Mantles, Trains and Representations
of Infinite Dimensional Groups

Yurii A. Neretin

The term “infinite dimensional group” is heuristic. It does not have a rigid
definition. The most interesting types of groups which might be considered
as infinite dimensional groups are:

groups of diffeomorphisms of manifolds;

the group of diffeomorphisms of a circle (it is the exceptional case

among other groups of diffeomorphisms);

groups corresponding to Kac-Moody algebras;

infinite dimensional analogues of classical groups;

infinite analogues of symmetric groups;

current groups (i.e., groups of functions on some set X with values in

fixed groups G);

groups of transformations of spaces with measure.

Looking at this list, it is easy to appreciate that the term “infinite di-
mensional group” is not quite suitable (symmetric groups have no dimen-
sion). It seems that a better term would be “large group” (as proposed by
A .M. Vershik).

1. Phenomena

1.1. Let G be an infinite dimensional group. Then G is not a group, but
only a part of some invisible to the naked eye semigroup I' = I'(G) (the
mantle of the group G). Strictly speaking, to any infinite dimensional group
G, one can associate a semigroup I' D G. The group G is dense in I' and
any representation p of G admits a unique extension to a representation p
of the semigroup I'.

Consider a representation p of G. Then the set p(G) is dense (in the
weak operator topology) in p(T'), and provides a method for a search of
mantles. Unfortunately, the problem of describing the weak closure of
the set p(G) is often unexpectedly difficult (and the solution is also often
unexpected).

1.2. The infinite dimensional group G is not a semigroup. It is only part of
some invisible to the naked eye category K = K(G). Strictly speaking, to
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any infinite dimensional group G, one can associate a category K (the train
of G). The group G is the automorphism group Autx (V) of some object
V of the category K. The semigroup I' = I'(G) is the endomorphism
semigroup Endx (V) of the same object V. Any representation p of the
group G admits a unique extension to a (projective) representation (R, p)
of the category K.

Consider a category K. A projective representation (R,p) of the
category K is a rule which associates to each object V of K a linear
space T(V) and to each morphism P € Morx(V,W) a linear operator
p(P) : R(V) — R(W) such that for any three objects V, W and Y and for
any two morphisms P € Morx(V, W), Q € Morxc(W,Y), we have

p(@)p(P) = ¢(Q, P)p(QP)

for some nonzero complex number ¢(Q, P).

For a wide class of infinite dimensional groups (for (G, K)-pairs), there
exists a universal construction of a train. In §5 we discuss one nontrivial
example. This construction also gives us a method for the classification of
representations of infinite dimensional groups.

The terms “mantle” and “trains” were introduced early by the author
(cf. [23]).

1.3. Some classical areas of representation theory are in fact representa-
tion theories of categories. This is the case for the finite dimensional rep-
resentations of classical groups, the highest weight representations of real
classical groups U(p, q), Sp(2n, R), SO*(2n), representations of classical al-
gebraic groups over finite characteristic fields and modular representations
of Chevalley groups.

For some classical areas of representation theory, there exist repre-
sentation theories of categories closely related (but not equivalent) to the
representation theories of groups. This is the case for symmetric groups,
cuspidal representations of p-adic groups, and complex representations of
Chevalley groups.

1.4. There exist two universal objects for the representation theory of
categories. The first is the “Weil” representation of the symplectic cate-
gory Sp (see [21], [23]), and the second is the spinor representation of the
orthogonal category GD (for the construction of this category, see [20]).
These constructions are natural extensions of the classical constructions
(K.O. Friedrichs, I. Segal, F. A. Berezin, D. Shale, W. F. Stinespring) of
automorphisms of canonical commutation and anticommutation relations.

In trying to construct a representation of a category K, it is useful to
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embed K in Sp or GD and to restrict the “Weil” representation or spinor
representation to K. In many cases such constructions allow us to obtain
all representations of the category K.

The purpose of this paper is to describe some details of this picture.

