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PREFACE

The aim of this work is threefold:

First it should be a monographical work on natural bundles and natural op-
erators in differential geometry. This is a field which every differential geometer
has met several times, but which is not treated in detail in one place. Let us
explain a little, what we mean by naturality.

Exterior derivative commutes with the pullback of differential forms. In the
background of this statement are the following general concepts. The vector
bundle A*T*M is in fact the value of a functor, which associates a bundle over
M to each manifold M and a vector bundle homomorphism over f to each local
diffeomorphism f between manifolds of the same dimension. This is a simple
example of the concept of a natural bundle. The fact that the exterior derivative
d transforms sections of A*T* M into sections of A*T1T* M for every manifold M
can be expressed by saying that d is an operator from A*T*M into AFH1T* M.
That the exterior derivative d commutes with local diffeomorphisms now means,
that d is a natural operator from the functor A¥T* into functor A¥*1T*. If k > 0,
one can show that d is the unique natural operator between these two natural
bundles up to a constant. So even linearity is a consequence of naturality. This
result is archetypical for the field we are discussing here. A systematic treatment
of naturality in differential geometry requires to describe all natural bundles, and
this is also one of the undertakings of this book.

Second this book tries to be a rather comprehensive textbook on all basic
structures from the theory of jets which appear in different branches of dif-
ferential geometry. Even though Ehresmann in his original papers from 1951
underlined the conceptual meaning of the notion of an r-jet for differential ge-
ometry, jets have been mostly used as a purely technical tool in certain problems
in the theory of systems of partial differential equations, in singularity theory,
in variational calculus and in higher order mechanics. But the theory of nat-
ural bundles and natural operators clarifies once again that jets are one of the
fundamental concepts in differential geometry, so that a thorough treatment of
their basic properties plays an important role in this book. We also demonstrate
that the central concepts from the theory of connections can very conveniently
be formulated in terms of jets, and that this formulation gives a very clear and
geometric picture of their properties.

This book also intends to serve as a self-contained introduction to the theory
of Weil bundles. These were introduced under the name ‘les espaces des points
proches’ by A. Weil in 1953 and the interest in them has been renewed by the
recent description of all product preserving functors on manifolds in terms of
products of Weil bundles. And it seems that this technique can lead to further
interesting results as well.

Third in the beginning of this book we try to give an introduction to the
fundamentals of differential geometry (manifolds, flows, Lie groups, differential
forms, bundles and connections) which stresses naturality and functoriality from
the beginning and is as coordinate free as possible. Here we present the Frélicher-
Nijenhuis bracket (a natural extension of the Lie bracket from vector fields to
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vector valued differential forms) as one of the basic structures of differential
geometry, and we base nearly all treatment of curvature and Bianchi identities
on it. This allows us to present the concept of a connection first on general
fiber bundles (without structure group), with curvature, parallel transport and
Bianchi identity, and only then add G-equivariance as a further property for
principal fiber bundles. We think, that in this way the underlying geometric
ideas are more easily understood by the novice than in the traditional approach,
where too much structure at the same time is rather confusing. This approach
was tested in lecture courses in Brno and Vienna with success.

A specific feature of the book is that the authors are interested in general
points of view towards different structures in differential geometry. The modern
development of global differential geometry clarified that differential geomet-
ric objects form fiber bundles over manifolds as a rule. Nijenhuis revisited the
classical theory of geometric objects from this point of view. Each type of geo-
metric objects can be interpreted as a rule F' transforming every m-dimensional
manifold M into a fibered manifold FM — M over M and every local diffeo-
morphism f : M — N into a fibered manifold morphism Ff : FM — FN over
f. The geometric character of F is then expressed by the functoriality condition
F(go f) = Fgo Ff. Hence the classical bundles of geometric objects are now
studied in the form of the so called lifting functors or (which is the same) natu-
ral bundles on the category M f,, of all m-dimensional manifolds and their local
diffeomorphisms. An important result by Palais and Terng, completed by Ep-
stein and Thurston, reads that every lifting functor has finite order. This gives
a full description of all natural bundles as the fiber bundles associated with the
r-th order frame bundles, which is useful in many problems. However in several
cases it is not sufficient to study the bundle functors defined on the category
M f,. For example, if we have a Lie group G, its multiplication is a smooth
map g : G x G — G. To construct an induced map Fu : F(G x G) — FG,
we need a functor F' defined on the whole category M f of all manifolds and
all smooth maps. In particular, if F' preserves products, then it is easy to see
that Fu endows F'G with the structure of a Lie group. A fundamental result
in the theory of the bundle functors on M f is the complete description of all
product preserving functors in terms of the Weil bundles. This was deduced by
Kainz and Michor, and independently by Eck and Luciano, and it is presented in
chapter VIII of this book. At several other places we then compare and contrast
the properties of the product preserving bundle functors and the non-product-
preserving ones, which leads us to interesting geometric results. Further, some
functors of modern differential geometry are defined on the category of fibered
manifolds and their local isomorphisms, the bundle of general connections be-
ing the simplest example. Last but not least we remark that Eck has recently
introduced the general concepts of gauge natural bundles and gauge natural op-
erators. Taking into account the present role of gauge theories in theoretical
physics and mathematics, we devote the last chapter of the book to this subject.

If we interpret geometric objects as bundle functors defined on a suitable cat-
egory over manifolds, then some geometric constructions have the role of natural
transformations. Several others represent natural operators, i.e. they map sec-
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tions of certain fiber bundles to sections of other ones and commute with the
action of local isomorphisms. So geometric means natural in such situations.
That is why we develop a rather general theory of bundle functors and natural
operators in this book. The principal advantage of interpreting geometric as nat-
ural is that we obtain a well-defined concept. Then we can pose, and sometimes
even solve, the problem of determining all natural operators of a prescribed type.
This gives us the complete list of all possible geometric constructions of the type
in question. In some cases we even discover new geometric operators in this way.

Our practical experience taught us that the most effective way how to treat
natural operators is to reduce the question to a finite order problem, in which
the corresponding jet spaces are finite dimensional. Since the finite order natural
operators are in a simple bijection with the equivariant maps between the corre-
sponding standard fibers, we can apply then several powerful tools from classical
algebra and analysis, which can lead rather quickly to a complete solution of the
problem. Such a passing to a finite order situation has been of great profit in
other branches of mathematics as well. Historically, the starting point for the
reduction to the jet spaces is the famous Peetre theorem saying that every linear
support non-increasing operator has locally finite order. We develop an essential
generalization of this technique and we present a unified approach to the finite
order results for both natural bundles and natural operators in chapter V.

The primary purpose of chapter VI is to explain some general procedures,
which can help us in finding all the equivariant maps, i.e. all natural operators of
a given type. Nevertheless, the greater part of the geometric results is original.
Chapter VII is devoted to some further examples and applications, including
Gilkey’s theorem that all differential forms depending naturally on Riemannian
metrics and satisfying certain homogeneity conditions are in fact Pontryagin
forms. This is essential in the recent heat kernel proofs of the Atiyah Singer
Index theorem. We also characterize the Chern forms as the only natural forms
on linear symmetric connections. In a special section we comment on the results
of Kirillov and his colleagues who investigated multilinear natural operators with
the help of representation theory of infinite dimensional Lie algebras of vector
fields. In chapter X we study systematically the natural operators on vector fields
and connections. Chapter XI is devoted to a general theory of Lie derivatives,
in which the geometric approach clarifies, among other things, the relations to
natural operators.

The material for chapters VI, X and sections 12, 30-32, 47, 49, 50, 52-54 was
prepared by the first author (I.K.), for chapters I, II, III, VIII by the second au-
thor (P.M.) and for chapters V, IX and sections 13—17, 33, 34, 48, 51 by the third
author (J.S.). The authors acknowledge A. Cap, M. Doupovec, and J. Janyska,
for reading the manuscript and for several critical remarks and comments and
A. A. Kirillov for commenting section 34.

The joint work of the authors on the book has originated in the seminar of
the first two authors and has been based on the common cultural heritage of
Middle Europe. The authors will be pleased if the reader realizes a reflection of
those traditions in the book.



CHAPTER 1.
MANIFOLDS AND LIE GROUPS

In this chapter we present an introduction to the basic structures of differential
geometry which stresses global structures and categorical thinking. The material
presented is standard - but some parts are not so easily found in text books:
we treat initial submanifolds and the Frobenius theorem for distributions of non
constant rank, and we give a very quick proof of the Campbell - Baker - Hausdorff
formula for Lie groups. We also prove that closed subgroups of Lie groups are
Lie subgroups.

1. Differentiable manifolds

1.1. A topological manifold is a separable Hausdorff space M which is locally
homeomorphic to R™. So for any z € M there is some homeomorphism u : U —
u(U) € R™, where U is an open neighborhood of  in M and u(U) is an open
subset in R™. The pair (U, u) is called a chart on M.

From topology it follows that the number n is locally constant on M; if n is
constant, M is sometimes called a pure manifold. We will only consider pure
manifolds and consequently we will omit the prefix pure.

A family (U,, ta)aca of charts on M such that the U, form a cover of M is
called an atlas. The mappings uag 1= tq © ugl cug(Uag) — ua(Uag) are called
the chart changings for the atlas (U, ), where U,g := Uy N Ug.

An atlas (U, Ua)aca for a manifold M is said to be a CF-atlas, if all chart
changings uag : ug(Usg) — ua(Uag) are differentiable of class C*. Two C*-
atlases are called C*-equivalent, if their union is again a C*-atlas for M. An
equivalence class of C*-atlases is called a C*-structure on M. From differential
topology we know that if M has a C'-structure, then it also has a C'-equivalent
C>-structure and even a Cl-equivalent C*-structure, where C* is shorthand
for real analytic. By a C*-manifold M we mean a topological manifold together
with a C*-structure and a chart on M will be a chart belonging to some atlas
of the C*-structure.

But there are topological manifolds which do not admit differentiable struc-
tures. For example, every 4-dimensional manifold is smooth off some point, but
there are such which are not smooth, see [Quinn, 82|, [Freedman, 82]. There
are also topological manifolds which admit several inequivalent smooth struc-
tures. The spheres from dimension 7 on have finitely many, see [Milnor, 56].
But the most surprising result is that on R* there are uncountably many pair-
wise inequivalent (exotic) differentiable structures. This follows from the results
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of [Donaldson, 83] and [Freedman, 82], see [Gompf, 83] or [Freedman-Feng Luo,
89] for an overview.

Note that for a Hausdorff C*°-manifold in a more general sense the following
properties are equivalent:

(1) Tt is paracompact.

(2) Tt is metrizable.

(3) It admits a Riemannian metric.

(4) Each connected component is separable.

In this book a manifold will usually mean a C°°-manifold, and smooth is
used synonymously for C'°°, it will be Hausdorff, separable, finite dimensional,
to state it precisely.

Note finally that any manifold M admits a finite atlas consisting of dim M + 1
(not connected) charts. This is a consequence of topological dimension theory
[Nagata, 65, a proof for manifolds may be found in [Greub-Halperin-Vanstone,
Vol. 1, 72].

1.2. A mapping f : M — N between manifolds is said to be C* if for each
x € M and each chart (V,v) on N with f(x) € V there is a chart (U,u) on M
with z € U, f(U) CV,and vo fou~!is C*. We will denote by C*(M, N) the
space of all C*-mappings from M to N.

A CF-mapping f : M — N is called a C*-diffeomorphism if f~1 : N — M
exists and is also C*. Two manifolds are called diffeomorphic if there exists a dif-
feomorphism between them. From differential topology we know that if there is a
C'-diffeomorphism between M and N, then there is also a C*®°-diffeomorphism.
All smooth manifolds together with the C*°-mappings form a category, which
will be denoted by M f. One can admit non pure manifolds even in M f, but
we will not stress this point of view.

A mapping f : M — N between manifolds of the same dimension is called
a local diffeomorphism, if each x € M has an open neighborhood U such that
fIU : U — f(U) C N is a diffeomorphism. Note that a local diffeomorphism
need not be surjective or injective.

1.3. The set of smooth real valued functions on a manifold M will be denoted
by C°°(M,R), in order to distinguish it clearly from spaces of sections which
will appear later. C*°(M,R) is a real commutative algebra.

The support of a smooth function f is the closure of the set, where it does
not vanish, supp(f) = {x € M : f(x) # 0}. The zero set of f is the set where f
vanishes, Z(f) ={z € M : f(x) = 0}.

Any manifold admits smooth partitions of unity: Let (Uy)aca be an open
cover of M. Then there is a family (¢)aca of smooth functions on M, such
that supp(¢a) C Ua, (supp(¢a)) is a locally finite family, and > @0 = 1
(locally this is a finite sum).

1.4. Germs. Let M and N be manifolds and = € M. We consider all smooth

mappings f : Uy — N, where Uy is some open neighborhood of z in M, and we

put f ~ g if there is some open neighborhood V of & with f|V = g|V. This is an
x

equivalence relation on the set of mappings considered. The equivalence class of
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a mapping f is called the germ of f at x, sometimes denoted by germ, f. The
space of all germs at = of mappings M — N will be denoted by C2°(M, N).
This construction works also for other types of mappings like real analytic or
holomorphic ones, if M and N have real analytic or complex structures.

If N = R we may add and multiply germs, so we get the real commutative
algebra C2°(M,R) of germs of smooth functions at .

Using smooth partitions of unity (see 1.3) it is easily seen that each germ of
a smooth function has a representative which is defined on the whole of M. For
germs of real analytic or holomorphic functions this is not true. So C2°(M,R)
is the quotient of the algebra C°°(M,R) by the ideal of all smooth functions
f+ M — R which vanish on some neighborhood (depending on f) of x.

1.5. The tangent space of R". Let a € R™. A tangent vector with foot
point a is simply a pair (a, X) with X € R", also denoted by X,. It induces
a derivation X, : C*°(R",R) — R by X,(f) = df(a)(X,). The value depends
only on the germ of f at a and we have X,(f - g) = Xo(f) - g(a) + f(a) - Xa(9)
(the derivation property).

If conversely D : C*°(R™,R) — R is linear and satisfies D(f - g) = D(f) -
g(a)+ f(a)- D(g) (a derivation at a), then D is given by the action of a tangent
vector with foot point a. This can be seen as follows. For f € C*°(R",R) we
have

f(@) = fla) + / 4 fla+t(z — a))dt
+Z/ S(a+t(z — a))dt (" — a)
+Zh x —a

D(1)=D(1- 1) =2D(1), so D(constant) = 0. Thus

D(f) = JrZh (' —a"))

where 2? is the i-th coordinate function on R™. So we have the expression

ZD 8:61 f)’ D = ZD 690‘

Thus D is induced by the tangent vector (a,> ., D(z")e;), where (e;) is the
standard basis of R".
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1.6. The tangent space of a manifold. Let M be a manifold and let z €
M and dim M = n. Let T, M be the vector space of all derivations at x of
C°(M,R), the algebra of germs of smooth functions on M at z. (Using 1.3 it
may easily be seen that a derivation of C*°(M,R) at z factors to a derivation of
(M, R).)

So T, M consists of all linear mappings X, : C*°(M,R) — R satisfying X, (f -
9) = Xu(f) - g(z) + f(z) - X4 (g). The space T,,M is called the tangent space of
M at z.

If (U,u) is a chart on M with € U, then u* : f — f ow induces an iso-
morphism of algebras Cg‘(x)( " R) = C(M,R), and thus also an isomorphism
Tou : TyM — TyyR", given by (Tou.Xy)(f) = Xo(f ou). So T, M is an n-
dimensional vector space. The dot in T,u.X, means that we apply the linear
mapping T,u to the vector X, — a dot will frequently denote an application of
a linear or fiber linear mapping.

We will use the following notation: u = (ul,... , u™), so u® denotes the i-th
coordinate function on U, and

aii x = (Twu)il(% u(:v)) = (Txu)il(u(x)aei)'
So % z € T, M is the derivation given by
: I(fout
() = AL ),

From 1.5 we have now

Tou Xy = Y (TouXo) (@) g lue) =

i=1
n
= Z Xx(f):z o U)ﬁ
i=1

1.7. The tangent bundle. For a manifold M of dimension n we put TM :=
|| cas ToM, the disjoint union of all tangent spaces. This is a family of vec-
tor spaces parameterized by M, with projection mp; : TM — M given by
T M (TIM) = X.

For any chart (U, u,) of M consider the chart (w3 (Uy),Tuy) on TM,
where Tu, : W&l(Ua) — un(U,) x R™ is given by the formula Tu,. X =
(wa(mar (X)), Tr,, (x)ta-X). Then the chart changings look as follows:

_ i\ _0
1=1

Tug o (Tua) ™" : Tua(7y) (Uag)) = ta(Uag) x R™ —
— ug(Uap) x R" = Tug(my (Uap)),
(f) = (Tua) ™y, Y))(f o up)
fougougt)=d(fougoul')(y).yY
f (ug 0 ug (y)-dlug o ug ") (y).Y
= (up o ug " (y), d(up o ug ) (y).Y)(f)-

(Tup o (Tua) ™" )(y,Y))
= (5, Y)(
= df
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So the chart changings are smooth. We choose the topology on T'M in such
a way that all Tu, become homeomorphisms. This is a Hausdorff topology,
since X, Y € TM may be separated in M if 7(X) # #(Y), and in one chart if
m(X) =m(Y). So TM is again a smooth manifold in a canonical way; the triple
(TM,mtpr, M) is called the tangent bundle of M.

