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Abstract. We show that each K -finite matrix element of an irreducible infinite-dimensional repre-
sentation of a semisimple Lie group can be obtained from spherical functions by a finite collection of
operations. In particular, each matrix element admits a finite expression via the Heckman–Opdam
hypergeometric functions.
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1. Preliminaries and Notation

1.1. Semisimple groups. Notation. Let G be a linear real semisimple Lie group, and let
K be the maximal compact subgroup in G. Let g be the Lie algebra of G, and let U(g) be its
universal enveloping algebra. Let LX and RX , where X ∈ g, be the left and right Lie derivatives
on G. Let Ul(g) (respectively, Ur(g)) be the algebra of differential operators on G generated by
the left (respectively, right) derivatives.

By P we denote the minimal parabolic subgroup∗∗ in G. Consider the decomposition P =
MAN , where N is the nilpotent radical, MA is the reductive Levi factor of P , M is the compact
subgroup, and A � (R∗

+)k is the vectorial subgroup.∗∗∗

1.2. Example: SL(n, R). Let G = SL(n, R) be the group of real n × n matrices g with
determinant 1. Then K = SO(n) is the subgroup of orthogonal matrices. The parabolic subgroup
P consists of upper-triangular matrices

g =

⎛
⎜⎝

a11 a12 . . .
0 a22 . . .
...

...
. . .

⎞
⎟⎠ ,

n∏
j=1

ajj = 1.

The nilpotent subgroup N ⊂ P consists of matrices such that a11 = a22 = · · · = 1.
The Levi subgroup MA ⊂ P consists of diagonal matrices; i.e., MA � (R∗)n−1 .
The compact factor M � (Z2)n−1 consists of diagonal matrices with eigenvalues ±1.
The vectorial subgroup A � (R∗

+)n−1 consists of diagonal matrices with positive entries.
Recall that a complete flag V in R

n is a collection

V : 0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ R
n, dimVj = j , (1)

∗Supported by grants FWF-P19064, NWO–047.017.015, and JSPS-RFBR 07.01.91209 and by the Russian Fed-
eral Agency for Nuclear Energy.

∗∗For a definition, e.g., see [10] and [7]. For the groups SL(n, C), SL(n, R), and SL(n, H), the subgroup P is
the stabilizer of a complete flag; for the remaining classical series SU(p, q), O(p, q), Sp(p, q), Sp(2n, R), Sp(2n, C),
SO∗(2n), and O(n, C), this subgroup is the stabilizer of a complete isotropic flag.

∗∗∗We denote by R
∗ (respectively, R

∗
+ or C

∗) the multiplicative group of real (respectively, positive real or
complex) numbers.
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of subspaces. The homogeneous space SL(n, R)/P is the space of all flags in R
n . The subgroup

P ⊂ SL(n, R) is the stabilizer of the standard flag

R
1 ⊂ R

2 ⊂ · · · ⊂ R
n−1

of coordinate subspaces.
The Grassmannian Grα is the space of all α-dimensional subspaces in R

n . The Grassmannian
is the homogeneous space Grα = SL(n, R)/Qα , where Qα is the maximal parabolic subgroup

consisting of the block (α + (n − α)) × (α + (n − α)) matrices
(

A B
0 C

)
.

1.3. Principal series. Any character of A � (R∗
+)k has the form χs(x1, . . . , xk) =

∏
x

sj

j ,
where the sj are complex numbers. Below we denote such characters by χ or χs . We denote by Â
the group of all characters A → C

∗ .
Let χ ∈ Â. Let τ be an irreducible representation of M . Denote by χ⊗ τ the representation of

P = MAN that is equal to χ on A, equal to τ on M , and trivial on N . By IndG
P (χ⊗ τ) we denote

the representation of G induced from χ⊗ τ (see [10] and [9]), i.e., a representation of the principal
nondegenerate series.

Let us describe this construction in a self-contained way. Denote by Ξ the space of the repre-
sentation χ⊗ τ . Consider the space G×Ξ and its quotient G×P Ξ with respect to the equivalence
relation

(g, ξ) ∼ (gr, (χ ⊗ τ)(r) · ξ), g ∈ G, r ∈ P, ξ ∈ Ξ.

