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We consider a category whose morphisms are bordisms of n-dimensional pseudo-

manifolds equipped with a certain additional structure (coloring). On the other hand,

we consider the product G of (n + 1) copies of infinite symmetric group. We show

that unitary representations of G produce functors from the category of n-dimensional

bordisms to the category of Hilbert spaces and bounded linear operators.

1 Introduction

1.1. The statement. Denote by S(k) the symmetric group of order k, by
S(∞) the group of finitely supported permutations of S(∞). Consider the
product G = S(∞)n+1 of n + 1 copies of N, consider the diagonal subgroup
K = diag (∞) ⊂ G. Denote by K(α) the stabilizer of elements 1, . . . , α ∈ N in
K ≃ S(∞). Denote by K(α) \G/K(β) double coset spaces.

We show that for any α, β, γ = 0, 1, 2, . . . there exists a natural operation
(◦-multiplication)

K(α) \G/K(β) × K(β) \G/K(γ)→ K(α) \G/K(γ).

The operation is associative, thus we get a category K, whose objects are non-
negative integers and sets of morphisms β → α are K(α) \G/K(β).

Remarks. a) Such phenomena are quite usual for infinite-dimensional
(’large’) groups, see, e.g., [16], [17], [11], [12]; apparently the first example was
discovered by Ismagilov [10]. In particular, the object under the discussion was
considered by Olshanski [16] for n = 1 and one of the authors [13] for n = 2.

b) Take two double cosets g ∈ K(α) \G/K(β), h ∈ K(β) \G/K(γ). Choose
their representatives g ∈ g, h ∈ h. Obviously, double cosets K(α)ghK(β)
depend on a choice of g, h. However, ’usually’ we fall to one distinguished
double coset, namely g ◦ h. Precise sense of the word ’usually’ is explained in
Subsection 3.6. ♦

We obtain a geometric description of sets K(α)\G/K(β), their elements are
enumerated by n-dimensional pseudomanifolds equipped with special colorings.
In particular, the set K(0) \ G/K(0) is an obvious one-to-one correspondence
with conjugacy classes of S(∞)n with respect to the diagonal subgroup S(∞).
So we get a geometric description of such classes.

We also obtain a geometric description of the product of double cosets, this
is an operation similar to a product of bordisms.
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Next, we construct a family of functors from our category to the category of
Hilbert spaces and bounded operators. In fact, any unitary representation of G
generates such a functor (and vice versa).

1.2. Structure of the paper. Section 2 contains preliminaries on pseu-
domanifolds and a description of a correspondence between the group S(k)n+1

and colored n-dimensional pseudomanifolds with 2k cells. Equivalence of the
category of double cosets and the category of bordisms is obtained in Section 3.
In Section 4 we discuss representations of our category.

2 Pseudomanifolds and symmetric groups

First, we fix several definitions.

2.1. Simplcial cell complexes. Consider a disjoint union
∐

Ξj of a
finite collection of simplices Ξj . We consider a topological quotient space Σ of∐

Ξj with respect to certain equivalence relation. The quotient must satisfy the
following properties

a) For any simplex Ξi, the tautological map ξi : Ξi → Σ is an embedding.
Therefore we can think of Ξi as of a subset of Σ.

b) For any pair of simplices Ξi, Ξj , the intersection ξ
−1
i

(
ξi(Ξi)∩ξj(Ξj)

)
⊂ Ξi

is a union of faces of Ξi and the partially defined map

Ξi
ξi
−→ Σ

ξ
−1

j

−→ Ξj

is affine on each face.

We shall call such quotients simplicial cell complexes.

Remark on terminology. There are two similar (and more common)
definitions of spaces composed from simplices (see, e.g., [9]). The first one is
a more restrictive definition of “a simplicial complex”. In this case, a non-
empty intersection of two faces is a (unique) face. See examples of simplicial
cell complexes, which are not simplicial complexes in Fig.2 and Fig.3.b. A more
wide class of simplicial spaces are ∆-complexes, in this case gluing of a simplex
with itself along faces is allowed (as for standard 1-vertex triangulations of two-
dimensional surfaces), see Fig 1. ♦

2.2. Pseudomanifolds. A pseudomanifold of dimension n is a simplicial
cell complex such that

a) Each face is contained in an n-dimensional face. We call n-dimensional
faces chambers.

b) Each (n− 1)-dimensional face is contained in precisely two chambers.

See, e.g., [19], [6].

Remark. Any cycle of singular Z-homologies in a topological space can
be realized as an image of a pseudo-manifold (this is more-or-less obvious).
Recall that there are cycles in manifolds, which cannot be realized as images of
manifolds. ♦
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a) b)

Figure 1: To the definition of simplicial cell complexes. The triangle a) is
forbidden, the pair of triangles b) is allowed.

