\boldsymbol{K}-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric Functions*

Yu. A. Neretin
Received March 31, 2006

> To the memory of Dmitry Petrovich Zhelobenko, by whose classical book the author learned Lie groups and representations

Abstract

We show that each K-finite matrix element of an irreducible infinite-dimensional representation of a semisimple Lie group can be obtained from spherical functions by a finite collection of operations. In particular, each matrix element admits a finite expression via the Heckman-Opdam hypergeometric functions.

Key words: semisimple Lie group, Harish-Chandra module, infinite-dimensional representation, spherical function, matrix element, special function, Heckman-Opdam hypergeometric function.

1. Preliminaries and Notation

1.1. Semisimple groups. Notation. Let G be a linear real semisimple Lie group, and let K be the maximal compact subgroup in G. Let \mathfrak{g} be the Lie algebra of G, and let $\mathfrak{U}(\mathfrak{g})$ be its universal enveloping algebra. Let L_{X} and R_{X}, where $X \in \mathfrak{g}$, be the left and right Lie derivatives on G. Let $\mathfrak{U}_{l}(\mathfrak{g})$ (respectively, $\mathfrak{U}_{r}(\mathfrak{g})$) be the algebra of differential operators on G generated by the left (respectively, right) derivatives.

By P we denote the minimal parabolic subgroup** in G. Consider the decomposition $P=$ $M A N$, where N is the nilpotent radical, $M A$ is the reductive Levi factor of P, M is the compact subgroup, and $A \simeq\left(\mathbb{R}_{+}^{*}\right)^{k}$ is the vectorial subgroup. ${ }^{* * *}$
1.2. Example: $\mathbf{S L}(\boldsymbol{n}, \mathbb{R})$. Let $G=\operatorname{SL}(n, \mathbb{R})$ be the group of real $n \times n$ matrices g with determinant 1. Then $K=S O(n)$ is the subgroup of orthogonal matrices. The parabolic subgroup P consists of upper-triangular matrices

$$
g=\left(\begin{array}{ccc}
a_{11} & a_{12} & \ldots \\
0 & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right), \quad \prod_{j=1}^{n} a_{j j}=1
$$

The nilpotent subgroup $N \subset P$ consists of matrices such that $a_{11}=a_{22}=\cdots=1$.
The Levi subgroup $M A \subset P$ consists of diagonal matrices; i.e., $M A \simeq\left(\mathbb{R}^{*}\right)^{n-1}$.
The compact factor $M \simeq\left(\mathbb{Z}_{2}\right)^{n-1}$ consists of diagonal matrices with eigenvalues ± 1.
The vectorial subgroup $A \simeq\left(\mathbb{R}_{+}^{*}\right)^{n-1}$ consists of diagonal matrices with positive entries.
Recall that a complete flag \mathscr{V} in \mathbb{R}^{n} is a collection

$$
\begin{equation*}
\mathscr{V}: 0 \subset V_{1} \subset V_{2} \subset \cdots \subset V_{n-1} \subset \mathbb{R}^{n}, \quad \operatorname{dim} V_{j}=j \tag{1}
\end{equation*}
$$

[^0]of subspaces. The homogeneous space $\operatorname{SL}(n, \mathbb{R}) / P$ is the space of all flags in \mathbb{R}^{n}. The subgroup $P \subset \mathrm{SL}(n, \mathbb{R})$ is the stabilizer of the standard flag
$$
\mathbb{R}^{1} \subset \mathbb{R}^{2} \subset \cdots \subset \mathbb{R}^{n-1}
$$
of coordinate subspaces.

The Grassmannian $\operatorname{Gr}_{\alpha}$ is the space of all α-dimensional subspaces in \mathbb{R}^{n}. The Grassmannian is the homogeneous space $\mathrm{Gr}_{\alpha}=\mathrm{SL}(n, \mathbb{R}) / Q_{\alpha}$, where Q_{α} is the maximal parabolic subgroup consisting of the block $(\alpha+(n-\alpha)) \times(\alpha+(n-\alpha))$ matrices $\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$.
1.3. Principal series. Any character of $A \simeq\left(\mathbb{R}_{+}^{*}\right)^{k}$ has the form $\chi_{s}\left(x_{1}, \ldots, x_{k}\right)=\prod x_{j}^{s_{j}}$, where the s_{j} are complex numbers. Below we denote such characters by χ or χ_{s}. We denote by \widehat{A} the group of all characters $A \rightarrow \mathbb{C}^{*}$.

Let $\chi \in \widehat{A}$. Let τ be an irreducible representation of M. Denote by $\chi \otimes \tau$ the representation of $P=M A N$ that is equal to χ on A, equal to τ on M, and trivial on N. By $\operatorname{Ind}_{P}^{G}(\chi \otimes \tau)$ we denote the representation of G induced from $\chi \otimes \tau$ (see [10] and [9]), i.e., a representation of the principal nondegenerate series.

