Functional Analysis and Its Applications, Vol. 41, No. 4, pp. ??-??, 2007 Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 41, No. 4, pp. 60–69, 2007 Original Russian Text Copyright © by Yu. A. Neretin

K-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric Functions^{*}

Yu. A. Neretin

Received March 31, 2006

To the memory of Dmitry Petrovich Zhelobenko, by whose classical book the author learned Lie groups and representations

ABSTRACT. We show that each K-finite matrix element of an irreducible infinite-dimensional representation of a semisimple Lie group can be obtained from spherical functions by a finite collection of operations. In particular, each matrix element admits a finite expression via the Heckman–Opdam hypergeometric functions.

KEY WORDS: semisimple Lie group, Harish-Chandra module, infinite-dimensional representation, spherical function, matrix element, special function, Heckman–Opdam hypergeometric function.

1. Preliminaries and Notation

1.1. Semisimple groups. Notation. Let G be a linear real semisimple Lie group, and let K be the maximal compact subgroup in G. Let \mathfrak{g} be the Lie algebra of G, and let $\mathfrak{U}(\mathfrak{g})$ be its universal enveloping algebra. Let L_X and R_X , where $X \in \mathfrak{g}$, be the left and right Lie derivatives on G. Let $\mathfrak{U}_l(\mathfrak{g})$ (respectively, $\mathfrak{U}_r(\mathfrak{g})$) be the algebra of differential operators on G generated by the left (respectively, right) derivatives.

By P we denote the minimal parabolic subgroup^{**} in G. Consider the decomposition P =MAN, where N is the nilpotent radical, MA is the reductive Levi factor of P, M is the compact subgroup, and $A \simeq (\mathbb{R}^*_+)^k$ is the vectorial subgroup.***

1.2. Example: SL (n, \mathbb{R}) . Let $G = SL(n, \mathbb{R})$ be the group of real $n \times n$ matrices q with determinant 1. Then K = SO(n) is the subgroup of orthogonal matrices. The parabolic subgroup P consists of upper-triangular matrices

$$g = \begin{pmatrix} a_{11} & a_{12} & \dots \\ 0 & a_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}, \qquad \prod_{j=1}^{n} a_{jj} = 1$$

The nilpotent subgroup $N \subset P$ consists of matrices such that $a_{11} = a_{22} = \cdots = 1$. The Levi subgroup $MA \subset P$ consists of diagonal matrices; i.e., $MA \simeq (\mathbb{R}^*)^{n-1}$.

The compact factor $M \simeq (\mathbb{Z}_2)^{n-1}$ consists of diagonal matrices with eigenvalues ± 1 . The vectorial subgroup $A \simeq (\mathbb{R}^*_+)^{n-1}$ consists of diagonal matrices with positive entries. Recall that a complete flag \mathscr{V} in \mathbb{R}^n is a collection

$$\mathscr{V}: 0 \subset V_1 \subset V_2 \subset \cdots \subset V_{n-1} \subset \mathbb{R}^n, \qquad \dim V_j = j, \tag{1}$$

^{*}Supported by grants FWF-P19064, NWO-047.017.015, and JSPS-RFBR 07.01.91209 and by the Russian Federal Agency for Nuclear Energy.

^{**} For a definition, e.g., see [10] and [7]. For the groups $SL(n, \mathbb{C})$, $SL(n, \mathbb{R})$, and $SL(n, \mathbb{H})$, the subgroup P is the stabilizer of a complete flag; for the remaining classical series SU(p,q), O(p,q), $Sp(2n,\mathbb{R})$, $Sp(2n,\mathbb{C})$, $SO^*(2n)$, and $O(n, \mathbb{C})$, this subgroup is the stabilizer of a complete isotropic flag.

^{***} We denote by \mathbb{R}^* (respectively, \mathbb{R}^*_+ or \mathbb{C}^*) the multiplicative group of real (respectively, positive real or complex) numbers.

of subspaces. The homogeneous space $\mathrm{SL}(n,\mathbb{R})/P$ is the space of all flags in \mathbb{R}^n . The subgroup $P \subset \mathrm{SL}(n,\mathbb{R})$ is the stabilizer of the standard flag

$$\mathbb{R}^1 \subset \mathbb{R}^2 \subset \cdots \subset \mathbb{R}^{n-1}$$

of coordinate subspaces.