2. Categories of Linear Relations

2.1. Linear relations. Consider linear spaces V,W. By definition a
linear relation P : V =2 W is a subspace in V @& W. Consider linear
relations P : V. 3 W, @ : W = Y. The product QP consists of all
pairs (v,y) € V @Y such that there exists w € W satisfying conditions
(v,w) € P, (w,y) € Q.

For any linear relation P : V = W we define
(a) the kernel KerP = PNV,
(b) the image ImP, as the the projection of P to W;
(c) the domain DomP, as the projection of P to V;

(d) The indefinity Indef (P) = PNW.

2.2. The category GA. Objects of GA are finite dimensional complex
linear spaces. The set Morga(V,W) consists of all linear relations P :
V =3 W and of the formal morphism null = nullyw (it is not a linear
relation). The product of null and any morphism equals null. Consider
linear relations P: V3 W, Q: W=3Y. If

Indef(P)N KerQ =0  Dom@ + ImP =W,

then the product QP in category GA is the usual product of linear relations.
If one of the conditions (1) does not hold, then QP =null.

2.3. The Category C. An object V of category C is a finite dimensional
complex linear space provided by a skew-symmetric bilinear form Ly (-, -).
Let V,W be objects of C. Consider, in V & W, the bilinear form

LV@W((’U, w)(vla w,)) = Lv(’U, UI) - LW(w7 w/) .

The set Morc(V, W) consists of maximal isotropic subspaces in V@W and
nully w. The composition of morphisms is defined as in a category GA.

Let V5, be a 2n-dimensional object of C. It is easy to see that the
automorphism group Autc(Va,) is the complex symplectic group C, =~
Sp(2n,C). Let (T,7) be a representation of category C. Then the group
Sp(2n,C) acts in the space T'(Va,).
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By definition, a projective representation of category C' is holomorphic
if the corresponding representations of the groups C,, are holomorphic.

Theorem 1. [22] (a) The projective holomorphic representations of the

category C are completely reducible.

(b) The holomorphic irreducible representations of category C are enumer-
ated by diagrams of the form

ay a2 agz a4
0<0—0—0

where a; are nonnegative integers, and only a finite number of them
are nonzero. Let a, be the extreme right nonzero label. If n < a — 1,
then the corresponding representation of C, ~ Sp(2n,C) is a zero-
dimensional representation. If n > a — 1, then the corresponding rep-
resentation of Cy, has the following labels in the Dynkin diagram of type
Cn

a; ag an
0<0—0—----0

For analogous theorems for the series of groups A, ~ SL(n + 1,C),
B, = SO(2n +1,C), D, = SO(2n,C), see [22].

2.4. Shmul’yan’s category U. An object V of the category U is a

complex finite dimensional linear space V equipped with a nondegenerate

Hermitian form My (-,-). Let py and gy be the inertia indexes of My. A

morphism P : V — W is a linear relation P : V =3 W such that

(a) If (v,w) € P, then My (v,v) > Mw(w,w); in other words, P “con-
tracts” the form M.

(b) dimP = py + qw (i.e., P has the maximal possible dimension among
all subspaces satisfying condition (a)).

(c) If (v,0) € P,v #0, then My(v,v) > 0. If (0,w) € P, w # 0, then
Mw (w,w) < 0 (this is a technical condition, inequalities My (v,v) >
0, Mw (w,w) < 0 follow from condition (a).)

The product of morphisms is the usual product of linear relations.

The group Auty (V) is the pseudounitary group U(py, gy ). It is easy
to see that dim Auty(V) = 1dim Endy(V). For an analogue of Theorem
1, see [22].



Mantles, Trains and Representations 297

2.5. The Category Sp. An object V = V,, of Sp is a direct sum
VieV_=C"®C"(n=0,1,2,...) equipped with two forms

Ly((v*,v7), (w*,w7)) = S(ofw] —vjw})

MV((’U+"U-)’ (’UJ+,'w_)) =

So V is an object of both categories, C and D. Morphisms V — W are
subspaces P C V & W such that P is a morphism of both categories.
A product is the usual product of linear relations. It is easy to see that
Autg,(Vay) is the real symplectic group Sp(2n,R).