Figure 2: A non-normal two-dimensional pseudomanifold.

Remark on terminology. In literature, there exists another variant of
a definition of a pseudomanifold. Seifert, Threlfall, [19] impose two additional
requirements: a pseudomanifold must be a simplicial complex and must be
’strongly connected’. The latter conditions means that the complement of the
union of faces of codimension 2 must be connected. ♦

2.3. Normal pseudomanifolds and normalization.

Links. Let Σ be a pseudomanifold, let Γ be its k-dimensional face. Consider
all (k + 1)-dimensional faces Φj of Σ containing Γ and choose a point ϕj in the
relative interior of each face Φj . For each face Ψm ⊃ Γ we consider the convex
hull of all points ϕj that are contained in Ψm. The link of Γ is the simplicial
cell complex whose faces are such convex hulls.

Normal pseudomanifolds. A pseudomanifold is normal if the link of any face
of codimension > 2 is connected.

Example. Consider a triangulated compact two-dimensional surface Σ. Let
a, b be two vertices that are not connected by an edge. Gluing together a and
b we get a pseudomanifold which is not normal, see Fig.2. ♦

Normalization. For any pseudomanifold Σ there is a unique normalization

([8]), i.e. a normal pseudomanifold Σ̃ and a map π : Σ̃→ Σ such that

— restriction of π to any face of Σ̃ is an affine bijective map of faces.

— the map π send different n-dimensional and (n− 1)-dimensional faces to
different faces.

A construction of the normalization. To obtain a normalization of Σ we cut a
pseudomanifold Σ into a disjoint collection of chambers Ξi. As above, denote by
ξi : Ξi → Σj the embedding of Ξi to Σ. Let x ∈ Ξi, y ∈ Ξj . We say that x ∼ y
if ξi(x) = ξj(y) and this point is contained in a common (n − 1)-dimensional
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Figure 3: Reference to the definition of colored pseudomanifolds:
a) a colored two-dimensional pseudomanifold;
b) a double chamber.

face of the chambers ξi(Ξi) and ξj(Ξj). We extend ∼ to an equivalence relation
by the transitivity. The quotient of

∐
Ξi is the normalization of Σ.

The following way of normalization is more visual. Let Σ be non-normal. Let
Ξ be a face of codimension 2 with link consisting of m connected components.
Consider a small closed neighborhood O of Ξ in Σ. Then O \ Ξ is disconnected
and consists of m components, say O1,. . . , Om. Let Oj be the closure of Oj

in Σ, Oj = Oj ∪ Ξj . We replace O by the disjoint union of Oj and get a
new pseudomanifold Σ′ (in Fig.2, we duplicate the upper vertex). Then we
repeat the same operation to another stratum with disconnected link. These
operation enlarges number of strata of codimension > 2, the strata of dimension
n and (n− 1) remain the same (and the incidence of these strata is preserved).
Therefore the process is finite and we get a normal pseudomanifold. ♦

2.4. Colored pseudomanifolds. Choose n + 1 colors (say, red, blue,
green, orange, etc.). Consider an n-dimensional normal pseudomanifold Σ. A
coloring of Σ is the following structure

a) To any chamber we assign a sign (+) or (−). Chambers adjacent to
plus-chambers are minus-chamber and vise versa.

b) Each vertex of the complex is colored in such a way that the colors of
vertices of each chamber are pairwise different.

c) All (n−1)-dimensional faces are colored, in such a way that colors of faces
of a chamber are pairwise different, and a color of a face coincides with a color
of the opposite vertex of any chamber containing this face.

We say that a double-chamber is a colored n-dimensional pseudomanifold
obtained from two identical copies ∆1, ∆2 of an n-dimensional simplex by iden-
tification of the corresponding x ∈ ∆1, x ∈ ∆2 of the boundaries of ∆1, ∆2.

Remark. Colored pseudomanifolds were introduced by Pezzana and Ferri
in 1975-1976, see [18], [3], [4], [5]. ♦

2.5. A correspondence between pseudomanifolds and symmetric

groups. Denote by S(L) the symmetric group of order L. Denote by

S(L)n+1 := S(L)× · · · × S(L)
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the direct product of n+1 copies of S(L), we assign n+1 colors, say, red, blue,
orange, etc., to copies of S(L).

Consider a colored pseudomanifold Σ with 2L chambers. We say that a
labeling of Σ is a bijection of the set {1, 2, . . . , L} with the set of plus-chambers
of Σ and a bijection of {1, 2, . . . , L} with the set of minus-chambers of Σ.

Theorem 2.1 There is a canonical one-to-one correspondence between the group

S(L)n+1 and the set of all labeled colored normal n-dimensional pseudo-manifolds

with 2L chambers.