Let us describe this construction in a self-contained way. Denote by Ξ the space of the representation $\chi \otimes \tau$. Consider the space $G \times \Xi$ and its quotient $G \times_{P} \Xi$ with respect to the equivalence relation

$$
(g, \xi) \sim(g r,(\chi \otimes \tau)(r) \cdot \xi), \quad g \in G, r \in P, \xi \in \Xi
$$

We have the natural map $G \times{ }_{P} \Xi \rightarrow G / P$ given by $(g, \xi) \mapsto g P$; the fiber at each point is noncanonically isomorphic to Ξ. Thus, we obtain a bundle over G / P with fiber Ξ. The group G acts on the total space of the bundle by the transformations $h:(g, \xi) \mapsto(h g, \xi)$.

In particular, the group G acts on the space of smooth sections of the bundle. This action is just the representation $\operatorname{Ind}_{P}^{G}(\chi \otimes \tau)$.
1.4. Example: $\operatorname{SL}(\boldsymbol{n}, \mathbb{R})$. Let us give an alternative description of the representations $\operatorname{Ind}_{P}^{G}(\chi \otimes 1)$, where 1 is the trivial one-dimensional representation of M.

Consider the flag space G / P and the corresponding Grassmannians $\operatorname{Gr}_{\alpha}=G / Q_{\alpha}$. We equip each space G / Q_{α} with a K-invariant volume form* Ω_{α}. For $\mathscr{V} \in G / P$, let V_{α} be its image under the map $G / P \rightarrow G / Q_{\alpha}$. (Thus, we forget all subspaces in (1) except for V_{α}.)

For $g \in G$, denote by $J_{\alpha}(g, \mathscr{V})$ the Jacobian

$$
J_{\alpha}(g, \mathscr{V}):=\left[\Omega_{\alpha}\left(g V_{\alpha}\right) / \Omega_{\alpha}\left(V_{\alpha}\right)\right]
$$

of the transformation $g: G / Q_{\alpha} \rightarrow G / Q_{\alpha}$ at the point V_{α}.
For $t_{\alpha} \in \mathbb{C}$, we define the representation

$$
\rho_{t}(g) f(\mathscr{V}):=f\left(g^{\mathscr{V}}\right) \prod_{\alpha} J_{\alpha}(g, \mathscr{V})^{t_{\alpha}}
$$

of G in the space of functions on G / P.
One can readily verify that this family of representations coincides with the family $\operatorname{Ind}_{P}^{G}\left(\chi_{s} \otimes 1\right)$, where χ_{s} ranges in \widehat{A} (and the dependence $s=s(t)$ is some linear transformation).

At the level of the Lie algebra, this representation is defined by

$$
\rho(X) f(\mathscr{V})=(X f)(\mathscr{V})+\sum_{\alpha} t_{\alpha}\left[\mathscr{L}_{X} \Omega_{\alpha} / \Omega_{\alpha}\right] f(\mathscr{V})
$$

where $X \in \mathfrak{g}$ and \mathscr{L}_{X} is the Lie derivative (so that, in particular, $\mathscr{L}_{X} \Omega_{\alpha} / \Omega_{\alpha}$ is the divergence of the vector field X).
1.5. Irreducible representations. For fixed τ, the representation $\operatorname{Ind}_{P}^{G}\left(\chi_{s} \otimes \tau\right)$ is irreducible for generic χ_{s}. The singular set of s is contained in some locally finite family of complex hyperplanes.

[^1]By the subquotient theorem, ${ }^{*}$ each irreducible representation of G is equivalent to a subquotient (and even to a subrepresentation) of some representation $\operatorname{Ind}_{P}^{G}(\chi \otimes \tau)$; e.g., see [3] and [10].

Recall the meaning of the term equivalent in the previous statement. Let ρ be a representation of G in a complete locally convex linear topological space V. A vector $v \in V$ is K-finite if the set $K v$ spans a finite-dimensional subspace. The space of K-finite vectors is dense in V. If ρ is irreducible, then the Lie algebra \mathfrak{g} preserves the subspace of K-finite vectors. A natural equivalence of irreducible representations is an equivalence of the corresponding \mathfrak{g}-modules of K-finite vectors.**

Let V° be the dual space. By $\{\cdot, \cdot\}$ we denote the pairing $V \times V^{\circ} \rightarrow \mathbb{C}$. A matrix element of the representation ρ is a function on G of the form

$$
f(g)=\left\{\rho(g) h, h^{\circ}\right\}, \quad \text { where } h \in V \text { and } h^{\circ} \in V^{\circ} \text { are fixed. }
$$