We have the natural map G ×P Ξ → G/P given by (g, ξ) �→ gP ; the fiber at each point is
noncanonically isomorphic to Ξ. Thus, we obtain a bundle over G/P with fiber Ξ. The group G
acts on the total space of the bundle by the transformations h : (g, ξ) �→ (hg, ξ).

In particular, the group G acts on the space of smooth sections of the bundle. This action is
just the representation IndG

P (χ ⊗ τ).
1.4. Example: SL(n, R). Let us give an alternative description of the representations

IndG
P (χ ⊗ 1), where 1 is the trivial one-dimensional representation of M .
Consider the flag space G/P and the corresponding Grassmannians Grα = G/Qα . We equip

each space G/Qα with a K -invariant volume form∗ Ωα . For V ∈ G/P , let Vα be its image under
the map G/P → G/Qα . (Thus, we forget all subspaces in (1) except for Vα .)

For g ∈ G, denote by Jα(g, V ) the Jacobian

Jα(g, V ) := [Ωα(gVα)/Ωα(Vα)]

of the transformation g : G/Qα → G/Qα at the point Vα .
For tα ∈ C, we define the representation

ρt(g)f(V ) := f(gV )
∏
α

Jα(g, V )tα

of G in the space of functions on G/P .
One can readily verify that this family of representations coincides with the family IndG

P (χs⊗1),
where χs ranges in Â (and the dependence s = s(t) is some linear transformation).

At the level of the Lie algebra, this representation is defined by

ρ(X)f(V ) = (Xf)(V ) +
∑
α

tα[LXΩα/Ωα]f(V ),

where X ∈ g and LX is the Lie derivative (so that, in particular, LXΩα/Ωα is the divergence of
the vector field X ).

1.5. Irreducible representations. For fixed τ , the representation IndG
P (χs⊗ τ) is irreducible

for generic χs . The singular set of s is contained in some locally finite family of complex hyperplanes.

∗Or density if G/Qα is nonorientable.
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By the subquotient theorem,∗ each irreducible representation of G is equivalent to a subquotient
(and even to a subrepresentation) of some representation IndG

P (χ ⊗ τ); e.g., see [3] and [10].
Recall the meaning of the term equivalent in the previous statement. Let ρ be a representation

of G in a complete locally convex linear topological space V . A vector v ∈ V is K -finite if the
set Kv spans a finite-dimensional subspace. The space of K -finite vectors is dense in V . If ρ is
irreducible, then the Lie algebra g preserves the subspace of K -finite vectors. A natural equivalence
of irreducible representations is an equivalence of the corresponding g-modules of K -finite vectors.∗∗

Let V ◦ be the dual space. By { · , · } we denote the pairing V × V ◦ → C. A matrix element of
the representation ρ is a function on G of the form

f(g) = {ρ(g)h, h◦}, where h ∈ V and h◦ ∈ V ◦ are fixed.

A matrix element is said to be K -finite if the vectors h and h◦ are K -finite.
1.6. Spherical representations (see [10] and [8]). Recall that an irreducible representation

ρ of the group G in a space V is said to be spherical if there exists a K -fixed vector v ∈ V . By
Gelfand’s theorem, such a vector is unique, and hence we have the canonical matrix element

Ψ(g) = {ρ(g)v, v◦}, where v ∈ V and v◦ ∈ V ◦ are the spherical vectors and {v, v◦} = 1.

This element is called a spherical function. By construction, Ψ(g) is biinvariant with respect to K ,

Ψ(k1gk2) = Ψ(g), k1, k2 ∈ K.

Hence spherical functions can be viewed as functions on the double cosets K \ G/K .
In particular, Ψ is uniquely determined by its values on the subgroup A. Recall that G = KAK .
On the other hand, spherical functions can be treated as functions on the (symmetric) space

G/K .
Spherical functions are special cases of the Heckman–Opdam multivariate hypergeometric func-

tions; see [6].
Each representation IndG

P (χs⊗1) of the principal series has a unique K -invariant vector.∗∗∗ For
generic s, the representation IndG

P (χs⊗1) is irreducible and hence is a spherical representation itself.
Each reducible representation IndG

P (χs⊗1) contains a unique spherical irreducible subquotient, and Q1
each spherical representation of G can be obtained in this way.

Spherical representations are numbered by orbits of the Weyl group W on Â � C
k . For a

given s ∈ C
k , we denote by Ψs(g) the corresponding spherical function on G. This expression is

holomorphic in s.