1.8. Kinematic definition of the tangent space. Consider C§°(R, M), the
space of germs at 0 of smooth curves R — M. We put the following equivalence
relation on C§°(R, M): the germ of ¢ is equivalent to the germ of e if and only
if ¢(0) = €(0) and in one (equivalently each) chart (U, ) with ¢(0) = e(0) € U
we have 4|y (uoc)(t) = &|o(uoe)(t). The equivalence classes are called velocity
vectors of curves in M. We have the following mappings

[

TM — M,

where a(c)(germ, g f) = 4of(c(t)) and B : TM — C§(R, M) is given by:
B((Tu)"(y,Y)) is the germ at 0 of t — u=!(y +tY). So T'M is canonically
identified with the set of all possible velocity vectors of curves in M.

1.9. Let f: M — N be a smooth mapping between manifolds. Then f induces a
linear mapping T f : To M — Ty N for each € M by (T, f.X.)(h) = X, (hof)
for h € C7,)(N,R). This mapping is linear since f* : C3¢, (N, R) — C2°(M, R),
given by h — ho f, is linear, and T, f is its adjoint, restricted to the subspace
of derivations.

If (U,u) is a chart around x and (V,v) is one around f(x), then

(wafiflw)(vj) = %h(vj © f) = a?;i (Uj of ou—l))
Tof52le = 3/ (Tof 32 le) (09) 55 4@y by 1.7
A(viofou?t
= Zj %(U(Q«”))%U(z)-

So the matrix of T, f : Ty M — Ty ()N in the bases (52 ;) and (525 s(x)) s just
the Jacobi matrix d(v o f o u=!)(u(x)) of the mapping v o f o u™! at u(x), so
TiyvoTyf o (Tyu)™t =d(vo fout)(u(z)).

Let us denote by T'f : TM — TN the total mapping, given by T f|T, M :=
T, f. Then the composition Tvo T fo (Tu)™! : u(U) x R™ — v(V) x R™ is given
by (y,Y) — ((vo fouY)(y),d(vo fou 1) (y)Y), and thus Tf : TM — TN is
again smooth.

If f: M — N and g : N — P are smooth mappings, then we have T'(go f) =
TgoTf. This is a direct consequence of (go f)* = f* o ¢*, and it is the global
version of the chain rule. Furthermore we have T'(Idys) = Idrpy .

If f e C°(MR), then Tf : TM — TR = R x R. We then define the
differential of f by df :=prooTf: TM — R. Let t denote the identity function
on R, then (Tf.X,)(t) = X.(to f) = X,(f), so we have df (X,) = X.(f).
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1.10. Submanifolds. A subset N of a manifold M is called a submanifold, if for
each z € N there is a chart (U, u) of M such that uw(U N N) = u(U) N (R* x 0),
where R¥ x 0 < R*¥ x R"™% = R”. Then clearly N is itself a manifold with
(UNN,ulUNN) as charts, where (U, u) runs through all submanifold charts as
above and the injection i : N < M is an embedding in the following sense:

An embedding f : N — M from a manifold N into another one is an injective
smooth mapping such that f(IV) is a submanifold of M and the (co)restricted
mapping N — f(V) is a diffeomorphism.

If f:R™ — RY is smooth and the rank of f (more exactly: the rank of its
derivative) is ¢ at each point of f~1(0), say, then f~%(0) is a submanifold of R
of dimension n — ¢ or empty. This is an immediate consequence of the implicit
function theorem.

The following theorem needs three applications of the implicit function theo-
rem for its proof, which can be found in [Dieudonné, I, 60, 10.3.1].

Theorem. Let f: W — R? be a smooth mapping, where W is an open subset
of R™. If the derivative df (x) has constant rank k for each x € W, then for each
a € W there are charts (U,u) of W centered at a and (V,v) of R? centered at
f(a) such that vo fou=t: u(U) — v(V) has the following form:

(T1,. ey Tn) — (1, ..., Tx,0,...,0).

So f=1(b) is a submanifold of W of dimension n — k for each b € f(W). O

1.11. Example: Spheres. We consider the space R"*!, equipped with the
standard inner product (x,y) = > 2'y’. The n-sphere S™ is then the subset
{z € R""L: (z,2) = 1}. Since f(x) = (x,z), f: R"T! — R, satisfies df (z)y =
2(z,y), it is of rank 1 off 0 and by 1.10 the sphere S™ is a submanifold of R™*!.

In order to get some feeling for the sphere we will describe an explicit atlas
for S™, the stereographic atlas. Choose a € S™ (‘south pole’). Let

Uy :=8"\{a}, ugp Uy — {a},  ug(z) = m1:<<gcaéfl(z>)a’
U_i=5"\{-a}, u:U-—{a}", u_(a)= iz,

From an obvious drawing in the 2-plane through 0, z, and a it is easily seen that
uy is the usual stereographic projection. We also get

_ 2_1q
1L+1(y) = m2+la + W%y for y € {a}*

and (u_ o ui')(y) = ‘y%

drawing.

The latter equation can directly be seen from a

1.12. Products. Let M and N be smooth manifolds described by smooth at-
lases (Un, ua)aca and (Va,v3) e, respectively. Then the family (Uy x V3, uq X
vg 1 Uy x Vg — R™ X R") (4 g)caxp is a smooth atlas for the cartesian product
M x N. Clearly the projections

M Mx N 22N
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are also smooth. The product (M x N,pri,pre) has the following universal
property:

For any smooth manifold P and smooth mappings f: P — M andg: P — N
the mapping (f,g) : P — M X N, (f,9)(z) = (f(x), g(z)), is the unique smooth
mapping with pri o (f,g9) = f, pr2o (f,9) = g

From the construction of the tangent bundle in 1.7 it is immediately clear
that

T(pr1)
SPTY

™ T(M x N) 222,

is again a product, so that T(M x N) =TM x TN in a canonical way.
Clearly we can form products of finitely many manifolds.

1.13. Theorem. Let M be a connected manifold and suppose that f : M — M
is smooth with f o f = f. Then the image f(M) of f is a submanifold of M.

This result can also be expressed as: ‘smooth retracts’ of manifolds are man-
ifolds. If we do not suppose that M is connected, then f(M) will not be a
pure manifold in general, it will have different dimension in different connected
components.

Proof. We claim that there is an open neighborhood U of f(M) in M such that
the rank of 7T}, f is constant for y € U. Then by theorem 1.10 the result follows.

For z € f(M) we have T, f o T,,f = T, f, thus im T, f = ker(Id -7, f) and
rank T, f + rank(Id =T, f) = dim M. Since rank T, f and rank(Id =T, f) can-
not fall locally, rank T, f is locally constant for = € f(M), and since f(M) is
connected, rank T, f = r for all x € f(M).

But then for each x € f(M) there is an open neighborhood U, in M with
rank T, f > r for all y € U,. On the other hand rank T} f = rank T, (f o f) =
rank Ty, f o Ty, f < rankT},)f = r. So the neighborhood we need is given by

= Uasz(]VI) Us.

1.14. Corollary. 1. The (separable) connected smooth manifolds are exactly
the smooth retracts of connected open subsets of R™’s.

2. f: M — N is an embedding of a submanifold if and only if there is an
open neighborhood U of f(M) in N and a smooth mapping r : U — M with
T o f = IdM

Proof. Any manifold M may be embedded into some R", see 1.15 below. Then
there exists a tubular neighborhood of M in R™ (see [Hirsch, 76, pp. 109-118]),
and M is clearly a retract of such a tubular neighborhood. The converse follows
from 1.13.

For the second assertion repeat the argument for N instead of R". [

1.15. Embeddings into R™’s. Let M be a smooth manifold of dimension m.
Then M can be embedded into R™, if
(1) n=2m+ 1 (see [Hirsch, 76, p 55] or [Brocker-Janich, 73, p 73]),
(2) n =2m (see [Whitney, 44]).
(3) Conjecture (still unproved): The minimal n is n = 2m —a(m)+ 1, where
a(m) is the number of 1’s in the dyadic expansion of m.
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There exists an immersion (see section 2) M — R™ if
(1) n=2m (see [Hirsch, 76]),
(2) n = 2m — a(m) ([Cohen, 82] claims to have proven this, but there are
doubts).

2. Submersions and immersions

2.1. Definition. A mapping f : M — N between manifolds is called a sub-
mersion at x € M, if the rank of T;, f : T, M — T,y N equals dim N. Since the
rank cannot fall locally (the determinant of a submatrix of the Jacobi matrix is
not 0), f is then a submersion in a whole neighborhood of . The mapping f is
said to be a submersion, if it is a submersion at each x € M.

2.2. Lemma. If f : M — N is a submersion at © € M, then for any chart
(V,v) centered at f(x) on N there is chart (U,u) centered at x on M such that
vo fou~! looks as follows:

Proof. Use the inverse function theorem. [

2.3. Corollary. Any submersion f : M — N is open: for each open U C M
the set f(U) is open in N. O

2.4. Definition. A triple (M,p, N), where p: M — N is a surjective submer-
sion, is called a fibered manifold. M is called the total space, N is called the
base.

A fibered manifold admits local sections: For each z € M there is an open
neighborhood U of p(z) in N and a smooth mapping s : U — M with pos = Idy
and s(p(z)) = «.

The existence of local sections in turn implies the following universal property:

M

i

f

N——P

If (M,p, N) is a fibered manifold and f : N — P is a mapping into some further
manifold, such that fop: M — P is smooth, then f is smooth.

2.5. Definition. A smooth mapping f : M — N is called an immersion at
x € M if the rank of T, f : T, M — Ty, )N equals dim M. Since the rank is
maximal at x and cannot fall locally, f is an immersion on a whole neighborhood
of z. f is called an immersion if it is so at every z € M.
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2.6. Lemma. If f : M — N is an immersion, then for any chart (U, u) centered
at x € M there is a chart (V,v) centered at f(z) on N such that vo fou™! has

the form:

(y17"' ’ym)'_) (yl"" 7ym707"' 70)

Proof. Use the inverse function theorem. [

2.7 Corollary. If f : M — N is an immersion, then for any x € M there is
an open neighborhood U of x € M such that f(U) is a submanifold of N and
fIU : U — f(U) is a diffeomorphism. O

2.8. Definition. If i : M — N is an injective immersion, then (M, %) is called
an immersed submanifold of N.

A submanifold is an immersed submanifold, but the converse is wrong in gen-
eral. The structure of an immersed submanifold (M, ) is in general not deter-
mined by the subset ¢(M) C N. All this is illustrated by the following example.
Consider the curve v(t) = (sin®¢,sint.cost) in R2. Then ((—m,7),|(—7, 7))
and ((0,27),7](0,27)) are two different immersed submanifolds, but the image
of the embedding is in both cases just the figure eight.

2.9. Let M be a submanifold of N. Then the embedding i : M — N is an
injective immersion with the following property:

(1) For any manifold Z a mapping f : Z — M is smooth if and only if
iof:Z — N is smooth.

The example in 2.8 shows that there are injective immersions without property
(1).

2.10. We want to determine all injective immersions 7 : M — N with property
2.9.1. To require that ¢ is a homeomorphism onto its image is too strong as 2.11
and 2.12 below show. To look for all smooth mappings i : M — N with property
2.9.1 (initial mappings in categorical terms) is too difficult as remark 2.13 below
shows.

2.11. Lemma. If an injective immersion i : M — N is a homeomorphism onto
its image, then i(M) is a submanifold of N.

Proof. Use 2.7. O

2.12. Example. We consider the 2-dimensional torus T? = R?/Z2. Then the
quotient mapping 7 : R? — T2 is a covering map, so locally a diffeomorphism.
Let us also consider the mapping f : R — R2, f(t) = (t,a.t), where « is
irrational. Then 7o f : R — T? is an injective immersion with dense image, and
it is obviously not a homeomorphism onto its image. But 7 o f has property
2.9.1, which follows from the fact that 7 is a covering map.

2.13. Remark. If f: R — R is a function such that f? and f¢ are smooth for
some p, ¢ which are relatively prime in N, then f itself turns out to be smooth,
see [Joris, 82]. So the mapping i : ¢ — (i:’), R — R2, has property 2.9.1, but i is
not an immersion at 0.
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2.14. Definition. For an arbitrary subset A of a manifold N and zy € A let
Cyo(A) denote the set of all x € A which can be joined to z by a smooth curve
in N lying in A.
A subset M in a manifold N is called initial submanifold of dimension m, if
the following property is true:
(1) For each x € M there exists a chart (U, u) centered at x on N such that
w(Ce(UNM)) =u(U)N (R™ x 0).

The following three lemmas explain the name initial submanifold.

2.15. Lemma. Let f: M — N be an injective immersion between manifolds
with property 2.9.1. Then f(M) is an initial submanifold of N.

Proof. Let x € M. By 2.6 we may choose a chart (V,v) centered at f(z) on N
and another chart (W, w) centered at  on M such that (vofow=1)(y*,... ,y™) =
(y*,...,y™,0,...,0). Let r > 0 be so small that {y € R™ : |y| < r} C w(W)
and {z € R" : |z] < 2r} C v(V). Put

U:=v'({z€eR":|z|] <r}) CN,
Wy :=w{yeR™: |yl <r}) c M.

We claim that (U, u = v|U) satisfies the condition of 2.14.1.

u (@) N (R™ x0)) =u  ({(y",...,¥™,0...,0): |yl <7r}) =
=fow to(uofow H ' {( ...,y 0...,0): |yl <7r}) =
= fow '({y eR™: |y| < r}) = f(W1) C Cyay (U N f(M)),

since f(Wy) CUN f(M) and f(W;) is C°°-contractible.

Now let conversely z € C¢,)(UN f(M)). Then by definition there is a smooth
curve ¢ : [0,1] — N with ¢(0) = f(z), ¢(1) = z, and ¢([0,1]) C U N f(M). By
property 2.9.1 the unique curve ¢ : [0,1] — M with f o & = ¢, is smooth.

We claim that ([0, 1]) € W;. If not then there is some ¢ € [0, 1] with &(¢) €
wt{y € R™ : r < |y| < 2r}) since € is smooth and thus continuous. But then
we have

(vo /)Et) € (vo fow )({y eR™:r <[yl <2r}) =
={(y,0) eR™ x0:7r < |yl <2r} C{zeR":r <|z| < 2r}.

This means (vo foé)(t) = (voc)(t) € {z € R :r < |z| < 2r}, so c(t) ¢ U, a
contradiction.

So &([0,1]) € Wy, thus &(1) = f~1(z) € Wy and z € f(W;). Consequently we
have Cp,y (U N f(M)) = f(W1) and finally f(W1) = u™'(u(U) N (R™ x 0)) by
the first part of the proof. [
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2.16. Lemma. Let M be an initial submanifold of a manifold N. Then there
is a unique C'*°-manifold structure on M such that the injection i : M — N
is an injective immersion. The connected components of M are separable (but
there may be uncountably many of them).

Proof. We use the sets C (U, N M) as charts for M, where x € M and (U, u)
is a chart for N centered at x with the property required in 2.14.1. Then the
chart changings are smooth since they are just restrictions of the chart changings
on N. But the sets C, (U, N M) are not open in the induced topology on M
in general. So the identification topology with respect to the charts (Cy (U, N
M), uz)zen yields a topology on M which is finer than the induced topology, so
it is Hausdorff. Clearly i : M — N is then an injective immersion. Uniqueness of
the smooth structure follows from the universal property of lemma 2.17 below.
Finally note that N admits a Riemannian metric since it is separable, which can
be induced on M, so each connected component of M is separable. [J

2.17. Lemma. Any initial submanifold M of a manifold N with injective
immersion ¢ : M — N has the universal property 2.9.1:

For any manifold Z a mapping f : Z — M is smooth if and only ifio f : Z —
N is smooth.

Proof. We have to prove only one direction and we will suppress the embedding 7.
For z € Z we choose a chart (U,u) on N, centered at f(z), such that u(C¢y(UN
M)) =u(U) N (R™ x 0). Then f~1(U) is open in Z and contains a chart (V,v)
centered at z on Z with v(V') a ball. Then f(V') is C*°-contractible in UNM, so
f(V) C Cpy(UNM), and (u|Cy.y(UNM))o fov™! =wuo fov™!is smooth. [

2.18. Transversal mappings. Let M;, M>, and N be manifolds and let
fi + M; — N be smooth mappings for i = 1,2. We say that f; and fy are
transversal at y € N, if

imTy, fi +im Ty, fo = TyN whenever fi(z1) = fo(z2) = y.

Note that they are transversal at any y which is not in f1 (M) or not in fo(Ms).
The mappings f1 and f5 are simply said to be transversal, if they are transversal
at every y € N.