A matrix element is said to be K-finite if the vectors h and h° are K-finite.
1.6. Spherical representations (see [10] and [8]). Recall that an irreducible representation ρ of the group G in a space V is said to be spherical if there exists a K-fixed vector $v \in V$. By Gelfand's theorem, such a vector is unique, and hence we have the canonical matrix element
$\Psi(g)=\left\{\rho(g) v, v^{\circ}\right\}, \quad$ where $v \in V$ and $v^{\circ} \in V^{\circ}$ are the spherical vectors and $\left\{v, v^{\circ}\right\}=1$.
This element is called a spherical function. By construction, $\Psi(g)$ is biinvariant with respect to K,

$$
\Psi\left(k_{1} g k_{2}\right)=\Psi(g), \quad k_{1}, k_{2} \in K
$$

Hence spherical functions can be viewed as functions on the double cosets $K \backslash G / K$.
In particular, Ψ is uniquely determined by its values on the subgroup A. Recall that $G=K A K$.
On the other hand, spherical functions can be treated as functions on the (symmetric) space G / K.

Spherical functions are special cases of the Heckman-Opdam multivariate hypergeometric functions; see [6].

Each representation $\operatorname{Ind}_{P}^{G}\left(\chi_{s} \otimes 1\right)$ of the principal series has a unique K-invariant vector. ${ }^{* * *}$ For generic s, the representation $\operatorname{Ind}_{P}^{G}\left(\chi_{s} \otimes 1\right)$ is irreducible and hence is a spherical representation itself. Each reducible representation $\operatorname{Ind}_{P}^{G}\left(\chi_{s} \otimes 1\right)$ contains a unique spherical irreducible subquotient, and each spherical representation of G can be obtained in this way.

Spherical representations are numbered by orbits of the Weyl group W on $\widehat{A} \simeq \mathbb{C}^{k}$. For a given $s \in \mathbb{C}^{k}$, we denote by $\Psi_{s}(g)$ the corresponding spherical function on G. This expression is holomorphic in s.

2. Statement of the Result

2.1. Formulation. For a finite-dimensional representation ξ of G, let $\mathfrak{M}(\xi)$ be the space of finite linear combinations of matrix elements of ξ.

Let V be a Harish-Chandra module (e.g., see [10]) over G. We denote by $\pi(g)$ the operators of representation of G in some completion of V. Let σ range in the set \widehat{K} of all irreducible representations of K. Let $V=\bigoplus_{\sigma} V_{\sigma}$ be the decomposition of V into a direct sum of K-isotypical components (e.g., see [9]).

Proposition. (a) Let $(\pi, V)=\operatorname{Ind}_{P}^{G}(\chi \otimes \tau)$ be irreducible. Let V° be the dual module. Let $v \in V_{\sigma}$ and $w \in V_{\theta}^{\circ}$. There exists an irreducible finite-dimensional representation ξ of G and an $s \in \mathbb{C}^{k}$ such that the matrix element $\{\pi(g) v, w\}$ is a finite sum of the form

$$
\{\pi(g) v, w\}=\sum_{j} h_{j}(g) \cdot p_{j} q_{j} \Psi_{s}(g),
$$

[^2]where $h_{j} \in \mathfrak{M}(\xi), p_{j} \in \mathfrak{U}_{l}(\mathfrak{g})$, and $q_{j} \in \mathfrak{U}_{r}(\mathfrak{g})$.
(b) Let $(\pi, V)=\operatorname{Ind}_{P}^{G}(\chi \otimes \tau)$ be reducible. Then each K-finite matrix element admits a representation
\[

$$
\begin{equation*}
\{\pi(g) v, w\}=\lim _{\varepsilon \rightarrow 0} \sum_{j} h_{j}(\varepsilon ; g) \cdot p_{j}(\varepsilon) q_{j}(\varepsilon) \Psi_{s+\varepsilon t}(g), \tag{2}
\end{equation*}
$$

\]

where s and t are some elements of \mathbb{C}^{k}, the sum is finite, and $h_{j}(\varepsilon ; g) \in \mathfrak{M}(\xi), p_{j}(\varepsilon) \in \mathfrak{U}_{l}(\mathfrak{g})$, and $q_{j}(\varepsilon) \in \mathfrak{U}_{r}(\mathfrak{g})$ rationally depend on the parameter ε.
(c) For an arbitrary K-finite matrix element of an irreducible Harish-Chandra module, there exists a representation of the form (2).
2.2. Application. Domains of holomorphy of matrix elements. Let $G_{\mathbb{C}}$ be the complexification of the group G. Let $K_{\mathbb{C}}$ and $A_{\mathbb{C}} \subset G_{\mathbb{C}}$ be the complex subgroups corresponding to K and A. In particular, $A_{\mathbb{C}}$ is the complex torus $\left(\mathbb{C}^{*}\right)^{k}$.