2. Statement of the Result

2.1. Formulation. For a finite-dimensional representation ξ of G, let M(ξ) be the space of
finite linear combinations of matrix elements of ξ .

Let V be a Harish-Chandra module (e.g., see [10]) over G. We denote by π(g) the operators
of representation of G in some completion of V . Let σ range in the set K̂ of all irreducible
representations of K . Let V =

⊕
σ Vσ be the decomposition of V into a direct sum of K -isotypical

components (e.g., see [9]).
Proposition. (a) Let (π, V ) = IndG

P (χ ⊗ τ) be irreducible. Let V ◦ be the dual module. Let
v ∈ Vσ and w ∈ V ◦

θ . There exists an irreducible finite-dimensional representation ξ of G and an
s ∈ C

k such that the matrix element {π(g)v, w} is a finite sum of the form

{π(g)v, w} =
∑

j

hj(g) · pjqjΨs(g),

∗This theorem is due to Harish-Chandra and Casselman and has strong versions due to Zhelobenko–Naimark
(complex groups) and Langlands (real groups) with explicit indication of the subquotients.

∗∗An “irreducible Harish-Chandra module” mentioned in the title is the same as the g-module of K -finite vectors
of an irreducible representation.

∗∗∗In the model of Sec. 1.4, it is a constant function.
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where hj ∈ M(ξ), pj ∈ Ul(g), and qj ∈ Ur(g).
(b) Let (π, V ) = IndG

P (χ ⊗ τ) be reducible. Then each K -finite matrix element admits a repre-
sentation

{π(g)v, w} = lim
ε→0

∑
j

hj(ε; g) · pj(ε)qj(ε)Ψs+εt(g), (2)

where s and t are some elements of C
k , the sum is finite, and hj(ε; g) ∈ M(ξ), pj(ε) ∈ Ul(g), and

qj(ε) ∈ Ur(g) rationally depend on the parameter ε.
(c) For an arbitrary K -finite matrix element of an irreducible Harish-Chandra module, there

exists a representation of the form (2).

2.2. Application. Domains of holomorphy of matrix elements. Let GC be the complex-
ification of the group G. Let KC and AC ⊂ GC be the complex subgroups corresponding to K and
A. In particular, AC is the complex torus (C∗)k .

Corollary. Each domain Ω ⊂ GC , Ω ⊃ G, of holomorphy of all spherical functions is a domain
of holomorphy of all K -finite matrix elements of all irreducible Harish-Chandra modules over G.

Proof. A priori, the sum on the right-hand side in (2) is holomorphic for g ∈ Ω and 0 < |ε| < δ
and may have a pole at ε = 0. In the latter case, the function has an infinite limit at all points of
the hypersurface ε = 0 except for a complex submanifold of codimension 1.

On the other hand, it has a finite limit as ε → 0 for each g ∈ G. Hence our expression has in
fact no pole on the surface ε = 0.

Let us discuss some versions of this corollary. Recall that AC � (C∗)k . We denote elements of
this group by a = (a1, . . . , ak).

1◦ . The Akhiezer–Gindikin domain. Let A ⊂ AC be the subset consisting of a such that
| arg aj | < π/4. The Akhiezer–Gindikin domain AΓ (see [1] and also [19]) is defined to be G ·A ·KC .
Since all spherical functions are holomorphic in AΓ, we see that all K -finite matrix elements are
holomorphic in AΓ as well. (This was established in [12].)

2◦ . The Casselman phenomenon.
Each K -finite matrix element of the group G admits an extension to a multivalued holomorphic

function GC having singularities (branchings) on some fixed (nonsmooth) submanifold of codimen-
sion 1 in GC .

First, consider the case G = SL(n, R). Let Xn be the space of complex symmetric matrices
with determinant 1. The group GC = SL(n, C) acts on Xn by the formula g : X �→ gXgt . The
subgroup KC = SO(n, C) is the stabilizer of the point X = E ; obviously, Xn � GC/KC .