If P is an initial submanifold of N with injective immersion ¢ : P — N, then
f:+ M — N is said to be transversal to P, if ¢ and f are transversal.

Lemma. In this case f~'(P) is an initial submanifold of M with the same
codimension in M as P has in N, or the empty set. If P is a submanifold, then
also f~1(P) is a submanifold.

Proof. Let x € f~Y(P) and let (U,u) be an initial submanifold chart for P
centered at f(xz) on N, i.e. u(Cp,(UNP)) =u(U)N(RP x0). Then the mapping

MDY U) LU wU) CRP x RP 22 P

is a submersion at x since f is transversal to P. So by lemma 2.2 there is a chart
(V,v) on M centered at x such that we have

(prgouofov_l)(yl,... YR ™) = (y17... L,y TP,
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But then z € C.(f~1(P)NV) if and only if v(z) € v(V) N (0 x R™~"FP), 5o
v(Co(f~HP)NV)) =0v(V)N (0 x Rm=7+P). O
2.19. Corollary. If fi : My — N and fy : My — N are smooth and transver-
sal, then the topological pullback

M, X My = My xn My := {(xl,l‘g) € My x My :fl(xl):fg(xg)}

(f1,N,f2)

is a submanifold of My x Ms, and it has the following universal property.

For any smooth mappings g1 : P — M and g2 : P — My with fiogy = fa092
there is a unique smooth mapping (g1, g2) : P — My X n My with prio(g1,92) =
g1 and pra o (g1, 92) = ga.

P g2
wjgg)
g1 M1 XN M2 W’ M2
Jprl P
M, h N

This is also called the pullback property in the category M f of smooth man-
ifolds and smooth mappings. So one may say, that transversal pullbacks exist
in the category M f.

PT’OOf. My xn My = (f1 X fg)il(A), where f1 X fQ : My x My — N x N and
where A is the diagonal of N x N, and f; X fo is transversal to A if and only if
f1 and fy are transversal. [

2.20. The category of fibered manifolds. Consider a fibered manifold
(M,p,N) from 2.4 and a point & € N. Since p is a surjective submersion, the
injection i, : x — N of z into N and p: M — N are transversal. By 2.19, p~!(z)
is a submanifold of M, which is called the fiber over z € N.

Given another fibered manifold (M, p, N), a morphism (M,p, N) — (M, p, N)
means a smooth map f: M — N transforming each fiber of M into a fiber of
M. The relation f(M,) C M defines a map f: N — N, which is characterized
by the property o f = f op. Since po f is a smooth map, f is also smooth by
2.4. Clearly, all fibered manifolds and their morphisms form a category, which
will be denoted by FM. Transforming every fibered manifold (M, p, N) into its
base N and every fibered manifold morphism f: (M,p, N) — (M, p, N) into the
induced map f: N — N defines the base functor B: FM — MFf.

If (M,p,N) and (M,p, N) are two fibered manifolds over the same base N,
then the pullback M X, n 5) M = M xx M is called the fibered product of M
and M. If p, p and N are clear from the context, then M x y M is also denoted
by M ® M MOI‘GOVGI', if f1: (Mlvplv N) - (Mlvﬁlv N) and f2: (MQaPQa N) -
(Ms, pa, N) are two F M-morphisms over the same base map fo: N — N, then
the values of the restriction f; x fo| My x y My lie in M x 5 M,. The restricted
map will be denoted by fl X fo fg : M1 XNZ\/IQ — Ml XNMQ or fl@fg : Ml@MQ —
M, ® M, and will be called the fibered product of f; and fo.
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3. Vector fields and flows

3.1. Definition. A vector field X on a manifold M is a smooth section of
the tangent bundle; so X : M — TM is smooth and wp; o X = Idp;. A local
vector field is a smooth section, which is defined on an open subset only. We
denote the set of all vector fields by X(M). With point wise addition and scalar
multiplication X(M) becomes a vector space.

Example. Let (U, u) be a chart on M. Then the aii U —>TM|U, x — %
described in 1.6, are local vector fields defined on U.

ZT

Lemma. If X is a vector field on M and (U, u) is a chart on M and x € U, then
we have X (z) = S| X (2)(u!) 2o We write X|U =31 X(u')2:. O

3.2. The vector fields (32:)™, on U, where (U,u) is a chart on M, form a
holonomic frame field. By a frame field on some open set V' C M we mean
m = dim M vector fields s; € X(V) such that si(x),..., s, (z) is a linear basis
of T, M for each x € V. In general, a frame field on V' is said to be holonomic, if
V can be covered by an atlas (Un, ua)aca such that s;|U, = % for all o € A.
In the opposite case, the frame field is called anholonomic. ’

With the help of partitions of unity and holonomic frame fields one may
construct ‘many’ vector fields on M. In particular the values of a vector field
can be arbitrarily preassigned on a discrete set {z;} C M.

3.3. Lemma. The space X(M) of vector fields on M coincides canonically with
the space of all derivations of the algebra C'°°(M,R) of smooth functions, i.e.
those R-linear operators D : C°(M,R) — C*(M,R) with D(fg) = D(f)g +
fD(g)-

Proof. Clearly each vector field X € X(M) defines a derivation (again called
X, later sometimes called Lyx) of the algebra C°(M,R) by the prescription
X(f)(@) == X(2)(f) = df (X ().

If conversely a derivation D of C*°(M,R) is given, for any x € M we consider
D, : C®(M,R) — R, D,(f) = D(f)(x). Then D, is a derivation at x of
C*(M,R) in the sense of 1.5, so D, = X, for some X, € T,M. In this
way we get a section X : M — TM. If (Uwu) is a chart on M, we have
D, = 3", X(z)(u') 52|, by 1.6. Choose V open in M, V C V C U, and
¢ € C*°(M,R) such that supp(p) C U and ¢|V = 1. Then ¢ - u' € C°(M,R)
and (pu))|V = ui|V. So D(pu')(z) = X(z)(pu') = X(x)(u') and X|V =
S D(pud)|V - 22|V is smooth. O

3.4. The Lie bracket. By lemma 3.3 we can identify X(M) with the vector
space of all derivations of the algebra C'°°(M,R), which we will do without any
notational change in the following.

If X, Y are two vector fields on M, then the mapping f — X (Y (f))-Y (X(f))
is again a derivation of C*°(M,R), as a simple computation shows. Thus there is
a unique vector field [X,Y] € X(M) such that [X,Y](f) = XY (f)) = Y (X(f))
holds for all f € C*>°(M,R).
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In alocal chart (U, u) on M one immediately verifies that for X|U = 3~ X2,
and Y|U = 3 Y2 we have

(S S| = 5 () - )

,J

since second partial derivatives commute. The R-bilinear mapping
[, ]:X(M)xX(M)—X(M)

is called the Lie bracket. Note also that X(M) is a module over the algebra
C*(M,R) by point wise multiplication (f, X) — fX.

Theorem. The Lie bracket [ , |:X(M) x X(M) — X(M) has the following
properties:

(X, Y] = —[v, X],

[X,[Y,Z]| = [[X,Y],Z] + [Y,[X, Z]], the Jacobi identity,

(X, Y] = fIX, Y] - (Y )X

[

XfY] XY+ (XY

The form of the Jacobi identity we have chosen says that ad(X) = [X, ]is
a derivation for the Lie algebra (X(M),[ , ).

The pair (X(M),[ , ) is the prototype of a Lie algebra. The concept of a
Lie algebra is one of the most important notions of modern mathematics.

Proof. All these properties can be checked easily for the commutator [X,Y] =
X oY —Y o X in the space of derivations of the algebra C*°(M,R). O

3.5. Integral curves. Let ¢ : J — M be a smooth curve in a manifold M
defined on an interval J. We will use the following notations: ¢/(t) = ¢(t) =
4 (t) := Tyc.l. Clearly ¢’ : J — TM is smooth. We call ¢’ a vector field along
¢ since we have mp; o’ = c.

A smooth curve ¢ : J — M will be called an integral curve or flow line of a

vector field X € X(M) if ¢/(t) = X(¢(t)) holds for all t € J.

3.6. Lemma. Let X be a vector field on M. Then for any © € M there is
an open interval J,, containing 0 and an integral curve ¢, : J, — M for X (i.e.
¢ = X oe,) with ¢,(0) = z. If J, is maximal, then c, is unique.

Proof. In a chart (U,u) on M with € U the equation ¢/(t) = X(c(t)) is an
ordinary differential equation with initial condition ¢(0) = x. Since X is smooth
there is a unique local solution by the theorem of Picard-Lindelof, which even
depends smoothly on the initial values, [Dieudonné I, 69, 10.7.4]. So on M there
are always local integral curves. If J, = (a,b) and lim;_.;,_ ¢, (t) =: ¢, (b) exists
in M, there is a unique local solution ¢; defined in an open interval containing
b with ¢1(b) = ¢,(b). By uniqueness of the solution on the intersection of the
two intervals, ¢; prolongs ¢, to a larger interval. This may be repeated (also on
the left hand side of J,) as long as the limit exists. So if we suppose J,. to be
maximal, .J, either equals R or the integral curve leaves the manifold in finite
(parameter-) time in the past or future or both. O
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3.7. The flow of a vector field. Let X € X(M) be a vector field. Let us
write FLIX (z) = FI¥ (¢, ) := ¢, (t), where ¢, : J, — M is the maximally defined
integral curve of X with ¢,(0) = z, constructed in lemma 3.6. The mapping FI1*
is called the flow of the vector field X.

Theorem. For each vector field X on M, the mapping FI¥ : D(X) — M is
smooth, where D(X) = |J ¢ J» X {x} is an open neighborhood of 0 x M in
R x M. We have

FI¥(t 4 s,2) = FI* (¢, F1% (s, z))

in the following sense. If the right hand side exists, then the left hand side exists

and we have equality. If both t, s > 0 or both are < 0, and if the left hand side
exists, then also the right hand side exists and we have equality.

Proof. As mentioned in the proof of 3.6, FI* (¢, z) is smooth in (t,z) for small
t, and if it is defined for (¢, ), then it is also defined for (s, y) nearby. These are
local properties which follow from the theory of ordinary differential equations.

Now let us treat the equation FI™ (¢t + s, 2) = FI¥ (¢, FI1* (s, 2)). If the right
hand side exists, then we consider the equation

LFX(t+ s,2) = L FI (0, 2)|umrys = X(FIX (¢ + 5,2)),
FI¥(t + 5,2) =0 = FI* (s, 2).
But the unique solution of this is FI* (£, F1* (s, z)). So the left hand side exists

and equals the right hand side.
If the left hand side exists, let us suppose that ¢,s > 0. We put

FI¥ (u, z) ifu<s
cxu) =
FI* (u — s, F1% (s,2)) if u > s.
Lo () %le(u,x):X(FIX(u,x)) for u <s
—cz = =
du L pIX (y — 5, FI1¥ (s, 2)) = X (FI¥ (u — 5, F1¥ (s, 2)))

= X(cp(u)) for0<u<t+s.

Also ¢,(0) = z and on the overlap both definitions coincide by the first part of
the proof, thus we conclude that ¢, (u) = FlX(u,x) for 0 < u < t+ s and we
have FI* (¢, F1* (s, 2)) = co(t + s) = FIX (t + s, z).

Now we show that D(X) is open and FI¥ is smooth on D(X). We know
already that D(X) is a neighborhood of 0 x M in R x M and that F1* is smooth
near 0 x M.

For x € M let J. be the set of all ¢ € R such that FI¥ is defined and smooth
on an open neighborhood of [0,¢] x {x} (respectively on [t,0] x {z} for t < 0)
in R x M. We claim that J., = J,, which finishes the proof. It suffices to show
that J! is not empty, open and closed in J,. It is open by construction, and
not empty, since 0 € J.. If J. is not closed in J,, let to € J, N (JL \ J.) and
suppose that tg > 0, say. By the local existence and smoothness FI¥ exists and is
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smooth near [—e, ] x {y := FI* (t, z)} for some £ > 0, and by construction F1*
exists and is smooth near [0, ty — &] x {x}. Since FI*(—¢,y) = FI¥ (t; — ¢, z) we
conclude for ¢ near [0,%y —¢], 2’ near z, and ' near [—¢, ¢, that F1* (t4t/,2) =
FI* (¢, F1% (t,2')) exists and is smooth. So ¢, € J,, a contradiction. [

3.8. Let X € X(M) be a vector field. Its flow FI¥X is called global or complete,
if its domain of definition D(X) equals R x M. Then the vector field X itself
will be called a complete vector field. In this case FltX is also sometimes called
exptX; it is a diffeomorphism of M.

The support supp(X) of a vector field X is the closure of the set {x € M :
X(z) #0}.

Lemma. Every vector field with compact support on M is complete.

Proof. Let K = supp(X) be compact. Then the compact set 0 x K has positive
distance to the disjoint closed set (Rx M)\ D(X) (if it is not empty), so [—&, €] x
K C D(X) for some ¢ > 0. If z ¢ K then X(z) = 0, so FI*(t,z) = z for all ¢
and R x {z} € D(X). So we have [—¢,¢] x M C D(X). Since FIX(t +¢,z) =
F1* (¢, F1* (¢, z)) exists for |t| < e by theorem 3.7, we have [—2¢, 2¢] x M C D(X)
and by repeating this argument we get R x M =D(X). O

So on a compact manifold M each vector field is complete. If M is not
compact and of dimension > 2, then in general the set of complete vector fields
on M is neither a vector space nor is it closed under the Lie bracket, as the
following example on R? shows: X = y% and Y = %28% are complete, but
neither X 4+ Y nor [X,Y] is complete.

3.9. f-related vector fields. If f : M — M is a diffeomorphism, then for any
vector field X € X(M) the mapping Tf~! o X o f is also a vector field, which
we will denote f*X. Analogously we put f, X :=TfoXo f~! = (f"1)*X.

But if f: M — N is a smooth mapping and Y € X(N) is a vector field there
may or may not exist a vector field X € X(M) such that the following diagram
commutes:

™ 1L TN

i

f

M ———N.

Definition. Let f : M — N be a smooth mapping. Two vector fields X €
X(M)and Y € X(N) are called f-related, if T foX =Y o f holds, i.e. if diagram

(1) commutes.

Example. If X € X(M) and Y € X(N) and X xY € X(M x N) is given by
(X xY)(z,y) = (X(2),Y(y)), then we have:

(2) X xY and X are prq-related.

(3) X xY and Y are pro-related.

(4) X and X x Y are ins(y)-related if and only if Y (y) = 0, where
ins(y)(z) = (x,y), ins(y) : M — M x N.
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3.10. Lemma. Consider vector fields X; € X¥(M) and Y; € X(N) fori = 1,2,
and a smooth mapping f: M — N. If X; and Y; are f-related for i = 1,2, then
also M1 X1 + A2 Xy and M Y1 + \2Ys are f-related, and also [ X1, X2] and [Y1, Ys]
are f-related.

Proof. The first assertion is immediate. To show the second let h € C*°(N,R).
Then by assumption we have T'f o X; =Y, o f, thus:

(Xi(ho f))(x) = Xi(x)(ho f) = (T f Xi(x))(h) =
= (Tf o Xi)(z)(h) = (Yio f)(z)(h) = Yi(f(z))(h) = (Yi(h))(f(x)),
so X;(ho f) = (Y;(h)) o f, and we may continue:

(X1, Xo](ho f) = X1(Xa(ho f)) = Xo(Xi(ho f)) =
= X (Ya(h)o f) — Xao(Yi(h)o f) =
=Yi(Ya(h)) o f = Ya(Y1(h)) o f = [Y1,Y2](h) o f.

But this means T'f o [ X1, Xo] = [Y1,Y2]o f. O

3.11. Corollary. If f : M — N is a local diffeomorphism (so (T, f)~! makes
sense for each x € M), then for Y € X(N) a vector field f*Y € X(M) is defined
by (f*Y)(z) = (T.f)"2.Y(f(x)). The linear mapping f* : X(N) — X(M) is
then a Lie algebra homomorphism, i.e. f*[Y1,Ys] = [f*Y1, f*Y5].

3.12. The Lie derivative of functions. For a vector field X € X(M) and
f € C®(M,R) we define Lx f € C>*°(M,R) by
Lxf(z):= %|0f(F1X(t,a:)) or
Lxf= FloEFL) f = glo(foFI).

Since F1* (t,z) is defined for small ¢, for any x € M, the expressions above make
sense.

Lemma. %(Flf{)*f = (FIX)*X(f), in particular for t = 0 we have Lxf =
X(f)=df(X). O

3.13. The Lie derivative for vector fields. For X,Y € X(M) we define
LxY € X(M) by

LxY = L|,(FI)Y = L|o(T(FIY,) oY o FIY),
and call it the Lie derivative of Y along X.
Lemma. LxY = [X,Y] and £ (FI*)*Y = (FI})*"LxY = (FI)*[X,Y].