The Grassmannian $\operatorname{Gr}_{\alpha}$ is the space of all α -dimensional subspaces in \mathbb{R}^n . The Grassmannian is the homogeneous space $\operatorname{Gr}_{\alpha} = \operatorname{SL}(n,\mathbb{R})/Q_{\alpha}$, where Q_{α} is the maximal parabolic subgroup consisting of the block $(\alpha + (n - \alpha)) \times (\alpha + (n - \alpha))$ matrices $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$.

1.3. Principal series. Any character of $A \simeq (\mathbb{R}^*_+)^k$ has the form $\chi_s(x_1, \ldots, x_k) = \prod x_j^{s_j}$, where the s_j are complex numbers. Below we denote such characters by χ or χ_s . We denote by \widehat{A} the group of all characters $A \to \mathbb{C}^*$.

Let $\chi \in A$. Let τ be an irreducible representation of M. Denote by $\chi \otimes \tau$ the representation of P = MAN that is equal to χ on A, equal to τ on M, and trivial on N. By $\operatorname{Ind}_P^G(\chi \otimes \tau)$ we denote the representation of G induced from $\chi \otimes \tau$ (see [10] and [9]), i.e., a representation of the principal nondegenerate series.

Let us describe this construction in a self-contained way. Denote by Ξ the space of the representation $\chi \otimes \tau$. Consider the space $G \times \Xi$ and its quotient $G \times_P \Xi$ with respect to the equivalence relation

$$(g,\xi) \sim (gr, (\chi \otimes \tau)(r) \cdot \xi), \qquad g \in G, \ r \in P, \ \xi \in \Xi.$$

We have the natural map $G \times_P \Xi \to G/P$ given by $(g,\xi) \mapsto gP$; the fiber at each point is noncanonically isomorphic to Ξ . Thus, we obtain a bundle over G/P with fiber Ξ . The group Gacts on the total space of the bundle by the transformations $h: (g,\xi) \mapsto (hg,\xi)$.

In particular, the group G acts on the space of smooth sections of the bundle. This action is just the representation $\operatorname{Ind}_{P}^{G}(\chi \otimes \tau)$.

1.4. Example: SL (n, \mathbb{R}) . Let us give an alternative description of the representations $\operatorname{Ind}_{P}^{G}(\chi \otimes 1)$, where 1 is the trivial one-dimensional representation of M.

Consider the flag space G/P and the corresponding Grassmannians $\operatorname{Gr}_{\alpha} = G/Q_{\alpha}$. We equip each space G/Q_{α} with a K-invariant volume form^{*} Ω_{α} . For $\mathscr{V} \in G/P$, let V_{α} be its image under the map $G/P \to G/Q_{\alpha}$. (Thus, we forget all subspaces in (1) except for V_{α} .)

For $g \in G$, denote by $J_{\alpha}(g, \mathscr{V})$ the Jacobian

$$J_{\alpha}(g,\mathscr{V}) := [\Omega_{\alpha}(gV_{\alpha})/\Omega_{\alpha}(V_{\alpha})]$$

of the transformation $g: G/Q_{\alpha} \to G/Q_{\alpha}$ at the point V_{α} .

For $t_{\alpha} \in \mathbb{C}$, we define the representation

$$\rho_t(g)f(\mathscr{V}) := f(g\mathscr{V})\prod_{\alpha} J_{\alpha}(g,\mathscr{V})^{t_{\alpha}}$$

of G in the space of functions on G/P.

One can readily verify that this family of representations coincides with the family $\operatorname{Ind}_P^G(\chi_s \otimes 1)$, where χ_s ranges in \widehat{A} (and the dependence s = s(t) is some linear transformation).

At the level of the Lie algebra, this representation is defined by

$$\rho(X)f(\mathscr{V}) = (Xf)(\mathscr{V}) + \sum_{\alpha} t_{\alpha} [\mathscr{L}_{X}\Omega_{\alpha}/\Omega_{\alpha}]f(\mathscr{V}),$$

where $X \in \mathfrak{g}$ and \mathscr{L}_X is the Lie derivative (so that, in particular, $\mathscr{L}_X \Omega_\alpha / \Omega_\alpha$ is the divergence of the vector field X).

1.5. Irreducible representations. For fixed τ , the representation $\operatorname{Ind}_P^G(\chi_s \otimes \tau)$ is irreducible for generic χ_s . The singular set of s is contained in some locally finite family of complex hyperplanes.

^{*}Or density if G/Q_{α} is nonorientable.

By the subquotient theorem,^{*} each irreducible representation of G is *equivalent* to a subquotient (and even to a subrepresentation) of some representation $\operatorname{Ind}_P^G(\chi \otimes \tau)$; e.g., see [3] and [10].