Let X ◦
n ⊂ Xn be the set of matrices with pairwise distinct eigenvalues. Each matrix ∈ X ◦

n

can be reduced to diagonal form by an orthogonal transformation. According to [6], each spherical
function can be extended as a branching analytic function to the submanifold of diagonal matrices
in Xn ; the functions thus obtained have branching on the set of matrices with multiple eigenvalues.
Next, we extend these functions to Xn by KC-invariance and lift them from the homogeneous space
GC/KC to the group GC . Let G◦

C
be the preimage of X ◦

n in GC . A shorter description of G◦
C

is
as follows: a matrix g ∈ GC = SL(n, C) is contained in G◦

C
if the eigenvalues of gtg are pairwise

distinct.
By construction, the spherical functions of the group G = SL(n, R) admit multivalued holo-

morphic extension to the domain G◦
C
⊂ GC . Hence all K -finite matrix elements of SL(n, R) can be

extended to this domain.
Now let us describe the domain G◦

C
for an arbitrary linear semisimple group G. Consider the

symmetric space X = GC/KC and the AC-orbit D of the initial point in GC/KC . Let D◦ be the
set obtained from D by removing all points having a nontrivial stabilizer in the Weyl group. We
define X ◦ as the union of all KC-orbits that meet D◦ . Now G◦

C
is the preimage of X ◦ in GC .

Each K -finite matrix element of G extends to be a multivalued holomorphic function on G◦
C
.

This fact is known; it was discovered in Casselman’s famous unpublished paper, which is un-
available to the author; however, see [3].
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3◦ . Thus, we see that a representation ρ of G can be extended to a branching holomorphic
function on G◦

C
ranging in the space of infinite matrices. A product ρ(g1) · ρ(g2) of such matrices

generally diverges but is sometimes well defined (see [14] and [12]).
For any X ∈ gC and g ∈ G◦

C
, we have

d

dε
ρ(exp(εX)g) = ρ(X)ρ(g).

The matrix ρ(X) has only finitely many nonzero matrix elements in each row and each column,
and hence the product of matrices is well defined.

4◦ . Groups of complex type. For the groups SL(n, C), SO(n, C), Sp(2n, C), and SU(p, q), closed-
form expressions for the spherical functions are known (see [4] and [2]). Hence the expressions for
the analytic continuations can be written out as well.

For example, let G = SL(n, C). Then GC � SL(n, C) × SL(n, C), and the subgroup G ⊂ GC

consists of elements of the form (g, g). Spherical functions on GC are given by∗

Ψs(g, h) =
det1�j,k�n{λsk/2

j }
det1�j,k�n{λk

j } · det1�j,k�n{sk
j }

, (3)

where the λj are the eigenvalues of ght . The function Ψ(g) is multivalued, since so is a power of a
complex number. Our expression is well defined if all λj are pairwise distinct.

Further, the powers are single-valued in the domain arg λj < π, and the zeros of the denominator
coincide with those of the numerator. Thus, we obtain a holomorphic function on GC minus the
real submanifold

{arg λj = π for some j}
of codimension 1. However, bypassing the remote singularity and returning to the group G, we
obtain another branch. This branch, generally speaking, has a singularity on G supported by
matrices with multiple singular numbers. Q2

For all complex semisimple groups, spherical functions can be written out explicitly in the spirit
of (3); see [4]. In particular, all their matrix elements are elementary∗∗ functions.

For the groups U(p, q), the analog of (3) contains a determinant of one-dimensional hyperge-
ometric functions, see [2]. Hence all their matrix elements can be expressed in the terms of usual
Gauss hypergeometric functions (including derivatives of hypergeometric functions with respect to
indices).

5◦ . Extended braid groups and monodromy. Let Z (g) be the center of the enveloping algebra.
Fix a character λ of Z (g). Let σ and θ be irreducible representations of K acting in spaces Wσ and
Wθ , respectively. Consider (branching) functions f : G◦ → Hom(Wσ, Wθ) satisfying the conditions

• f(k1gk2) = θ(k1)f(g)σ(k−1
2 ) for g ∈ G◦

C
and k1, k2 ∈ KC .

• pf = λ(p)f for each p ∈ Z (g).
The monodromy group for this problem is the so-called extended Artin braid group, see [6]. As

far as I know, these monodromy representations have never been studied.
6◦ . Large domains of holomorphy. There are exceptional situations in which a unitary repre-

sentation admits a holomorphic continuation to the entire complex group or into a subsemigroup;
apparently, such cases are well understood.