Proof. Let f € C*°(M,R) be a function and consider the mapping «(t,s) :=
Y (F1¥(t,2))(f o FI¥), which is locally defined near 0. It satisfies

a(t,0) = Y (FI¥ (t,2))(f),

a(0,5) = Y (2)(f o FI),

5a(0,0) = S| YEX(t,2)(f) = &, Y NHEF (7)) = X(2)(Y]),
2.0(0,0) = Z|oY (2)(f o FIY) = Y (2) Z[o(f 0 FIY) = Y (2)(X f).
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But on the other hand we have
(’%‘Oa<u7 _u) = %|0Y(F1X(u,x))(f o Fl)—(u) =
= Lo (TIRIX,) 0 Y 0 FIY) (f) = (£xY)al);

xT

so the first assertion follows. For the second claim we compute as follows:
2EX)Y = 2| (T(Fl)_ft) o T(FIX) oY o FIX oFlff)
= T(F1%,) 0 2o (T(Fli‘ JoY o Flﬁ‘) o FIX
=T(FI%,) o [X,Y] o FI¥ = (FIN)*[X,Y]. O

3.14. Lemma. Let X € X(M) and Y € X(N) be f-related vector fields for
a smooth mapping f : M — N. Then we have f o Fltx = Flzl of, whenever
both sides are defined. In particular, if f is a diffeomorphism we have Fl{ Y=
fT1oFl of.
Proof. We have &(foFIX) = Tfo 4FI¥ = TfoXoFLX =Y o foFI¥
and f(F1¥(0,2)) = f(x). So t — f(FI*(t,x)) is an integral curve of the vector
field Y on N with initial value f(z), so we have f(FI¥(t,z)) = FI¥ (¢, f(z)) or
foFLX =F1Y of. O
3.15. Corollary. Let X,Y € X(M). Then the following assertions are equiva-
lent

(1) LxY =[X,Y]=0.

(2) (FLX)*Y =Y, wherever defined.

(3) FIX o F1Y = F1¥ o FIX, wherever defined.

Proof. (1) & (2) is immediate from lemma 3.13. To see (2) < (3) we note
that FIX o F1Y = FIY o FIX if and only if FI' = FI¥, 0 F1Y o FIX = F1IF)™Y by
lemma 3.14; and this in turn is equivalent to Y = (FIX)*Y. O

3.16. Theorem. Let M be a manifold, let o' : R x M D Ui — M be smooth
mappings for i =1,...,k where each Uy is an open neighborhood of {0} x M
in R x ]W such that each Qs a d1ﬁ”eomorphzsm on its domain, ¢} = IdM, and

Q = X; € X(M). We put [¢", '], = [‘Pt»@t] : (@t) Lo ()7t owl 0wl
Then for each formal bracket expression P of lenght k we have

078t5|op(991}; --,sﬁf) for1 </{ <k,
k -
P(X1,..., Xy) = m5wloP(ors - 01) € X(M)

in the sense explained in step 2 of the proof. In particular we have for vector
fields X, Y € X(M)

0= 2|, (F1¥, o F1*, o FI} o F1¥),
(X, Y] = L2 |o(F1Y, o FIX, o FIY o FIY).
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Proof. Step 1. Let ¢ : R — M be a smooth curve. If ¢(0) = z € M, /(0) =
0,...,c¢#=1(0) = 0, then ¢®)(0) is a well defined tangent vector in T, M which
is given by the derivation f +— (f o c¢)*)(0) at z.

For we have

k
((£-9) 0 ) (0) = ((fo0)-(g0¢))(0) = Z ()(f o) (0)(goe)*(0)

j
= (foe)®(0)g(x) + f(2)(g 0 )" (0),
since all other summands vanish: (f o ¢)?)(0) =0 for 1 < j < k.

Step 2. Let ¢ : Rx M D U, — M be a smooth mapping where U, is an open
neighborhood of {0} x M in R x M, such that each ¢; is a diffeomorphism on
its domain and g = Idy;. We say that ¢; is a curve of local diffeomorphisms
though Idj,. »

From step 1 we see that if %bg@t =0forall 1 <j <k, then X := %%b%
is a well defined vector field on M. We say that X is the first non-vanishing
derivative at 0 of the curve ¢, of local diffeomorphisms. We may paraphrase this

as (OF|low;)f = k' Lx f.

Claim 8. Let ¢, 1y be curves of local diffeomorphisms through Idy; and let
f € C>®(M,R). Then we have

k
Oflo(pr o) f = 0F o 0 0i)f =Y (5) (@ 10w ) (0F o) f-
7=0

Also the multinomial version of this formula holds:

* k! 1 * 1 *

OFlolprocop) f=" Y ——=(0"ol¢))") .- @o(e))f-
. e e

it tie=h

We only show the binomial version. For a function h(t, s) of two variables we

have
k

=Y ()AL n(t, 8)|s=1,

7=0
since for h(t,s) = f(t)g(s) this is just a consequence of the Leibnitz rule, and
linear combinations of such decomposable tensors are dense in the space of all
functions of two variables in the compact C°°-topology, so that by continuity
the formula holds for all functions. In the following form it implies the claim:

k

OF o f (o(t =Y (510 F(p(t, ¥(s,2))) e=s=o-

Jj=0

Claim 4. Let ¢ be a curve of local diffeomorphisms through Id,; with first
non-vanishing derivative k!X = 0F|op;. Then the inverse curve of local diffeo-
morphisms ;! has first non-vanishing derivative —k!X = 9F|op; *
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For we have <p;1 oy = 1d, so by claim 3 we get for 1 < j <k
0=20]lo(¢; o) f = Z (Do} (@] (e ) f =

= & lowi (v )7 f + @50 Lol )" 1,
ie. d|oprf = —8|o(er )" f as required.
Claim 5. Let ¢; be a curve of local diffeomorphisms through Idy; with first
non-vanishing derivative m!X = 9j"|o¢:, and let ¢, be a curve of local diffeo-
morphisms through Idy; with first non-vanishing derivative n!Y = 9} |o):.

Then the curve of local diffeomorphisms [p;, 1¢] = z/;t_l o ‘Pt_l oy 0wy has first
non-vanishing derivative

(m +n)![X, Y] = 07" [o[ior, 1]

From this claim the theorem follows.
By the multinomial version of claim 3 we have

Anf =Nl o gt ouop) s
N!
= > oD@ ovd) @ loler )@l lowr )
i+j+k+l=N

Let us suppose that 1 < n < m, the case m < n is similar. If N < n all
summands are 0. If N = n we have by claim 4

ANF = (O lo9i) f + O 0¥ F + (OFlo(er 1)) F + (9o (1)) f = 0.
Ifn<N<mwe have using again claim 4:

Anf= Y il !(aj|0¢t)(aq (@ ))f + 0% (0 lowr ) f + (9710w 1)) f)

jH=N
= (0 o(; o)) f +0=0.
Now we come to the difficult case m,n < N < m + n.
Anf =01 oor 0w f + () (07 l0wi) (0o (vt o gt o)) f
(1) + 0 lop) 1,

by claim 3, since all other terms vanish, see (3) below. By claim 3 again we get:

O lo(wi o 0w = S0 S @llwD)OHa(er ) @) S

jthre=NJ

2 = > (D@ Ol ) )f + ()@ ™ 0w @ (e ) f

j+t=N
+ ()@ ol O ™o ) + 0N ol )  f
=0+ (M) @ ™ovr)mlLox f+ (X)mL_x (O "o 1)) f
+ 0N oler ) f
=0 L (m+n)(LxLy — Ly Lx)f + 0N |o(e; ) f
_6%+n(m+n)' [X,Y]f+8t lo(; ) f
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From the second expression in (2) one can also read off that

(3) N o(wy topr o) f =01 oy ).
If we put (2) and (3) into (1) we get, using claims 3 and 4 again, the final result
which proves claim 5 and the theorem:
AN = Opn(m A+ Lix v f+ 0 ol )" f
+ (W)@ oeD) (B ol ) + (0 lowi) f
= Opan(m + ) Lix i f+ 0ol o) f
=0 n(m+n)Lixy f+0. O

3.17. Theorem. Let X1,...,X,, be vector fields on M defined in a neighbor-
hood of a point x € M such that X;(z),...,Xmn(x) are a basis for T, M and
[X:, X;] =0 for all ¢, 5.

Then there is a chart (U,u) of M centered at x such that X;|U = 2.

Proof. For small t = (t!,... /™) € R™ we put
f ™) = (Flt)f1 o--- o FIum)(x).

By 3.15 we may interchange the order of the flows arbitrarily. Therefore

D f(t ™) = 2 (FLY oFL  o- -+ )(2) = X;((FIf 0+ )(2)).
So Ty f is invertible, f is a local diffeomorphism, and its inverse gives a chart
with the desired properties. [

3.18. Distributions. Let M be a manifold. Suppose that for each x € M
we are given a sub vector space E, of T, M. The disjoint union E = | | ., Ex
is called a distribution on M. We do not suppose, that the dimension of F, is
locally constant in .

Let Xj0.(M) denote the set of all locally defined smooth vector fields on M,
ie. Xjoe(M)=JX(U), where U runs through all open sets in M. Furthermore
let Xp denote the set of all local vector fields X € X;,.(M) with X(z) € E,
whenever defined. We say that a subset V C Xg spans E, if for each z € M the
vector space F, is the linear span of the set {X (x) : X € V}. We say that F is a
smooth distribution if Xg spans E. Note that every subset W C X;,.(M) spans
a distribution denoted by E (W), which is obviously smooth (the linear span of
the empty set is the vector space 0). From now on we will consider only smooth
distributions.

An integral manifold of a smooth distribution E is a connected immersed
submanifold (N,4) (see 2.8) such that T,i(T,N) = Ej) for all x € N. We
will see in theorem 3.22 below that any integral manifold is in fact an initial
submanifold of M (see 2.14), so that we need not specify the injective immersion
1. An integral manifold of F is called maximal if it is not contained in any strictly
larger integral manifold of E.
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3.19. Lemma. Let E be a smooth distribution on M. Then we have:

1. If (N,i) is an integral manifold of E and X € Xg, then i*X makes sense
and is an element of Xj,.(N), which is i|i~!(Ux)-related to X, where Ux C M
is the open domain of X.

2. If (Nj,i;) are integral manifolds of E for j = 1,2, then iy "(i1(N1) N
ia(No)) and i5 (i1 (N1) Niz(No)) are open subsets in Ny and Ny, respectively;
furthermore iy oy is a diffecomorphism between them.

3. Ifx € M is contained in some integral submanifold of E, then it is contained
in a unique maximal one.

Proof. 1. Let Ux be the open domain of X € Xg. If i(x) € Ux for x € N,
we have X (i(z)) € By = Tpi(TpN), so i* X (x) := ((Tpi)"' o X 0i)(z) makes
sense. It is clearly defined on an open subset of N and is smooth in x.

2. Let X € Xg. Then i;X € xloc(Nj) and is ¢;-related to X. So by lemma
3.14 for j = 1,2 we have

i oFIV ™ = FIX 0.
Now choose x; € N; such that i1(z1) = i2(z2) = 29 € M and choose vector
fields X1,...,X,, € Xg such that (X;(xo),...,X,(x0)) is a basis of E,,. Then

L) = (P oo I

)(z5)
is a smooth mapping defined near zero R" — N;. Since obviously %bfj =
P (x;) for j = 1,2, we see that f; is a diffeomorphism near 0. Finally we have

(i3 0iyo fu)(t, ... ") = (i3  0iy o FIAX 0. o FILY ") (ay)
= (22_1 o Flﬁ1 0---0 FltXn" oiq)(z1)
= (Flﬁx1 0-+0 Fl?,,x" oi2_1 oi1)(z1)

= fo(t', ..., t").

So iy 104, is a diffeomorphism, as required.

3. Let N be the union of all integral manifolds containing . Choose the union
of all the atlases of these integral manifolds as atlas for N, which is a smooth
atlas for N by 2. Note that a connected immersed submanifold of a separable
manifold is automatically separable (since it carries a Riemannian metric). O

3.20. Integrable distributions and foliations.

A smooth distribution E on a manifold M is called integrable, if each point
of M is contained in some integral manifold of E. By 3.19.3 each point is
then contained in a unique maximal integral manifold, so the maximal integral
manifolds form a partition of M. This partition is called the foliation of M
induced by the integrable distribution E, and each maximal integral manifold
is called a leaf of this foliation. If X € Xp then by 3.19.1 the integral curve
t— FIX(t, x) of X through = € M stays in the leaf through z.

Note, however, that usually a foliation is supposed to have constant dimen-
sions of the leafs, so our notion here is sometimes called a singular foliation.
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Let us now consider an arbitrary subset V C Xj,.(M). We say that V is
stable if for all X,Y € V and for all ¢ for which it is defined the local vector field
(FIX)*Y is again an element of V.

If W C Xj,c(M) is an arbitrary subset, we call S(W) the set of all local vector
fields of the form (Flffl 0---0 Flt)i’“)*Y for X;,Y € W. By lemma 3.14 the flow
of this vector field is

FI(FIS 0o o FIS*)*Y,#) = FI¥} o+ o FI*} oF1} oFI 0. o FI%,

so S(W) is the minimal stable set of local vector fields which contains W.

Now let F' be an arbitrary distribution. A local vector field X € X;,.(M) is
called an infinitesimal automorphism of F, if T,(F1X)(F,) C Fpix (1,2) Whenever
defined. We denote by aut(F') the set of all infinitesimal automorphisms of F'.
By arguments given just above, aut(F') is stable.

3.21. Lemma. Let E be a smooth distribution on a manifold M. Then the
following conditions are equivalent:

(1) E is integrable.

(2) X is stable.

(3) There exists a subset W C Xjo.(M) such that S(W) spans E.

(4) aut(E)NXg spans E.

Proof. (1) = (2). Let X € Xg and let L be the leaf through z € M, with
1 : L — M the inclusion. Then Fl)ft ol =140 FlitX by lemma 3.14, so we have

T, (F12,)(E,) = T(F1Y,).T,i.T, L = T(F1%, 0i).T,, L
= Ti.T,(FI" ). T, L
= Ti-TFli*X(—t,r)L = EFZX(ft,$)'

This implies that (FIX)*Y € Xp for any Y € Xp.

(2) = (4). In fact (2) says that Xp C aut(E).

(4) = (3). We can choose W = aut(E) N Xg: for X, Y € W we have
(FIX)*Y € Xg; 50 W C S(W) C X and E is spanned by W.

(3) = (1). We have to show that each point € M is contained in some
integral submanifold for the distribution E. Since S(W) spans E and is stable
we have

(5) T(FLY).Ey = Epyx ;)

for each X € S(W). Let dim E, = n. There are X1,..., X, € S(W) such that
X1(z),..., X, (x) is a basis of E,, since E is smooth. As in the proof of 3.19.2
we consider the mapping

f(tl,... 7t”) = (F]ﬁl O-“OFlfg")(q:)’

defined and smooth near 0 in R™. Since the rank of f at 0 is n, the image
under f of a small open neighborhood of 0 is a submanifold N of M. We claim
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that N is an integral manifold of E. The tangent space Ty, . )N is linearly
generated by

2 (FLY o o FI)(z) = T(FL¥ 0+ 0 Flfi’:l)xk((mfik o---oFI%")(z))
= ((F1X0) - (FI) X)) (f(E ™)),

Since S(W) is stable, these vectors lie in Ef(;). From the form of f and from (5)
we see that dim Fy ) = dim E, so these vectors even span Ey;) and we have
TyyN = Ey(4) as required. [

3.22. Theorem (local structure of foliations). Let E be an integrable
distribution of a manifold M. Then for each x € M there exists a chart (U, u)
with u(U) = {y € R™ : |y| < ¢ for all i} for some ¢ > 0, and an at most
countable subset A C R™™™, such that for the leaf L through x we have

wUNL)={yecul): (y", . .. ,y™) € A}.

FEach leaf is an initial submanifold.
If furthermore the distribution E has locally constant rank, this property
holds for each leaf meeting U with the same n.

This chart (U,u) is called a distinguished chart for the distribution or the
foliation. A connected component of U N L is called a plaque.

Proof. Let L be the leaf through x, dim L = n. Let Xi1,...,X,, € Xg be local
vector fields such that Xj(x),...,X,(z) is a basis of E,. We choose a chart
(V,v) centered at x on M such that the vectors

Xl(x),...,Xn(x),WQHLL»’...,%‘I
form a basis of T, M. Then
ft .t = (FIY o o FIZ) (070, ..., 0,41 o t™))

is a diffeomorphism from a neighborhood of 0 in R™ onto a neighborhood of x
in M. Let (U,u) be the chart given by f~!, suitably restricted. We have

ye L= (FI'o---oFI3")(y) € L
for all y and all t', ... ,¢" for which both expressions make sense. So we have
f ... ™) € L < f(0,...,0,t" T, ... ™) € L,

and consequently L N U is the disjoint union of connected sets of the form
{y € U: (u"(y),...,u™(y)) = constant}. Since L is a connected immersed
submanifold of M, it is second countable and only a countable set of constants
can appear in the description of u(LNU) given above. From this description it is
clear that L is an initial submanifold (2.14) since u(C,(LNU)) = uw(U)N(R™ x0).
The argument given above is valid for any leaf of dimension n meeting U, so
also the assertion for an integrable distribution of constant rank follows. [
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3.23. Involutive distributions. A subset V C X;,.(M) is called involutive if
[X,Y] € V for all X,Y € V. Here [X,Y] is defined on the intersection of the
domains of X and Y.