Recall the meaning of the term *equivalent* in the previous statement. Let ρ be a representation of G in a complete locally convex linear topological space V. A vector $v \in V$ is K-finite if the set Kv spans a finite-dimensional subspace. The space of K-finite vectors is dense in V. If ρ is irreducible, then the Lie algebra \mathfrak{g} preserves the subspace of K-finite vectors. A natural equivalence of irreducible representations is an equivalence of the corresponding \mathfrak{g} -modules of K-finite vectors.^{**}

Let V° be the dual space. By $\{\cdot, \cdot\}$ we denote the pairing $V \times V^{\circ} \to \mathbb{C}$. A matrix element of the representation ρ is a function on G of the form

$$f(g) = \{\rho(g)h, h^{\circ}\}, \text{ where } h \in V \text{ and } h^{\circ} \in V^{\circ} \text{ are fixed.}$$

A matrix element is said to be *K*-finite if the vectors h and h° are *K*-finite.

1.6. Spherical representations (see [10] and [8]). Recall that an irreducible representation ρ of the group G in a space V is said to be *spherical* if there exists a K-fixed vector $v \in V$. By Gelfand's theorem, such a vector is unique, and hence we have the canonical matrix element

$$\Psi(g) = \{\rho(g)v, v^{\circ}\}, \text{ where } v \in V \text{ and } v^{\circ} \in V^{\circ} \text{ are the spherical vectors and } \{v, v^{\circ}\} = 1.$$

This element is called a *spherical function*. By construction, $\Psi(g)$ is biinvariant with respect to K,

$$\Psi(k_1gk_2) = \Psi(g), \qquad k_1, k_2 \in K.$$

Hence spherical functions can be viewed as functions on the double cosets $K \setminus G/K$.

In particular, Ψ is uniquely determined by its values on the subgroup A. Recall that G = KAK.

On the other hand, spherical functions can be treated as functions on the (symmetric) space G/K.

Spherical functions are special cases of the Heckman–Opdam multivariate hypergeometric functions; see [6].

Each representation $\operatorname{Ind}_P^G(\chi_s \otimes 1)$ of the principal series has a unique K-invariant vector.*** For generic s, the representation $\operatorname{Ind}_P^G(\chi_s \otimes 1)$ is irreducible and hence is a spherical representation itself. Each reducible representation $\operatorname{Ind}_P^G(\chi_s \otimes 1)$ contains a unique spherical irreducible subquotient, and Q1 each spherical representation of G can be obtained in this way.

Spherical representations are numbered by orbits of the Weyl group W on $\widehat{A} \simeq \mathbb{C}^k$. For a given $s \in \mathbb{C}^k$, we denote by $\Psi_s(g)$ the corresponding spherical function on G. This expression is holomorphic in s.

2. Statement of the Result

2.1. Formulation. For a finite-dimensional representation ξ of G, let $\mathfrak{M}(\xi)$ be the space of finite linear combinations of matrix elements of ξ .

Let V be a Harish-Chandra module (e.g., see [10]) over G. We denote by $\pi(g)$ the operators of representation of G in some completion of V. Let σ range in the set \hat{K} of all irreducible representations of K. Let $V = \bigoplus_{\sigma} V_{\sigma}$ be the decomposition of V into a direct sum of K-isotypical components (e.g., see [9]).

Proposition. (a) Let $(\pi, V) = \operatorname{Ind}_P^G(\chi \otimes \tau)$ be irreducible. Let V° be the dual module. Let $v \in V_\sigma$ and $w \in V_\theta^\circ$. There exists an irreducible finite-dimensional representation ξ of G and an $s \in \mathbb{C}^k$ such that the matrix element $\{\pi(g)v, w\}$ is a finite sum of the form

$$\{\pi(g)v,w\} = \sum_{j} h_j(g) \cdot p_j q_j \Psi_s(g),$$

^{*}This theorem is due to Harish-Chandra and Casselman and has strong versions due to Zhelobenko–Naimark (complex groups) and Langlands (real groups) with explicit indication of the subquotients.

^{**} An "irreducible Harish-Chandra module" mentioned in the title is the same as the \mathfrak{g} -module of K-finite vectors of an irreducible representation.