Remark. This correspondence for n = 2 was proposed in [13]. Earlier there
was a construction of Pezzana–Ferri (1975-1976), [18], [3], [4]. They considered
bipartite (n+ 1)-valent graphs whose edges are colored in (n+ 1) colors, edges
adjacent to a given vertex have pairwise different colors. Such graphs corre-
spond to colored pseudomanifolds. In [5]–[7] there was considered an action of
free product Z2 ∗ · · · ∗ Z2 of n copies of Z2 on the set of chambers of a col-
ored pseudomanifold. A construction relative to the present construction was
considered in [1]. ♦

Construction of the correspondence. Indeed, consider a labeled col-
ored normal pseudomanifold Σ with 2L chambers. Fix a color (say, blue).
Consider all blue (n − 1)-dimensional faces A1, A2, . . . . Each blue face Aj is
contained in the plus-chamber with some label p(j) and in the minus-chamber
with some label q(j). We take an element of the symmetric group S(L) setting
p(j) 7→ q(j) for all blue faces Aj . We repeat the same construction for all colors
and obtain a tuple (g(1), . . . , g(n+1)) ∈ S(L)n+1.

Conversely, consider an element of the group S(L)n+1. Consider L labeled
copies of a colored chamber (plus-chambers) and another collection of L labeled
copies of the same chamber with another orientation (minus-chambers). Let the
blue permutation send α 7→ β. Then we glue the the plus-chamber with label α
with the minus-chamber with label β along the blue face (preserving colorings
of vertices). The same is done for all colors. The obtained pseudomanifold Σ is
normal because the normalization procedure from Subsection 2.3 applied to Σ
produces Σ itself. �

2.6. The multiplication in symmetric group and pseudomanifolds.

Describe the multiplication in S(L)n+1 in a geometric language. Consider two
labeled colored pseudomanifolds Σ, Ξ. Remove interiors of minus-chambers of
Σ remembering a minus-label on each face of a removed chamber, denote the
topological space obtained in this way by Σ−. All (n − 1)-faces of Σ− are
colored and labeled. In the same way, we remove plus-chambers from Ξ and
get a complex Ξ+. Next, we glue the corresponding faces of Σ− and Ξ+ (with
coinciding colors and labels according coloring of vertices). In this way, we get
a pseudomanifold and consider its normalization.

2.7. Colored quasibordisms. Fix n > 1. We define a category Bor of
quasibordisms. Its objects are nonnegative integers. A morphism β → α is the
following collection of data
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1) A colored n-dimensional normal pseudomanifold (generally, disconnected).

2) An injective map of the set {1, 2, . . . , α} to the set of plus-chambers and
an injective map of the set {1, 2, . . . , β} to the set of minus-chambers In other
words, we assign labels 1, . . . , α to some plus-chambers. and labels 1, . . . , β to
some minus-chambers.

We require that each double-chamber has at least one label.

Composition. Let Σ ∈ Mor(β, α), Λ ∈ Mor(γ, β). We define their compo-
sition Σ ⋄ Λ as follows. Remove interiors of labeled minus-chambers of Σ and
interiors of labeled plus-chambers of Λ. Next, for each s 6 β, we glue boundaries
of the minus-chamber of Σ with label s with the boundary of the plus-chamber
of Λ with label s according the simplicial structure of boundaries and colorings
of (n− 1)-simplices. Next, we normalize the resulting pseudomanifold.

Finally we remove label-less double chambers (such components can arise as
a result of gluing of two label-keeping double chambers).

The identity morphism in Mor(α, α) is a union of α double chambers with
coinciding labels on its sides.

Involution. For a morphism Σ ∈ Mor(β, α) we define the morphism Σ∗ ∈
Mor(α, β) by changing of signs on chambers. Thus we get an involution in the
category Bor. For any T ∈Mor(β, α), S ∈ Mor(γ, β) we have

(S ⋄ T )∗ = T ∗ ⋄ S∗

In the next section we show that this category is equivalent to the category
of double cosets.

3 Multiplication of double cosets and quasibor-

disms

3.1. Symmetric groups. Notation. Denote by K = S(∞) the group of
finitely supported permutations of N. By K = S(∞) we denote the group of all
permutations of N. Denote by K(α) ⊂ K, K(α) ⊂ K the stabilizers of points
1, . . . , α. We equip S(∞) with a natural topology assuming that the subgroups
K(α) are open.

Sometimes we will represent elements of symmetric groups as 0−1-matrices.

3.2. Multiplication of double cosets. Denote the product of (n + 1)
copies of S(∞) by G. Denote by K ≃ S(∞) the diagonal subgroup in G, its
elements have the form (g, g, . . . , g).