A smooth distribution E on M is called involutive if there exists an involutive
subset V C X,.(M) spanning FE.

For an arbitrary subset W C Xjoc(M) let L(W) be the set consisting of
all local vector fields on M which can be written as finite expressions using
Lie brackets and starting from elements of W. Clearly £(W) is the smallest
involutive subset of X;,.(M) which contains W.

3.24. Lemma. For each subset W C X;,.(M) we have
EW) C E(L(W)) C E(S(W)).

In particular we have E(S(W)) = E(L(S(W))).

Proof. We will show that for X,Y € W we have [X,Y] € Xg(s(w)), for then by
induction we get L(W) C Xpsow)) and E(L(W)) C E(S(W)).

Let © € M; since by 3.21 E(S(W)) is integrable, we can choose the leaf L
through z, with the inclusion 7. Then *X is i-related to X, i*Y is i-related to
Y, thus by 3.10 the local vector field [i* X, i*Y] € Xj,.(L) is i-related to [X,Y7],
and [X,Y](z) € E(S(W)),, as required. O

3.25. Theorem. Let V C X;,.(M) be an involutive subset. Then the distribu-
tion E(V) spanned by V is integrable under each of the following conditions.

(1) M is real analytic and V consists of real analytic vector fields.
(2) The dimension of E(V) is constant along all flow lines of vector fields in

V.

Proof. For X,Y € V we have <4 FIX)'Y = (FIX *LxY, consequently
dt t t

;; (FIX) Y = (FI)*(Lx)*Y, and since everything is real analytic we get for

r € M and small ¢

k
)Y (@) = 0 B Py ) = Y e v o).

k>0 k>0

Since V is involutive, all (Lx)*Y € V. Therefore we get (FIX)*Y (z) € E(V),
for small ¢. By the flow property of FI¥ the set of all ¢ satisfying (F1,*)*Y (z) €
E(V), is open and closed, so it follows that 3.21.2 is satisfied and thus E(V) is
integrable.

(2) We choose Xi,...,X,, € V such that X;(z),...,X,(z) is a basis of
E(V);. For X € V, by hypothesis, E(V)px(;,) has also dimension n and ad-
mits X (F1* (¢, 2)), ..., X, (F1* (¢, z)) as basis for small t. So there are smooth
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functions f;;(t) such that

[X, X3 (FI¥ (t,2)) = Z i ()X (FIX (¢, 2)).
ATEX,). X (FI¥ (¢, 2)) = T(FIX,).[X, X;](FI¥ (t,2)) =

- Z fii (OT(F1%,). X, (F1¥ (¢, z)).

So the T, M-valued functions g;(t) = T(FI*,).X;(FI1*(t,z)) satisfy the linear
ordinary differential equation 4 g;(t) = Z;‘L:1 fij(t)g;(t) and have initial values
in the linear subspace E(V),, so they have values in it for all small ¢. There-
fore T(Fl)ft)E(V)FIX(m) C E(V), for small t. Using compact time intervals
and the flow property one sees that condition 3.21.2 is satisfied and E(V) is
integrable. [J

Example. The distribution spanned by W C X;,.(R?) is involutive, but not
integrable, where W consists of all global vector fields with support in R? \ {0}
and the field %; the leaf through 0 should have dimension 1 at 0 and dimension
2 elsewhere.

3.26. By a time dependent vector field on a manifold M we mean a smooth
mapping X : J x M — TM with 7y o X = pry, where J is an open interval.
An integral curve of X is a smooth curve ¢ : I — M with é(t) = X(¢,¢(t)) for
all t € I, where [ is a subinterval of J.

There is an associated vector field X € X(J x M), given by X(¢,z) =
(115, X(t, .’L‘)) € TtR X TmM

By the evolution operator of X we mean the mapping ®X : J x J x M — M,
defined in a maximal open neighborhood of the diagonal in M x M and satisfying
the differential equation

{ #2¥(ts,0) = X(t, 2% (1, 5,2))

X (s,5,x) = .

It is easily seen that (t, ®X(¢,s,7)) = FIX(t —8,(s,2)), so the maximally defined
evolution operator exists and is unique, and it satisfies

X _ 75X X
(I)t,s - (I)t,r © (I)r,s

whenever one side makes sense (with the restrictions of 3.7), where &% (x) =
D(t, s, ).
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4. Lie groups

4.1. Definition. A Lie group G is a smooth manifold and a group such that
the multiplication p : G X G — G is smooth. We shall see in a moment, that
then also the inversion v : G — G turns out to be smooth.

We shall use the following notation:
u: G x G — G, multiplication, u(x,y) = z.y.
Aa : G — G, left translation, A\,(z) = a.x.
po : G — G, right translation, p,(z) = z.a.
v:G — G, inversion, v(r) = 271
e € (G, the unit element.
Then we have A\q 0 Ay = )\a.by Pa © Pb = Pb.as Agl = Aa*% P;l = Pa-15 Pa © Ap =
Ab © pa. If ¢ : G — H is a smooth homomorphism between Lie groups, then we
also have o Ag = Ay(0) 095 9 0 Pa = Py(a) © @, thus also T . TAy = TA,q). T,
etc. So T, is injective (surjective) if and only if T, is injective (surjective) for
all a € G.

4.2. Lemma. T,y : T,G x TyG — TopG is given by

T(a,b),u-(Xa7 YE)) - Ta(pb)-Xa + Tb()\a)-Yb~

Proof. Let ri, : G — G X G, 1ig(x) = (a,z) be the right insertion and let
lip : G — G x G, liy(z) = (x,b) be the left insertion. Then we have

Tiapyi-(Xa, Yo) = Tiapypt-(Ta(lip). Xo + T(1ia).Ys) =
=To(polipy). Xo+Tp(pporia).Ys = To(py) Xo + To(Aa).Ys. O

4.3. Corollary. The inversion v : G — G is smooth and

TaV = _Te(pa—1)~Ta()‘a—1) = _Te()‘a_l)'Ta(pa_l)‘

Proof. The equation p(x,v(z)) = e determines v implicitly. Since we have
Te(u(e, ) =Te(\) =1d, the mapping v is smooth in a neighborhood of e by
the implicit function theorem. From (v o \,)(z) = 27 t.a™! = (p,—1 o v)(x) we
may conclude that v is everywhere smooth. Now we differentiate the equation

u(a,v(a)) = e; this gives in turn

0. = T(a,afl)/ﬁ-(Xa,TaVXa) = Ta(pafl).Xa + Ta—l()\a).TaV.Xa,
TowXe=—T.No) Tulpg-1)Xa = ~Te(Mg-1).Ta(pa-1).Xo. O

4.4. Example. The general linear group GL(n,R) is the group of all invertible
real n X n-matrices. It is an open subset of L(R™ R"), given by det # 0 and a
Lie group.

Similarly GL(n,C), the group of invertible complex n x n-matrices, is a Lie
group; also GL(n,H), the group of all invertible quaternionic n x n-matrices, is
a Lie group, but the quaternionic determinant is a more subtle instrument here.
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4.5. Example. The orthogonal group O(n,R) is the group of all linear isome-
tries of (R”,( , )), where ( , ) isthe standard positive definite inner prod-
uct on R™. The special orthogonal group SO(n,R) :== {A € O(n,R) : det A =1}
is open in O(n,R), since

-1 0

O(n,R) = SO(n,R) LU ( 0 L,

) SO(n,R),

where T, is short for the identity matrix Idgx. We claim that O(n,R) and
SO(n,R) are submanifolds of L(R™ R™). For that we consider the mapping
f: L(R",R") — L(R™,R™), given by f(A) = A.A*. Then O(n,R) = f~1(L,);
so O(n,R) is closed. Since it is also bounded, O(n,R) is compact. We have
df(A).X = X. At + A. X", so kerdf(I,,) = {X : X + X* =0} is the space o(n,R)
of all skew symmetric n X n-matrices. Note that dimo(n,R) = £(n — 1)n. If
A is invertible, we get kerdf(A) = {Y : Y.A' + AY' = 0} = {V : Y.A' €
o(n,R)} = o(n,R).(A™1)!. The mapping [ takes values in Lgy,,(R",R™), the
space of all symmetric n x n-matrices, and dimker df (A) + dim Ly, (R™, R") =
i(n—1)n+ n(n+1) =n? =dim L(R",R"), so f : GL(n,R) — Ly, (R™",R")
is a submersion. Since obviously f~1(I,) € GL(n,R), we conclude from 1.10
that O(n,R) is a submanifold of GL(n,R). It is also a Lie group, since the group

operations are obviously smooth.

4.6. Example. The special linear group SL(n,R) is the group of all n x n-
matrices of determinant 1. The function det : L(R",R") — R is smooth and
ddet(A)X = trace(C(A).X), where C(A)’, the cofactor of A7, is the determinant

of the matrix, which results from putting 1 instead of Ag into A and 0 in the rest
of the j-th row and the i-th column of A. We recall Cramer’s rule C'(A).A =
A.C(A) = det(A).I,. Soif C(A) # 0 (i.e. rank(A) > n — 1) then the linear
functional df(A) is non zero. So det : GL(n,R) — R is a submersion and
SL(n,R) = (det)~!(1) is a manifold and a Lie group of dimension n? — 1. Note
finally that 77, SL(n,R) = kerddet(I,,) = {X : trace(X) = 0}. This space of
traceless matrices is usually called sl(n,R).

4.7. Example. The symplectic group Sp(n,R) is the group of all 2n x 2n-
matrices A such that w(Az, Ay) = w(x,y) for all 2,y € R?", where w is the
standard non degenerate skew symmetric bilinear form on R?".

Such a form exists on a vector space if and only if the dimension is even, and
on R™ x (R™)* the standard form is given by w((x, 2*), (v, y*)) = (x, y*) — (y, x*),
i.e. in coordinates w((z*)72y, (y7)52,) = Y1, (a'y" T — 2" 'y"). Any symplectic
form on R?" looks like that after choosing a suitable basis. Let (e;)?"; be the
standard basis in R?". Then we have

e = (5 )=

and the matrix .J satisfies J¢ = —J, J? = —I,, J(Zj) = (Y,) in R" x R, and

w(z,y) = (x, Jy) in terms of the standard inner product on R?".
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For A € L(R?*",R?") we have w(Az, Ay) = (Az, JAy) = (z, A'JAy). Thus
A € Sp(n,R) if and only if A*'JA = J.

We consider now the mapping f : L(R?",R?") — L(R** R?") given by
f(A) = A'JA. Then f(A) = (A'"JA)! = —A'JA = —f(A), so f takes val-
ues in the space 0(2n,R) of skew symmetric matrices. We have df(A)X =
X'JA + A'J X, and therefore

ker df (Io,,) = {X € L(R*",R?") : X' J + JX =0}
={X : JX is symmetric} =: sp(n,R).

We see that dim sp(n, R) = M = (2"2“). Furthermore we have ker df (4) =
{X : XtJA+ A'JX = 0} and X — A'JX is an isomorphism kerdf(A) —
Lgym (R* R?™), if A is invertible. Thus dimkerdf(A) = (2”;1) for all A €
GL(2n,R). If f(A) = J, then A'JA = J, so A has rank 2n and is invertible, and
dimker df (A) + dim o(2n,R) = (2”;1) + % = 4n? = dim L(R?",R?"). So
f: GL(2n,R) — 0(2n,R) is a submersion and f~1(J) = Sp(n,R) is a manifold
and a Lie group. It is the symmetry group of ‘classical mechanics’.

4.8. Example. The complex general linear group GL(n,C) of all invertible
complex n x n-matrices is open in L¢(C™,C™), so it is a real Lie group of real
dimension 2n?; it is also a complex Lie group of complex dimension n?. The
complex special linear group SL(n,C) of all matrices of determinant 1 is a sub-
manifold of GL(n,C) of complex codimension 1 (or real codimension 2).

The complex orthogonal group O(n,C) is the set

{A e L(C",C") : g(Az, Aw) = g(z,w) for all z,w},

where g(z,w) = > | z'w’. This is a complex Lie group of complex dimension
w, and it is not compact. Since O(n,C) = {4 : A'A = 1,}, we have
1 = detc(I,) = detc(AA) = detc(A4)?, so detc(A) = +£1. Thus SO(n,C) :=
{4 € O(n,C) : detc(A) = 1} is an open subgroup of index 2 in O(n, C).

The group Sp(n,C) = {A € Lc(C*,C?") : A'JA = J} is also a complex Lie
group of complex dimension n(2n + 1).

These groups here are the classical complex Lie groups. The groups SL(n,C)
for n > 2, SO(n,C) for n > 3, Sp(n,C) for n > 4, and five more exceptional
groups exhaust all simple complex Lie groups up to coverings.

4.9. Example. Let C” be equipped with the standard hermitian inner product
(z,w) = Y.I, zw'. The unitary group U(n) consists of all complex n x n-
matrices A such that (Az, Aw) = (z,w) for all z, w holds, or equivalently U(n) =
{A: A*A=1,}, where A* = A".

We consider the mapping f : Lc(C",C") — L¢(C™,C™), given by f(A) =
A*A. Then f is smooth but not holomorphic. Its derivative is df (4)X =
X*A+ A*X, so kerdf(I,,) = {X : X* 4+ X =0} =: u(n), the space of all skew
hermitian matrices. We have dimgu(n) = n?. As above we may check that
f:GL(n,C) — Lperm(C™,C™) is a submersion, so U(n) = f~1(IL,) is a compact
real Lie group of dimension n?2.

The special unitary group is SU(n) = U(n) N SL(n,C). For A € U(n) we
have | detc(A)| = 1, thus dimg SU(n) = n? — 1.
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4.10. Example. The group Sp(n). Let H be the division algebra of quater-
nions. Then Sp(1) := S% C H = R* is the group of unit quaternions, obviously
a Lie group.

Now let V' be a right vector space over H. Since H is not commutative, we
have to distinguish between left and right vector spaces and we choose right ones
as basic, so that matrices can multiply from the left. By choosing a basis we get
V =R"@g H=H". For u = (u), v=(v') € H* we put (u,v) :== > 1w
Then ( , ) is R-bilinear and (ua,vb) = @(u,v)b for a,b € H.

An R linear mapping A : V — V is called H-linear or quaternionically linear
if A(ua) = A(u)a holds. The space of all such mappings shall be denoted by
Ly(V,V). It is real isomorphic to the space of all quaternionic n X n-matrices
with the usual multiplication, since for the standard basis (e;)7; in V = H" we
have A(u) = A(Y, eut) = Y, A(ei)u’ = Do ejAJul. Note that Ly(V,V) is
only a real vector space, if V' is a right quaternionic vector space - any further
structure must come from a second (left) quaternionic vector space structure on
V.

GL(n,H), the group of invertible H-linear mappings of H", is a Lie group,
because it is GL(4n,R) N Ly(H™, H"), open in Ly(H™, H").

A quaternionically linear mapping A is called isometric or quaternionically
unitary, if (A(u), A(v)) = (u,v) for all u,v € H". We denote by Sp(n) the
group of all quaternionic isometries of H", the quaternionic unitary group. The
reason for its name is that Sp(n) = Sp(2n,C) NU(2n), since we can decompose
the quaternionic hermitian form ( , ) into a complex hermitian one and a
complex symplectic one. Also we have Sp(n) C O(4n,R), since the real part of
( , ) is a positive definite real inner product. For A € Ly(H", H") we put
A* := A'. Then we have (u, A(v)) = (A*(u),v), so (A(u), A(v)) = (A*A(u),v).
Thus A € Sp(n) if and only if A*A = Id.

Again f: Ly(H",H") — Ly perm (H",H") = {A : A* = A}, given by f(A) =
A* A, is a smooth mapping with df (4)X = X* A+ A*X. So we have ker df (Id) =
{X : X* = —X} =: sp(n), the space of quaternionic skew hermitian matrices.
The usual proof shows that f has maximal rank on GL(n,H), so Sp(n) = f~1(Id)
is a compact real Lie group of dimension 2n(n — 1) + 3n.

The groups SO(n,R) for n > 3, SU(n) for n > 2, Sp(n) for n > 2 and
real forms of the exceptional complex Lie groups exhaust all simple compact Lie
groups up to coverings.

4.11. Invariant vector fields and Lie algebras. Let G be a (real) Lie group.
A vector field € on G is called left invariant, if \:( = & for all a € G, where
A€ =T(Ag-1)0€0), as in section 3. Since by 3.11 we have XX[£,n] = [A2€, Ain),
the space X (G) of all left invariant vector fields on G is closed under the Lie
bracket, so it is a sub Lie algebra of X(G). Any left invariant vector field &
is uniquely determined by £(e) € T.G, since £(a) = Te(Aq).£(€). Thus the Lie
algebra X, (G) of left invariant vector fields is linearly isomorphic to T.G, and
on T, G the Lie bracket on X, (G) induces a Lie algebra structure, whose bracket
is again denoted by [ , |. This Lie algebra will be denoted as usual by g,
sometimes by Lie(G).
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We will also give a name to the isomorphism with the space of left invariant
vector fields: L : g — X1(G), X — Lx, where Lx(a) = TeA,.X. Thus [X,Y] =
[Lx,Ly](e).