^{***} In the model of Sec. 1.4, it is a constant function.

where $h_j \in \mathfrak{M}(\xi), p_j \in \mathfrak{U}_l(\mathfrak{g}), and q_j \in \mathfrak{U}_r(\mathfrak{g}).$

(b) Let $(\pi, V) = \operatorname{Ind}_P^G(\chi \otimes \tau)$ be reducible. Then each K-finite matrix element admits a representation

$$\{\pi(g)v, w\} = \lim_{\varepsilon \to 0} \sum_{j} h_j(\varepsilon; g) \cdot p_j(\varepsilon) q_j(\varepsilon) \Psi_{s+\varepsilon t}(g),$$
(2)

where s and t are some elements of \mathbb{C}^k , the sum is finite, and $h_j(\varepsilon; g) \in \mathfrak{M}(\xi)$, $p_j(\varepsilon) \in \mathfrak{U}_l(\mathfrak{g})$, and $q_j(\varepsilon) \in \mathfrak{U}_r(\mathfrak{g})$ rationally depend on the parameter ε .

(c) For an arbitrary K-finite matrix element of an irreducible Harish-Chandra module, there exists a representation of the form (2).

2.2. Application. Domains of holomorphy of matrix elements. Let $G_{\mathbb{C}}$ be the complexification of the group G. Let $K_{\mathbb{C}}$ and $A_{\mathbb{C}} \subset G_{\mathbb{C}}$ be the complex subgroups corresponding to K and A. In particular, $A_{\mathbb{C}}$ is the complex torus $(\mathbb{C}^*)^k$.

Corollary. Each domain $\Omega \subset G_{\mathbb{C}}$, $\Omega \supset G$, of holomorphy of all spherical functions is a domain of holomorphy of all K-finite matrix elements of all irreducible Harish-Chandra modules over G.

Proof. A priori, the sum on the right-hand side in (2) is holomorphic for $g \in \Omega$ and $0 < |\varepsilon| < \delta$ and may have a pole at $\varepsilon = 0$. In the latter case, the function has an infinite limit at all points of the hypersurface $\varepsilon = 0$ except for a complex submanifold of codimension 1.

On the other hand, it has a finite limit as $\varepsilon \to 0$ for each $g \in G$. Hence our expression has in fact no pole on the surface $\varepsilon = 0$.

Let us discuss some versions of this corollary. Recall that $A_{\mathbb{C}} \simeq (\mathbb{C}^*)^k$. We denote elements of this group by $a = (a_1, \ldots, a_k)$.

1°. The Akhiezer-Gindikin domain. Let $\mathscr{A} \subset A_{\mathbb{C}}$ be the subset consisting of a such that $|\arg a_j| < \pi/4$. The Akhiezer-Gindikin domain $A\Gamma$ (see [1] and also [19]) is defined to be $G \cdot \mathscr{A} \cdot K_{\mathbb{C}}$. Since all spherical functions are holomorphic in $A\Gamma$, we see that all K-finite matrix elements are holomorphic in $A\Gamma$ as well. (This was established in [12].)

2°. The Casselman phenomenon.

Each K-finite matrix element of the group G admits an extension to a multivalued holomorphic function $G_{\mathbb{C}}$ having singularities (branchings) on some fixed (nonsmooth) submanifold of codimension 1 in $G_{\mathbb{C}}$.

First, consider the case $G = \mathrm{SL}(n, \mathbb{R})$. Let \mathscr{X}_n be the space of complex symmetric matrices with determinant 1. The group $G_{\mathbb{C}} = \mathrm{SL}(n, \mathbb{C})$ acts on \mathscr{X}_n by the formula $g: X \mapsto gXg^t$. The subgroup $K_{\mathbb{C}} = \mathrm{SO}(n, \mathbb{C})$ is the stabilizer of the point X = E; obviously, $\mathscr{X}_n \simeq G_{\mathbb{C}}/K_{\mathbb{C}}$.

Let $\mathscr{X}_n^{\circ} \subset \mathscr{X}_n$ be the set of matrices with pairwise distinct eigenvalues. Each matrix $\in \mathscr{X}_n^{\circ}$ can be reduced to diagonal form by an orthogonal transformation. According to [6], each spherical function can be extended as a branching analytic function to the submanifold of diagonal matrices in \mathscr{X}_n ; the functions thus obtained have branching on the set of matrices with multiple eigenvalues. Next, we extend these functions to \mathscr{X}_n by $K_{\mathbb{C}}$ -invariance and lift them from the homogeneous space $G_{\mathbb{C}}/K_{\mathbb{C}}$ to the group $G_{\mathbb{C}}$. Let $G_{\mathbb{C}}^{\circ}$ be the preimage of \mathscr{X}_n° in $G_{\mathbb{C}}$. A shorter description of $G_{\mathbb{C}}^{\circ}$ is as follows: a matrix $g \in G_{\mathbb{C}} = \mathrm{SL}(n, \mathbb{C})$ is contained in $G_{\mathbb{C}}^{\circ}$ if the eigenvalues of $g^t g$ are pairwise distinct.