Corollary. Each domain $\Omega \subset G_{\mathbb{C}}, \Omega \supset G$, of holomorphy of all spherical functions is a domain of holomorphy of all K-finite matrix elements of all irreducible Harish-Chandra modules over G.

Proof. A priori, the sum on the right-hand side in (2) is holomorphic for $g \in \Omega$ and $0<|\varepsilon|<\delta$ and may have a pole at $\varepsilon=0$. In the latter case, the function has an infinite limit at all points of the hypersurface $\varepsilon=0$ except for a complex submanifold of codimension 1 .

On the other hand, it has a finite limit as $\varepsilon \rightarrow 0$ for each $g \in G$. Hence our expression has in fact no pole on the surface $\varepsilon=0$.

Let us discuss some versions of this corollary. Recall that $A_{\mathbb{C}} \simeq\left(\mathbb{C}^{*}\right)^{k}$. We denote elements of this group by $a=\left(a_{1}, \ldots, a_{k}\right)$.
1°. The Akhiezer-Gindikin domain. Let $\mathscr{A} \subset A_{\mathbb{C}}$ be the subset consisting of a such that $\left|\arg a_{j}\right|<\pi / 4$. The Akhiezer-Gindikin domain $A \Gamma$ (see [1] and also [19]) is defined to be $G \cdot \mathscr{A} \cdot K_{\mathbb{C}}$. Since all spherical functions are holomorphic in $A \Gamma$, we see that all K-finite matrix elements are holomorphic in $A \Gamma$ as well. (This was established in [12].)
2°. The Casselman phenomenon.
Each K-finite matrix element of the group G admits an extension to a multivalued holomorphic function $G_{\mathbb{C}}$ having singularities (branchings) on some fixed (nonsmooth) submanifold of codimension 1 in $G_{\mathbb{C}}$.

First, consider the case $G=\operatorname{SL}(n, \mathbb{R})$. Let \mathscr{X}_{n} be the space of complex symmetric matrices with determinant 1 . The group $G_{\mathbb{C}}=\mathrm{SL}(n, \mathbb{C})$ acts on \mathscr{X}_{n} by the formula $g: X \mapsto g X g^{t}$. The subgroup $K_{\mathbb{C}}=\operatorname{SO}(n, \mathbb{C})$ is the stabilizer of the point $X=E$; obviously, $\mathscr{X}_{n} \simeq G_{\mathbb{C}} / K_{\mathbb{C}}$.

Let $\mathscr{X}_{n}^{\circ} \subset \mathscr{X}_{n}$ be the set of matrices with pairwise distinct eigenvalues. Each matrix $\in \mathscr{X}_{n}^{\circ}$ can be reduced to diagonal form by an orthogonal transformation. According to [6], each spherical function can be extended as a branching analytic function to the submanifold of diagonal matrices in \mathscr{X}_{n}; the functions thus obtained have branching on the set of matrices with multiple eigenvalues. Next, we extend these functions to \mathscr{X}_{n} by $K_{\mathbb{C}}$-invariance and lift them from the homogeneous space $G_{\mathbb{C}} / K_{\mathbb{C}}$ to the group $G_{\mathbb{C}}$. Let $G_{\mathbb{C}}^{\circ}$ be the preimage of \mathscr{X}_{n}° in $G_{\mathbb{C}}$. A shorter description of $G_{\mathbb{C}}^{\circ}$ is as follows: a matrix $g \in G_{\mathbb{C}}=\operatorname{SL}(n, \mathbb{C})$ is contained in $G_{\mathbb{C}}^{\circ}$ if the eigenvalues of $g^{t} g$ are pairwise distinct.

By construction, the spherical functions of the group $G=\mathrm{SL}(n, \mathbb{R})$ admit multivalued holomorphic extension to the domain $G_{\mathbb{C}}^{\circ} \subset G_{\mathbb{C}}$. Hence all K-finite matrix elements of $\operatorname{SL}(n, \mathbb{R})$ can be extended to this domain.

Now let us describe the domain $G_{\mathbb{C}}^{\circ}$ for an arbitrary linear semisimple group G. Consider the symmetric space $\mathscr{X}=G_{\mathbb{C}} / K_{\mathbb{C}}$ and the $A_{\mathbb{C}}$-orbit D of the initial point in $G_{\mathbb{C}} / K_{\mathbb{C}}$. Let D° be the set obtained from D by removing all points having a nontrivial stabilizer in the Weyl group. We define \mathscr{X}° as the union of all $K_{\mathbb{C}}$-orbits that meet D°. Now $G_{\mathbb{C}}^{\circ}$ is the preimage of \mathscr{X}° in $G_{\mathbb{C}}$.

