~

0 0 0 0 1; 0 0 0 0 0 1, 0
0 0 0 0 0 1 0 0 0 0 0 1
1, 0 0 0 0 O
0 1, 0 0 0 0
L0 0 0 1,0 o0
0O 0 0 0 1, 0
0 0 1, 0 0 0
0 0 0 0 0 14

Next, we show that (3.1) does not depend on the choice of representatives
of double cosets. To be definite, replace a collection {g(®)} in (3.2) by

1, 0 0 a®  pk) 1, 0 0 a®  pky 0
0 w O k) qk) 0 0 v O = | uc® wd®y 0
0 0 1o 0 0 1. 0 0 1o 0 0 1



Then (go h)®) is

aWp®) G ®g®  pRy
ue® p®) B g®  yd®y g
0

7 (k) (k) 0
0 0 0 1.
1, 0 0 0 a®pk)  qk)gk) pkE) 1,
0 w 0 0 cRIpk) B gk gk) 0
10 0 1, O r (k) (k) 0 0 0
0 0 0 1y 0 0 0 1. 0

This completes the proof.

o< OO

o O O

O

3.5. Proof of Proposition 3.2. PROOF. Let g, h € G be as above, and

let w = (w®, ..., w"*Y) € G be given by

LB Lk
wk) = [ By g
0 0 1

Evaluating (g o h) ow and g o (h o w) we get the matrices

a®p®) g (B) g B (k) (k) (R g(R) (k) o 0
B pk) (k) (k) (k) (k) (R (k) qk) g
0 0 0 0 1 0

(k) (k) 7(R) gy (k) (k) 0 0 O
z(®) u®) 0 0 0 0
0 0 0 0 0 1.
a®pk) (k) q(B) (k) (k) (k) g(R) g pk) g
B p®R k) B p(R)y (k) k) g(B) g gk) @
(k) (k) 7(R) gy (k) (k) 0 0 0
z(®) ul® 0 0 0 0

0 0 0 1 0 0
0 0 0 0 0 1

Both matrices are elements of the double coset containing

aB)pE) (k) g B (R (k) q(R)gk)  pk) o 0
B pk) (k) (k) (k) (k) (R (k) qk) g
(k) (k) 7 (K) (k) (k) 0 0 0
z(F) u(F) 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(3.3)

(3.4)

(3.5)

matrix (3.3) is obtained from (3.5) by a permutation of rows, and matrix (3.4)

is obtained from (3.5) by a permutation of columns.

O



3.6. Concentration of convolutions. A phenomenon of concentration of
convolutions for ’large’ groups firstly was observed by Olshanski in [15].

Fix . Let L > a. Let L < L'. We regard the symmetric group S(L)
as a subgroup in S(L') embedded as h — <g 2) Denote by G, the group
S(L)"*HL; for L < L’ we have a canonical embedding

iL,L’ : GL — GL/.

To simplify notation, we denote i, 1/(g) by the same symbol g.
Next, we consider a subgroup K (a) C G(L) defined as a subgroup of the
diagonal S(L) C G, consisting of (a4 (L — a)) x (a + (L — «))-matrices of the

. 1 0
orm ().

Consider the group algebras C[GL], equip them by ¢;-norms,

| Z cg9llciar) == Z lcg]-

geGy, geGr
Denote by * the convolution in the group algebra. Evidently,
19 % Ollcier) < [1¥llcenllblicia.)-
For any L we define an element 77, of the group algebra C[K(«)] by
1
T =T = —— Z k, (3.6)
#KL(Q) keK (o)

where #X denotes the number of elements of a set X.
For any L > N we define an element ¢r,(g) of the group algebra C[G] by

1
_ _ . (37
pLlg) =mpxgxmr #(K1(a) g Kp () rezm% Ky (a) noer

Theorem 3.3 Fix g, h € Gy. For any € > 0 there exists Ly such that for any
L > Lo, we have

ler(g) * pr(h) —@r(goh)llca <&

REMARK. Formally, the o-operation was defined for double cosets. Let us
define it for elements of Gy. Let g = (¢V), ..., g™ *tY), h = (b, ... h(*tD)) ¢
Gn. Represent in (g), in,r(h) as block matrices of size o + (N — ) + (N —
a)+ (L —2N + a):

a@ @ 0 0 p@ ¢@ 0 0
() _ @ q4@) o o B0 = r@ @ 0 0 (3.8)
g 0 0 1 0| “lo 0o 10

0 0 0 1 0 0 0 1

10



Then g o h is the collection of matrices

aWpld)  qgld) pl) g
cDpl@) gl ql@)
r() (@) 0 0
0 0 0 1
PrROOF. Represent
1
or(g)xor(h) =mp*xgsmpxhsn, = ———— mr * gkh * wp,.
#KL (Oé) ke;(a)