2.6. The Potapov transformation

Proposition. Fiz the objects V,W of Sp. Let P be a subspace P C VOW.
The following conditions are equivalent.

(A) P € Morg,(V,W);
(B) P is the graph of an operator

n(p) = (Ilﬁ A’/}) V., oW. - V@ W,

satisfying three conditions:
(a) ||TI(P)|| £ 1 where || - || denotes the usual Euclidean norm
(b) the matriz II(P) is symmetric
() 1Kl <1, |IN|I <1.

2.7. The “Weil” representation (We, we) of the category Sp. Let
V be an object of Sp. The space We(V) is the bosonic Fock space, i.e.,
the space of holomorphic functions on V; with the scalar product

t9) = [ [ rwia@due)

where y(v) denotes the Gaussian measure with density exp(—Xlv] |?)/(2n).
Let P € Morg,(V,W). Let II(P) = (ft AI/}) and let kij) Ligs o=« bE
the matrix elements of K, L,.... Put

we(P)f(z) = // exp {%Z‘kagzazg + By 2oty + %Em&,ﬁgﬁ,,} fu)dp(u).
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Theorem 2. ([15], [21]) (We,we) is a projective representation of the
category Sp. The corresponding representations of the groups Sp(2n,R
arethe usual Weil representations.

Remark. The above-mentioned “universal” category Sp consists of the
category Sp and some infinite dimensional objects, see [21], [23].

3. The category Shtan

3.1. The group Diff and the semigroup I'. Let Diff be the group of
orientation-preserving (analytic) diffeomorphisms of the circle. An element
of the semigroup I' is a triple (R, 7, r~) where

(a) Ris a Riemann surface (one dimensional complex manifold) which is
homeomorphic to some annulus a < |2| < b;

(b) r*,r7: €% > R are analytic parametrizations of the components of
the boundary of the surface R. The surface R lies on the right of the
path 7% (e%#) and on the left of the path 7~ (e¥);

(c) Two triples (R,r*,r~) and (Q, ¢*,q™) are equivalent if there exists a
biholomorphic map 7 : R — @ such that g*(e*¥) = 7 o r¥(ei¥).

The product of (R,r+,r~) and (Q, g%, ¢™) is the triple (P,p*,p~) where P
is the Riemann surface obtained from R U @ by glueing together the pairs
gt (%), 7 (¢), and p*(e5%) = r* (¢i%), p~ (%) = g~ (%),

The group Diff is contained in the “boundary” of the semigroup I'; ele-
ments of Diff correspond to “infinitely short tubes.” There exists a natural
complex structure on I" (it is not evident).

3.2. Representations of I'. The group Diff has one well-known and
interesting class of representations, the so-called highest weight represen-
tations.

Theorem 3. ([18], [19]) Any irreducible highest weight representation of
Diff has a unique eztension to a holomorphic representation of the semi-
group T.

A proof of the theorem is based on the embedding of the semigroup I
in semigroups of linear relations (see §2).

3.3. The category Shtan of Kontsevich—Segal. Objects of the category
Shtan are nonnegative integers. A morphism m — n is a family (R,r;+ , rj_),

1<7<m, 1< 5 <n where

(a) R is a compact Riemann surface with a boundary.
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(b) rf 3Tt € — R are analytic parametrizations of components of the
boundary. The surface R lies on the right side of paths r;(e*?) and
on the left side of paths r; (€**). The definition of the product of

morphisms is the same as for the semigroup T'.

1 >
l n | ~
2
X =
2 = —
1

Some of the highest weight representations of Diff extend to represen-
tations of the category Shtan ([19], [20]). Kontsevich and Segal con-
sidered conformal quantum field theory in terms of the representation
theory of the category Shtan, see [37].