Each K-finite matrix element of G extends to be a multivalued holomorphic function on $G_{\mathbb{C}}^{\circ}$.
This fact is known; it was discovered in Casselman's famous unpublished paper, which is unavailable to the author; however, see [3].
3°. Thus, we see that a representation ρ of G can be extended to a branching holomorphic function on $G_{\mathbb{C}}^{\circ}$ ranging in the space of infinite matrices. A product $\rho\left(g_{1}\right) \cdot \rho\left(g_{2}\right)$ of such matrices generally diverges but is sometimes well defined (see [14] and [12]).

For any $X \in \mathfrak{g}_{\mathbb{C}}$ and $g \in G_{\mathbb{C}}^{\circ}$, we have

$$
\frac{d}{d \varepsilon} \rho(\exp (\varepsilon X) g)=\rho(X) \rho(g)
$$

The matrix $\rho(X)$ has only finitely many nonzero matrix elements in each row and each column, and hence the product of matrices is well defined.
4°. Groups of complex type. For the groups $\mathrm{SL}(n, \mathbb{C}), \mathrm{SO}(n, \mathbb{C}), \mathrm{Sp}(2 n, \mathbb{C})$, and $\mathrm{SU}(p, q)$, closedform expressions for the spherical functions are known (see [4] and [2]). Hence the expressions for the analytic continuations can be written out as well.

For example, let $G=\operatorname{SL}(n, \mathbb{C})$. Then $G_{\mathbb{C}} \simeq \operatorname{SL}(n, \mathbb{C}) \times \operatorname{SL}(n, \mathbb{C})$, and the subgroup $G \subset G_{\mathbb{C}}$ consists of elements of the form (g, \bar{g}). Spherical functions on $G_{\mathbb{C}}$ are given by*

$$
\begin{equation*}
\Psi_{s}(g, h)=\frac{\operatorname{det}_{1 \leqslant j, k \leqslant n}\left\{\lambda_{j}^{s_{k} / 2}\right\}}{\operatorname{det}_{1 \leqslant j, k \leqslant n}\left\{\lambda_{j}^{k}\right\} \cdot \operatorname{det}_{1 \leqslant j, k \leqslant n}\left\{s_{j}^{k}\right\}}, \tag{3}
\end{equation*}
$$

where the λ_{j} are the eigenvalues of $g h^{t}$. The function $\Psi(g)$ is multivalued, since so is a power of a complex number. Our expression is well defined if all λ_{j} are pairwise distinct.

Further, the powers are single-valued in the domain $\arg \lambda_{j}<\pi$, and the zeros of the denominator coincide with those of the numerator. Thus, we obtain a holomorphic function on $G_{\mathbb{C}}$ minus the real submanifold

$$
\left\{\arg \lambda_{j}=\pi \text { for some } j\right\}
$$

of codimension 1 . However, bypassing the remote singularity and returning to the group G, we obtain another branch. This branch, generally speaking, has a singularity on G supported by matrices with multiple singular numbers.

For all complex semisimple groups, spherical functions can be written out explicitly in the spirit of (3); see [4]. In particular, all their matrix elements are elementary** functions.

For the groups $\mathrm{U}(p, q)$, the analog of (3) contains a determinant of one-dimensional hypergeometric functions, see [2]. Hence all their matrix elements can be expressed in the terms of usual Gauss hypergeometric functions (including derivatives of hypergeometric functions with respect to indices).
5°. Extended braid groups and monodromy. Let $\mathscr{Z}(\mathfrak{g})$ be the center of the enveloping algebra. Fix a character λ of $\mathscr{Z}(\mathfrak{g})$. Let σ and θ be irreducible representations of K acting in spaces W_{σ} and W_{θ}, respectively. Consider (branching) functions $f: G^{\circ} \rightarrow \operatorname{Hom}\left(W_{\sigma}, W_{\theta}\right)$ satisfying the conditions

- $f\left(k_{1} g k_{2}\right)=\theta\left(k_{1}\right) f(g) \sigma\left(k_{2}^{-1}\right)$ for $g \in G_{\mathbb{C}}^{\circ}$ and $k_{1}, k_{2} \in K_{\mathbb{C}}$.
- $p f=\lambda(p) f$ for each $p \in \mathscr{Z}(\mathfrak{g})$.

The monodromy group for this problem is the so-called extended Artin braid group, see [6]. As far as I know, these monodromy representations have never been studied.
6°. Large domains of holomorphy. There are exceptional situations in which a unitary representation admits a holomorphic continuation to the entire complex group or into a subsemigroup; apparently, such cases are well understood.

For infinite-dimensional representations of semisimple Lie groups, the only possible case is highest weight representations, which admit an extension to Olshanski semigroups (see [18]). Some other situations are discussed in [15], [16, Secs. 1.1, 4.4, 5.4, 7.4-7.6, 9.7], [13], and [5]. It may happen that there are other cases of unexpectedly large (nonsemigroup) domains of holomorphy. As far as I know, this question has never been considered.