We wish to show that a large majority of summands of this sum coincide with
(g o h)mr. We write k € Kp(a) as

0 0 0

U1 U2
wyp X1 Ti12
w2  T21 T22

(3.9)

SO o

Denote by R the set of all matrices k € K («) such that v = 0. Notice that the
block u has a fixed size N — «, the whole 0—1-matrix (Z Z) has size L — a.

Therefore
_#R
#KL()
Next, we show that for all £ € R elements gkh are contained in one double
coset. Thus we set v = 0 and evaluate gkh:

— 1 as L — oo.

aDpld) gl pDyy bWy,
Dp@)  Dg)  qWy;  dWa,
wir@ i t@ oy T1o
’ng‘(j) ’wgt(j) 21 T22.

gD ERG) = (3.10)

We are interested in a double coset containing ghk. For this purpose, consider
a tuple y - gkh - z, where y, z € Ky (a) have the form

1 0 O 0 1 0 0 0
|0 1 0 0 0 1 0 0
=10 0 yn oyl Tlo o0 oz oz

0 0 y21 yoo 0 0 201 229

Then the tuple (3.10) transforms to a tuple of the same form with new vy, va,

w1, Wa, T;ij, namely
w1 NN Y11 Y12 w1 7
w2 Y21 Y22 w2

211 %12
(’Ul ’Ug)'—)(’l)l U2)< ),
11 T12 N Y11 Y12 r11  Ti12 Z11 212
21 T22 Y21 Y22 €r21  T22 221 %22

Z21 222
11



In this way we can get

(0 v)=(10), (ZQ)‘@'

After this, in the 0 — 1-matrix k (see (3.9)), we have u = 0, v;1 = w1 =1, v2 =0,
wg = 0. This implies 11 = 0, x12 = 0, x91 = 0, and we get
aWpl) gl pl@) 0
cDpl) gl gl
() (@) 0 0
0 0 0 Z22.

y - gDERYD) . 2 =

Clearly, we can also can make x2o = 1. Thus for all k¥ with v = 0 the product
gkh is contained in Ky (a) - (goh)- Ki(«). O

Next, fix o, 8, N and L > max(a,3,N). For any g € Gx we define an
element 3% (g) of C[G(L)] by

03P (g) = nE x gxml.

Proposition 3.4 Fix o, 8, v. Fix g, h € Gn. For any € > 0 there exists Ly
such that for any L > Lo, we have

3P (9) * @27 (h) — 057 (g0 h)|lcren < &

PROOF is the same. We must indicate sizes of matrices and write more
superscripts and subscripts. O

ANOTHER PROOF OF PROPOSITION 3.2 (ASSOCIATIVITY). Consider two
products

vr(g) * (@L(h) * SDL(Z)) = (SDL(Q) * @L(h)) *pr(2).

For large L the first convolution is concentrated (up to €) on K (a)-go(hoz)-
K, () and the second convolution is concentrated on Ky («)-(goh)oz- Kp(a).
Thus the two o-products coincide. ([

3.7. Involution. The map g — g_1

cosets

induces the map g — g* of double

K(a)\G/K(8) = K(B)\ G/K(a).
Evidently, (go b)* = bh* o g*.

3.8. Correspondence between symmetric groups and pseudoman-
ifolds. Infinite case. We say that an infinite pseudo-manifold is a disjoint
union of a countable collection of compact pseudomanifolds such that all but a
finite number of its components are double-chambers.

We define a colored infinite pseudo-manifold as above. A labeled pseudo-
manifold is a colored pseudomanifold with a numbering of plus-chambers by
natural numbers and a numbering of minus-chambers by natural numbers such
that all but a finite number of double-chambers have the same labels on both
chambers.

12



Theorem 3.5 There is a canonical one-to-one correspondence between the group
S(c0)™tL and the set of all labeled colored normal infinite pseudomanifolds.

