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MATHEMATICAL LIFE

Grigori losifovich Olshanski
(on his 70th birthday)

This paper is a survey of the mathemati-
cal work of Grigori Iosifovich Olshanski, the
author of fundamental research papers con-
cerning representations of infinite-dimensional
groups, determinantal point processes, and
multidimensional special functions. We shall
also briefly discuss new directions and new
opportunities that have arisen in connection
with his discoveries.

Olshanski studied in the Faculty of Mechan-
ics and Mathematics of Moscow State Uni-
versity in 1964-1969. In his diploma the-
sis (see [1]) he obtained Frobenius duality for
spaces of type L?(G/T'), where G is a nilpotent
Lie group and I' is a lattice. In 1972 he finished
his postgraduate studies in the Department of
the Theory of Functions and Functional Analysis of the faculty, with A. A. Kirillov
as his advisor, and in 1973 he defended his Ph.D. thesis, Representations of reduc-
tive groups over local non-Archimedean fields. He then investigated representations
of the group of automorphisms of Bruhat-Tits trees in |2|, a paper which definitely
attracted attention; on trees he also refined and perfected some of the methods that
he later used in his investigations of classical groups [4].

Perhaps the main work of Olshanski was development of the theory of rep-
resentations of infinite-dimensional classical groups. His further studies
were connected with this work in one way or another, and in many respects it also
determined the originality of his views on classical groups, special functions, ran-
dom processes, and combinatorics. The work was published in a series of papers
over the years 1978-1991 (beginning in |3|, with the final publications' being [19)
and [21], and moreover, this was the topic of his D.Sc. thesis [15], defended in 1990
at the Leningrad Branch of the Steklov Mathematical Institute).

IThese results were partially republished in Neretin’s 1996 book [62], but there have been no
full republications as yet.
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By the time when Olshanski got involved in activities concerning represen-
tations of infinite-dimensional classical groups, many authors had already pub-
lished significant works on this subject, including M. G. Krein, F. A. Berezin (whose
1965 book [57] was devoted to constructing infinite-dimensional symplectic and
orthogonal spinors), D. Shale, F. Stinespring, G. E. Shilov, Fan Dyk Tin’, Kirillov,
S. V. Stratild, and D. Voiculescu. Works of A. M. Vershik and S. V. Kerov on this
topic date back to the early 1980s, and these works became an important point
of support for Olshanski’s investigations. There were also studies of related topics
concerning representations of the infinite symmetric group by E. Toma, A. Liber-
man, Vershik, and Kerov. The asymptotic theory of symmetric groups was closely
related to this subject, beginning with papers by V.L. Goncharov and W. Feller
and obtaining new life with a 1977 paper by Vershik and A. A. Schmidt.

However, attempts to work out a coherent picture of representations of infinite-
dimensional classical groups ran immediately into questions of what an infinite-
dimensional classical group is and what its representations are. At first glance, it
seems more natural to consider inductive limits, for example, the group GL(c0,R) =
lim,,—~, GL(n,R) of all infinite real finitary matrices, that is, matrices g such that
g — 1 has only finitely many non-zero matrix elements, and similar groups of real
orthogonal matrices O(c0), unitary matrices U(oo), and so on (it is natural to treat
these matrices as operators acting in ¢2). However, it soon became clear that one
can readily construct innumerably many unitary representations of such groups
(more than you would want, a lot more), while on the other hand it seems that one
cannot say anything indisputably meaningful about these crowds of representations,
nor can one find significant connections with other areas of mathematics. One
might try to introduce different topologies on the inductive limits and consider
the resulting classes of representations in their dependence on these topologies.
But there are painfully many candidates for such topologies, and the question of
constructing a representation theory depending on the topologies looks extremely
uncomfortable. Olshanski found a way out in this very complicated and knotty
situation. The key ‘hint” was the notion of sphericity.

Let G be a group and let K be a subgroup of it. Recall that K is called a spher-
ical subgroup if each irreducible unitary representation p of G contains at most one
K-fixed vector (up to proportionality); p is called a spherical representation if such
a non-zero vector v does exist. By a spherical function one means the correspond-
ing matrix element ®(g) := (p(g)v,v); we assume that [|v|]| = 1. By a theorem
due to Gelfand the maximal compact subgroups of non-compact semisimple Lie
groups are spherical (for example, G = GL(n,R) and K = O(n)), and symmetric
subgroups of compact Lie groups are also spherical (for example, G = U(n) x U(n)
and K = diagU(n), its diagonal subgroup). Altogether, the Gelfand theorem
gives 20 series of classical semisimple spherical pairs G(n) O K(n), and they are
indexed by the semisimple Riemannian symmetric spaces (G(n) is the group of
isometries and K (n) is the stabiliser of a point). It is natural to view spherical func-
tions as multidimensional analogues of the Gauss hypergeometric functions (for the
Lobachevskii spaces and their complex and quaternion analogues these are ordinary
hypergeometric functions). The theory of hypergeometric functions interpolating
the spherical functions was constructed by G.J. Heckman and E. M. Opdam, and
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a broader theory interpolating also p-adic objects was given by I. Macdonald. We
note that the characters of compact Lie groups belong to the class of spherical
functions and correspond to pairs of the type? G = U(n) x U(n), K = diagU(n),
and so on.

Let us now replace n by oo and consider pairs of the type G(oco) D K(00).
Olshanski suggested a simple and elegant construction using symmetric and orthog-
onal spinors that gives all spherical representations for all pairs of this kind. For
example, note that the spherical representations for the pair GL(c0) D O(o0) are
indexed by finite families of real numbers s1, ..., s, (possibly with multiplicities),
and the spherical functions are expressed in terms of the singular numbers \; of the
matrix ¢ by the formula

koo -1/2
ia L 3 1 : -

Dyialg) = |det(g)] Hll1<§(1+15j)>\1+§(1_23j))\11) S
J= o=

Here a € R is an additional (trivial and, in a certain sense, parasitic) parameter.
The answer for other symmetric pairs G(co) D K(co) has approximately the same
form (a double product with respect to parameters and singular numbers with linear
factors taken to powers +1/2, +1, or +2). The set of parameters is countable for
groups G(o0) of compact type, and it splits into four different families for, say, the
pair U(co) x U(cco) D diag U(oo), which plays an important role in our subsequent
presentation.?

The class of spherical representations, for all its obvious reasonableness, is not
closed with respect to the simplest operations like tensor products and restric-
tions to subgroups, and it clearly had to be expanded. It turned out that every
O(o0)-spherical representation p of the group GL(co, R) acting in a Hilbert space H
automatically has the following properties.