[^3]2.3. Nonlinear semisimple Lie groups. For universal coverings of the groups $\operatorname{SU}(p, q)$, $\operatorname{Sp}(2 n, \mathbb{R})$, and $\mathrm{SO}^{*}(2 n)$, our construction survives; we only have to replace spherical functions by appropriate Heckman-Opdam hypergeometric functions (see [7, Chap. 1]).

I do not know whether it is possible to express the matrix elements of universal covering groups of $\mathrm{SO}(p, q)$ and $\mathrm{SL}(n, \mathbb{R})$ via the Heckman-Opdam hypergeometric functions.

3. Proof of the Proposition

First, we prove our assertion for the modules $\operatorname{Ind}_{P}^{G}\left(\chi_{s} \otimes 1\right)$; this is more or less obvious. Therefore, the assertion is valid for tensor products of such modules by finite-dimensional representations. The class of representations thus obtained contains whatever one likes as subfactors.
3.1. Proof for spherical representations. Let ρ be a spherical representation with parameter s in a space V. Let $h \in V$ be the spherical vector, and let h° be the spherical vector in V°. Since ρ is irreducible, it follows that vectors $v \in V_{\sigma}$ and $w \in V_{\theta}^{\circ}$ can be represented in the form $v=p(X) \cdot h$ and $w=q(X) \cdot h^{\circ}$, where $p(X)$ and $q(X)$ are appropriate elements of the enveloping algebra. Let $q(-X)$ be the element obtained from $q(X)$ by the standard antiinvolution on $\mathfrak{U}(\mathfrak{g})$. (It is defined as $X \mapsto-X$ for $X \in \mathfrak{g}$.) Then

$$
\begin{aligned}
\{\rho(g) v, w\} & =\left\{\rho(g) \cdot p(X) \cdot h, q(X) \cdot h^{\circ}\right\} \\
& =\left\{q(-X) \cdot \rho(g) \cdot p(X) \cdot h, h^{\circ}\right\}=q\left(-L_{X}\right) \Psi_{s} p\left(R_{X}\right) .
\end{aligned}
$$

3.2. Representations $\operatorname{Ind}_{P}^{G}(\chi \otimes 1)$. The standard realization. Consider the flag space G / P and the corresponding Grassmannians, i.e., the quotient spaces G / Q_{α}, where the $Q_{\alpha} \supset P$ are maximal parabolic subgroups in G. Starting from this point, we can reproduce the construction in Sec. 1.4 word for word.

Thus, we have obtained a realization of the family $\operatorname{Ind}_{P}^{G}\left(\chi_{s} \otimes 1\right)$ such that

1. The action of K is independent of χ_{s}.
2. The operators of representation of the group G are continuous functions of s. More precisely, each K-finite matrix element is a continuous function of s.
3. The operators of representation of the Lie algebra \mathfrak{g} are linear expressions in the parameters s.
3.3. Proof for the representations $\operatorname{Ind}_{P}^{G}(\chi \otimes 1)$. If $\chi=\chi_{s}$ is in general position (in fact, $s \in \mathbb{C}^{k}$ lies outside a locally finite family of complex hyperplanes), then π is an irreducible spherical representation. This situation was considered in Sec. 3.1.

Now let us examine the case of reducible π. The continuity of matrix elements as functions of the parameters s follows from Sec. 3.2.

Let V be the space of K-finite functions on the flag space G / P (see Secs. 1.4 and 3.2). Let $1 \in V$ be the function $f(\cdot)=1$. Fix $\sigma, \theta \in \widehat{K}, v \in V_{\sigma}$, and $w \in V_{\theta}$.

Let $\mathfrak{U}^{N}(\mathfrak{g}) \subset \mathfrak{U}(\mathfrak{g})$ be the subspace consisting of all elements of degree $\leqslant N$. Let N be large enough that $\mathfrak{U}^{N}(\mathfrak{g}) \cdot 1$ contains the entire subspace V_{σ} for all generic characters* χ_{s}. Consider a sequence $r_{1}, r_{2}, \cdots \in \mathfrak{U}^{N}$ such that, for generic χ_{s},

1. $r_{j} \cdot 1$ are linearly independent in $\operatorname{Ind}_{P}^{G}\left(\chi_{s} \otimes 1\right)$.
2. Their linear span contains V_{σ}.

These properties remain valid for all s outside a certain algebraic submanifold \mathscr{M} in the parameter space. Now we express the vector v as a linear combination of $r_{j} \cdot 1, v=\sum c_{j}(s) r_{j} \cdot 1$, where c_{j} are certain rational functions.

We reproduce the same arguments for V_{θ}°.

[^4]Applying Sec. 3.1, we find that our matrix element has the form $\Xi(s) \Psi_{s}(g)$, where $\Xi(s)$ is an element of $\mathfrak{U}_{l} \otimes \mathfrak{U}_{r}$ depending rationally on s.