A vector field n on G is called right invariant, if pin = n for all a € G. If
& is left invariant, then v*¢ is right invariant, since v o p, = A,-1 o v implies
that piv*€ = (Vo pa)*€ = (Ag—1 o v)*E = v*(A\y-1)*¢ = v*€. The right invariant
vector fields form a sub Lie algebra Xz(G) of X(G), which is again linearly
isomorphic to T.G and induces also a Lie algebra structure on T.G. Since
v* : X1 (G) — Xg(G) is an isomorphism of Lie algebras by 3.11, T,v = —1d :
T.G — T.G is an isomorphism between the two Lie algebra structures. We will
denote by R : g = T.G — Xr(G) the isomorphism discussed, which is given by
Rx(a) =T.(ps).X.

4.12. Lemma. If Lx is a left invariant vector field and Ry is a right invariant
one, then [Lx, Ry] = 0. Thus the flows of Lx and Ry commute.

Proof. We consider 0 x Lx € X(G x G), given by (0 x Lx)(a,b) = (04, Lx(b)).
Then Tqp)p-(0a, Lx (b)) = Tapp.0a + TpAa-Lx(b) = Lx(ab), so 0 x Lx is -
related to Lx. Likewise Ry x 0 is p-related to Ry . But then 0 = [0x Lx, Ry x 0]
is p-related to [Lx, Ry| by 3.10. Since p is surjective, [Lx, Ry] = 0 follows. O

4.13. Let ¢ : G — H be a homomorphism of Lie groups, so for the time being
we require ¢ to be smooth.

Lemma. Then ¢ :=T.p: g =T.G — h = T.H is a Lie algebra homomor-
phism.

Proof. For X € g and x € G we have
Top.Lx(x) =TT X =Te(poX;).X =
Te()\ww) o (p)X = Tp(Aw(x))Tp@X = ch’(X) (gﬁ(l’))

So Ly is p-related to Ly (x). By 3.10 the field [Lx, Ly] = Lix y] is @-related
to [Ltp’(X)7Lga’(Y)} = L[go’(X),Lp’(Y)]' So we have T(p ] L[X7y] = L[@’(X),Lp’(Y)] o .
If we evaluate this at e the result follows. [

Now we will determine the Lie algebras of all the examples given above.

4.14. For the Lie group GL(n,R) we have T.GL(n,R) = L(R™,R™) =: gl(n,R)
and TGL(n,R) = GL(n,R) x L(R™",R™) by the affine structure of the sur-
rounding vector space. For A € GL(n,R) we have As(B) = A.B, so A
extends to a linear isomorphism of L(R™,R™), and for (B,X) € T GL(n,R)
we get Tp(Aa).(B,X) = (A.B,A.X). So the left invariant vector field Lx €
XL(GL(n,R)) is given by Lx(A) =Te(Aa).X = (A, A.X).

Let f : GL(n,R) — R be the restriction of a linear functional on L(R",R").
Then we have Lx(f)(A) = df(A)(Lx(A)) = df(A)(A.X) = f(A.X), which we
may write as Lx (f) = f( .X). Therefore

Lixy)(f) = [Lx, Ly](f) = Lx(Ly(f)) — Ly (Lx(f)) =
=Lx(f( .Y)—-Ly(f( X)) =
=f( XY)-f( YX)=Lxyv-vx(f)



4. Lie groups 35

So the Lie bracket on gl(n,R) = L(R™,R") is given by [X,Y] = XY — Y X, the

usual commutator.

4.15. Example. Let V be a vector space. Then (V,+) is a Lie group, T,V =V
is its Lie algebra, TV = V xV, left translation is A, (w) = v+w, Ty (Ay).(w, X) =
(v+w,X). So Lx(v) = (v,X), a constant vector field. Thus the Lie bracket is
0.

4.16. Example. The special linear group is SL(n,R) = det '(1) and its Lie
algebra is given by T.SL(n,R) = kerddet(ﬂ) = {X € L(R™",R") : trace X =
0} = sl(n,R) by 4.6. The injection ¢ : SL(n,R) — GL(n,R) is a smooth
homomorphism of Lie groups, so Tpi = z’ :sl(n,R) — gl(n,R) is an injective
homomorphism of Lie algebras. Thus the Lie bracket is given by [X,Y]
XY -YX.

The same argument gives the commutator as the Lie bracket in all other
examples we have treated. We have already determined the Lie algebras as T.G.

4.17. One parameter subgroups. Let GG be a Lie group with Lie algebra g.
A one parameter subgroup of G is a Lie group homomorphism « : (R,+) — G,
i.e. a smooth curve o in G with «(0) = e and «a(s +t) = a(s).a(t).

Lemma. Let a : R — G be a smooth curve with «(0) =e. Let X = &(0) € g.
Then the following assertions are equivalent.

) « is a one parameter subgroup.
) a(t) = F1¥X (t,€) for all t.

3) a(t) = F1%% (t,e) for all t.
) z.at) = FI** (¢, z), or FIFX = Pat), for all t.
) a(t).x = FI"¥(t, ), or FI'* = X\, for all t.
)

dra(t) = Lloz.alt+5) = Lloz.a(t).o(s) = LioA,amals)
= T () 2loa(s) = Lx (-a(t)).

By uniqueness of solutions we get z.a(t) = FI** (¢, z).
(4) = (2). This is clear.
(2) = (1). We have ga(t)a(s) = Flapmal(s) = Taw)gsols) =
T(Aa))Lx(a(s)) = Lx(a(t)a(s)) and a(t)a(0) = aft). So we get a(t)a(s) =
FI™¥ (s, a(t)) = FIX FIf¥ (e) = FI" (t + s,¢) = a(t + 5).
(4) <= (5). We have FIy = ~16F1¢ o by 3.14. Therefore we have by 4.11

(Flfx (1‘*1))71 _ (l/ o Flfx OI/)(:E) _ FltV*RX (x)
o Flff () = z.a—t).

So FIf* (z71) = a(t).z~ !, and FI[** (y) = a(t).y.
(5) = (3) (1) can be shown in a similar way. O
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An immediate consequence of the foregoing lemma is that left invariant and
the right invariant vector fields on a Lie group are always complete, so they
have global flows, because a locally defined one parameter group can always be
extended to a globally defined one by multiplying it up.

4.18. Definition. The exponential mapping exp : ¢ — G of a Lie group is
defined by

exp X = FIFX(1,e) = F1%% (1,¢) = ax(1),
where ax is the one parameter subgroup of G with ax(0) = X.

Theorem.

(1) exp: g — G is smooth.

(2) exp(tX) = F1¥¥(t,e).

(3) FIEX (¢, ) = z. exp(tX).

(4) FI®X(t,2) = exp(tX).x.

(5) exp(0) = e and Tpexp = Id : Tog = g — T.G = g, thus exp is a
diffeomorphism from a neighborhood of 0 in g onto a neighborhood of e
in G.

Proof. (1) Let 0x L € X(g x G) be given by (0 x L)(X,z) = (0x, Lx(x)). Then
pro F12%E(t, (X, e)) = ax(t) is smooth in (¢, X).

(2) exp(tX) = FI"2¥(1,¢e) = FI** (t,e) = ax(t).

(3) and (4) follow from lemma 4.17.

(5) Toexp.X = Llgexp(0+t.X) = L|,FI* (t,e) = X. O

4.19. Remark. If G is connected and U C g is open with 0 € U, then the
group generated by exp(U) equals G.

For this group is a subgroup of G containing some open neighborhood of e,
so it is open. The complement in G is also open (as union of the other cosets),
so this subgroup is open and closed. Since G is connected, it coincides with G.

If G is not connected, then the subgroup generated by exp(U) is the connected
component of e in G.

4.20. Remark. Let ¢ : G — H be a smooth homomorphism of Lie groups.
Then the diagram

/

a4

g———b

expGJ Jepo

a—¥Y g
commutes, since t +— @(exp®(tX)) is a one parameter subgroup of H and
%\ocp(expG tX) = ¢'(X), so gp(eXpG tX) = exp® (t¢'(X)).
If G is connected and ¢, : G — H are homomorphisms of Lie groups with
¢ =" :g— b, then ¢ = 9. For ¢ = 1) on the subgroup generated by exp® g
which equals G by 4.19.
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4.21. Theorem. A continuous homomorphism ¢ : G — H between Lie groups
is smooth. In particular a topological group can carry at most one compatible
Lie group structure.

Proof. Let first ¢ = o : (R,+) — G be a continuous one parameter subgroup.
Then a(—e,e) C exp(U), where U is an absolutely convex open neighbor-
hood of 0 in g such that exp |2U is a diffeomorphism, for some £ > 0. Put
B = (exp|2U)" ' o : (—g,) — g. Then for [¢| < 1 we have exp(26(t)) =
exp(A(1))? = a(t)? = a(2t) = exp(3(21)), s0 26(t) = H(2); thus A(3) = L5(s)
for [s| < e. So we have a(%) = exp(8(%)) = exp(38(s)) for all |s| < ¢ and by

recursion we get a(z5) = exp(558(s)) for n € N and in turn a(£%s) = a()* =
exp(558(s))* = exp(Z£3(s)) for k € Z. Since the 2% for k € Z and n € N are

dense in R and since « is continuous we get «(ts) = exp(t3(s)) for all t € R. So
« is smooth.

Now let ¢ : G — H be a continuous homomorphism. Let X7,..., X, be alin-
ear basis of g. We define vy : R" — G as (!, ... ,t") = exp(t' X1) - - - exp(t" X,,).
Then Ty is invertible, so 1 is a diffeomorphism near 0. Sometimes ¢! is called
a coordinate system of the second kind. ¢ — ¢@(exp®tX;) is a continuous one
parameter subgroup of H, so it is smooth by the first part of the proof. We have
(powp)(th,... ,t") = (pexp(tt X1)) - -+ (pexp(t"X,)), so p o1 is smooth. Thus
 is smooth near e € G and consequently everywhere on G. [J

4.22. Theorem. Let G and H be Lie groups (G separable is essential here),
and let ¢ : G — H be a continuous bijective homomorphism. Then ¢ is a
diffeomorphism.

Proof. Our first aim is to show that ¢ is a homeomorphism. Let V be an
open e-neighborhood in G, and let K be a compact e-neighborhood in G such
that K.K~! C V. Since G is separable there is a sequence (a;);ey in G such
that G = |J;2, a;.K. Since H is locally compact, it is a Baire space (V; open
and dense implies (| V; dense). The set ¢(a;)¢(K) is compact, thus closed.
Since H = |J, ¢(a;i).¢(K), there is some i such that ¢(a;)p(K) has non empty
interior, so ¢(K) has non empty interior. Choose b € G such that ¢(b) is an
interior point of p(K) in H. Then ey = p(b)p(b~!) is an interior point of
o(K)p(K~1) C ¢(V). So if U is open in G and a € U, then ey is an interior
point of p(a=tU), so ¢(a) is in the interior of p(U). Thus ¢(U) is open in H,
and ¢ is a homeomorphism.
Now by 4.21 ¢ and ¢~ ! are smooth. [

4.23. Examples. The exponential mapping on GL(n,R). Let X € gl(n,R) =
L(R™,R"™), then the left invariant vector field is given by Ly (A4) = (4, A.X) €
GL(n,R) x gl(n,R) and the one parameter group ax(t) = F1I¥X(¢,1) is given
by the differential equation %ax(t) = Lx(ax(t)) = ax(t).X, with initial con-

dition ax(0) = I. But the unique solution of this equation is ax(t) = !X =

ootk vk
k=0 FX . SO

eXpGL(n,]R) (X) _ €X _ 220:0 % Xk,
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If n = 1 we get the usual exponential mapping of one real variable. For all Lie
subgroups of GL(n,R), the exponential mapping is given by the same formula
exp(X) = eX; this follows from 4.20.

4.24. The adjoint representation. A representation of a Lie group G on a
finite dimensional vector space V' (real or complex) is a homomorphism p: G —
GL(V) of Lie groups. Then by 4.13 p' : g — gl(V) = L(V,V) is a Lie algebra
homomorphism.

For a € G we define conj, : G — G by conj,(z) = awva™t. It is called
the conjugation or the inner automorphism by a € G. We have conj,(zy) =
conj, (z) conj,(y), conj,, = conj, o conj,, and conj is smooth in all variables.

Next we define for a € G the mapping Ad(a) = (conj,) = Te(conj,) : g — g.
By 4.13 Ad(a) is a Lie algebra homomorphism, so we have Ad(a)[X,Y] =
[Ad(a)X,Ad(a)Y]. Furthermore Ad : G — GL( ) is a representation, called
the adjoint representation of G, since Ad(ab) = Te(conj,;,) = T.(conj, o conj,) =
T.(conj,) o T.(conj,) = Ad(a ) o Ad(b). We will use the relations Ad(a) =
Te(conj,) = Ta(pa-1)-Te(Aa) = To-1(Aa) Te(pa-1).

Finally we define the (lower case) adjoint representation of the Lie algebra g,
ad: g — gl(g) = L(g,9), by ad := Ad' = T, Ad.

Lemma. (1) Lx(a)= Rpq(a)x(a) for X € ganda € G.

(2) ad(X)Y = [X,Y] for X,Y € g.

Proof. (1) LX(a’) = Te()‘a)'X = Te(pa)'Te(pa—l © )\a)'X = RAd(a)X(a)'
(2) Let X3,...,X, be a linear basis of g and fix X € g. Then Ad(z)X =

Yo fi(z).X; for f; € C*°(G,R) and we have in turn

Ad (V)X = T.(Ad( )X)Y =d(Ad( )X)[Y =d(3 fiX)leY =

= deile( )Xi =3 Ly (fi)(e)-X;
Lx(2) = Raa@)x (2) = RO fi(2) Xa)(x) = 3 fi(x).Rx, (2) by (1).
[Ly,Lx] = [Ly, > fi-Rx,] = 0+ > Ly (fi)-Rx, by 3.4 and 4.12.
¥, X] = [Ly, Lx](e) = X Ly (f)(e) R, (¢) = Ad' ()X = ad(¥)X. O

4.25. Corollary. From 4.20 and 4.23 we have
Adoexp® = exp®t® o ad

Ad( e:vp X)Y = Zk' adX Y = 24Xy

_Y+[XY] LIX, X, Y] + LIX, X, X, Y 4 O

4.26. The right logarithmic derivative. Let M be a manifold and let f :
M — G be a smooth mapping into a Lie group G with Lie algebra g. We define
the mapping 6f : TM — g by the formula 6f(&.) = Ty (Pp@)-1) TofEe-
Then 6f is a g-valued 1-form on M, §f € Q' (M, g), as we will write later. We
call §f the right logarithmic derivative of f, since for f : R — (RT,-) we have

0f(x)1 = L = (log of) ().




4. Lie groups 39

Lemma. Let f,g: M — G be smooth. Then we have
6(f-9)(x) = 6f(x) + Ad(f(x)).6g(x).
Proof. We just compute:

5(f.9)(x) =T (pg(a)-1.f(2)-1) - Tu(f.9) =
=T(ps)-1)-T(Pg(z)-1)-T(f(x).g(x))H-(Tu [, Tug) =
=T(ps()-1) T (Pga)=1)- (T(Pg(@) - Taf + T(\s(a))-Teg) =
=6f(x) + Ad(f(x)).0g(z). O

Remark. The left logarithmic derivative §'° f € Q' (M, g) of a smooth mapping
f: M — G is given by §ftf.¢, = Ty (N f(@)-1)-Tof - The corresponding
Leibnitz rule for it is uglier than that for the right logarithmic derivative:

5 (£g) () = 8 g(x) + Ad(g(x) )3 ()

The form §'**(Idg) € Q(G; g) is also called the Maurer-Cartan form of the Lie
group G.

z

we have

4.27. Lemma. Forexp:g— G and for g(z) := <

5(exp)(X) = Tpexp(—x))-Tx exp = 3 =y (ad X)P = gad X).
p=0

Proof. We put M(X) = d(exp)(X): g — g. Then
(s+t)M((s+t)X) = (s+t)d(exp)((s+t)X)
(s+1t) ))X Dby the chain rule,

).exp(t )).X
s )).X + Ad(exp(sX)).0(exp(t )).X by 4.26,

= s.0(exp)(sX) + Ad(exp(sX)).t.0(exp)(tX)

= s.M(sX) + Ad(exp(sX)).t. M (tX).
Now we put N(t) :=t.M(tX) € L(g, g), then the above equation gives N (s+t) =
N(s) + Ad(exp(sX)).N(t). We fix ¢, apply d%|0, and get N'(t) = N'(0) +
ad(X).N(t), where N'(0) = M(0) + 0 = d(exp)(0) = Idg. So we have the

differential equation N'(t) = Idg +ad(X).N(t) in L(g, g) with initial condition
N(0) = 0. The unique solution is

N(s) = Z ﬁ ad(X)P.sPT and so
p=0

S(exp)(X) = M(X) = N(1) = Y oy ad(X)P. O
p=0
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4.28. Corollary. Tx exp is bijective if and only if no eigenvalue of ad(X) :
g — g is of the form \/—12kmw for k € Z\ {0}.

