Yu. A. Neretin UDC 519.46

Our aim is to construct a complex semigroup to which the highest weight representations of the Virasoro algebra (see [6, 5] extend.

0. Let G be a real semisimple Lie group, $G_{\mathbb{C}}$ the corresponding complex group Lie, and C an invariant convex cone in the Lie algebra g of G. Then the subset G exp(iC) of G is an open semigroup.

Now let G be the group Diff of orientation-preserving diffeomorphisms of the circle $S^1=R/2\pi Z$, let g be the corresponding Lie algebra Vect of analytic vector fields on S^1 , and let C \subset Vect consist of the fields of the form $a\left(\phi\right)\partial/\partial\phi$, with $a\left(\phi\right)>0$. It is natural to expect that the set of formal products g·exp(iv) with g \in Diff and v \in C will possess a structure of complex semigroup. It turns out that this is indeed the case, despite the fact that the group Diff does not exist!

1. Definition of the Semigroup. We realize S^1 as the set |z|=1 in C. Let R(it) denote the map of C into itself which sends z into $e^{-t}z$.

We call element of the subgroup Γ a triplet (p, R(it), q) $\in \Gamma$, with p, q \in Diff, t > 0, and p(1) = 1.

We let M denote the set of analytic maps ρ of the circle |z|=1 into the disc |z|<1, such that

- ρ'(e^{iφ}) does not vanish;
- 2) $\rho(e^{i\phi})$ is an anticlockwise oriented Jordan contour.

We call canonical decomposition of $\rho \in M$ a triplet $(p, R(it), q) \in \Gamma$, where p^{-1} maps the annular region bounded by the circle |z| =1 and the contour $\rho(e^{i\phi})$ conformally onto an annulus of the form $\exp(-t) \le |z| \le 1$ (see [3, V, Sec. 1]), and q is determined from the equality of maps $\rho = pR(it)q$, which is meaningful on the circle |z| = 1.

- LEMMA 1. Suppose $r \in \text{Diff}$ admits a univalent continuation to the annulus $\exp{(-\alpha)} \le |z| \le \exp{(\alpha)}$ and maps it into the interior of the disc $|z| < \exp{(t)}$, where t > 0. Let $0 < \mu < \alpha$. Put $\rho = R(\text{it})rR(\text{i}\mu)$, and let (p, R(is), q) be the canonical decomposition of ρ . Then
 - a) q admits a univalent continuation to the disc U; $\exp{(-\alpha \mu)} \le |z| \le \exp{(\alpha + \mu)}$;
 - b) the domain q(U) is contained in the disc $|z| < \exp(s)$;
- c) p admits a univalent continuation such that the equality $pR(is)q = R(it)rR(i\mu)$ becomes an equality of maps in the annulus $exp(-\alpha + \mu) < |z| < exp(\alpha + \mu)$.

<u>Proof.</u> It is obvious that ρ extends to the annulus $1 \le |z| \le \exp(\alpha + \mu)$. We continue it further by the symmetry principle.

The Exhaustic Procedure PI. Consider a triplet $\gamma = \{R(it), r, R(i\tau)\}$, where $r \in \mathrm{Diff}$, t > 0, and $\tau > 0$. We continue r to a univalent function in the annulus U: $\exp(-\alpha) \le |z| \le \exp(\alpha)$, where α is sufficiently small to guarantee that r(U) is contained in the disc $|z| < \exp(t)$. Let $\tau = \mu_1 + \ldots + \mu_k$, with all $\mu_j < \alpha$. Set $q_0 = r$ and $t_0 = t$. Let $(p_j, R(it_j), q_j)$ denote the canonical decomposition of $\rho_{j-1} = R(it_{j-1})q_{j-1}R(i\mu_j)$ (the correctness of this definition is guaranteed by Lemma 1). We correspond to γ the element $PI(\gamma) = (p_1p_2 \ldots p_k, R(it_k), q_k) \in \Gamma$.

Moscow Electronic Engineering Institute. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 21, No. 2, pp. 82-83, April-June, 1987. Original article submitted March 24, 1986.