Now let s_{0} be a singular value of s. Consider a complex line $\gamma(\varepsilon)=s_{0}+\varepsilon t$ avoiding the submanifold \mathscr{M} and the singular values of the parameter s for small $|\varepsilon|>0$. Then $\Xi\left(s_{0}+\varepsilon t\right) \Psi_{s}\left(s_{0}+\right.$ εt) is the desired approximation to our matrix element.
3.4. Main trick. Let ξ be an irreducible finite-dimensional representation of G in a space H. Following [11], consider the tensor product

$$
\begin{equation*}
\pi \otimes \xi=\operatorname{Ind}_{P}^{G}(\chi \otimes 1) \otimes \xi=\operatorname{Ind}_{P}^{G}\left(\left.\chi \otimes \xi\right|_{P}\right) . \tag{4}
\end{equation*}
$$

The representation $\left.\xi\right|_{P}$ is in general not irreducible and admits a finite filtration

$$
H_{1} \supset H_{2} \supset H_{3} \supset \ldots
$$

with irreducible subquotients. The nilpotent subgroup $N \subset P$ acts on the subquotients H_{j} / H_{j+1} trivially. The representations of the subgroup $M A \subset P$ on H_{j} / H_{j+1} have the form $\mu_{j} \otimes \tau_{j}$ for some characters μ_{j} of A and some irreducible representations τ_{j} of M.

Thus, the representation $\pi \otimes \xi$ has a filtration whose subquotients are representations of the principal series of the form $\operatorname{Ind}_{P}^{G}\left(\left[\chi \cdot \mu_{j}\right] \otimes \tau_{j}\right)$.
3.5. Fix a representation $\widetilde{\tau}$ of M and a character $\widetilde{\chi}$ of A. We intend to realize $\operatorname{Ind}_{P}^{G}(\widetilde{\chi} \otimes \widetilde{\tau})$ as a subquotient in an appropriate tensor product (4).

We can choose a representation ξ of G such that the restriction of ξ to M contains $\widetilde{\tau} .{ }^{*}$ Then the restriction of ξ to $P=M A N$ contains a subquotient of the form $\widetilde{\mu} \otimes \widetilde{\tau}$ with some character $\widetilde{\mu}$.

Next, we choose a character χ of A such that $\chi \cdot \widetilde{\mu}=\widetilde{\chi}$. Thus, we find that $\operatorname{Ind}_{P}^{G}(\chi \otimes 1) \otimes \xi$ contains a given representation $\operatorname{Ind}_{P}^{G}(\widetilde{\chi} \otimes \widetilde{\tau})$ as a subquotient.
3.6. K-finite matrix elements of $\operatorname{Ind}_{P}^{G}(\widetilde{\chi} \otimes \widetilde{\tau})$ are contained in the set of K-finite matrix elements of $\operatorname{Ind}_{P}^{G}(\chi \otimes 1) \otimes \xi$. The latter matrix elements are linear combinations of products of K-finite matrix elements of $\operatorname{Ind}_{P}^{G}(\chi \otimes 1)$ by matrix elements of ξ. This completes the proof of (a) and (b).
3.7. End of proof. Assertion (c) follows from (a), (b), and the subquotient theorem.

References

[1] D. N. Akhiezer and S. G. Gindikin, "On Stein extensions of real symmetric spaces," Math. Ann., 286:1-3 (1990), 1-12.
[2] F. A. Berezin and F. I. Karpelevič, "Zonal spherical functions and Laplace operators on some symmetric spaces," Dokl. Akad. Nauk SSSR (N.S.), 118 (1958), 9-12.
[3] W. Casselman and Dr. Miličić, "Asymptotic behavior of matrix coefficients of admissible representations," Duke Math. J., 49:4 (1982), 869-930.
[4] I. M. Gelfand and M. A. Neumark, "Unitary representations of classical groups," Trudy Mat. Inst. Steklov., 36 (1950); German transl.:Unitare Darstellungen der klassischen Gruppen, Akademie-Verlag, Berlin, 1957.
[5] R. Goodman, "Holomorphic representations of nilpotent lie groups," J. Funct. Anal., 31 (1979), 115-137.
[6] G. I. Heckman and E. M. Opdam, "Root systems and hypergeometric functions. I," Compositio Math, 64 (1987), 329-352.
[7] G. Heckman and H. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Academic Press, San Diego, 1994.
[8] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential, Academic Press, 1984.
[9] A. A. Kirillov, Elements of representation theory, Springer-Verlag, 1976.