Proof. The zeros of g(z) = 62;1 are exactly z = /—12kn for k € Z \ {0}. The
linear mapping T'x exp is bijective if and only if no eigenvalue of g(ad(X)) =
T (pexp(—x))-T'x exp is 0. But the eigenvalues of g(ad(X)) are the images under
g of the eigenvalues of ad(X). O

4.29. Theorem. The Baker-Campbell-Hausdorff formula.
Let G be a Lie group with Lie algebra g. For complex z near 1 we consider the

function f(z) := lzgi(i) =250 (;Jlr)ln (z—1)".

Then for X, Y near 0 in g we have exp X.expY = exp C(X,Y'), where

1
C(X,Y)= Y+/ flet 24X e2dY) X gt
0

(=" /1 tF k A"
=X+Y E E — (ad X dY X dt
" +n>1n+1 0 Nge>0 kel (ad X ad )
- k0>1

(=1)" (ad X)*1(ad Y)*r ... (ad X)*» (ad V)
Y4 3 i S TS B YA

n>1 ki,....,kn>0
51,-417120
ki+€;>1

=X +Y + 30 Y]+ H(X XY+ Y XD+
Proof. Let C(X,Y) := exp *(exp X.expY) for X, Y near 0 in g, and let C(t) :=
C(tX,Y). Then
T(pexp(fc(t)))% (GXp C(t)) = 66Xp(0(t))0(t>
— s gk (ad CO)FC() = g(ad C(1)).C 1),

where g(z) = £=L = > k>0 (k%), We have expC(t) = exp(tX)expY and

z

exp(—C(t)) = exp(C(t)) ! = exp(~Y) exp(—tX), therefore

T(pexp(fC(t)))% (exp C(t)) = T(pexp(fY) exp(ftX))% (exp(tX) exXp Y)
= T(pexp(—tX))T(pexp(—Y))T(pexpY)% exp(tX)
= T(pexp(—tx))-Bx(exp(tX)) = X, by 4.18.4 and 4.11.

X =g(ad C(1)).C(1).

e — Ad(exp C(t)) by 4.25
= Ad(exp(tX)expY) = Ad(exp(tX)). Ad(expY)
— ead(tX).eadY — et. adX.eadY.

If X, Y, and ¢ are small enough we get adC(t) = log(e! 24X e2dY)

— (="t n
log(z) = 32,51 (z — 1)", thus we have

n

, where

X = g(ad C(1)).C(t) = g(log(et X e2dY)).C(1).
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For z near 1 we put f(z) := k;g_(i) = ano%(z — 1)™, which satisfies
g(log(2)).f(z) = 1. So we have
X = g(log(eh 24X 24Y)) () = f(et-2dX ad V)1 i),
O(t) = f(et2aX 2V x,
{ C(0)=Y.

Passing to the definite integral we get the desired formula

C(X,Y)=C(1) = C(0) + /1 C(t)dt
0
_ ! et.adX eadY .
_y+/0 (et X YY) X gy

X+Y+Z(_1)n/1< > kt,;(adX)k(adY)f)nX dt. O
0 7]

n+1
n>1 + k,6>0
k+0>1

Remark. If G is a Lie group of differentiability class C?, then we may define
TG and the Lie bracket of vector fields. The proof above then makes sense
and the theorem shows, that in the chart given by exp~! the multiplication
uw: G x G — Gis C¥ near e, hence everywhere. So in this case G is a real
analytic Lie group. See also remark 5.6 below.

4.30. Convention. We will use the following convention for the rest of the
book. If we write a symbol of a classical group from this section without indi-
cating the ground field, then we always mean the field R — except Sp(n). In
particular GL(n) = GL(n,R), and O(n) = O(n,R) from now on.

5. Lie subgroups and homogeneous spaces

5.1. Definition. Let G be a Lie group. A subgroup H of G is called a Lie
subgroup, if H is itself a Lie group (so it is separable) and the inclusion i : H — G
is smooth.

In this case the inclusion is even an immersion. For that it suffices to check
that T.i is injective: If X € b is in the kernel of T,i, then i o exp™ (tX) =
expY(t.T.i.X) = e. Since i is injective, X = 0.

From the next result it follows that H C G is then an initial submanifold in
the sense of 2.14: If Hy is the connected component of H, then i(Hy) is the Lie
subgroup of G generated by '(h) C g, which is an initial submanifold, and this
is true for all components of H.

5.2. Theorem. Let G be a Lie group with Lie algebra g. If h C g is a Lie
subalgebra, then there is a unique connected Lie subgroup H of G with Lie
algebra . H is an initial submanifold.

Proof. Put E, := {Tc(A\;).X : X € b} C T,G. Then E := || ., E, is a
distribution of constant rank on G, in the sense of 3.18. The set {Lx : X € b}
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is an involutive set in the sense of 3.23 which spans E. So by theorem 3.25 the
distribution F is integrable and by theorem 3.22 the leaf H through e is an initial
submanifold. It is even a subgroup, since for x € H the initial submanifold A\, H
is again a leaf (since E is left invariant) and intersects H (in z), so A\, (H) = H.
Thus H.H = H and consequently H~! = H. The multiplication 1 : H x H — G
is smooth by restriction, and smooth as a mapping H x H — H, since H is an
initial submanifold, by lemma 2.17. [

5.3. Theorem. Let g be a finite dimensional real Lie algebra. Then there
exists a connected Lie group G whose Lie algebra is g.

Sketch of Proof. By the theorem of Ado (see [Jacobson, 62] or [Varadarajan, 74,
p. 237]) g has a faithful (i.e. injective) representation on a finite dimensional
vector space V, i.e. g can be viewed as a Lie subalgebra of gl(V) = L(V,V).
By theorem 5.2 above there is a Lie subgroup G of GL(V) with g as its Lie
algebra. [

This is a rather involved proof, since the theorem of Ado needs the struc-
ture theory of Lie algebras for its proof. There are simpler proofs available,
starting from a neighborhood of e in G (a neighborhood of 0 in g with the
Baker-Campbell-Hausdorff formula 4.29 as multiplication) and extending it.

5.4. Theorem. Let G and H be Lie groups with Lie algebras g and b, re-
spectively. Let f : g — b be a homomorphism of Lie algebras. Then there
is a Lie group homomorphism ¢, locally defined near e, from G to H, such
that ¢’ = T.p = f. If G is simply connected, then there is a globally defined
homomorphism of Lie groups ¢ : G — H with this property.

Proof. Let ¢ := graph(f) C gx . Then tis a Lie subalgebra of g x h, since f is a
homomorphism of Lie algebras. g x b is the Lie algebra of G x H, so by theorem
5.2 there is a connected Lie subgroup K C G x H with algebra €. We consider
the homomorphism ¢ := pry oincl : K — G x H — G, whose tangent mapping
satisfies Tog(X, f(X)) = T(c,eypr1.Teincl (X, f(X)) = X, so is invertible. Thus
g is a local diffeomorphism, so g : K — Gy is a covering of the connected
component Gy of e in G. If G is simply connected, g is an isomorphism. Now we
consider the homomorphism v := pro oincl : K — G x H — H, whose tangent
mapping satisfies T.1.(X, f(X)) = f(X). We see that p := o (g|U)":G D
U — H solves the problem, where U is an e-neighborhood in K such that g|U is a
diffeomorphism. If G is simply connected, ¢ = 1 og~ ! is the global solution. [J

5.5. Theorem. Let H be a closed subgroup of a Lie group G. Then H is a Lie
subgroup and a submanifold of G.

Proof. Let g be the Lie algebra of G. We consider the subset § := {¢/(0) : ¢ €
C*(R,G),c(R) C H,c(0) = e}.

Claim 1. h is a linear subspace.

If &(0) € hand t; € R, we define c(t) := c1(t1.t).ca(t2.t). Then ¢'(0) =
Tie,eyp-(t1.¢1(0), t2.¢5(0)) = t1.¢1(0) 4 t2.c5(0) € b.

Claim 2. h ={X € g:exp(tX) € H for all t € R}.

Clearly we have ‘O’. To check the other inclusion, let X = ¢/(0) € b and consider
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v(t) := (exp¥)~lc(t) for small t. Then we get X = /(0) = %£|oexp(v(t)) =
v'(0) = limy oo n.v(1). We put t, = L and X, = n.v(1), so that exp(t,,.X,) =
exp(v(1)) = c(2) € H. By claim 3 below we then get exp(tX) € H for all t.
Claim 3. Let X,, - X ing, 0 <t, — 0 in R with exp(¢,X,) € H. Then
exp(tX) € H for all t € R.

Let t € R and take m,, € (% -1, %] NZ. Then t,.m, — t and m,.t,.X, — tX,
and since H is closed we may conclude that exp(tX) = lim,, exp(my,.t,.X,) =
lim,, exp(t,.X,)™" € H.

Claim 4. Let £ be a complementary linear subspace for § in g. Then there is
an open 0O-neighborhood W in € such that exp(W) N H = {e}.

If not there are 0 # Y3 € ¢ with Y — 0 such that exp(Yy) € H. Choose a
norm | | on g and let X,, =Y,,/|Y,|. Passing to a subsequence we may assume
that X, — X in ¢, then |X| = 1. But exp(|Y,|-Xn) = exp(Y,) € H and
0 < |Y,] — 0, so by claim 3 we have exp(tX) € H for all ¢ € R. So by claim 2
X € b, a contradiction.

Claim 5. Put ¢ : h xt = G, p(X,Y) = expX.expY. Then there are 0-
neighborhoods V in h, W in ¢, and an e-neighborhood U in G such that ¢ :
V x W — U is a diffeomorphism and U N H = exp(V).

Choose V, W, and U so small that ¢ becomes a diffeomorphism. By claim
4 W may be chosen so small that exp(W) N H = {e}. By claim 2 we have
exp(V) CHNU. Let x € HNU. Since x € U we have x = exp X.expY for
unique (X,Y) € V. x W. Then z and exp X € H, so expY € H Nexp(W), thus
Y =0. Sox =expX € exp(V).

Claim 6. H is a submanifold and a Lie subgroup.

(U, (]V x W)~ =: u) is a submanifold chart for H centered at e by claim 5.
For x € H the pair (A;(U),u o A,-1) is a submanifold chart for H centered at
x. So H is a closed submanifold of G, and the multiplication is smooth since it
is a restriction. [J

5.6. Remark. The following stronger results on subgroups and the relation
between topological groups and Lie groups in general are available.

Any arc wise connected subgroup of a Lie group is a connected Lie subgroup,
[Yamabe, 50].

Let G be a separable locally compact topological group. If it has an e-
neighborhood which does not contain a proper subgroup, then G is a Lie group.
This is the solution of the 5-th problem of Hilbert, see the book [Montgomery-
Zippin, 55, p. 107].

Any subgroup H of a Lie group G has a coarsest Lie group structure, but
it might be non separable. To indicate a proof of this statement, consider all
continuous curves ¢ : R — G with ¢(R) C H, and equip H with the final topology
with respect to them. Then the component of the identity satisfies the conditions
of the Gleason-Yamabe theorem cited above.

5.7. Let g be a Lie algebra. An ideal £ in g is a linear subspace £ such that
[e,g] C €. Then the quotient space g/ carries a unique Lie algebra structure
such that g — g/t is a Lie algebra homomorphism.
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Lemma. A connected Lie subgroup H of a connected Lie group G is a normal
subgroup if and only if its Lie algebra b is an ideal in g.

Proof. H normal in G means xHz~! = conj,(H) C H for all z € G. By remark
4.20 this is equivalent to T¢(conj,)(h) C b, i.e. Ad(x)h C b, for all x € G. But
this in turn is equivalent to ad(X)h C b for all X € g, so to the fact that b is an
ideal in g. O

5.8. Let G be a connected Lie group. If A C G is an arbitrary subset, the
centralizer of A in G is the closed subgroup Z4 := {z € G : xa = ax for all a €
A}.

The Lie algebra 34 of Z4 then consists of all X € g such that a.exp(tX).a=! =
exp(tX) foralla € A, ie. 3u={X €g:Ad(a)X = X for all a € A}.

If A is itself a connected Lie subgroup of G, then 34 = {X € g: ad(Y)X =
0 for all Y € a}. This set is also called the centralizer of a in g. If A = G then
Zc is called the center of G and 3¢ ={X € g: [X,Y] =0 for all Y € g} is then
the center of the Lie algebra g.

5.9. The normalizer of a subset A of a connected Lie group G is the subgroup
Ny={x€G: ) (A) =p,(A)} ={z € G : conj,(A) = A}. If A is closed then
N4 is also closed.

If A is a connected Lie subgroup of G then Ny = {z € G : Ad(z)a C a} and
its Lie algebra is ng = {X € g: ad(X)a C a} is then the idealizer of a in g.

5.10. Group actions. A left action of a Lie group G on a manifold M is a
smooth mapping ¢ : G x M — M such that ¢, o £, = {;, and . = Ids, where
le(z) = (z, 2).

A right action of a Lie group G on a manifold M is a smooth mapping
r: M x G — M such that r* or¥ = r¥* and r¢ = Idys, where r*(z) = r(z, z).

A G-space is a manifold M together with a right or left action of G on M.

We will describe the following notions only for a left action of G on M. They
make sense also for right actions.

The orbit through z € M is the set G.z = ((G, z) C M. The action is called
transitive, if M is one orbit, i.e. for all z,w € M there is some g € G with
g.z = w. The action is called free, if g1.2 = g2.z for some z € M implies already
g1 = g2. The action is called effective, if £, = ¢, implies x =y, i.e. if £: G —
Diff (M) is injective, where Diff (M) denotes the group of all diffeomorphisms of
M.

More generally, a continuous transformation group of a topological space M
is a pair (G, M) where G is a topological group and where to each element z € G
there is given a homeomorphism ¢, of M such that ¢ : Gx M — M is continuous,
and ¢, o {, = {;,. The continuity is an obvious geometrical requirement, but
in accordance with the general observation that group properties often force
more regularity than explicitly postulated (cf. 5.6), differentiability follows in
many situations. So, if G is locally compact, M is a smooth or real analytic
manifold, all £, are smooth or real analytic homeomorphisms and the action is
effective, then G is a Lie group and ¢ is smooth or real analytic, respectively,
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see [Montgomery, Zippin, 55, p. 212]. The latter result is deeply reflected in the
theory of bundle functors and will be heavily used in chapter V.

5.11. Homogeneous spaces. Let G be a Lie group and let H C G be a closed
subgroup. By theorem 5.5 H is a Lie subgroup of G. We denote by G/H the
space of all right cosets of G, i.e. G/H = {zH :z € G}. Let p: G — G/H
be the projection. We equip G/H with the quotient topology, i.e. U C G/H is
open if and only if p~!(U) is open in G. Since H is closed, G/H is a Hausdorff
space.

G/H is called a homogeneous space of G. We have a left action of G on G/H,
which is induced by the left translation and is given by \,(zH) = zzH.

Theorem. If H is a closed subgroup of G, then there exists a unique structure
of a smooth manifold on G/H such that p : G — G/H is a submersion. So
dimG/H = dim G — dim H.

Proof. Surjective submersions have the universal property 2.4, thus the manifold
structure on G/H is unique, if it exists. Let h be the Lie algebra of the Lie
subgroup H. We choose a complementary linear subspace £ such that g = & ¢.

Claim 1. We consider the mapping f : ¢ x H — G, given by f(X,h) := exp X.h.
Then there is an open 0-neighborhood W in £ and an open e-neighborhood U in
G such that f: W x H — U is a diffeomorphism.

By claim 5 in the proof of theorem 5.5 there are open 0-neighborhoods V' in
h, W’ in €, and an open e-neighborhood U’ in G such that ¢ : W/ xV — U’ is a
diffeomorphism, where ¢(X,Y) = exp X.exp Y, and such that U' N H = exp V.
Now we choose W in & so small that exp(W) ™. exp(W) C U’. We will check
that this W satisfies claim 1.

Claim 2. f|W x H is injective.

f(X1,h1) = f(X2, h2) means exp X1.h1 = exp Xs.hs, consequently we have
hohT! = (exp Xo) lexp X; € exp(W) lexp(W)NH Cc U NH =expV. So
there is a unique Y € V with hoh;' = expY. But then ¢(X1,0) = exp X} =
exp Xg.hg.hfl =exp Xo.expY = p(X5,Y). Since ¢ is injective, X; = X5 and
Y =0, so hy = hs.