1°. The restriction of p to K is a direct sum of tensor representations? of K.

2°. Let K C K be the subgroup leaving fixed the first a basis vectors in (2,
and let H® be the space of all K®-fixed vectors in H. Then |JH® is dense in H.

3°. The restriction of p to K is continuous with respect to the uniform operator
topology on K. (The properties 4°~6° below successively strengthen this property.)

4°. The restriction of p to K is continuous with respect to the weak operator
topology on K.

5°. The representation p can be extended to the group of operators of the
form A(1+T') by continuity, where A is an arbitrary orthogonal operator and 7" is
of trace class.

2Let p be an irreducible unitary representation of the group U(n) on a space V. Let End(V) be
the space of linear operators on V with the inner product (A, B) := (dim V)~ tr AB*. The group
U(n) x U(n) acts in End(V) by (g1,92): A +— p(g;)Ap(g,_,_l). Then the identity operator is
a spherical vector, and the spherical function has the form ®(g1,g2) = tr p(gng_I). that is, it is
equal to the value of the character at the point glgg_l.

3Vershik and Kerov have shown how spherical functions on U(cc) x U(oco) are obtained as
limits of characters of U(n) as n — oo. See also footnotes 9 and 10 below.

4Take the standard representation 7 of the group O(oco) on €2 and expand its tensor powers <"
into irreducible subrepresentations. No interesting infinite-dimensional effects occur at this point,
and the problem is actually the same as that of decomposing tensor powers for GL(N,C) (and
simpler than the one for O(N)). Representations occurring in these expansions are called tensor
representations.
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6°. If we restrict the representation p to the subgroup SL(oo,R) of matrices with
unit determinant, then the representation obtained can be extended to a represen-
tation of the group of operators A(1 + T'), where A is an orthogonal operator and
T is a Hilbert-Schmidt operator.®>©

The properties 1°-4° are proved in a rather simple way, while 5° and 6° are
obtained as a result of a classification of spherical functions which, in contrast, is
very complicated. However, it is more important that the properties 1°-4° turned
out to be equivalent as abstract properties of unitary representations of the group G
(without the condition of sphericity).”

This natural class of representations was called the admissible representations
by Olshanski,® and it became the subject of his investigations. It is also important
that the proposed approach enabled him to include in the general picture most of
the interesting previous works on this topic.

We have in fact already stated that admissible representations are those rep-
resentations of the group G which have a ‘good’ restriction to the subgroup K,
where one can take either of the properties 1° and 2° as the definition of a ‘good’
restriction. On the other hand, if desired, we may assume that we are considering
representations of some topological group G = G(K) obtained by completing G. In
essence, this is the group described in 6°, but there are other topologies that lead
to an equivalent representation theory.

Using this point of view, we obtain 20 classical groups (or group-subgroup pairs)
of infinite rank in which one can see the groups of isometries of infinite-dimensional
Riemannian symmetric spaces. For example, the infinite-dimensional unitary group
G = U(o0) appears in the list not by itself but rather together with a subgroup K;
namely, we have the pairs

U(oo) D O(c0), U(200) D U(e) x U(oo), U(200) D Sp(o0),

and also U(oco) x U(oo) D diag U(co). Different spherical functions and different
classes of unitary representations are associated with these pairs. If we agree that
we are speaking about representations of topological groups, then these are just
different topological groups. Concerning the group U(occ) x U(oo), one would like
to say that its representations are tensor products of representations of the factors,
but an elementary theorem to which one would refer does not work in this case,”
and the corresponding topological group is not a product of groups.

5For example, the representation connected with the spherical function (1) must be corrected
for such an extension by setting a = 3 s;; the divergent factor thus obtained extinguishes the
divergence of the large product.

6Consider the homogeneous (symmetric) space GL (oo, R)/O(c0) equipped with a natural and
(in fact) unique invariant Riemannian metric. We complete it with respect to the geodesic distance
and consider the group of isometries of the completion. It turns out that precisely this group is
obtained.

“In this case the properties 5° and 6° are also equivalent to the properties 1°-4°; as for the
statement in full generality (for all the pairs G D K discussed below), this has not yet been
completed.

8 A problem of this kind at one time arose also for finite-dimensional groups. For example, an
attempt to classify irreducible non-unitary representations of SL(2, R) immediately faces the prob-
lem of an invariant subspace, and, as W. Soergel noted in 1988, any counterexample to this problem
produces a monstrous irreducible representation of SL(2,R). In the 1950s, Harish-Chandra singled
out a class of admissible representations for which this kind of disaster does not arise.
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Olshanski proved that all pairs (G, K) arising are type I groups (for example,
this property of topological groups— which is hard to explain to non-specialists —
implies the uniqueness of the decomposition of unitary representations into irre-
ducible representations). He also proposed a simple mass construction of repre-
sentations of groups (G, K') which is based on symplectic and orthogonal spinors
and Howe duality (see the simple brief exposition in [9]). In this theory, spinors
replace the parabolic induction used in the representation theory of semisimple Lie
groups (introduced by Gelfand, M. A. Naimark, and Harish-Chandra). There is no
doubt that the family thus constructed includes all irreducible representations of
all (G, K)-pairs, but the far-advanced attempt at a proof is not yet complete, and
the statement remains unproved in full generality.!'?

The paper [9] was immediately applied by Neretin to the construction of unitary
representations of the group of diffeomorphisms of the circle, its combinatorial (tree)
analogue, and loop groups. Olshanski [17] applied this approach successfully to the
infinite symmetric group, and his student A. Yu. Okounkov carried out a complete
classification of admissible representations of the pair S(oc) x S(o0) O diag S(oo) in
his thesis.

To work with infinite-dimensional classical groups, Olshanski developed the so-
called semigroup method, which in the end led to the construction of algebraic
structures of independent interest.