Definition of Multiplication. Let $\rho_1 = (p_1, R(it_1), q_1) \in \Gamma$ and $\rho_2 = (p_2, R(it_2), q_2) \in \Gamma$. We apply to $\{R(it_1), q_1p_2, R(it_2)\}$ an exhaustion procedure, and denote its result with $(u, R(is), v) \in \Gamma$. Then

$$\rho_1 \rho_2 = (p_1 u, R (is), vq_2).$$

2. Correctness of the Definition. LEMMA 2. Let U be a domain in \mathbb{R}^n . Let $\Omega(t)\subset \mathbb{C}$ be a variable two-connected domain depending on $t\in U$. Suppose the boundaries of $\Omega(t)$ are analytic Jordan contours $\varphi_t(s)$ and $\psi_t(s)$, where $s\in [0,2\pi]$ and that $(\partial/\partial s)\varphi_t(s)$ and $(\partial/\partial_s)\varphi_t(s)$ do not vanish. Suppose the functions $\Phi(t,s)=\varphi_t(s)$ and $\Psi(t,s)=\psi_t(s)$ are jointly continuous in the variables s, t. Let $f_t(z)$ denote the canonical univalent map of $\Omega(t)$ onto an annulus of the form $\lambda(t)\leq |z|\leq 1$, satisfying $f_t(\psi_t(0))=1$. Then the function $F(t,z)=f_t(z)$ is jointly analytic in the variables t and z.

 $\underline{\text{Proof}}$. The proof uses Theorem 1 of [3, V.1] and the procedure of reduction to the Dirichlet problem, given in [3, VI.4], and then one argues as in [4, 21.1].

It follows from Lemma 2 that the result of the exhaustion procedure PI depends real-analytically on the input parameters t, τ , r, μ_1 , ..., μ_k , and hence it suffices to verify the one-to-oneness of the output of PI for small τ . Analogously, it suffices to verify the associativity $\rho_1(\rho_2\rho_3)=(\rho_1\rho_2)\rho_3$ in a domain in which the product $\rho_1\rho_2\rho_3$ is meaningful as a composition of maps.

Let $\rho_j(t_1, \ldots, t_k) \in \Gamma$, j=1, 2, and suppose that the ρ_j depend real-analytically on the parameters. Then $\rho_1\rho_2$ depends analytically on t_1, \ldots, t_k . In this way Γ is endowed with a structure of real-analytic diffeology in the sense of Souriau [7]. We remark that the chart M permits to introduce on Γ also a holomorphic diffeology.

3. Representations. Let V denote the Virasoro algebra (see [5, 6]), i.e., the algebra with the commutation relations

$$[u_n, u_m] = (m-n)u_{n+m} + \frac{1}{12}(n^3-n)\delta_{n,-m}z, \quad [u_n, z] = 0,$$

where n, m \in Z, and $\delta_{k,\ell}$ is the Kronecker symbol. Let L be a unitarizable highest-weight module over V. Let ρ denote the corresponding unitary projective representation of the group Diff (see [8, 6]). We let A₀ denote the self-adjoint operator corresponding to u₀.

THEOREM. Let $(p, R(it), q) \in \Gamma$. Then the formula

$$\hat{\rho}(p, R(it), q) = \rho(p) \exp(tA_0) \rho(q)$$

defines a projective representation of Γ by trace-class contractive operators in Hilbert space.

The proof is carried out for L(0, 1) in the construction of [6], and then the result is "multiplied" by means of tensor products in the spirit of [8].

I must express my gratitude to G. I. Ol'shanskii, who "infected" me with his conviction that a semigroup Γ must exist.

LITERATURE CITED

- 1. É. B. Vinberg, Funkts. Anal. Prilozhen., 14, No. 1, 1-13 (1980).
- 2. G. I. Ol'shanskii, Funkts. Anal. Prilozhen., 15, No. 4, 53-66 (1981).
- 3. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1966).
- 4. C. Miranda, Partial Differential Equations of Elliptic Type, 2nd edn., Springer-Verlag, Berlin (1970).
- 5. D. B. Fuks, Cohomologies of Infinite-Dimensional Lie Algebras [in Russian], Nauka, Moscow (1984).
- Yu. A. Neretin, Funkts. Anal. Prilozhen., <u>17</u>, No. 3, 85-86 (1983).
- 7. J. M. Souriau, in: Lect. Notes Math., 836, Springer-Verlag, Berlin-Heidelberg-New York (1980), pp. 91-128.
- 8. R. Goodman and N. R. Wallach, J. Functional Anal., 63, No. 3, 299-321 (1985).