4. Heavy groups

4.1. The group O(cc). Denote by O(co) the group of all orthogonal
operators in the real Hilbert space ¢2. Denote by I'O(co) the semigroup of
all operators A in the real Hilbert space ¢; such that [|A|| < 1. We equip
O(o0) and T'O(oc0) with the weak operator topology.

Theorem 4. Any representation of O(c0) admits a unique extension to a
representation of ['O(00).

4.2. The Category O. The objects of O are the real Euclidean spaces
R!,R2,...,¢;. Morphisms V — W are the linear operators A: V 3 W
such that ||A]| < 1.

Theorem 4. Any representation p of the group O(oco) admits a unique
extension to a representation (R, p) of the category O.

Now we briefly describe a construction of an extension (R, p). Consider
the space H, C £, consisting of all vectors of type (z1,%2,...,%n,0,0,.. .-
Let P, be the orthogonal projector onto H,. Put R(R") = Imp(Py).
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Consider the morphism A : R®* — R™. Consider an infinite matrix

A= (6‘ g) € TO(c0).

Set
P(A) = p(A) |r@n) : RR™) — RR™).

Then (R, p) is a representation of the category 0. The classification of
representations of category 0 is a simple problem which allows us to classify
the representations of O(c0).

4.3. Heavy groups. The term “heavy groups” is also heuristic. There
are three types of heavy groups:
1. O(o0),U(0), Sp(c0)
2. The complete infinite symmetric group S,.
3. The group Ams (respectively Amss) of automorphisms of the
Lebesgue space with finite (respectively o-finite) continuous measure.
This group is equipped with a weak topology (see [24], [42]).

It seems that these groups are quite different, but all heavy groups
have strangely similar properties. The role of the heavy groups in the rep-
resentation theory of infinite dimensional groups is like the role of compact
groups in the representation theory of Lie groups.

4.4. The train of S,. The objects of category PB are sets 0, {1},
{1,2},...,{1,2,...}. Morphisms M — N are partially defined injective
maps M — N. Any representation of S., admits a unique extension to a
representation of PB.

4.5. The train of Ams. An object (M,u) of the category Pol is a
Lebesgue spaces M with a probability measure . A morphism (M, u) —
(N, v) of the category Pol (polimorphism, see [42]) is a probability measure
Kk on M x N such that

1. The projection of k onto M is p.

2. The projection of k onto N is v.

Let k : (M,p) — (N,v), 0 : (N,v) — (L,)) be morphisms of the
category Pol. Let £, (n) be conditional measures on the sets m x N (m €
M) and let 0,(¢) be conditional measures on the sets n x L. Then the
measure ok on M X L is defined by the equality

(oK)m(£) = /Un(é)dnm(n)

for conditional measures.
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Remark. The construction becomes clear when the sets M, N, and L are
finite.

Remark. Speaking informally, a polymorphism & : (M,u) — (N,v) is a
“map” which “spreads” any point m € M to a probability measure «,,(n)
on N.

Representations of Ams extend to representations of the category Pol.

4.6. Representations.  The classification of representations for
S(oc0) was obtained by A. Lieberman in 1972, (see [14] and [28]); for
O(0),U(00), Sp(co) classification was obtained by A.A. Kirillov in 1973
(see [12] and [27]); for Ams and Amss see [24]. In all cases any represen-
tation can be realized in the tensor products of the simplest representations.

5.
(G,K) - pairs and Ismagilov—Olshanskii multiplicativity
for double cosets

The “term” (G, K)-pair is also heuristic. Roughly speaking, a (G, K)-
pairs is a group G together with a heavy subgroup K.
5.1. The pair (GL,O) and its train. Denote by (GL, O), the group of
those bounded invertible operators in the real Hilbert space ¢2 which can
be represented in the form A(1 + T') where A € O(c0) and T is a Hilbert-
Schmidt operator (the operator T is Hilbert-Schmidt if Z|t;;|> < co where
t;; are matrix elements of T').