First approach. Consider a unitary representation p of some group G. Consider
also the set of operators p(g), where g ranges over G, and take the closure of this
set in the weak operator topology.!! It is easily seen that this closure is compact.
If G is a semisimple Lie group, then as shown by R. Howe and C. Moore, we always
(with some minor reservations) obtain a one-point compactification.!'? However,
for infinite-dimensional groups the compactification should be very different from
the group itself. A key object (and a stumbling block discussed for several years
at Kirillov’s seminar) turned out to be a semigroup arising in the weak closure of

9 Restricting a spherical representation of this pair to one of the factors, we obtain a represen-
tation of the finitary group U(co) in the Murray—von Neumann factor of type I11;. The notion of
trace is defined for operators in these factors, and the notion of character is defined for representa-
tions in the factors. The classification of characters of an infinite-dimensional symmetric group in
factors of type 111 was the subject of Toma’s paper [64], which was one of the first papers on rep-
resentations of infinite-dimensional groups. Later on, characters of infinite-dimensional classical
groups of compact type, U(cc), O(o0), and Sp(co), were the object of investigations by Voiculescu,
Vershik, and Kerov. As Olshanski noted, for any group K its characters of type II; are the same
as the restrictions to one of the factors of spherical functions of K x K with respect to diag K, so
that we obtain equivalent theories.

10 Over the years 1976-1991 many authors contributed to the proof that the list of spherical
functions is complete, including Voiculescu [66], Vershik, Kerov, N.1. Nessonov, and D. Pickrell.

'We denote by 4 the set of all operators with norm < 1. A sequence in % converges weakly
if all the sequences of matrix elements converge. This makes % a metrisable compact space, and
operator multiplication is separately continuous on 4.

2There is an interesting classical analogue of the problem of the weak closure. Consider
a finite-dimensional irreducible representation p of a semisimple Lie group. We take the set of all
operators of the form C - p(g) and consider its closure in the space of all linear transformations;
this is a conic variety. Let us take its projectivisation. If p is in general position (namely, if all the
numerical labels on the Dynkin diagram are non-zero), then the result does not depend on p. We
obtain very funny and non-trivial smooth algebraic varieties known as complete collineations and
complete symmetric varieties; J. G. Semple, C. de Conchini, and C. Procezi have devoted papers
to these varieties.
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the ‘Weil representation’ (of symplectic spinors). This is the semigroup of bounded
Gaussian operators on the bosonic Fock space, that is, the semigroup of integral
operators of the form

BIS|f(z) = /exp{%(sh’zt + 2z L7 +ﬂ]\fﬂt)}f(u) e~ 1* du du,

. (K L
—\rt M)

z,u € (5(C), and S = S* is a symmetric matrix. As I. Segal explained in 1956, an
invariant Gaussian measure exists and is concentrated on an extension of the Hilbert
space, and f is a holomorphic function on #5. Olshanski found necessary conditions
for the boundedness of these operators (||S]| < 1, |K| < 1, [|M]| < 1, and K
and M are Hilbert-Schmidt operators)!® and conjectured that these conditions are
sufficient. It is easy to see that

where

B[S1]B]Sa] = det(1 — M, K,)~1/25[Ss],
where

B 5 I(] + L1[{2(1 — J\I]KQ)_ng Ll(l — K’QJ\/.[2)_1L2 (2)
T L1 — MyKy)~'LE My + Ly(1 — M K3) 1MLy )

In the autumn of 1987, Olshanski and two of the present authors once discussed
12 unsuccessful approaches to the proof of the boundedness conditions for the oper-
ators A[S]. The situation was soon clarified [16]: it turned out that the conditions
above are nevertheless insufficient (however, already the trace-class condition for K
and M is enough), that the elements of the semigroup I' (that is, Gaussian integral
operators) are indexed by Lagrangian linear relations'? satisfying a certain ‘posi-
tivity’ condition, and that the formula (2) corresponds to multiplication of linear
relations. It also turned out that the picture over p-adic and finite fields is parallel
to the picture over the real numbers.

Second approach. For definiteness consider the same pair G = GL(o0,R),
K = O(o0). Let K* C K be the same subgroups as above, in the definition of
admissibility. Consider the set of double cosets I'* := K*\G/K®. It turns out
that the following associative multiplication * is defined on I'*. We represent g as
a block matrix of size (o 4+ o00) X (a + 00):

p— a b .
g - c d ’

these matrices are defined up to the equivalence

a b a bv
c d uc udv)’

131n the case when the number of variables is finite, these conditions are sufficient. Olshanski
also found formulae for the norms of the operators [25].

4 A linear relation in a linear space V is a subspace of V & V; this subspace can be treated as
a ‘linear operator’, which is however not necessarily everywhere defined and can be multivalued.
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where u and v are orthogonal matrices. In this notation,

a b 0 p()q apbaq
TG T A N A I A
' 00 1/ \r 0t ro 0t

The resulting matrix has size a + (00 + o0) = a + 0o and is viewed as an element
of the set I'“. Moreover, for every admissible representation p on a space H the
semigroup I' acts on the subspace H* of all K®-fixed vectors. Namely, let P
denote the projection onto H®. For any g € GL(co,R) we define the following
operator on the space H*:

palg) == Pp(g)P*.

This operator depends only on the double coset (which is obvious), and moreover,
the following identity holds:

Pa(91 * g2) = pa(91)Pa(g2)

(which is surprising).

Now we make some general comments. The classical representation theory uses
several objects of the following type (algebras of Hecke-Iwahori type). Let G be
a locally compact group and let L be a compact subgroup of it. Then the convolu-
tion algebra of compactly supported L-bi-invariant functions on G is well defined
(that is, f(l1gl2) = f(g) for any l;,ls € L), in other words, we take functions that
are constant on the double cosets of G with respect to L. It is easy to see that for
every unitary representation p of G the convolution algebra acts on the space of
L-invariant vectors (moreover, in the case of an irreducible representation, the initial
representation p can be recovered from the action if it is non-zero). For this reason,
such convolution algebras are a tool (insofar as they are comprehensible, which is
not often) for investigating unitary representations; in some cases such algebras live
their lives independently of the groups that generated them (like Hecke algebras
and affine Hecke algebras). It turned out that in the infinite-dimensional limit the
convolution algebras can degenerate into semigroups, and these semigroups often
prove to be interesting comprehensible objects. The semigroup structure on the
set of double cosets was first discovered by R.S. Ismagilov in 1967, as he consid-
ered spherical functions on the group SL(2, P), where P is a non-Archimedean not
locally compact field. Olshanski [4] interpreted Ismagilov’s results in terms of the
automorphism group of a tree in which countably many edges go out of each vertex.
For all the bizarreness of this graph, in a certain sense it is a (‘tiny’) analogue of
the infinite-dimensional Lobachevskii space SOg(1,00)/SO(o0). In any case, the
detected effect has already been applied to more familiar objects.