By construction, the spherical functions of the group $G = \mathrm{SL}(n, \mathbb{R})$ admit multivalued holomorphic extension to the domain $G^{\circ}_{\mathbb{C}} \subset G_{\mathbb{C}}$. Hence all K-finite matrix elements of $\mathrm{SL}(n, \mathbb{R})$ can be extended to this domain.

Now let us describe the domain $G^{\circ}_{\mathbb{C}}$ for an arbitrary linear semisimple group G. Consider the symmetric space $\mathscr{X} = G_{\mathbb{C}}/K_{\mathbb{C}}$ and the $A_{\mathbb{C}}$ -orbit D of the initial point in $G_{\mathbb{C}}/K_{\mathbb{C}}$. Let D° be the set obtained from D by removing all points having a nontrivial stabilizer in the Weyl group. We define \mathscr{X}° as the union of all $K_{\mathbb{C}}$ -orbits that meet D° . Now $G^{\circ}_{\mathbb{C}}$ is the preimage of \mathscr{X}° in $G_{\mathbb{C}}$.

Each K-finite matrix element of G extends to be a multivalued holomorphic function on $G^{\circ}_{\mathbb{C}}$.

This fact is known; it was discovered in Casselman's famous unpublished paper, which is unavailable to the author; however, see [3].

3°. Thus, we see that a representation ρ of G can be extended to a branching holomorphic function on $G^{\circ}_{\mathbb{C}}$ ranging in the space of infinite matrices. A product $\rho(g_1) \cdot \rho(g_2)$ of such matrices generally diverges but is sometimes well defined (see [14] and [12]).

For any $X \in \mathfrak{g}_{\mathbb{C}}$ and $g \in G^{\circ}_{\mathbb{C}}$, we have

$$\frac{d}{d\varepsilon}\rho(\exp(\varepsilon X)g) = \rho(X)\rho(g).$$

The matrix $\rho(X)$ has only finitely many nonzero matrix elements in each row and each column, and hence the product of matrices is well defined.

4°. Groups of complex type. For the groups $SL(n, \mathbb{C})$, $SO(n, \mathbb{C})$, $Sp(2n, \mathbb{C})$, and SU(p,q), closedform expressions for the spherical functions are known (see [4] and [2]). Hence the expressions for the analytic continuations can be written out as well.

For example, let $G = \mathrm{SL}(n, \mathbb{C})$. Then $G_{\mathbb{C}} \simeq \mathrm{SL}(n, \mathbb{C}) \times \mathrm{SL}(n, \mathbb{C})$, and the subgroup $G \subset G_{\mathbb{C}}$ consists of elements of the form (g, \overline{g}) . Spherical functions on $G_{\mathbb{C}}$ are given by^{*}

$$\Psi_s(g,h) = \frac{\det_{1 \le j,k \le n} \{\lambda_j^{s_k/2}\}}{\det_{1 \le j,k \le n} \{\lambda_j^k\} \cdot \det_{1 \le j,k \le n} \{s_j^k\}},\tag{3}$$

where the λ_j are the eigenvalues of gh^t . The function $\Psi(g)$ is multivalued, since so is a power of a complex number. Our expression is well defined if all λ_j are pairwise distinct.

Further, the powers are single-valued in the domain $\arg \lambda_j < \pi$, and the zeros of the denominator coincide with those of the numerator. Thus, we obtain a holomorphic function on $G_{\mathbb{C}}$ minus the real submanifold

$$\{\arg \lambda_j = \pi \text{ for some } j\}$$

of codimension 1. However, by passing the remote singularity and returning to the group G, we obtain another branch. This branch, generally speaking, has a singularity on G supported by matrices with multiple singular numbers.

For all complex semisimple groups, spherical functions can be written out explicitly in the spirit of (3); see [4]. In particular, all their matrix elements are elementary^{**} functions.

For the groups U(p,q), the analog of (3) contains a determinant of one-dimensional hypergeometric functions, see [2]. Hence all their matrix elements can be expressed in the terms of usual Gauss hypergeometric functions (including derivatives of hypergeometric functions with respect to indices).