Let Ko = K = O(00). Let K, consist of all matrices of the form

E, 0
( 0 Q) € O(00)
where E,, is the unit n X n-matrix and Q € O(00).

The objects of the category GLO are nonnegative integers 0,1,2,... .
The set Morgro(n,m) consists of double cosets v € K, \G/K,. Double

cosets are matrices (é g) defined up to equivalence

A B\ _ (En A B\ (E, (A Bl

C D U C D U, ) — \UL1C U DU,
where U, Uz € O(0).

Consider the double cosets v € K;,,\G/K, and é§ € K,,\G/K,. Let

Poe (B ).
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Consider a sequence 7,7, ...,€ Ky such that m; — P, weakly. Let
g € vand h € §. Consider double cosets 0; € K;,\G/K, containing the
elements hmjg. It is easy to see that the sequences {0;} has a limit ¢ in
the natural topology on Mor(n, ¢). By definition, o is the product of v and

6. Let
A B Im K L j ¥4
g=<c D) h=(M N)
n ) m 00

Then o € Mor(n, ) is the double coset containing

AP B AQ
hxg= | CP D CQ
R O T

The multiplication (g,h) — h * g is a known multiplication of so-called
operator nodes (= colligations) introduced by M.G. Krein.

Theorem 5. There ezists a canonical one-to-one correspondence between
unitary representations of (GL,0) and representations of the category
GLO.

5.2. Characteristic functions. Consider v € MorgLo(k,n); let

_ (4 B

Let A be a point of Riemann sphere C = C U co. We want to construct
a linear relation P,()) : Vo =3 Vo, (where Vo is the same as in 2.5).
Let Von = Vg @ Vs, where V;E are isotropic subspaces relative to both
forms L and M. Let p* € V&, ¢* € V;t Let z,y € f5. The element
(p;q) = (p*,p~;9%,97) € Van @ Vo is contained in P, ()) if there exists
z,y € €3 such that

pt AB 9+
z _ | CD y
q a AtCt P~
-2y Bt D! Az

(by A we denote matrix transposed to A).

Theorem 6. (a) Let ReA > 0. Then

P’y()‘) € Morsp(VZka Van) -
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(b) Let ReX = 0. Let (p,q) € Py()\). Then M(p,p) = M(q,q) (so, in the
language of function theory, the function P,()) is the interior function

@rEn=(1 g )re(t )

(d) Py(A) = Py(A)
(€) Pyiv;(A) = Py, (A)Py,(A) (we consider the usual product of linear rela-
tions).

5.3. The construction of 5.1 is a particular case of Ismagilov—Olshanskii
multiplicativity. (We follow [31]). There exists many examples of (G, K)-
pairs. For the case K = U(00), O(00), Sp(oo) see [31]; for the case K =
S(o0), see [29] and for the case K = Ams, Amsq, see [24].

6. Weak closure

6.1. Let p be a unitary representation of a group G. Consider the set

p(G) which consists of all operators p(g),g € G. Let I'(p, G) = p(G) be the
closure of p(G) in weak operator topology. It is easy to see that I'(p, G) is
a compact (semitopological) semigroup.

This simple construction was proposed and used by Olshanskii. It can
be applied, in particular, to studying the mantle of G. Indeed let T" be the
mantle of G. Then (see (1.1)).

p(l) C p(G) =T(p,G).

So we have some information about I'.

Example. Let the group Diff act in L?(S!) by formula

p(9)f(0) = f9(9))d'(¥)? .

Then the semigroup I'(p, G) contains all operators of type

flp) = a(e)f ()

where 0 < a(p) < 1.

Example 2. Let M™ be an n-dimensional manifold, n > 2 with a volume
form w. Let D be the group of all diffeomorphisms of M™ preserving w.
Let D act in L?(M™) by the formula

p(9)f(z) = f(g(z)).
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Then I'(p, G) = Endpo (M™).