Let us return to the pair GL D O. Olshanski discovered connections between
multiplication of double cosets and certain constructions in operator theory. Over
the period 1946-1955, M. S. Livshits and V. P. Potapov treated characteristic func-
tions as spectral data of operators close to unitary operators (similar investigations
were also carried out simultaneously by C. Foiag and B. Szdékefalvi-Nagy, J. Hel-
ton, and others). For simplicity let d be an operator with norm 1 which differs
from a unitary operator by a finite-dimensional operator of rank a. Then d can
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. . . b . .
be embedded into some unitary matrix g = (Z d) of size a + oo as a block (this

is a simple operation, which can be performed canonically). The characteristic

operator function
X(A) :=a+Ab(1 - Xd)" e (4)

is defined in the unit disk |A\| < 1 in C.'® Then |x()\)| < 1, and the divisors of x(\)
in the class of such holomorphic functions are in a one-to-one correspondence with
the invariant subspaces of the operator d.

In operator theory the operation of ‘multiplication of operator colligations’ is
known, where a ‘colligation’ is understood to be a conjugacy class of the full infinite-
dimensional unitary group with respect to a smaller (but infinite-dimensional) uni-
tary group, that is, the equivalence of unitary matrices has the form

a b\ (a bu~!
¢ d ue udu~')’

where u is unitary. Multiplication of ‘colligations’ is defined by (3). This operation
was defined (in final form apparently by V.M. Brodskii in 1971) as an answer to
the question of how to interpret multiplication of characteristic functions in the
language of operators. Nowadays it is more convenient to understand everything
in the reverse order: corresponding to a ‘colligation’, that is, a conjugacy class, is
the characteristic function (4), and corresponding to multiplication of colligations
is multiplication of characteristic functions.

In any case, the similarity of the multiplication formulae (3) was glaring,'® and
by calculating the operators p,(g) explicitly (they are Gaussian integral opera-
tors on the bosonic Fock space), Olshanski discovered that their kernels can be
written in terms of expressions of the type (4) for certain block matrices a, b, c,
and d. Correspondingly, multiplication of the integral operators was rewritten as an
operation on the characteristic functions. This multiplication was given by a very
cumbersome formula, but a little later the construction was modified by Neretin.
Now we describe what is obtained as a result of a natural simplification. Con-
sider the space C%* with the natural skew-symmetric form {-,-} and the natural
complex conjugation. Then the indefinite inner product M (v, w) := i{v,w} is also
defined. It turned out that corresponding to each double coset is a meromorphic
function x(A) on the Riemann sphere with values in the symplectic group Sp(2a, C),
and moreover, for real A the matrix y(A) lies in the real group Sp(2a, R), while for
Im A > 0 it is M-contracting, that is,

M(x(MNv, x(Mv) < M(v,v) for all v, (5)

and for Im A < 0 it is M-stretching. Corresponding to multiplication in the semi-
group I'“ is pointwise multiplication of the characteristic functions.!'” Then I'®
becomes an intelligible object and is transformed into a semigroup of holomorphic
matrix-valued functions.

!5Bearing in mind the subsequent discussion, we note that x()) is unitary on the circle [A| = 1
for finitary matrices (and of course is meromorphic on the whole of the Riemann sphere).

161t should be noted that, while the formulae look outwardly the same, the equivalences are
significantly different, and hence the multiplication operations are also different. But similar. .. .
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It remains to say how the two approaches to constructing semigroup envelopes
are connected: the weak closure can be interpreted as the limit of the semigroups I'*
as a — 00.

It turns out that the weak closure of a group can be very unlike the group
itself, and semigroup envelopes can be new and interesting algebraic structures. In
particular, Neretin discovered the complex envelope of the diffeomorphism group
of the circle (the existence of such an envelope was conjectured by Olshanski) and,
using the semigroup technique and [16], constructed representations of that group
and models of conformal quantum field theory. The semigroup technique can also
be applied to some other classes of infinite-dimensional groups: infinite symmetric
groups, transformation groups of measure spaces, and infinite-dimensional classical
groups over p-adic and finite fields.

Here we mention the associated papers [5], [18], [26], [6], [7], and [8] of Olshanski
on semisimple Lie groups, papers which are related to his great work on infinite-
dimensional groups. We cannot discuss all these papers and shall only mention
briefly those concerned with ‘Olshanski semigroups’ [6]-[8] (it is interesting that,
in the 1980s and the beginning of the 1990s, he was mainly known as the author
of these papers). For a (semisimple) Lie algebra g together with a convex cone C
in g that is invariant under conjugation by elements of the Lie group G, consider
all possible curves ¥(t) in G such that v(t)~19/(t) € C, together with the points
in the group that can be reached from the identity element by motion along these
curves. It is easy to see that, locally, a subsemigroup of G is obtained, and the
tangent cone to this semigroup at the identity element coincides with C. Olshanski
obtained a classification of all such convex cones in semisimple algebras, all global
subsemigroups in G generated by convex cones, and also of representations of these
semigroups by contracting linear operators on a Hilbert space.'® He also used these
semigroups to separate holomorphic series in L?-spectra on groups. He became
interested in these objects as a tool for classifying admissible unitary representations
of groups of ‘finite rank’ O(p, 00), U(p, 00), and Sp(p, oo), which he accomplished
in [10].

Now we return to the picture that existed in infinite-dimensional classical groups
after Olshanski’s papers. It is perhaps natural to extend the class of representa-
tions'® he introduced. The point is that sphericity, which is a rare phenomenon for
Lie groups, is rather ordinary for infinite-dimensional groups. For some time it was
unclear whether or not it is possible to work in an extended generality; however,

ITA rational function C — Sp(2a, C) can be treated as a holomorphic map Z of the Riemann
sphere into the Lagrangian Grassmannian in C*¢ (the graph of an element of the group Sp(2a, C)
is a Lagrangian subspace, and all the singularities are removable). Then for Im A > 0 the form A/
is non-negative on the subspace Z(\), and for Im A < 0 it is non-positive.

8The case (to which the term ‘Olshanski semigroup’ actually refers) when the Lie algebra g
is a complexification g = h¢ of a semisimple Lie algebra h and the cone (wedge) contains b is
of particular interest. An example of such a semigroup is the subsemigroup of A/-contracting
matrices in Sp(2a, C) (see (5)).