The correspondence is given by the same construction obtained as in Sub-
section 2.5.

3.9. Equivalence of categories.

Theorem 3.6 The category K of double cosets and the category Bor of quasi-
bordisms are equivalent. The equivalence is given by the following construction.

CORRESPONDENCE Morg (3, &) «— Morpe (8, ). Let g € K(a) \ G/K(B)
be a double coset. Let g € g be its representative. Consider the corresponding
labeled colored pseudomanifold. A left multiplication g — ug by an element

u € K(a) is equivalent to a permutation u of labels a + 1, @ + 2, ...on plus-
chambers. A right multiplication g — gv by an element v € K(f) is equivalent
to a permutation of labels 8+ 1, 8 + 2, ...on minus-chambers.

Thus passing to double cosets is equivalent to forgetting labels > a on plus-
chambers and labels > § on minus-chambers. Notice that all but a finite number
of double-chambers are label-less. Such label-less double chambers can be for-
gotten. Thus we get a quasibordism.

CORRESPONDENCE OF PRODUCTS. Let g, h be representatives of double
cosets. Let 3, = be the corresponding infinite labeled colored pseudomanifolds.
Let ¥/ correspond to gfs[j] , where j is large. We multiply g6g[j] by h according
to the rule in Subsection 2.5.

Notice that minus-chambers of ¥’ with labels > § are glued with double-
chambers. Plus-chambers of = with labels > f are also glued with double
chambers. Both operations yield a changing of labels on chambers. This means
that in fact we glue together only chambers with labels < 3, in remaining cases
we change labels on chambers only. Afterwards we forget all labels which are
grater than 8 and get the operation described in Subsection 2.7. (I

4 Representations

Here we construct a family of representations of the group G. This produces
representations of the category of double cosets and therefore representations of
the category of quasibordisms. The construction is an extension of [13] (where
the case n = 2 was considered), more ways of constructions of representations
of the group G, see in [12], [13].

4.1. The group G. We define an ’intermediate’ group G,
S(00)™ ¢ G € S(c0)™tH,

consisting of tuples (g1, ..., gnt+1) € S(00)" ! such that gigj_1 € S(o0) for all i,

j. Denote by K ~ S(c0) the diagonal subgroup consisting of tuples (g, ..., ).
Define the subgroup K(a) to be the group of all (h,...,h), where h fixes 1, ...,
a. Define the topology on G assuming that subgroups K(«) are open.
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Obviously, there is the identification of double cosets
K(a)\ G/K(B) ~K(a)\ G/K(B).

4.2. A family of representation of G. Consider (n + 1) Hilbert spaces?
Vreds Voranges Vblue, - - .. Consider their tensor product

V:‘/red(g)‘/blue(@‘/green(g)---

Fix a unit vector £ € V. Consider a countable tensor product of Hilbert spaces

:(‘/Ted®‘/blue®--- ,g)@(‘/red(@‘/blue@--- ,€)® (41)

(for a definition of tensor products, see [20]). Denote
b=E(RER - €.

We define a representation v of G in U in the following way. The 'red’ copy
of S(o0) acts by permutations of factors V,eq. The ’blue’ copy So acts by
permutation of factors Viyue, etc. Thus we get an action of the group S(co)™+1.
The diagonal K = S(cc) acts by permutations of factors V.

REMARK. For type I groups H;, Hs irreducible unitary representations of
H, x Hs are tensor products of representations of H; and Hs (see, e.g., [2]
13.1.8). However, S(co) is not a type I group. Representations of S(oo)"+!
constructed above are not tensor products of representations of S(c0). O

4.3. Representations of the category XK. Consider a unitary represen-
tation p of the group G in a Hilbert space H. For a = 0, 1, 2, ...consider
the subspace H, of K(a)-fixed vectors in H. Denote by P, the operator of
orthogonal projection to H,. Let g € K(«a) \ G/K(5) be a double coset, and let
g € G be its representative. We define an operator

p(g) : Hp — Ha
by
p(9) = Pap(g)

Hpg

Theorem 4.1 The operator p(g) does not depend on the choice of a represen-
tative g € g. For any o, 3, 7,

g€ K@) \G/K(B), beK(B)\G/K(y)

we have

p(9)p(h) =n(goh)

3We admit arbitrary, finite-dimensional or infinite-dimensional, separable Hilbert spaces.
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See a proof for n = 2 in [13], the general case is similar. In the next subsection
we present an independent proof.