Consider double cosets K(α)\G/K(β), i.e., elements of G defined up to the
equivalence

g ∼ k1gk2, k1 ∈ K(α), k2 ∈ K(β)

We wish to define product of double cosets

K(α) \G/K(β) × K(β) \G/K(γ) → K(α) \G/K(γ).
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For this purpose, define elements θσ[j] ∈ K(σ) by

θσ[j] :=




1σ 0 0 0
0 0 1j 0
0 1j 0 0
0 0 0 1∞


 ,

where 1j denotes the unit matrix of order j.

Proposition 3.1 Let

g ∈ K(α) \G/K(β), h ∈ K(β) \G/K(γ)

be double cosets. Let g, h ∈ G be their representatives. Then the sequence

rj := K(α) · gθβ[j]h ·K(γ) ∈ K(α) \G/K(γ) (3.1)

is eventually constant. The limit value of rj does not depend on a choice of

representatives g ∈ g and h ∈ h. Moreover, if g, h ∈ S(L)n+1 ⊂ S(∞)n+1, then

it is sufficient to consider j = L− β.

We define the product

g ◦ h ∈ K(α) \G/K(γ)

of double cosets as the limit value of the sequence (3.1).

Proposition 3.2 The ◦-product is associative.

Remark. Take two double cosets g ∈ K(α) \G/K(β), h ∈ K(β) \G/K(γ).
Choose their representatives g ∈ g, h ∈ h. Obviously, the double cosets
K(α)ghK(β) depend on a choice of g, h. However, in a certain sense, ’for almost
all’ pairs of representatives we get g ◦ h. A precise sense of this statement is
explained below in Subs. 3.6. Before this, we give an operational formula for
the ◦-product (which can be regarded as an alternative definition) and formal
proofs of Propositions 3.1-3.2. ♦

3.3. Formula for the product. Represent g as a collection of block
matrices

(
g(1), . . . , g(n+1)

)
of size

(
α+ (L− α) + (L− β) +∞

)
×
(
β + (L− β) + (L − β) +∞

)
,

represent h as a collection of block matrices
(
h(1), . . . , h(n+1)

)
of size

(
β + (L− β) + (L − β) +∞

)
×
(
γ + (L − γ) + (L− β) +∞

)

g(k) =




a(k) b(k) 0 0

c(k) d(k) 0 0
0 0 1L−β 0
0 0 0 1∞


 , h(k) =




p(k) q(k) 0 0

r(k) t(k) 0 0
0 0 1L−β 0
0 0 0 1∞


 .

(3.2)
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Then we write a representative of the double coset g ◦ h as

(g ◦ h)(k) := g · θβ [L− β] · h =




a(k)p(k) a(k)q(k) b(k) 0

c(k)p(k) c(k)q(k) d(k) 0
r(k) t(k) 0 0
0 0 0 1∞


 .

3.4. Proof of Proposition 3.1. First, we show that the result does not
depend on a choice of j Denote

µ = L− β, ν = L− α, κ = L− γ.

Preserving the previous notation for g(k), h(k), we write

(g · θβ[µ+ j] · h)(k) =




a(k)p(k) a(k)q(k) 0 b(k) 0 0

c(k)p(k) c(k)q(k) 0 d(k) 0 0
0 0 0 0 1j 0

r(k) t(k) 0 0 0 0
0 0 1j 0 0 0
0 0 0 0 0 1∞



.

This coincides with




1α 0 0 0 0 0
0 1ν 0 0 0 0
0 0 0 1j 0 0
0 0 1µ 0 0 0
0 0 0 0 1j 0
0 0 0 0 0 1∞







a(k)p(k) a(k)q(k) b(k) 0 0 0

c(k)p(k) c(k)q(k) d(k) 0 0 0
r(k) t(k) 0 0 0 0
0 0 0 1j 0 0
0 0 0 0 1j 0
0 0 0 0 0 1∞



×

×




1γ 0 0 0 0 0
0 1κ 0 0 0 0
0 0 0 1µ 0 0
0 0 0 0 1j 0
0 0 1j 0 0 0
0 0 0 0 0 1∞



.

Next, we show that (3.1) does not depend on the choice of representatives
of double cosets. To be definite, replace a collection {g(k)} in (3.2) by




1α 0 0
0 u 0
0 0 1∞








a(k) b(k) 0
c(k) d(k) 0
0 0 1∞








1α 0 0
0 v 0
0 0 1∞



 =




a(k) b(k)v 0
uc(k) ud(k)v 0
0 0 1∞



 .
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Then (g ◦ h)(k) is




a(k)p(k) a(k)q(k) b(k)v 0
uc(k)p(k) uc(k)q(k) ud(k)v 0

r(k) t(k) 0 0
0 0 0 1∞


 =

=




1α 0 0 0
0 u 0 0
0 0 1µ 0
0 0 0 1∞







a(k)p(k) a(k)q(k) b(k) 0

c(k)p(k) c(k)q(k) d(k) 0

r(k) t(k) 0 0
0 0 0 1∞







1γ 0 0 0
0 1κ 0 0
0 0 v 0
0 0 0 1∞




This completes the proof. �

3.5. Proof of Proposition 3.2. Proof. Let g, h ∈ G be as above, and
let w = (w(1), . . . , w(n+1)) ∈ G be given by

w(k) =



x(k) z(k) 0

y(k) u(k) 0
0 0 1∞


 .