6.2. How does the semigroup I'(p,G) depend on G?7 I don’t know the
answer to this question. Let R be some series of unitary representation
of G. It is easy to show (see [31]) that there exists a universal compact
semigroup I'(R; G) such that

(a) G is dense in I'(R; G);

(b) Any representation p € R of G extends to I'(R; G);

(c) p(T(R;G)) ~T(p,G) for any p € R.

Examples. Let R be a set of representatives of equivalence classes of all
unitary representations. Then

['(R;O(00)) =~ Endp(f2)  I'(R;S(00)) = Endpp(N)
[(R; Ams) ~ Endpo (M)

where M is a Lebesgue space with continuous measure.
However in some cases semigroups I'(R, G) turn out to be “pathologi-
cal” objects.

6.3. H-polymorphisms. Let us now describe some categories which ap-
pear as a result of the “universalization” of the semigroups I'(p, G) (“uni-
versalization” was applied to groups of diffeomorphisms (see [24])).

Let H be a fixed group. Objects of the category H-Pol are finite spaces
with probability measure. Morphisms (M, p) — (N,v) are measures K on
H x M x N such that

1. The projection of x to M is p,

2. The projection of k to N is v.

Let my, ..., mq be the points of M and let n,,...,ng be the points of
N. Then it is possible to consider k as an o X (-matrix, the elements \;;
of this matrix are measures on H and

Ei/\i]‘(H) = /,L(m]) 2])\”(1{) = I/(’I’L,;).
Let {p;x} be another of the same type matrix. The product of the
morphisms {A;;} and {p;x} is the matrix
ik = Y _ p(m;) " Aij * pji
J

where * denotes ususal convolution of measures on the group H.
For the case of infinite measure spaces, see [24]. Let M™ be an n-dimen-
sional manifold, where n > 2; the “universal” semigroups corresponding to
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the known series of representations of groups of diffeomorphisms of M™,
are different semigroups of type Endg_poi(M™); the group H (in different
cases) is R or some jet group or fundamental group m;(M™).

7. Universal completions of classical groups

Let us consider the result of the application of some infinite dimensional
constructions (see §6) to the classical case. Let us consider “the mantle of
the group GL(n,C)”; for other classical groups see [25].

7.1. Resolving sequences. Resolving sequences in C™ are sequences of
linear relations

P,P,....,P,: C*3C"
defined up to a multiplier (k > 0), such that

Dom Pj;; C Ker P; IndefP;; C Im P;

Remark. Let us consider the space S™ of all resolving sequences satisfying

Indef P, = 0 KerP. =0
DOij.H = Keer IndefP]-+1 = Iij.

Then the space S™ coincides with the variety of complete collineations
constructed by J. G. Semple in 1948 (see [5]).

7.2. A multiplication. Let (Py,...,FP), (Q1,...,Qs) be resolving se-
quences in C". Consider all products a;; = P;Q; such that P;Q; # null
(see 2.1). Then «; is a resolving sequence (of course we have to do some
permutation of ;).

Denote by GL,, the semigroup of all resolving sequences in C. There
exists a natural (non-Hausdorff) topology on GL,, and GL(n,C) is dense
in GL,; see [25].

Theorem 6. (a) Any irreducible representation p of GL(n,C) admits a

canonical extension to a projective representation p of the semigroup GL.,.

(b) Consider the closure C - p(GL,,) of the set of all operators of type A-p(g)
where A € C,g € GL(n,C). Then C- p(GL(n,C)) = C- p(GL,).

(¢c) The action of GL(n,C) on GL(n,C)/O(n,C) eztends to an action of
GL,, in some completion of GL(n,C)/O(n,C).
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8. Historical remarks

For a long time the representation theory of infinite dimensional groups was
extremely disconnected. One of the results of the last years is the bringing
together of the different theories. Unfortunately, up until now, while there
have been some attempts to present the general picture, there is still no
text which gives the relations between the different theories, see [23], [24],
[26], [31].