For infinite-dimensional representations of semisimple Lie groups, the only possible case is
highest weight representations, which admit an extension to Olshanski semigroups (see [18]). Some
other situations are discussed in [15], [16, Secs. 1.1, 4.4, 5.4, 7.4–7.6, 9.7], [13], and [5]. It may
happen that there are other cases of unexpectedly large (nonsemigroup) domains of holomorphy.
As far as I know, this question has never been considered.

∗This formula is the analytic continuation of the Weyl character formula.
∗∗but very complicated . . .
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2.3. Nonlinear semisimple Lie groups. For universal coverings of the groups SU(p, q),
Sp(2n, R), and SO∗(2n), our construction survives; we only have to replace spherical functions by
appropriate Heckman–Opdam hypergeometric functions (see [7, Chap. 1]).

I do not know whether it is possible to express the matrix elements of universal covering groups
of SO(p, q) and SL(n, R) via the Heckman–Opdam hypergeometric functions.

3. Proof of the Proposition

First, we prove our assertion for the modules IndG
P (χs⊗1); this is more or less obvious. Therefore,

the assertion is valid for tensor products of such modules by finite-dimensional representations. The
class of representations thus obtained contains whatever one likes as subfactors.

3.1. Proof for spherical representations. Let ρ be a spherical representation with param-
eter s in a space V . Let h ∈ V be the spherical vector, and let h◦ be the spherical vector in V ◦ .
Since ρ is irreducible, it follows that vectors v ∈ Vσ and w ∈ V ◦

θ can be represented in the form
v = p(X) · h and w = q(X) · h◦ , where p(X) and q(X) are appropriate elements of the enveloping
algebra. Let q(−X) be the element obtained from q(X) by the standard antiinvolution on U(g).
(It is defined as X �→ −X for X ∈ g.) Then

{ρ(g)v, w} = {ρ(g) · p(X) · h, q(X) · h◦}
= {q(−X) · ρ(g) · p(X) · h, h◦} = q(−LX)Ψsp(RX).

3.2. Representations IndG
P (χ ⊗ 1). The standard realization. Consider the flag space

G/P and the corresponding Grassmannians, i.e., the quotient spaces G/Qα , where the Qα ⊃ P are
maximal parabolic subgroups in G. Starting from this point, we can reproduce the construction in
Sec. 1.4 word for word.

Thus, we have obtained a realization of the family IndG
P (χs ⊗ 1) such that

1. The action of K is independent of χs .
2. The operators of representation of the group G are continuous functions of s. More precisely,

each K -finite matrix element is a continuous function of s.
3. The operators of representation of the Lie algebra g are linear expressions in the parameters s.
3.3. Proof for the representations IndG

P (χ ⊗ 1). If χ = χs is in general position (in fact,
s ∈ C

k lies outside a locally finite family of complex hyperplanes), then π is an irreducible spherical
representation. This situation was considered in Sec. 3.1.

Now let us examine the case of reducible π. The continuity of matrix elements as functions of
the parameters s follows from Sec. 3.2.

Let V be the space of K -finite functions on the flag space G/P (see Secs. 1.4 and 3.2). Let
1 ∈ V be the function f(·) = 1. Fix σ, θ ∈ K̂ , v ∈ Vσ , and w ∈ Vθ .

Let UN (g) ⊂ U(g) be the subspace consisting of all elements of degree � N . Let N be large
enough that UN (g) · 1 contains the entire subspace Vσ for all generic characters∗ χs . Consider a
sequence r1, r2, · · · ∈ UN such that, for generic χs ,

1. rj · 1 are linearly independent in IndG
P (χs ⊗ 1).

2. Their linear span contains Vσ .
These properties remain valid for all s outside a certain algebraic submanifold M in the pa-

rameter space. Now we express the vector v as a linear combination of rj · 1, v =
∑

cj(s)rj · 1,
where cj are certain rational functions.

We reproduce the same arguments for V ◦
θ .

∗Decompose U(g) =
L

U(g)σ according to the adjoint action of K . The space U(g)σ is a finitely generated
module over the center Z (g) of the enveloping algebra. For sufficiently large N , the subspace UN (g) contains all
generators of U(g)σ .