5°. Extended braid groups and monodromy. Let $\mathscr{Z}(\mathfrak{g})$ be the center of the enveloping algebra. Fix a character λ of $\mathscr{Z}(\mathfrak{g})$. Let σ and θ be irreducible representations of K acting in spaces W_{σ} and W_{θ} , respectively. Consider (branching) functions $f: G^{\circ} \to \operatorname{Hom}(W_{\sigma}, W_{\theta})$ satisfying the conditions • $f(k_1gk_2) = \theta(k_1)f(g)\sigma(k_2^{-1})$ for $g \in G^{\circ}_{\mathbb{C}}$ and $k_1, k_2 \in K_{\mathbb{C}}$.

•
$$pf = \lambda(p)f$$
 for each $p \in \mathscr{Z}(\mathfrak{g})$.

The monodromy group for this problem is the so-called extended Artin braid group, see [6]. As far as I know, these monodromy representations have never been studied.

 6° . Large domains of holomorphy. There are exceptional situations in which a unitary representation admits a holomorphic continuation to the entire complex group or into a subsemigroup; apparently, such cases are well understood.

For infinite-dimensional representations of semisimple Lie groups, the only possible case is highest weight representations, which admit an extension to Olshanski semigroups (see [18]). Some other situations are discussed in [15], [16, Secs. 1.1, 4.4, 5.4, 7.4–7.6, 9.7], [13], and [5]. It may happen that there are other cases of unexpectedly large (nonsemigroup) domains of holomorphy. As far as I know, this question has never been considered.

5

Q2

^{*}This formula is the analytic continuation of the Weyl character formula.

^{**} but very complicated ...

2.3. Nonlinear semisimple Lie groups. For universal coverings of the groups SU(p,q), $Sp(2n,\mathbb{R})$, and $SO^*(2n)$, our construction survives; we only have to replace spherical functions by appropriate Heckman–Opdam hypergeometric functions (see [7, Chap. 1]).

I do not know whether it is possible to express the matrix elements of universal covering groups of SO(p,q) and $SL(n,\mathbb{R})$ via the Heckman–Opdam hypergeometric functions.

3. Proof of the Proposition

First, we prove our assertion for the modules $\operatorname{Ind}_P^G(\chi_s \otimes 1)$; this is more or less obvious. Therefore, the assertion is valid for tensor products of such modules by finite-dimensional representations. The class of representations thus obtained contains whatever one likes as subfactors.

3.1. Proof for spherical representations. Let ρ be a spherical representation with parameter s in a space V. Let $h \in V$ be the spherical vector, and let h° be the spherical vector in V° . Since ρ is irreducible, it follows that vectors $v \in V_{\sigma}$ and $w \in V_{\theta}^{\circ}$ can be represented in the form $v = p(X) \cdot h$ and $w = q(X) \cdot h^{\circ}$, where p(X) and q(X) are appropriate elements of the enveloping algebra. Let q(-X) be the element obtained from q(X) by the standard antiinvolution on $\mathfrak{U}(\mathfrak{g})$. (It is defined as $X \mapsto -X$ for $X \in \mathfrak{g}$.) Then

$$\{\rho(g)v,w\} = \{\rho(g) \cdot p(X) \cdot h, q(X) \cdot h^{\circ}\}$$
$$= \{q(-X) \cdot \rho(g) \cdot p(X) \cdot h, h^{\circ}\} = q(-L_X)\Psi_s p(R_X)$$

3.2. Representations Ind $_{P}^{G}(\chi \otimes 1)$. The standard realization. Consider the flag space G/P and the corresponding Grassmannians, i.e., the quotient spaces G/Q_{α} , where the $Q_{\alpha} \supset P$ are maximal parabolic subgroups in G. Starting from this point, we can reproduce the construction in Sec. 1.4 word for word.

Thus, we have obtained a realization of the family $\operatorname{Ind}_P^G(\chi_s \otimes 1)$ such that

1. The action of K is independent of χ_s .

2. The operators of representation of the group G are continuous functions of s. More precisely, each K-finite matrix element is a continuous function of s.

3. The operators of representation of the Lie algebra \mathfrak{g} are linear expressions in the parameters s.

3.3. Proof for the representations \operatorname{Ind}_{P}^{G}(\chi \otimes 1). If $\chi = \chi_{s}$ is in general position (in fact, $s \in \mathbb{C}^{k}$ lies outside a locally finite family of complex hyperplanes), then π is an irreducible spherical representation. This situation was considered in Sec. 3.1.

Now let us examine the case of reducible π . The continuity of matrix elements as functions of the parameters s follows from Sec. 3.2.