197t should be mentioned that Olshanski found a surprisingly general abstract theorem [12]
about inductive limits lim—. G(n) =: G(o0) of locally compact groups. Namely, every matrix ele-
ment (T(g)v,v) of an irreducible unitary representation of the group G(c0) can be approximated,
uniformly on compact subsets, by matrix elements (T}, (g) vy, vy, ) of irreducible representations T,
of the groups G(n). This assertion gives, for example, a new method for proving results in
exchangeability theory (see [29]).
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Nessonov obtained a series of classification theorems without classical analogues.
For example (see [63]), let us take a countable set Q partitioned into n countable
subsets Q1,...,€Q,, the group G = S(2) of all permutations of 2 with finite support,
and the Young subgroup K of it consisting of permutations that take each Q; to
itself. Then the K-spherical functions on G are indexed by complex positive-definite
matrices A = {ay} of size n x n with 1s on the diagonal, and the spherical functions
are given by the formula

Dalg) = [T o',
k,l

where 74;(g) is the number of elements that g takes from Q. to €;. Anyway, going
to a more general theory is possible (and takes place step-by-step), but this also
means broadening the scope of application of the techniques proposed by Olshanski.

Various problems in harmonic analysis connected with non-compact Lie
groups (decomposition of regular and quasi-regular representations, restrictions to
subgroups, tensor products) usually involve continuous spectra. In the course
of the 1960s-1980s only discrete spectra or representations not of type I were
encountered in all problems of any interest associated with infinite-dimensional
groups. However, an infinite-dimensional non-commutative harmonic
analysis does exist, and Olshanski made decisive contributions to its discovery.

It turns out that there is a natural canonical map Y)'_, from a symmetric
group S(n) to the smaller (!) symmetric group S(n —1). One of many possible
definitions of this map is as follows. Factorize g € S(n) into a product of indepen-
dent cycles, g = (i1i2...)(j1j2...) -, and just delete n from this. It is clear that
the resulting map is not a homomorphism, but it is in good agreement with the
group structure: namely, for any hy, ho € S(n — 1)

Y7 (high2) = hi X2 _1(9)ha. (6)
We can now consider the infinite increasing chain

2 n—1 n n+1
ST % ow s B 1) e B R s (7)
and the projective limit & of this chain.?® It is obvious that for any p € S(n — 1) its
pre-image (T"_,)~!p C S(n) consists of precisely n points, and thus our maps are
consistent with the uniform probability distributions on the groups S(n). Therefore,
by the Kolmogorov theorem on inverse limits, there is a probability measure jo on &
whose projections onto all the S(n) coincide with the uniform distributions (in fact,
there is a natural one-parameter family of measures p; on &, the Ewens measures).

This construction arose in connection with W. J. Ewens’s works in the 1970s
on the distribution of alleles in biological populations. From the late 1970s to the
early 1980s it attracted the attention of some mathematicians (J.F.C. Kingman,
J. Pitman, D. Aldus, and others). Vershik, Kerov, and Olshanski |23] found that,
although the inverse limit is not a group, the infinite symmetric group S(oo) still acts
on it by left and right multiplications; this can readily be verified by looking at the

29This limit (the Chinese restaurant process) admits various constructive descriptions; see |41]
and also [59] by Kerov and Tsilevich.
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formula (6). The measure yq is invariant under these actions, and the measures
are quasi-invariant. Therefore, we obtain a family of unitary representations of
the group?! S(co) x S(oo) on the spaces L?(&, ;). It is natural to look at these
representations as analogues of a regular representation.??

Z) of size m+ (n—m). We write

. . . a
Consider now a unitary block matrix g = <c

T2(9) = a—b(1+d)"e. (8)

It turns out that we obtain a map U(n) — U(m) defined almost everywhere (this is
not obvious??), it commutes with left and right multiplications by elements of U(n),
the image of the Haar measure with respect to Y7, turns out to be the Haar measure,
and therefore we can consider the inverse limit of the chain 4 := lim._, U(n).
Neretin constructed a natural two-parameter family of probability measures on l.
In this connection, the problem arises of decomposing the space L? on I into an
integral of spherical representations.

The final expressions for spectral measures are not at all similar to the classical
‘Plancherel formulae’ for semisimple Lie groups (like the long product of I' func-
tions obtained by S. G. Gindikin and F. 1. Karpelevich). As we saw above, spherical
representations depend on a countable family of parameters, and it was necessary
to find a measure on some space of countable subsets of the real line. This problem
turned out to be very difficult and new approaches had to be found. In trying to
calculate the spectral measure, Olshanski understood that the expressions arising
in his work resembled formulae known in theoretical physics, in the theory of ran-
dom matrices. Finally, the problem for the infinite symmetric group was solved in
a series of preprints by Olshanski and his student A. M. Borodin in 1998; the final
publications are [33] and [39]. The problem for the infinite-dimensional unitary
group was also solved by Olshanski and Borodin in 2001 (see [41]).

In both cases the answer was given in the language of determinantal random point
processes. Such a process (for definiteness, on the line) is given by a kernel K (z,y).
The measure on the set = of countable subsets of the line is determined by the follow-
ing property: the probability that infinitesimal intervals [,z +dx], ..., [2n, x, +

21We mean the group of infinite finitely supported permutations, though in fact it is the
completion of the group S(oo) x S(o0) (consisting of pairs of permutations (g1, g2) such that g]gz_l
is finitely supported) that acts on &.

22The representation of the group S(oo) x S(oo) on £2(S(oc)) which seems to be a natural can-
didate for a regular representation is irreducible, and the restriction to one of the factors gives the
Murray-von Neumann factor of type I1;. Formally, such representations can be decomposed into
an integral of irreducible representations, but this problem is drastically pathological. Nothing like
the classical statements about regular representations of finite or compact groups (G. Frobenius,
. E. Molin, F. Peter, and H. Weyl) is obtained, and nothing interesting occurs in general. For
countable discrete groups these facts were known for a long time.

23However, it is obvious that the expression (8) is a special case of (4), and the statement
formulated above is a special case of the result mentioned in footnote 15 and discovered by
Livshits in the 1940s. On the other hand, the graph of an element g € U(n) is a subspace of
C"™ @& C™ which is isotropic with respect to the Hermitian form with matrix i ((1) é) One can
see that T, is a map of Grassmannians that is given by some linear relation (see footnote 14).
We also note that the strange calculations of integrals in Hua Loo-Keng’s well-known book [58]
are explained by such ‘degenerate symmetries’.
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dzx,] have non-empty intersections with a set { € = is equal to

det K(xq, ) dzy - - - dzy.
a,

The kernels are expressed in terms of degenerate hypergeometric functions for
the symmetric group and in terms of the Gauss hypergeometric functions for
the unitary group.