The theory of the highest weight representation has been developed in
particular by V.G. Kac, G. Segal, J. Lepowsky, R.L. Wilson, I.B. Frenkel,
R.L. Goodman, N. Wallach ([11], [17], [34]).

For the infinite dimensional classical groups, one may refer to I. Segal,
F.A. Berezin, D. Shale, W.F. Stinespring, A.A. Kirillov, S. Stratila, D.
Voiculescu, R. Boyer, G.I. Olshanskii, A.M. Vershik, S.V. Kerov, D. Pickrell
[4], [30], [33].

For the infinite symmetric group, see the works of E. Thoma, A. Lieber-
man, A.M. Vershik, S.V. Kerov, G.I. Olshanskii, see [28].

There are two quite different representation theories for current groups:
Araki multiplicative integral and “energy representations.” For the Araki
multiplicative integral, see the works of H. Araki, R.F. Streater, A.M.
Vershik-1.M. Gelfand— M.I. Graev, A. Guichardet, K.R. Parthasarthy -
K. Schmidt (see [24], [40]). For the “energy representations,” see the works
of R.S. Ismagilov, A.M. Vershik-1.M. Gelfand-M.I. Graev, 1.B. Frenkel., S.
Albeverio, R. Hoegh-Krohn, D. Testard, M.P. and P. Malliavin, L. Gross
[1].

The theory of mantles and trains is closely related to the theory of
completions of symmetric spaces. For complex symmetric spaces, see the
works of E. Study, J.G. Semple, J.A. Tyrell, C. De Concini, C. Procesi ([5]);
for real symmetric spaces, see the works of H. Furstenberg, 1.I. Piatetskii-
Shapiro, I. Satake, F.I. Karpelevich, G.F. Kushner, A. Borel, T. Oshima,
see [36). One may consult M. Putcha and L.E. Renner on algebraic semi-
groups [35]; for analogues of such phenomena for the affine algebra, see
[2].

Polymorphisms (or stochastic kernels) were introduced by E. Hopf
(1953), see [13], [42].

For linear relations in operator theory, see the works of M.G. Krein and
Shmul’yan [38]. The characteristic function of an operator was introduced
by M. Livshic, see [3].

The categories of linear relations are closely related to Lie semigroup
theory (E.B. Vinberg, S.M. Paneitz, G.I. Olshanskii, see [6]). For repre-
sentations of groups of diffeomorphisms, see the works of R.S. Ismagilov,
A.A. Kirillov, A.M. Vershik — .M. Gelfand — M.I. Graev [10], [41].
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For the first time, multiplicativity theorems were obtained by
E. Thoma (1964), see [39], and R.S. Ismagilov (1968), see [8] and [9]. From
1978-1980, G.I. Olshanskii formulated the principle of the semigroup ex-
tension and obtained more general multiplicativity theorems. The semi-
group I' was constructed by the author in 1986 (and later by G. Segal).
For some years (approximately 1981-1987) a group of Moscow mathemati-
cians, discussed (proposed by G.I. Olshanskii) the problem of describing of
the mantle of the “Weil” representation. In 1987 (see [15]), the problem
was solved and after the autumn of 1987 the picture described in papers
(see [19]-(25], [29], [31]). step by step became clear .

9. Some problems

I want only to formulate some directions which seem interesting.

1. A description of the whole mantle and the whole train of Diff. The
semigroup I' and the category Shtan are only parts of the mantle and
of the train of Diff (for some highest weight representations p of Diff
the tensor product p ® p* have nontrivial deformations. Those “new”
representations don’t admit extensions to I', see [17]).

2. Harmonic analysis on Morgpen (0, 7).
3. A classification of irreducible representations of (G, K)-pairs.

4. Extension of the theory to nonlinear actions of groups.
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