Evaluating (g ◦ h) ◦ w and g ◦ (h ◦ w) we get the matrices




a(k)p(k)x(k) a(k)p(k)y(k) a(k)q(k) b(k) 0 0
c(k)p(k)x(k) c(k)p(k)y(k) c(k)q(k) d(k) 0 0

0 0 0 0 1 0
r(k)x(k) r(k)y(k) t(k) 0 0 0

z(k) u(k) 0 0 0 0
0 0 0 0 0 1∞



, (3.3)




a(k)p(k)x(k) a(k)p(k)y(k) a(k)q(k) 0 b(k) 0
c(k)p(k)x(k) c(k)p(k)y(k) c(k)q(k) 0 d(k) 0

r(k)x(k) r(k)y(k) t(k) 0 0 0
z(k) u(k) 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1∞



. (3.4)

Both matrices are elements of the double coset containing




a(k)p(k)x(k) a(k)p(k)y(k) a(k)q(k) b(k) 0 0

c(k)p(k)x(k) c(k)p(k)y(k) c(k)q(k) d(k) 0 0

r(k)x(k) r(k)y(k) t(k) 0 0 0
z(k) u(k) 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1∞



, (3.5)

matrix (3.3) is obtained from (3.5) by a permutation of rows, and matrix (3.4)
is obtained from (3.5) by a permutation of columns. �
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3.6. Concentration of convolutions. A phenomenon of concentration of
convolutions for ’large’ groups firstly was observed by Olshanski in [15].

Fix α. Let L > α. Let L < L′. We regard the symmetric group S(L)

as a subgroup in S(L′) embedded as h 7→

(
h 0
0 1

)
. Denote by GL the group

S(L)n+1; for L < L′ we have a canonical embedding

iL,L′ : GL → GL′ .

To simplify notation, we denote iL,L′(g) by the same symbol g.
Next, we consider a subgroup KL(α) ⊂ G(L) defined as a subgroup of the

diagonal S(L) ⊂ GL consisting of (α+ (L−α))× (α+ (L−α))-matrices of the

form

(
1 0
0 z

)
.

Consider the group algebras C[GL], equip them by ℓ1-norms,

‖
∑

g∈GL

cgg‖C[GL] :=
∑

g∈GL

|cg|.

Denote by ∗ the convolution in the group algebra. Evidently,

‖ψ ∗ θ‖C[GL] 6 ‖ψ‖C[GL]‖θ‖C[GL].

For any L we define an element πL of the group algebra C[KL(α)] by

πL := πα
L :=

1

#KL(α)

∑

k∈KL(α)

k, (3.6)

where #X denotes the number of elements of a set X .
For any L > N we define an element ϕL(g) of the group algebra C[GL] by

ϕL(g) := πL ∗ g ∗ πL =
1

#
(
KL(α) g KL(α)

)
∑

r∈KL(α) gKL(α)

r. (3.7)

Theorem 3.3 Fix g, h ∈ GN . For any ε > 0 there exists L0 such that for any

L > L0, we have

‖ϕL(g) ∗ ϕL(h)− ϕL(g ◦ h)‖C[GL] < ε.

Remark. Formally, the ◦-operation was defined for double cosets. Let us
define it for elements of GN . Let g = (g(1), . . . , g(n+1)), h = (h(1), . . . , h(n+1)) ∈
GN . Represent iN,L(g), iN,L(h) as block matrices of size α + (N − α) + (N −
α) + (L− 2N + α):

g(j) =




a(j) b(j) 0 0

c(j) d(j) 0 0
0 0 1 0
0 0 0 1


 , h(j) =




p(j) q(j) 0 0

r(j) t(j) 0 0
0 0 1 0
0 0 0 1


 . (3.8)
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Then g ◦ h is the collection of matrices



a(j)p(j) a(j)q(j) b(j) 0

c(j)p(j) c(j)q(j) d(j) 0
r(j) t(j) 0 0
0 0 0 1


 .

Proof. Represent

ϕL(g) ∗ ϕL(h) = πL ∗ g ∗ πL ∗ h ∗ πL =
1

#KL(α)

∑

k∈KL(α)

πL ∗ gkh ∗ πL.

We wish to show that a large majority of summands of this sum coincide with
πL(g ◦ h)πL. We write k ∈ KL(α) as

k =




1 0 0 0
0 u v1 v2
0 w1 x11 x12
0 w2 x21 x22


 . (3.9)

Denote by R the set of all matrices k ∈ KL(α) such that u = 0. Notice that the

block u has a fixed size N − α, the whole 0–1-matrix

(
u v
w x

)
has size L − α.