Currently we know a certain zoo of natural problems in infinite-dimensional
harmonic analysis. The inverse limits of the type lim._,, U(n) exist for all the ten
series of classical compact symmetric spaces. To see them from the formula (8)
one should consider unitary matrices over R, C, and the quaternions H and look
through all the possible symmetry conditions g = +¢* and g = +g¢* for matrices.
The first inverse limit of compact Riemannian symmetric spaces was constructed
by Pickrell in 1987 (complex Grassmannians). There are variations of the above
construction with the symmetric group (a harmonic analysis problem on one of these
spaces, an inverse limit of combinations of pairs, was considered by E. Strakhov).
Neretin also constructed inverse limits of Grassmannians over p-adic fields and
similar constructions for infinite-dimensional Grassmannians and flag varieties over
finite fields. So far it is not clear whether the possibilities of harmonic analysis are
limited to calculating spectral measures or whether they will go beyond that. In
any case, a new field of activity has arisen with the solution of problems connected
with & and 4.

At the end of the 1990s, the interests of Olshanski himself turned towards proba-
bility theory and determinantal processes, which he began to investigate build-
ing on representation theory. We recall that an example of a determinantal random
point process was first discovered in 1962 by the physicist F. Dyson. He considered
the distribution of eigenvalues of unitary matrices of order N as N — oo. It is
clear that, in the limit, the eigenvalues ‘sit’ on the unit circle, densely and uni-
formly. However, if we extend the circle at the same time, then we obtain on the
line a determinantal process which is given by the kernel

sin7(x —y)

K(x,y) = p—

Later on, determinantal expressions were obtained for other distributions of the
eigenvalues of matrices (for example, in the mid 1990s, C. Tracy and H. Widom
obtained asymptotics of the type ‘at the edge of the spectrum’). Kernels for a wide
class of determinantal processes (and many expressions have accumulated over the
past 25 years) have the form

f(x)g(y) — g(x)f(y) .

B =g

where f and g are some functions. Expressions of similar structure occur also in
the case of analysis on the spaces & and &l

The work of Olshanski and Borodin from the late 1990s has been continued by
many authors, and this has led to an explosive introduction of determinantal pro-
cesses into mathematics (the term determinantal point process itself was introduced
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by the same authors). It turned out that these processes arise surprisingly often
in a variety of problems in science. The formalism of determinantal processes was
used by Borodin, Okounkov, and Olshanski to prove the well-known conjecture
by J. Baik, P. Deift, and-K. Johansson concerning the asymptotic behaviour of
the lengths of several largest increasing subsequences of a random permutation of
large size [37]. In [49] Olshanski established the quasi-invariance of a determinan-
tal process with gamma kernel under the action of the group of finitely supported
permutations, and raised the question of the level of generality for which this kind
of quasi-invariance holds. Together with his student V.E. Gorin, Olshanski con-
structed a g-analogue of the theory for i (see [52]), and this direction of research is
now being actively developed. Olshanski created an extremely elegant and effective
method for asymptotic analysis of determinantal processes, based on the spectral
theory of difference operators [44], [45]. His method has been used many times
in the analysis of various measures on partitions and planar partitions. In a joint
paper with Borodin he showed how determinantal processes lead to the asymptotic
behaviour of a system of interacting particles that is known as ASEP (asymmet-
ric simple exclusion process) [54], but was previously regarded as inaccessible for
determinantal (or free-fermion) analysis. A theory of Markov processes preserving
determinantal processes associated with classical special functions was also con-
structed [42], [50].

Another combinatorial-probabilistic aspect of Olshanski’s work over the last 20
years is the study of branching graphs and their boundaries. This direc-
tion of research began with the work of Vershik and Kerov on the ‘Young graph’
and characters of the infinite-dimensional symmetric subgroup [65]. However, in
Olshanski’s hands these graphs began to take on their own lives, far away from the
original motivations.

For definiteness, consider the Gelfand-Tsetlin graph. We recall that the irre-
ducible representations pq, of the group U(n) are indexed by signatures a, that is,
sets of integers of the form a; < -+ < a,,. The restriction of the representation pq
to U(n — 1) is the direct sum of all pg such that

aj g/jl <02<52<"'<[3n~1 < ayp

(in this case we write a | B). The vertices of the Gelfand-Tsetlin graph are divided
with respect to the levels n = 0,1,2,..., the vertices on level n are indexed by
signatures a, and edges connect only vertices of adjacent levels, under the condition
a | B. A function ¢(n, ) on the set of vertices is said to be harmonic if

o(n,a) = Y o(n+1,7). (9)
yyla
Consider linear combinations of characters F, := o ©(1, &)X a; then the harmonic

condition means that the restriction of F,, to U(n — 1) is equal to F,,_;. In this
language, characters of type II; of the group U(co) (or, in other words, the spherical
functions of the pair U(co) x U(oo) D diag U(oo)) are the extreme points @, of the
space of non-negative harmonic functions (using the formal language, these are
points in the minimal boundary of the Markov process). The problem of writing
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out the spectral measure y for ¢l becomes the problem of decomposing some specific
positive harmonic function ¥ with respect to the extreme points,

U(n,a) :/(I)w(n,a)dy(w).

Olshanski understood that here, in analogy with the theory of spherical func-
tions, one can go beyond representation theory. In the definition of harmonic func-
tion we can correctly introduce coefficients of the right-hand side of (9), and then
new problems on extreme points arise, as well as problems of decomposing some
natural harmonic functions with respect to extreme points.

Olshanski developed a wide range of methods applicable to problems of distin-
guishing boundaries: in joint papers with Kerov and Okounkov ([35], [34], [44]) they
used the combinatorics of symmetric and shifted symmetric functions and gener-
alised results on boundaries to the general values of the Jack parameter @ (this
parameter generalises the dimension of the ground field in the theory of spheri-
cal functions and is associated with a random matrix parameter which is usually
denoted by 3; # = 1 in the above example with U(n)). Olshanski and Borodin [51]
found beautiful determinantal formulae for multiplicities in the problem of the
restriction of irreducible representations of U(n) to U(m).

A fresh turn in the development of this topic is related to the study of ¢-
deformations of classical objects. The first result of this kind was obtained by
Olshanski and A.V. Gnedin [47], [48]: they solved the g-version of the classical de
Finetti problem on the characterisation of all sequences of random variables that
are invariant under permutations. Recently, Olshanski and Gorin [52] managed to
find a new and still not fully understood g-deformation in a much more complicated
problem connected with the unitary group U(co). An unexpected consequence and
an offshoot of this activity was the discovery of a new class of non-homogeneous
symmetric orthogonal polynomials in infinitely many variables by Olshanski and
C. Cuenca [55], [56].