Let V be the space of K-finite functions on the flag space G/P (see Secs. 1.4 and 3.2). Let $1 \in V$ be the function $f(\cdot) = 1$. Fix $\sigma, \theta \in \widehat{K}, v \in V_{\sigma}$, and $w \in V_{\theta}$.

Let $\mathfrak{U}^{N}(\mathfrak{g}) \subset \mathfrak{U}(\mathfrak{g})$ be the subspace consisting of all elements of degree $\leq N$. Let N be large enough that $\mathfrak{U}^{N}(\mathfrak{g}) \cdot 1$ contains the entire subspace V_{σ} for all generic characters^{*} χ_{s} . Consider a sequence $r_{1}, r_{2}, \cdots \in \mathfrak{U}^{N}$ such that, for generic χ_{s} ,

1. $r_j \cdot 1$ are linearly independent in $\operatorname{Ind}_P^G(\chi_s \otimes 1)$.

2. Their linear span contains V_{σ} .

These properties remain valid for all s outside a certain algebraic submanifold \mathscr{M} in the parameter space. Now we express the vector v as a linear combination of $r_j \cdot 1$, $v = \sum c_j(s)r_j \cdot 1$, where c_j are certain rational functions.

We reproduce the same arguments for V_{θ}° .

^{*}Decompose $\mathfrak{U}(\mathfrak{g}) = \bigoplus \mathfrak{U}(\mathfrak{g})_{\sigma}$ according to the adjoint action of K. The space $\mathfrak{U}(\mathfrak{g})_{\sigma}$ is a finitely generated module over the center $\mathscr{Z}(\mathfrak{g})$ of the enveloping algebra. For sufficiently large N, the subspace $\mathfrak{U}^{N}(\mathfrak{g})$ contains all generators of $\mathfrak{U}(\mathfrak{g})_{\sigma}$.

Let Y be an element of the Lie algebra of the group K, and let $p(X) \in \mathfrak{U}(\mathfrak{g})$. Then $(Yp(X)-p(X)Y)\cdot 1 = Yp(X)\cdot 1$. Hence $V_{\sigma} \subset \mathfrak{U}(\mathfrak{g})_{\sigma} \cdot 1 \subset \mathfrak{U}^{N}(\mathfrak{g})\mathscr{Z}(\mathfrak{g}) \cdot 1 = \mathfrak{U}^{N}(\mathfrak{g}) \cdot 1$.

Applying Sec. 3.1, we find that our matrix element has the form $\Xi(s)\Psi_s(g)$, where $\Xi(s)$ is an element of $\mathfrak{U}_l \otimes \mathfrak{U}_r$ depending rationally on s.

Now let s_0 be a singular value of s. Consider a complex line $\gamma(\varepsilon) = s_0 + \varepsilon t$ avoiding the submanifold \mathscr{M} and the singular values of the parameter s for small $|\varepsilon| > 0$. Then $\Xi(s_0 + \varepsilon t)\Psi_s(s_0 + \varepsilon t)$ is the desired approximation to our matrix element.

3.4. Main trick. Let ξ be an irreducible finite-dimensional representation of G in a space H. Following [11], consider the tensor product

$$\pi \otimes \xi = \operatorname{Ind}_{P}^{G}(\chi \otimes 1) \otimes \xi = \operatorname{Ind}_{P}^{G}(\chi \otimes \xi|_{P}).$$

$$\tag{4}$$

The representation $\xi|_P$ is in general not irreducible and admits a finite filtration

$$H_1 \supset H_2 \supset H_3 \supset \ldots$$

with irreducible subquotients. The nilpotent subgroup $N \subset P$ acts on the subquotients H_j/H_{j+1} trivially. The representations of the subgroup $MA \subset P$ on H_j/H_{j+1} have the form $\mu_j \otimes \tau_j$ for some characters μ_j of A and some irreducible representations τ_j of M.

Thus, the representation $\pi \otimes \xi$ has a filtration whose subquotients are representations of the principal series of the form $\operatorname{Ind}_P^G([\chi \cdot \mu_j] \otimes \tau_j)$.

3.5. Fix a representation $\tilde{\tau}$ of M and a character $\tilde{\chi}$ of A. We intend to realize $\operatorname{Ind}_P^G(\tilde{\chi} \otimes \tilde{\tau})$ as Q3 a subquotient in an appropriate tensor product (4).

We can choose a representation ξ of G such that the restriction of ξ to M contains $\tilde{\tau}$.* Then the restriction of ξ to P = MAN contains a subquotient of the form $\tilde{\mu} \otimes \tilde{\tau}$ with some character $\tilde{\mu}$.