Therefore
#R

#KL(α)
→ 1 as L→∞.

Next, we show that for all k ∈ R elements gkh are contained in one double
coset. Thus we set u = 0 and evaluate gkh:

g(j)kh(j) =




a(j)p(j) a(j)q(j) b(j)v1 b(j)v2
c(j)p(j) c(j)q(j) d(j)v1 d(j)v2
w1r

(j) w1t
(j) x11 x12

w2r
(j) w2t

(j) x21 x22.


 (3.10)

We are interested in a double coset containing ghk. For this purpose, consider
a tuple y · gkh · z, where y, z ∈ KL(α) have the form

y =




1 0 0 0
0 1 0 0
0 0 y11 y12
0 0 y21 y22


 , z =




1 0 0 0
0 1 0 0
0 0 z11 z12
0 0 z21 z22


 .

Then the tuple (3.10) transforms to a tuple of the same form with new v1, v2,
w1, w2, xij , namely

(
v1 v2

)
7→

(
v1 v2

)(z11 z12
z21 z22

)
,

(
w1

w2

)
7→

(
y11 y12
y21 y22

)(
w1

w2

)
,

(
x11 x12
x21 x22

)
7→

(
y11 y12
y21 y22

)(
x11 x12
x21 x22

)(
z11 z12
z21 z22

)
.
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In this way we can get

(
v1 v2

)
=

(
1 0

)
,

(
w1

w2

)
=

(
1

0

)
.

After this, in the 0−1-matrix k (see (3.9)), we have u = 0, v1 = w1 = 1, v2 = 0,
w2 = 0. This implies x11 = 0, x12 = 0, x21 = 0, and we get

y · g(j)kh(j) · z =




a(j)p(j) a(j)q(j) b(j) 0

c(j)p(j) c(j)q(j) d(j) 0
r(j) t(j) 0 0
0 0 0 x22.




Clearly, we can also can make x22 = 1. Thus for all k with u = 0 the product
gkh is contained in KL(α) · (g ◦ h) ·KL(α). �

Next, fix α, β, N and L > max(α, β,N). For any g ∈ GN we define an

element ϕα,β
L (g) of C[G(L)] by

ϕα,β
L (g) = πα

L ∗ g ∗ π
β
L.

Proposition 3.4 Fix α, β, γ. Fix g, h ∈ GN . For any ε > 0 there exists L0

such that for any L > L0, we have

‖ϕα,β
L (g) ∗ ϕβ,γ

L (h)− ϕα,γ
L (g ◦ h)‖C[GL] < ε.

Proof is the same. We must indicate sizes of matrices and write more
superscripts and subscripts. �

Another proof of Proposition 3.2 (associativity). Consider two
products

ϕL(g) ∗
(
ϕL(h) ∗ ϕL(z)

)
=

(
ϕL(g) ∗ ϕL(h)

)
∗ ϕL(z).

For large L the first convolution is concentrated (up to ε) on KL(α) · g ◦ (h ◦ z) ·
KL(α) and the second convolution is concentrated on KL(α) · (g ◦h)◦ z ·KL(α).
Thus the two ◦-products coincide. �

3.7. Involution. The map g 7→ g−1 induces the map g 7→ g∗ of double
cosets

K(α) \G/K(β)→ K(β) \G/K(α).

Evidently, (g ◦ h)∗ = h∗ ◦ g∗.

3.8. Correspondence between symmetric groups and pseudoman-

ifolds. Infinite case. We say that an infinite pseudo-manifold is a disjoint
union of a countable collection of compact pseudomanifolds such that all but a
finite number of its components are double-chambers.

We define a colored infinite pseudo-manifold as above. A labeled pseudo-
manifold is a colored pseudomanifold with a numbering of plus-chambers by
natural numbers and a numbering of minus-chambers by natural numbers such
that all but a finite number of double-chambers have the same labels on both
chambers.
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Theorem 3.5 There is a canonical one-to-one correspondence between the group

S(∞)n+1 and the set of all labeled colored normal infinite pseudomanifolds.

The correspondence is given by the same construction obtained as in Sub-
section 2.5.

3.9. Equivalence of categories.

Theorem 3.6 The category K of double cosets and the category Bor of quasi-

bordisms are equivalent. The equivalence is given by the following construction.

Correspondence MorK(β, α)←→ MorBor(β, α). Let g ∈ K(α) \G/K(β)
be a double coset. Let g ∈ g be its representative. Consider the corresponding
labeled colored pseudomanifold. A left multiplication g 7→ ug by an element
u ∈ K(α) is equivalent to a permutation u of labels α + 1, α + 2, . . . on plus-
chambers. A right multiplication g 7→ gv by an element v ∈ K(β) is equivalent
to a permutation of labels β + 1, β + 2, . . . on minus-chambers.