Another application of the theory of boundaries was L. A. Petrov’s construc-
tion of infinite-dimensional Markov diffusions closely connected with population
genetics.  Borodin and Olshanski [46], [50] showed how such processes can be
constructed from branching graphs, by translating into the probabilistic language
and further developing the idea of approximation of infinite-dimensional groups
by finite-dimensional subgroups. Surprisingly, this approach enabled the authors
to prove properties and theorems on infinite-dimensional diffusions that had not
yielded to the efforts of experts in classical probability theory.

Now we turn to Olshanski’s works on Yangians. In working with representations
of infinite-dimensional groups in the 1980s he sought to apply the technique of
universal enveloping algebras to these representations, and he proposed an algebraic
parallel to the semigroup construction. Fix a number m and consider the Lie
algebra gl(n) of all matrices of order n and its subalgebra gl(n — m) consisting
of block (m + (n —m)) matrices of the form (8 S) We denote the standard
basis in gl(n) by eq3. Consider the universal enveloping algebra % (gl(n)) and in it
the centraliser .o/, (n) of the subalgebra gl(n — m). Referring to classical invariant
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theory, one can show that .7, (n) is generated by the elements of the form p,;
and p;jar:

n n
Pn = § CajazCaszaz " Capars  Dij|M = E Cia1€Caras " Can 15>
gy Qg at,..,an —1=1

where 1 <i,j < m, M € N, and the elements py; lie in the centre of .7, (n). There
is a natural homomorphism o,,: #,(n) — “,(n — 1) defined by analogy with
the Harish-Chandra homomorphism (it turns out that it takes the generators pj;
and p;jias of 7, (n) to the corresponding generators of the algebra @, (n — 1)).
This enables us to define the chain

Om+1

ﬂm(ﬂl,) »W(m(NI + 1) Om+2 on Jé‘/m (n) On+1

and its projective limit <7, (the Olshanski algebra). The same elements py; and
pijim can be regarded as the generators of this algebra. Olshanski showed that
one obtains an algebra with quadratic relations that can be explicitly written out
and have a simple form. Then he introduced the algebra .« as the inductive limit
lim, . @, and proposed treating this algebra as an analogue of an enveloping
algebra for gl(co).

This construction was announced in 1987 [13], and the details appeared in [14]
and [20] (for a thorough exposition see the survey [27] and, in greater detail,
A 1. Molev’s book [61]). B.L. Feigin suggested that the algebras .7, and < are
connected with the Yangian.?? It turned out that this is indeed the case, and the
algebra .7,, can be decomposed into the tensor product

Ly = o @ X (gl(m))

of the algebra ., of virtual Laplace operators that is generated by the elements pj;
and the Yangian % (gl(m)) associated with the Lie algebra gl(m). It is interesting
that Yangians naturally ‘grow up’ as objects of representation theory.?®

At that time Olshanski expected that application of a similar centraliser con-
struction to other series of classical Lie algebras would lead to the corresponding
Yangians introduced by V. G. Drinfeld in 1985. However, in the cases of the orthog-
onal Lie algebra o(/N) and the symplectic Lie algebra sp(2n), the projective limit of
the centralisers turned out to be connected with new algebras #+(N) and Z ~(2n),
respectively, which he called twisted Yangians. No direct connection of these alge-
bras with Drinfeld’s Yangians for o(N) and sp(2n) was discovered. The twisted
Yangians # *(N) and % ~(2n) are identified with subalgebras of the corresponding
Yangians # (gl(N)) or # (gl(2n)), and these subalgebras are co-ideals with respect
to the Hopf algebra structures. These results were first published in [22], and
a detailed exposition was given later in |27] and [36].

24 Peigin means the Yangian % (gl(m)) of the algebra gi(m); it was known as the ‘Leningrad
algebra’ and arose in the early 1980s, in the school of L.D. Faddeev in connection with the
‘quantum method of the inverse problem’ (for example, see [60]).

25By the way, this gives a possibility for constructing representations of the Yangians them-
selves, based on representations of the centralisers. In this way, a natural class of the so-called
‘tame’ or ‘skew’ representations of Yangians arises, which were studied in detail by M. L. Nazarov
and V. O. Tarasov; their superversions were considered by Molev.
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For Lie algebras of all the four classical series, the corresponding (twisted) Yan-
gians have an important property: the point (evaluation) epimorphisms into the
universal enveloping algebras are well defined:

W (gl(m)) — % (gl(m)), WT(N)— % (o(N)), Y~ (2n) — U (sp(2n)).

This is important for applications to the classical representation theory. I. V. Che-
rednik discovered that the twisted Yangians can be used in classical representation
theory as a tool to separate the multiplicities. Since the defining relations of Yan-
gians and twisted Yangians admit a special ‘R-matrix’ form, their structure can be
investigated with the help of the corresponding techniques originating from work
in the Leningrad school of Faddeev. In particular, these techniques can be used to
construct central elements in Yangians, and thus the use of the point homomor-
phisms leads to new constructions of Casimir elements for classical Lie algebras
and to the corresponding ‘Capelli identities’ (see the aforementioned book [61] by
Molev). Using Olshanski’s centraliser construction, in 1998 Molev was able to con-
struct bases of Gelfand-Tsetlin type for representations of symplectic Lie algebras
(a question concerning such bases was posed by D. P. Zhelobenko in the early 1960s)
and also weight bases for orthogonal algebras.

The joint paper |28] with Nazarov was devoted to applications of the R-matrix
technique to the construction of families of commutative subalgebras of Yangians.
Using point homomorphisms, the authors were able to give a positive solution of
E.B. Vinberg’s problem of quantization: they constructed maximal commutative
subalgebras of classical universal enveloping algebras, so that the corresponding
adjoint graded algebras are the commutative Poisson ‘shift of argument’ subalgebras
constructed by A.S. Mishchenko and A. T. Fomenko in the symmetric algebras.

Olshanski’s papers on Yangians stimulated further research in this area, both by
experts in representation theory and by experts in mathematical physics (N. Guai,
E. Ragusi, Molev, Nazarov and S.M. Khoroshkin, V. Regelskis, C. Wendlandt,
J. Brown, H. Chen, X. Ma, L. O. Chekhov, M. Mazzocco, H. Bao, G. Wang, S. Kolb,
B. Vlaar, G. Letzter, M. Balagovi¢, and others). In particular, various generali-
sations of the centraliser construction for other families of algebras were obtained.
and the twisted Yangians were investigated as symmetry algebras in models of
statistical mechanies.