Let Y be an element of the Lie algebra of the group K , and let p(X) ∈ U(g). Then (Y p(X)−p(X)Y )·1 = Y p(X)·1.
Hence Vσ ⊂ U(g)σ · 1 ⊂ UN (g)Z (g) · 1 = UN (g) · 1.
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Applying Sec. 3.1, we find that our matrix element has the form Ξ(s)Ψs(g), where Ξ(s) is an
element of Ul ⊗ Ur depending rationally on s.

Now let s0 be a singular value of s. Consider a complex line γ(ε) = s0 + εt avoiding the
submanifold M and the singular values of the parameter s for small |ε| > 0. Then Ξ(s0+εt)Ψs(s0+
εt) is the desired approximation to our matrix element.

3.4. Main trick. Let ξ be an irreducible finite-dimensional representation of G in a space H .
Following [11], consider the tensor product

π ⊗ ξ = IndG
P (χ ⊗ 1) ⊗ ξ = IndG

P (χ ⊗ ξ|P ). (4)

The representation ξ|P is in general not irreducible and admits a finite filtration

H1 ⊃ H2 ⊃ H3 ⊃ . . .

with irreducible subquotients. The nilpotent subgroup N ⊂ P acts on the subquotients Hj/Hj+1

trivially. The representations of the subgroup MA ⊂ P on Hj/Hj+1 have the form µj ⊗τj for some
characters µj of A and some irreducible representations τj of M .

Thus, the representation π ⊗ ξ has a filtration whose subquotients are representations of the
principal series of the form IndG

P ([χ · µj ] ⊗ τj).

3.5. Fix a representation τ̃ of M and a character χ̃ of A. We intend to realize IndG
P (χ̃⊗ τ̃) as Q3

a subquotient in an appropriate tensor product (4).
We can choose a representation ξ of G such that the restriction of ξ to M contains τ̃ .∗ Then

the restriction of ξ to P = MAN contains a subquotient of the form µ̃⊗ τ̃ with some character µ̃.
Next, we choose a character χ of A such that χ · µ̃ = χ̃. Thus, we find that IndG

P (χ ⊗ 1) ⊗ ξ
contains a given representation IndG

P (χ̃ ⊗ τ̃) as a subquotient.

3.6. K -finite matrix elements of IndG
P (χ̃⊗τ̃) are contained in the set of K -finite matrix elements

of IndG
P (χ⊗1)⊗ξ . The latter matrix elements are linear combinations of products of K -finite matrix

elements of IndG
P (χ ⊗ 1) by matrix elements of ξ . This completes the proof of (a) and (b).

3.7. End of proof. Assertion (c) follows from (a), (b), and the subquotient theorem.
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[3] W. Casselman and Dr. Miličić, “Asymptotic behavior of matrix coefficients of admissible rep-
resentations,” Duke Math. J., 49:4 (1982), 869–930.

[4] I. M. Gelfand and M. A. Neumark, “Unitary representations of classical groups,” Trudy Mat.
Inst. Steklov., 36 (1950); German transl.:Unitare Darstellungen der klassischen Gruppen,
Akademie-Verlag, Berlin, 1957.

[5] R. Goodman, “Holomorphic representations of nilpotent lie groups,” J. Funct. Anal., 31 (1979),
115–137.

[6] G. I. Heckman and E. M. Opdam, “Root systems and hypergeometric functions. I,” Compositio
Math, 64 (1987), 329–352.

[7] G. Heckman and H. Schlichtkrull, Harmonic analysis and special functions on symmetric
spaces, Academic Press, San Diego, 1994.

[8] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential, Academic
Press, 1984.

[9] A. A. Kirillov, Elements of representation theory, Springer-Verlag, 1976.

∗Proof. Let Gc be the compact form of G. Consider the induced representation IndGc
M (eτ). Let ξ be an irreducible

subrepresentation. We can treat ξ as a representation of G. By the Frobenius reciprocity (see [9]), its restriction to
M contains eτ .



8

[10] A. Knapp, Representation Theory of Real Semisimple Groups, Princeton Univ. Press, Prince-
ton, N.J., 1986.

[11] B. Kostant, “On the tensor product of a finite and an infinite dimensional representation,” J.
Funct. Anal., 20:4 (1975), 257–285.
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Questions

Q1. Ср. русский текст.
Q2. Имеются в виду собственные значения?
Q3. Почему крышки заменились на волны? Это нежелательно.