Thus passing to double cosets is equivalent to forgetting labels > α on plus-
chambers and labels > β on minus-chambers. Notice that all but a finite number
of double-chambers are label-less. Such label-less double chambers can be for-
gotten. Thus we get a quasibordism.

Correspondence of products. Let g, h be representatives of double
cosets. Let Σ, Ξ be the corresponding infinite labeled colored pseudomanifolds.
Let Σ′ correspond to gθβ [j] , where j is large. We multiply gθβ [j] by h according
to the rule in Subsection 2.5.

Notice that minus-chambers of Σ′ with labels > β are glued with double-
chambers. Plus-chambers of Ξ with labels > β are also glued with double
chambers. Both operations yield a changing of labels on chambers. This means
that in fact we glue together only chambers with labels 6 β, in remaining cases
we change labels on chambers only. Afterwards we forget all labels which are
grater than β and get the operation described in Subsection 2.7. �

4 Representations

Here we construct a family of representations of the group G. This produces
representations of the category of double cosets and therefore representations of
the category of quasibordisms. The construction is an extension of [13] (where
the case n = 2 was considered), more ways of constructions of representations
of the group G, see in [12], [13].

4.1. The group G. We define an ’intermediate’ group G,

S(∞)n+1 ⊂ G ⊂ S(∞)n+1,

consisting of tuples (g1, . . . , gn+1) ∈ S(∞)n+1 such that gig
−1
j ∈ S(∞) for all i,

j. Denote by K ≃ S(∞) the diagonal subgroup consisting of tuples (g, . . . , g).
Define the subgroup K(α) to be the group of all (h, . . . , h), where h fixes 1, . . . ,
α. Define the topology on G assuming that subgroups K(α) are open.
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Obviously, there is the identification of double cosets

K(α) \G/K(β) ≃ K(α) \G/K(β).

4.2. A family of representation of G. Consider (n+ 1) Hilbert spaces3

Vred, Vorange, Vblue, . . . . Consider their tensor product

V = Vred ⊗ Vblue ⊗ Vgreen ⊗ . . .

Fix a unit vector ξ ∈ V. Consider a countable tensor product of Hilbert spaces

V = (V, ξ) ⊗ (V, ξ)⊗ (V, ξ)⊗ · · · =

= (Vred ⊗ Vblue ⊗ . . . , ξ)⊗ (Vred ⊗ Vblue ⊗ . . . , ξ)⊗ . . . (4.1)

(for a definition of tensor products, see [20]). Denote

v = ξ ⊗ ξ ⊗ · · · ∈ V.

We define a representation ν of G in V in the following way. The ’red’ copy
of S(∞) acts by permutations of factors Vred. The ’blue’ copy S∞ acts by
permutation of factors Vblue, etc. Thus we get an action of the group S(∞)n+1.
The diagonal K = S(∞) acts by permutations of factors V.

Remark. For type I groups H1, H2 irreducible unitary representations of
H1 × H2 are tensor products of representations of H1 and H2 (see, e.g., [2]
13.1.8). However, S(∞) is not a type I group. Representations of S(∞)n+1

constructed above are not tensor products of representations of S(∞). ♦

4.3. Representations of the category K. Consider a unitary represen-
tation ρ of the group G in a Hilbert space H . For α = 0, 1, 2, . . . consider
the subspace Hα of K(α)-fixed vectors in H . Denote by Pα the operator of
orthogonal projection to Hα. Let g ∈ K(α) \G/K(β) be a double coset, and let
g ∈ G be its representative. We define an operator

ρ(g) : Hβ → Hα

by

ρ(g) = Pαρ(g)
∣∣∣
Hβ

Theorem 4.1 The operator ρ(g) does not depend on the choice of a represen-

tative g ∈ g. For any α, β, γ,

g ∈ K(α) \G/K(β), h ∈ K(β) \G/K(γ)

we have

ρ(g)ρ(h) = ρ(g ◦ h)

3We admit arbitrary, finite-dimensional or infinite-dimensional, separable Hilbert spaces.

14



See a proof for n = 2 in [13], the general case is similar. In the next subsection
we present an independent proof.

Theorem 4.2 Let π be a representation of the category K in Hilbert spaces

compatible with the involution and satisfying ‖π(g)‖ 6 1 for all g. Then π is

equivalent to some representation ρ, where ρ is a unitary representation of G.

This is a special case4 of [11], Theorem VIII.1.10.
In particular, for any representation of G constructed above we obtain a

representation of the category of colored quasibordisms.