Theorem 4.2 Let w be a representation of the category X in Hilbert spaces
compatible with the involution and satisfying ||7(g)|| < 1 for all g. Then 7 is
equivalent to some representation p, where p is a unitary representation of G.

This is a special case* of [11], Theorem VIII.1.10.
In particular, for any representation of G constructed above we obtain a
representation of the category of colored quasibordisms.

4.4. Proof of Theorem 4.1. We use notation and statements of Sub-
section 3.6. The group G contains a family of subgroups S(L)"*1. Therefore
the group algebras (C[S(L)"H} act in H. Since the representation p is unitary,
for any element 1) € (C[S (L)"H} we have the following upper bound for the
operator norm of p(1)):

() < 1¥llcrsnym+1 (4.2)

Denote by H,,1 the subspace of K («)-fixed vectors. Denote by P, 1 the
operator of orthogonal projection to H,, ;. Evidently

Hyp D Hapy1, Por Por+1=Par41-

Also,
H, =N HE.

Hence the sequence P, 1, tends to P, in the strong operator topology as L — oo.
Therefore for any g € G, «, § we have a strong convergence

Po.1p(9)Ps.r. == Pap(g)Ps as L — oo.
Hence, for any g, h € G and «, 83, v we have a weak operator convergence
Po,1p(9)Ps.1 - Ps,p(h)Py . == Pap(g)Ps - Psp(R)Py  as L — oo, (4.3)

On the other hand,
Pa,L — P(W%)

(see 3.6) and we can write (4.3) as
p(77(9) P17 (h)—>Pap(g) Ps - Psp(h)Py  as L — oo,

see (3.7).

4Consider a representation of &, for each a we have a Hilbert space H[a]. The semigroup
Mor(a, @) contains the group S(a)™*! and therefore we have a representation of S(a)™*! in
H[ca]. On the other hand, Mor(a, a) admits a natural embedding to Mor(a + 1,a + 1) (we
add two double chambers, one contains the label a4+ 1 on plus-side, another contains the label
a+ 1 on minus side). It is possible to construct an inductive limit of spaces H[a] and a limit
of representations of S(a)”*!. A proof is not difficult but a verification of details is long.
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Figure 4: Arrangement of basis elements on a pseudomanifold

Keeping in mind Proposition 3.4 and (4.2) we get

1p(£2% (@) p(#27 (1)) = p(¢27(go b)) — 0 as L — oo
This implies a weak convergence
p(#77(g 0 h)) == Pap(g)Ps - Psp(h)P.
On the other hand,
p(#77(g o h)) == Paplg o h)Ps.

Comparing the last two convergences, we get the desired statement. O

REMARK. A proof does not use the continuity of a representation p with
respect to the topology of G, and formally the conclusion of the theorem holds for
all unitary representations of S(00)"*!. However, the continuity on K = S(00)
is equivalent to the condition: UH,, is dense in H (see [15]). In a general case,
the space H splits as

H=UuH, ® (U Hy) "

It is easy to show that these summand are S(oco)"*!-invariant. In the first
summand the representation admits a continuation to the group G, in the second
summand all operators p(-) are 0. Thus an extension of a generality makes no
sense. O.

4.5. Spherical functions. In the above example we have
Vo=V,)@...(V,E)RKERE--- = VO
—
« times

in particular

Yy = v.

We wish to write an explicit formula for the spherical function

®(g) = (v(g)v,v).
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Choose an orthonormal basis in each space Vied, Viiue; Vgreen, €tc.

i J k
e:‘ed S ‘/redv Chlue € ‘/blue; egreen € ‘/greeny s
This determines the basis
ela®el ek oy
red blue green cee

in V. Expand £ in this basis,

5 = Z xijk"'eied ® eglue ® e_](;reen ... (44)

Consider the double coset g containing g and the corresponding colored
pseudomanifold 3. Assign to each (n — 1)-face an element of the basis of the
corresponding color (in arbitrary way). Fix such arrangement. Consider a
chamber A, on its faces we have certain basis vectors €’ ;, €], egreen, .
Then we assign the number z(A) := x;;i... (see the last formula) to A.

Proposition 4.3

o(g) = > I = II ()

plus-chambers A minus-chambers I'
arangements

of basis elements

Proof coincides with proof of Proposition 4.2 in [13].
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