[^5][10] A. Knapp, Representation Theory of Real Semisimple Groups, Princeton Univ. Press, Princeton, N.J., 1986.
[11] B. Kostant, "On the tensor product of a finite and an infinite dimensional representation," J. Funct. Anal., 20:4 (1975), 257-285.
[12] B. Krötz and R. J. Stanton, "Holomorphic extensions of representations. II. Geometry and harmonic analysis," Geom. Funct. Anal., 15:1 (2005), 190-245.
[13] G. L. Litvinov, "On completely reducible representations of complex and real Lie groups," Funct. Anal. Appl., 3:4 (1969), 332-334.
[14] E. Nelson, "Analytic vectors," Ann. of Math., 70 (1959), 572-615.
[15] Yu. A. Neretin, "Holomorphic continuations of representations of the group of diffeomorphisms of the circle," Mat. Sbornik, 180:5 (1989), 635-657, 720.
[16] Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Mathematical Society Monographs, vol. 16, Oxford University Press, 1996.
[17] Yu. A. Neretin, Branchning Integrals and Casselman Phenomenon, http://xxx. arxiv.org/abs/0710.2627.
[18] G. I. Olshanskii, "Invariant cones in Lie algebras, Lie semigroups and holomorphic discrete series," Funct. Anal. Appl., 15 (1982), 275-285.
[19] R. O. Wells, Jr. and J. A. Wolf, "Poincare series and automorphic cohomology on flag domains," Ann. of Math. (2), 105:3 (1977), 397-448.

Institute of Theoretical and Experimental Physics, Math. Phys. Group
University of Vienna
e-mail: neretin@mccme.ru

Questions

Q1. Сp. русский текст.
Q2. Имеются в виду собственные значения?
Q3. Почему крышки заменились на волны? Это нежелательно.

[^0]: ${ }^{*}$ Supported by grants FWF-P19064, NWO-047.017.015, and JSPS-RFBR 07.01.91209 and by the Russian Federal Agency for Nuclear Energy.
 ${ }^{* *}$ For a definition, e.g., see [10] and [7]. For the groups $\operatorname{SL}(n, \mathbb{C}), \operatorname{SL}(n, \mathbb{R})$, and $\operatorname{SL}(n, \mathbb{H})$, the subgroup P is the stabilizer of a complete flag; for the remaining classical series $\operatorname{SU}(p, q), \mathrm{O}(p, q), \operatorname{Sp}(p, q), \operatorname{Sp}(2 n, \mathbb{R}), \operatorname{Sp}(2 n, \mathbb{C})$, $\mathrm{SO}^{*}(2 n)$, and $\mathrm{O}(n, \mathbb{C})$, this subgroup is the stabilizer of a complete isotropic flag.
 ${ }^{* * *}$ We denote by \mathbb{R}^{*} (respectively, \mathbb{R}_{+}^{*} or \mathbb{C}^{*}) the multiplicative group of real (respectively, positive real or complex) numbers.

[^1]: * Or density if G / Q_{α} is nonorientable.

[^2]: *This theorem is due to Harish-Chandra and Casselman and has strong versions due to Zhelobenko-Naimark (complex groups) and Langlands (real groups) with explicit indication of the subquotients.
 ** An "irreducible Harish-Chandra module" mentioned in the title is the same as the \mathfrak{g}-module of K-finite vectors of an irreducible representation.
 ${ }^{* * *}$ In the model of Sec. 1.4, it is a constant function.

[^3]: ${ }^{*}$ This formula is the analytic continuation of the Weyl character formula.
 ** but very complicated ...

[^4]: ${ }^{*}$ Decompose $\mathfrak{U}(\mathfrak{g})=\bigoplus \mathfrak{U}(\mathfrak{g})_{\sigma}$ according to the adjoint action of K. The space $\mathfrak{U}(\mathfrak{g})_{\sigma}$ is a finitely generated module over the center $\mathscr{Z}(\mathfrak{g})$ of the enveloping algebra. For sufficiently large N, the subspace $\mathfrak{U}^{N}(\mathfrak{g})$ contains all generators of $\mathfrak{U}(\mathfrak{g})_{\sigma}$.

 Let Y be an element of the Lie algebra of the group K, and let $p(X) \in \mathfrak{U}(\mathfrak{g})$. Then $(Y p(X)-p(X) Y) \cdot 1=Y p(X) \cdot 1$. Hence $V_{\sigma} \subset \mathfrak{U}(\mathfrak{g})_{\sigma} \cdot 1 \subset \mathfrak{U}^{N}(\mathfrak{g}) \mathscr{Z}(\mathfrak{g}) \cdot 1=\mathfrak{U}^{N}(\mathfrak{g}) \cdot 1$.

[^5]: ${ }^{*}$ Proof. Let G_{c} be the compact form of G. Consider the induced representation $\operatorname{Ind}_{M}^{G_{c}}(\widetilde{\tau})$. Let ξ be an irreducible subrepresentation. We can treat ξ as a representation of G. By the Frobenius reciprocity (see [9]), its restriction to M contains $\widetilde{\tau}$.