4.4. Proof of Theorem 4.1. We use notation and statements of Sub-
section 3.6. The group G contains a family of subgroups S(L)n+1. Therefore
the group algebras C

[
S(L)n+1

]
act in H . Since the representation ρ is unitary,

for any element ψ ∈ C
[
S(L)n+1

]
we have the following upper bound for the

operator norm of ρ(ψ):
‖ρ(ψ)‖ 6 ‖ψ‖C[S(L)n+1] (4.2)

Denote by Hα,L the subspace of KL(α)-fixed vectors. Denote by Pα,L the
operator of orthogonal projection to Hα,L. Evidently

Hα,L ⊃ Hα,L+1, Pα,L Pα,L+1 = Pα,L+1.

Also,
Hα = ∩LH

L
α .

Hence the sequence Pα,L tends to Pα in the strong operator topology as L→∞.
Therefore for any g ∈ G, α, β we have a strong convergence

Pα,Lρ(g)Pβ,L
s
−→ Pαρ(g)Pβ as L→∞.

Hence, for any g, h ∈ G and α, β, γ we have a weak operator convergence

Pα,Lρ(g)Pβ,L · Pβ,Lρ(h)Pγ,L
w
−→ Pαρ(g)Pβ · Pβρ(h)Pγ as L→∞. (4.3)

On the other hand,
Pα,L = ρ

(
πα
L

)

(see 3.6) and we can write (4.3) as

ρ
(
ϕα,β
L (g)

)
ρ
(
ϕβ,γ
L (h)

)
−→Pαρ(g)Pβ · Pβρ(h)Pγ as L→∞,

see (3.7).

4Consider a representation of K, for each α we have a Hilbert space H[α]. The semigroup
Mor(α, α) contains the group S(α)n+1 and therefore we have a representation of S(α)n+1 in
H[α]. On the other hand, Mor(α, α) admits a natural embedding to Mor(α + 1, α + 1) (we
add two double chambers, one contains the label α+1 on plus-side, another contains the label
α+ 1 on minus side). It is possible to construct an inductive limit of spaces H[α] and a limit
of representations of S(α)n+1. A proof is not difficult but a verification of details is long.
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e1red e1red

e7blue e8blue

e5green
x175 x185

Figure 4: Arrangement of basis elements on a pseudomanifold

Keeping in mind Proposition 3.4 and (4.2) we get

∥∥ρ
(
ϕα,β
L (g)

)
ρ
(
ϕβ,γ
L (h)

)
− ρ

(
ϕα,γ
L (g ◦ h)

)∥∥ −→ 0 as L→∞.

This implies a weak convergence

ρ
(
ϕα,γ
L (g ◦ h)

) w
−→ Pαρ(g)Pβ · Pβρ(h)Pγ .

On the other hand,

ρ
(
ϕα,γ
L (g ◦ h)

) w
−→ Pαρ(g ◦ h)Pβ .

Comparing the last two convergences, we get the desired statement. �

Remark. A proof does not use the continuity of a representation ρ with
respect to the topology ofG, and formally the conclusion of the theorem holds for
all unitary representations of S(∞)n+1. However, the continuity on K = S(∞)
is equivalent to the condition: ∪Hα is dense in H (see [15]). In a general case,
the space H splits as

H = ∪αHα ⊕
(
∪αHα

)⊥
.

It is easy to show that these summand are S(∞)n+1-invariant. In the first
summand the representation admits a continuation to the groupG, in the second
summand all operators ρ(·) are 0. Thus an extension of a generality makes no
sense. ♦.

4.5. Spherical functions. In the above example we have

Vα = (V, ξ)⊗ . . . (V, ξ)︸ ︷︷ ︸
α times

⊗ξ ⊗ ξ · · · ≃ V
⊗α,

in particular
V0 = v.

We wish to write an explicit formula for the spherical function

Φ(g) = 〈ν(g)v, v〉.
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Choose an orthonormal basis in each space Vred, Vblue, Vgreen, etc.

eired ∈ Vred, ejblue ∈ Vblue, ekgreen ∈ Vgreen, . . .

This determines the basis

eired ⊗ e
j
blue ⊗ e

k
green ⊗ . . .

in V. Expand ξ in this basis,

ξ =
∑

xijk...e
i
red ⊗ e

j
blue ⊗ e

k
green ⊗ . . . (4.4)

Consider the double coset g containing g and the corresponding colored
pseudomanifold Σ. Assign to each (n − 1)-face an element of the basis of the
corresponding color (in arbitrary way). Fix such arrangement. Consider a
chamber ∆, on its faces we have certain basis vectors eired, e

j
blue, e

k
green, ... .

Then we assign the number x(∆) := xijk... (see the last formula) to ∆.

Proposition 4.3

Φ(g) =
∑

arangements

of basis elements

∏

plus-chambers ∆

x(∆) ·
∏

minus-chambers Γ

x(Γ)

Proof coincides with proof of Proposition 4.2 in [13].
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