The centraliser construction has an unexpected analogue. Namely, it can be
applied to the chain of group algebras of symmetric groups,

C[S(1)] € C[S(2)] € -+ C C[S(n)] C C[S(n+1)] C ---

which leads to degenerate affine Hecke algebras [13], [11], [38].

The special functions of representation theory occupy a very important
place in Olshanski’s work. Of course, the specific form of irreducible represen-
tations, their characters, and so on, are connected with the richest theory of special
functions, as was already clear to the founders of representation theory. The inno-
vation and importance of Olshanski’s works come in large part from the new point
of view on classical representation theory which is opened from the vantage point
of the infinite-dimensional theory and, in particular, from the point of view of the
theory he developed for representations of infinite-dimensional classical groups.
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As the simplest (but very striking) example we can take the representations of
the symmetric group S(n) and the corresponding irreducible character (o) = ,\/ﬁ
indexed by two partitions A and u of the integer n. The partition pu encodes the
lengths of the cycles of the permutation o € S(n), and the traditional theory of
representations regards p as an argument of the function x;’} and A as a parameter.
On the contrary, from the point of view of representations of S(oc) = J,, S(n),
it is important to fix non-trivial cycles of o and regard \ as an argument. In
their 1994 paper [24], Kerov and Olshanski first proved the remarkable result that
the normalised characters f,(\) = x*(o) / x*(1) form a basis in a certain algebra
A* of polynomials in the discrete variable A, and then explained the importance
and naturalness of this algebra and its connection with the classical algebra A of
symmetric functions. In particular, identification of the highest-degree component
of f, is a fundamental step in the modern understanding of the asymptotic theory
of characters which has its origin in works of Vershik and Kerov.

One might think that the function f,(\) is not defined for [A\| < ||, but in fact
it is defined and wanishes in this case. This remarkable property is the basis of
a characterisation of the Schur interpolation functions s, studied by Olshanski and
Okounkov [30]-[32]. These functions can be defined as a kind of Newton interpola-
tion polynomials in the algebra A*, and the fact that their components of highest
degree || coincide with the ordinary Schur functions, that is, with the characters
of irreducible representations of the group GL, reflects the deep symmetries in rep-
resentation theory. For general classical groups G, interpolation functions of this
kind are inseparably connected with binomial formulae (that is, with the expansion
of irreducible characters into series in a neighbourhood of 1 € G), important bases
in % (@), the asymptotic theory of characters of G, and many other questions.

Olshanski’s idea that the theory of interpolation functions can be extended nat-
urally from algebras of type A* to their deformations associated with MacDon-
ald polynomials and related multidimensional special functions turned out to be
extraordinary in its importance and insight. Although the group G itself recedes to
the background in this theory, many other important structures and applications
arise that play a central role in modern mathematics. The corresponding theory
of interpolation functions developed by Olshanski, Okounkov, F. Knop, S. Sahi,
E. M. Rains, and others plays a key conceptual and technical role in the current
state of the theory of special functions.

A few words about Grigori Olshanski’s biography. He was born in Moscow on
January 8, 1949, in the family of the movie scriptwriter and author losif Grigor’evich
Olshanski. After completing his postgraduate studies, Grigori worked from 1972
to 1975 as a junior researcher in the Research Institute for Preschool Education
of the Academy of Pedagogical Sciences of the USSR. In 1975-1987 (when his
main papers on representations of infinite-dimensional classical groups were written)
he was a senior researcher at VNIIPIStromsyr'é (the All-Union?® Research and
Design Institute for Problems of Extraction, Transporting, and Processing of Raw
Materials in the Construction Materials Industry). In 1987-1990 he was a senior
researcher in the Department of Glaciology of the Institute of Geography of the

26Now this word is deleted from the name of the institute (which deals with quarrying), but
the abbreviation FGUP (Federal State Unitary Enterprise) is added in front.
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USSR Academy of Sciences. Since 1991 Olshanski has worked in the Institute
for Information Transmission Problems of the Russian Academy of Sciences (as
a leading and then a principal researcher). Since 2013, he has also been a professor
in the Higher School of Economics, and since 2017, a Skoltech professor.

In the 1970s and 80s Olshanski was one of the most active participants in Kir-
illov’s seminar on representation theory, at that time one of the most important
mathematical seminars in Moscow. Moreover, Olshanski put up a blackboard at
home and held regular meetings and small seminars with young people (one of
these seminars was mentioned above). In the 1980s and early 90s he was an actual
research supervisor of several participants of Kirillov’s seminar, and some among his
students of that time later became well-known authors, including Borodin, Molev,
Nazarov, and Okounkov. Among later students were Alexeil. Bufetov, Gorin,
V.N. Ivanov, A. A. Osinenko, and Petrov. Since 2009, Olshanski has supervised
a seminar (in conjunction with the Steklov Mathematical Institute) at the Indepen-
dent University of Moscow (now together with Aleksandr 1. Bufetov, A. V. Dymov,
and A.V. Klimenko as co-supervisors).

Olshanski is an author of 110 research papers and the 2017 book (with Borodin)
Representations of the infinite symmetric groups [53]. He was also the editor of the
collection of papers Kirillov’s seminar on representation theory published by the
American Mathematical Society in 1998.

Olshanski was an invited speaker at the 4th European Congress of Mathemat-
ics in 2004 (joint talk with Borodin, “Representation theory and random point
processes”) and at the International Congress of Mathematicians in 2014 (“The
Gelfand-Tsetlin graph and Markov processes”). He is a member of the board of
the Moscow Mathematical Society and the editorial boards of the journals Funk-
tsional’'nyi Analiz in ego Prilozheniya,®™ Transformation Groups, Journal of Lie
Theory, and SIGMA.

Grigori losifovich Olshanski has had a very strong mathematical influence on
each of us. We cordially congratulate him on his seventieth birthday and sincerely
wish him good health and further successes in his research and in teaching young
mathematicians.

A.M. Borodin, Aleksandr I. Bufetov, Aleksei I. Bufetov, A. M. Vershik,
V.E. Gorin, A.I. Molev, V. F. Molchanov, R.S. Ismagilov,

A.A. Kirillov, M. L. Nazarov, Yu.A. Neretin, N.I. Nessonov,

A. Yu. Okounkov, L. A. Petrov, and S. M. Khoroshkin
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