Next, we choose a character χ of A such that $\chi \cdot \tilde{\mu} = \tilde{\chi}$. Thus, we find that $\operatorname{Ind}_{P}^{G}(\chi \otimes 1) \otimes \xi$ contains a given representation $\operatorname{Ind}_{P}^{G}(\tilde{\chi} \otimes \tilde{\tau})$ as a subquotient.

3.6. *K*-finite matrix elements of $\operatorname{Ind}_P^G(\widetilde{\chi} \otimes \widetilde{\tau})$ are contained in the set of *K*-finite matrix elements of $\operatorname{Ind}_P^G(\chi \otimes 1) \otimes \xi$. The latter matrix elements are linear combinations of products of *K*-finite matrix elements of $\operatorname{Ind}_P^G(\chi \otimes 1)$ by matrix elements of ξ . This completes the proof of (a) and (b).

3.7. End of proof. Assertion (c) follows from (a), (b), and the subquotient theorem.

References

- D. N. Akhiezer and S. G. Gindikin, "On Stein extensions of real symmetric spaces," Math. Ann., 286:1–3 (1990), 1–12.
- [2] F. A. Berezin and F. I. Karpelevič, "Zonal spherical functions and Laplace operators on some symmetric spaces," Dokl. Akad. Nauk SSSR (N.S.), 118 (1958), 9–12.
- [3] W. Casselman and Dr. Miličić, "Asymptotic behavior of matrix coefficients of admissible representations," Duke Math. J., 49:4 (1982), 869–930.
- [4] I. M. Gelfand and M. A. Neumark, "Unitary representations of classical groups," Trudy Mat. Inst. Steklov., 36 (1950); German transl.:Unitare Darstellungen der klassischen Gruppen, Akademie-Verlag, Berlin, 1957.
- [5] R. Goodman, "Holomorphic representations of nilpotent lie groups," J. Funct. Anal., 31 (1979), 115–137.
- [6] G. I. Heckman and E. M. Opdam, "Root systems and hypergeometric functions. I," Compositio Math, 64 (1987), 329–352.
- [7] G. Heckman and H. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Academic Press, San Diego, 1994.
- [8] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential, Academic Press, 1984.
- [9] A. A. Kirillov, Elements of representation theory, Springer-Verlag, 1976.

^{*}Proof. Let G_c be the compact form of G. Consider the induced representation $\operatorname{Ind}_M^{G_c}(\tilde{\tau})$. Let ξ be an irreducible subrepresentation. We can treat ξ as a representation of G. By the Frobenius reciprocity (see [9]), its restriction to M contains $\tilde{\tau}$.

- [10] A. Knapp, Representation Theory of Real Semisimple Groups, Princeton Univ. Press, Princeton, N.J., 1986.
- B. Kostant, "On the tensor product of a finite and an infinite dimensional representation," J. Funct. Anal., 20:4 (1975), 257–285.
- [12] B. Krötz and R. J. Stanton, "Holomorphic extensions of representations. II. Geometry and harmonic analysis," Geom. Funct. Anal., 15:1 (2005), 190–245.
- [13] G. L. Litvinov, "On completely reducible representations of complex and real Lie groups," Funct. Anal. Appl., 3:4 (1969), 332–334.
- [14] E. Nelson, "Analytic vectors," Ann. of Math., 70 (1959), 572–615.
- [15] Yu. A. Neretin, "Holomorphic continuations of representations of the group of diffeomorphisms of the circle," Mat. Sbornik, 180:5 (1989), 635–657, 720.
- [16] Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Mathematical Society Monographs, vol. 16, Oxford University Press, 1996.
- [17] Yu. A. Neretin, Branchning Integrals and Casselman Phenomenon, http://xxx. arxiv.org/abs/0710.2627.
- [18] G. I. Olshanskii, "Invariant cones in Lie algebras, Lie semigroups and holomorphic discrete series," Funct. Anal. Appl., 15 (1982), 275–285.
- [19] R. O. Wells, Jr. and J. A. Wolf, "Poincare series and automorphic cohomology on flag domains," Ann. of Math. (2), 105:3 (1977), 397–448.

INSTITUTE OF THEORETICAL AND EXPERIMENTAL PHYSICS, MATH. PHYS. GROUP UNIVERSITY OF VIENNA e-mail: neretin@mccme.ru

Translated by Yu. A. Neretin

Questions

- Q1. Ср. русский текст.
- Q2. Имеются в виду собственные значения?
- Q3. Почему крышки заменились на волны? Это нежелательно.