Claim 3. f|W x H is a local diffeomorphism.
The diagram

W v XD a

/ I
QO(W % V) incl U/

commutes, and Idy x exp and ¢ are diffeomorphisms. So f|W x (U’ N H) is
a local diffeomorphism. Since f(X,h) = f(X,e).h we conclude that f|W x H
is everywhere a local diffeomorphism. So finally claim 1 follows, where U =
fW x H).
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Now we put g :=po (exp|W): €D W — G/H. Then the following diagram
commutes: f
WxH-——>U

| Jp

w—9 G/H

Claim 4. g is a homeomorphism onto p(U) =: U C G/H.

Clearly g is continuous, and g is open, since p is open. If g(X;) = g(X5) then
exp X1 = exp Xo.h for some h € H, so f(X1,e) = f(X2,h). By claim 1 we get
X1 = Xy, so g is injective. Finally g(W) = U, so claim 4 follows.

For a € G we consider U, = \,(U) = a.U and the mapping u, := gt oX,1 :

U,— W CEt

Claim 5. (Uy,uq =g o /_\7(171 :f]a — W)aeg is a smooth atlas for G/H.
Let a, b € G such that U, N U, # (). Then

Ug O ub_l =g oo Mog:u(U, NTY) — ua(U, N Ty)

— g7 0 Aoy 0p o (exp W)

=g topodg-1po0 (exp [W)

=priof toXc1,0(exp|W) issmooth. [

5.12. Let £ : G x M — M be a left action. Then we have partial mappings
by, M — M and ¢* : G — M, given by £,(z) = ¢*(a) = {(a,z) = a.z.

For any X € g we define the fundamental vector field (x = (¥ € X(M) by
Cx(x) =T, (0%).X = Te. o) l-(X,0z).

Lemma. In this situation the following assertions hold:
(1) ¢:g— X(M) is a linear mapping.
(2) Tolla)Cx () = Cad(a)x (@-1).
(3) Rx x 0pr € X(G x M) is L-related to (x € X(M).
4) [Cx, ¢l = ~(xvy-

Proof. (1) is clear.

(2) Lo 0*(b) = abx = aba"lax = €% conj,(b), so we get T,({y).Cx(z)
Tp(la).Te(£7). X =T (g 0 £7).X =T, (7). Ad(a). X = Cad(a)x (az).

(3) Lo (Idxty) = Lo (po xId) : GXx M — M, so we get (x(l(a,x)) =
Tie,az)l-(X,000) = TL.(1d xT'(£s)).(X,0,) = TL(T(pa) x1d).(X, 0,) = TL.(Rx x
Onr) (0, 2).

( ) [RX X Opr, Ry X OM] [Rx,Ry] X 0y = —R[X’y] x 0p7 is f-related to
[Cx,Cy] by (3) and by 3.10. On the other hand —Rx y) x Ops is f-related to
—(ix,y] by (3) again. Since / is surjective we get [(x,Cy] = —(x,y]- O

5.13. Let r : M x G — M be a right action, so 7 : G — Diff(M) is a group
anti homomorphism. We will use the following notation: r* : M — M and
ry : G — M, given by r,(a) = r%(x) = r(z,a) = z.a.

For any X € g we define the fundamental vector field (x = (¥ € X(M) b
Cx (@) = Te(re). X = Tz eyr-(0g, X).
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Lemma. In this situation the following assertions hold:

(1) ¢:g— X(M) is a linear mapping.

(2) T (r")Cx(x) = Cad(a—1)x (2-0).

(3) Opr X Lx € X(M x G) is r-related to {x € X(M).
)

4) [Cx: ¢l =(xy)- O

5.14. Theorem. Let ¢ : G x M — M be a smooth left action. For x € M let
G, = {a € G : ax = z} be the isotropy subgroup of x in G, a closed subgroup
of G. Then ¢* : G — M factors over p : G — G/G, to an injective immersion
i® : G/G, — M, which is G-equivariant, i.e. £, 0i® = i® o \, for all a € G. The
image of i® is the orbit through .

The fundamental vector fields span an integrable distribution on M in the
sense of 3.20. Its leaves are the connected components of the orbits, and each
orbit is an initial submanifold.

Proof. Clearly ¢* factors over p to an injective mapping * : G/G, — M; by
the universal property of surjective submersions i* is smooth, and obviously
it is equivariant. Thus T}, (i*).Tpe)(Aa) = Tp(e)(i* © Aa) = Tpe)(lq 0 i) =
T(La) Tpe)(i®) for all a € G and it suffices to show that T}, (i*) is injective.
Let X € g and consider its fundamental vector field {(x € X(M). By 3.14 and

5.12.3 we have
(1) Uexp(tX), ) = L(FIfX "0V (e, 2)) = FIgX ((e, 2)) = FIg* (x).

So exp(tX) € Gm, ie. X € g,, if and only if (x(z) = 0,. In other words,
= (x(x) = Te(0%). X = Tpe) (i) Tep. X if and only if Top.X = 0,(). Thus i*
is an immersion.

Since the connected components of the orbits are integral manifolds, the fun-
damental vector fields span an integrable distribution in the sense of 3.20; but
also the condition 3.25.2 is satisfied. So by theorem 3.22 each orbit is an initial
submanifold in the sense of 2.14. [

5.15. A mapping f: M — M between two manifolds with left (or right) actions
¢ and £ of a Lie group G is called G-equivariant if fol, = lyof (or for® = 7o f)
for all a € G. Sometimes we say in short that f is a G-mapping. From formula
5.14.(1) we get

Lemma. If G is connected, then f is G-equivariant if and only if the funda-
mental field mappings are frelated, i.e. Tfo(x = (x o f for all X € g.

Proof. The image of the exponential mapping generates the connected compo-
nent of the unit. [

5.16. Semidirect products of Lie groups. Let H and K be two Lie groups
and let £ : H x K — K be a left action of H in K such that each ¢}, : K — K
is a group homomorphism. So the associated mapping ¢ : H — Aut(K) is a
homomorphism into the automorphism group of K. Then we can introduce the
following multiplication on K x H

(1) (k, h)(K', 1) == (ktn(K'), hh).
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It is easy to see that this defines a Lie group G = K X, H called the semidirect
product of H and K with respect to £. If the action ¢ is clear from the context we
write G = K x H only. The second projection pry : K X H — H is a surjective
smooth homomorphism with kernel K x{e}, and the insertion ins, : H — K x H,
ins.(h) = (e, h) is a smooth group homomorphism with pry o ins, = Idg.
Conversely we consider an exact sequence of Lie groups and homomorphisms

(2) {e} > K LG5 H-{e).

So j is injective, p is surjective, and the kernel of p equals the image of j.
We suppose furthermore that the sequence splits, so that there is a smooth
homomorphism i : H — G with poi = Idy. Then the rule ¢, (k) = i(h)ki(h~!)
(where we suppress j) defines a left action of H on K by automorphisms. It
is easily seen that the mapping K x; H — G given by (k,h) — ki(h) is an
isomorphism of Lie groups. So we see that semidirect products of Lie groups
correspond exactly to splitting short exact sequences.

Semidirect products will appear naturally also in another form, starting from
right actions: Let H and K be two Lie groups and let  : K x H — K be a right
action of H in K such that each r" : K — K is a group homomorphism. Then
the multiplication on H x K is given by

(3) (h, k)(h, k) := (hh, " (k)k).

This defines a Lie group G = H X, K, also called the semidirect product of H
and K with respect to r. If the action r is clear from the context we write
G = H x K only. The first projection pry : H x K — H is a surjective smooth
homomorphism with kernel {e} x K, and the insertion ins, : H — H x K,
ins.(h) = (h,e) is a smooth group homomorphism with pry o ins, = Idg.

Conversely we consider again a splitting exact sequence of Lie groups and
homomorphisms

{e} > K LG5 H- {e).

The splitting is given by a homomorphism ¢ : H — G with poi = Idg. Then
the rule 7" (k) = i(h~1)ki(h) (where we suppress j) defines now a right action
of H on K by automorphisms. It is easily seen that the mapping H %, K — G
given by (h, k) — i(h)k is an isomorphism of Lie groups.

Remarks

The material in this chapter is standard. The concept of initial submani-
folds in 2.14-2.17 is due to Pradines, the treatment given here follows [Albert,
Molino]. The proof of theorem 3.16 is due to [Mauhart, 90]. The main re-
sults on distributions of non constant rank (3.18-3.25) are due to [Sussman, 73]
and [Stefan, 74|, the treatment here follows [Lecomte|. The proof of the Baker-
Campbell-Hausdorff formula 4.29 is adapted from [Sattinger, Weaver, 86], see
also [Hilgert, Neeb, 91].
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CHAPTER I11I.
DIFFERENTIAL FORMS

This chapter is still devoted to the fundamentals of differential geometry,
but here the deviation from the standard presentations is already large. In
the section on vector bundles we treat the Lie derivative for natural vector
bundles, i.e. functors which associate vector bundles to manifolds and vector
bundle homomorphisms to local diffeomorphisms. We give a formula for the Lie
derivative of the form of a commutator, but it involves the tangent bundle of the
vector bundle in question. So we also give a careful treatment to this situation.
The Lie derivative will be discussed in detail in chapter XI; here it is presented
in a somewhat special situation as an illustration of the categorical methods we
are going to apply later on. It follows a standard presentation of differential
forms and a thorough treatment of the Frolicher-Nijenhuis bracket via the study
of all graded derivations of the algebra of differential forms. This bracket is a
natural extension of the Lie bracket from vector fields to tangent bundle valued
differential forms. We believe that this bracket is one of the basic structures of
differential geometry (see also section 30), and in chapter III we will base nearly
all treatment of curvature and the Bianchi identity on it.

6. Vector bundles

6.1. Vector bundles. Let p: E — M be a smooth mapping between mani-
folds. By a wvector bundle chart on (E,p, M) we mean a pair (U,v), where U is
an open subset in M and where % is a fiber respecting diffeomorphism as in the
following diagram:

v

N

U.

E|U :=p 1 (U) UxV

Here V is a fixed finite dimensional vector space, called the standard fiber or the
typical fiber, real as a rule, unless otherwise specified.

Two vector bundle charts (Uy, 1) and (Us, ¢2) are called compatible, if 11 o
¥y is a fiber linear isomorphism, i.e. (¢ 095 ') (z,v) = (x,11 2(2)v) for some
mapping ¢ ,2 : Uy 2 := U1 NUy — GL(V). The mapping 11 o is then unique and
smooth, and it is called the transition function between the two vector bundle
charts.
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A vector bundle atlas (Uy, o )aca for (E,p, M) is a set of pairwise compatible
vector bundle charts (Uy, 1,) such that (U, )aca is an open cover of M. Two
vector bundle atlases are called equivalent, if their union is again a vector bundle
atlas.

A wector bundle (E,p, M) consists of manifolds E (the total space), M (the
base), and a smooth mapping p : E — M (the projection) together with an
equivalence class of vector bundle atlases; so we must know at least one vector
bundle atlas. The projection p turns out to be a surjective submersion.

The tangent bundle (T'M, 7ps, M) of a manifold M is the first example of a
vector bundle.

6.2. Let us fix a vector bundle (F,p, M) for the moment. On each fiber E, :=
p~1(x) (for x € M) there is a unique structure of a real vector space, induced
from any vector bundle chart (Uy, ) with x € U,. So 0, € E, is a special
element and 0: M — E, 0(xz) = 0., is a smooth mapping, the zero section.

A section u of (E,p, M) is a smooth mapping u : M — E with powu = Id,.
The support of the section w is the closure of the set {x € M : u(z) # 0,} in
M. The space of all smooth sections of the bundle (E, p, M) will be denoted by
either C*(E) = C*(E,p, M) = C*°(E — M). Clearly it is a vector space with
fiber wise addition and scalar multiplication.

If (Uy,%a)aca is a vector bundle atlas for (E,p, M), then any smooth map-
ping fo : Uy — V (the standard fiber) defines a local section = — ;1 (x, fo(z))
on Uy. If (ga)aca is a partition of unity subordinated to (U, ), then a global
section can be formed by z — Y go(2) - 5 (z, foa(2z)). So a smooth vector
bundle has ‘many’ smooth sections.

6.3. Let (E,p, M) and (F,q, N) be vector bundles. A vector bundle homomor-
phism ¢ : E — F'is a fiber respecting, fiber linear smooth mapping

¥

E———F

1., !

So we require that ¢, : B, — F, () is linear. We say that ¢ covers ¢. If ¢ is
invertible, it is called a vector bundle isomorphism.

The smooth vector bundles together with their homomorphisms form a cate-
gory VB.

6.4. We will now give a formal description of the amount of vector bundles with
fixed base M and fixed standard fiber V', up to isomorphisms which cover the
identity on M.

Let us first fix an open cover (Uy)aca of M. If (E,p, M) is a vector bundle
which admits a vector bundle atlas (U, 1,) with the given open cover, then
we have 1, o wgl(x,v) = (z,%qp(x)v) for transition functions ¥ag : Usp =
Uy NUg — GL(V), which are smooth. This family of transition functions
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satisfies

) Yap(x) - Ypy(2) = Yay(z) for each x € Uygy = Uy NUz N U,
Yaa(r) =€ for all z € U,.

Condition (1) is called a cocycle condition and thus we call the family (¢,g) the
cocycle of transition functions for the vector bundle atlas (Uy, %4 ).

Let us suppose now that the same vector bundle (E,p, M) is described by an
equivalent vector bundle atlas (U,, po) with the same open cover (U,). Then
the vector bundle charts (U, ¥,) and (U, o) are compatible for each «, so
Yo o (x,v) = (z,74(x)v) for some 7, : Uy, — GL(V). But then we have

(@, Ta(2)ap(2)v) = (Pa 0 3 (@, Yap(2)v) =
= (pa© ,(/)(;1 01thg 0 ¢§1)($av) = (pa o 1/)51)(307“) =
= (pao9s o ppots')(@,0) = (¥, Pap(x)75(2)V).

So we get

(2) To(2)Vap(z) = pap(x)T(x) for all & € Uyg.

We say that the two cocycles (1o3) and (pap) of transition functions over
the cover (U,) are cohomologous. The cohomology classes of cocycles (o)
over the open cover (U,) (where we identify cohomologous ones) form a set
H'((U,),GL(V)), the first Cech cohomology set of the open cover (Uy,) with
values in the sheaf C*°( ,GL(V)) =: GL(V).

Now let (W;)ier be an open cover of M that refines (U,) with Wi C Uy,
where € : I — A is some refinement mapping. Then for any cocycle (¥ap)
over (U,) we define the cocycle €*(¥o3) =: (¢i;) by the prescription ¢;; =
Ye(i),e(j)|Wiz. The mapping €* respects the cohomology relations and induces
therefore a mapping & : H*((Uy,), GL(V)) — H'((W;),GL(V)). One can show
that the mapping £* depends on the choice of the refinement mapping € only up
to cohomology (use 7; = Y. (;yn@i)|Ws if € and 7 are two refinement mappings),
so we may form the inductive limit lim H' (U, GL(V)) =: H'(M,GL(V)) over
all open covers of M directed by refinement.

Theorem. There is a bijective correspondence between H'(M,GL(V)) and the
set of all isomorphism classes of vector bundles over M with typical fiber V.

Proof. Let (¢a8) be a cocycle of transition functions g : Usg — GL(V') over
some open cover (U,) of M. We consider the disjoint union | |, {a} x Uy x V
and the following relation on it: («,z,v) ~ (8,y,w) if and only if x = y and
bpa(@)0 = w.

By the cocycle property (1) of (¢qg) this is an equivalence relation. The space
of all equivalence classes is denoted by E = VB(1ag) and it is equipped with
the quotient topology. We put p : E — M, p[(a, z,v)] = z, and we define the
vector bundle charts (U, %) by ¥a[(a, z,v)] = (z,0), Yo : p1(Uy) =: E|Uy —
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Uax V. Then the mapping iﬁaolﬁgl(% ’U) = ¢a[(/8u &, U)] = wa[(a7 T, ¢aﬁ (1‘)’0)] =
(x,1¥ap(z)v) is smooth, so E becomes a smooth manifold. E is Hausdorff: let
u # v in E; if p(u) # p(v) we can separate them in M and take the inverse
image under p; if p(u) = p(v), we can separate them in one chart. So (E,p, M)
is a vector bundle.

Now suppose that we have two cocycles (1qg) over (U,), and (¢;;) over (V;).
Then there is a common refinement (W) for the two covers (U,) and (V;).
The construction described a moment ago gives isomorphic vector bundles if
we restrict the cocycle to a finer open cover. So we may assume that (1,3)
and (pag) are cocycles over the same open cover (U,). If the two cocycles are
cohomologous, S0 T, a3 = Pas T 00 Uyg, then a fiber linear diffeomorphism 7 :
VB(¥ap) — VB(pag) is given by ¢7[(c, z,v)] = (z, 7o (x)v). By relation (2)
this is well defined, so the vector bundles V B(1q3) and V B(pag) are isomorphic.

Most of the converse direction was already shown in the discussion before the
theorem, and the argument can be easily refined to show also that isomorphic
bundles give cohomologous cocycles. [J

Remark. If GL(V) is an abelian group, i.e. if V' is of real or complex dimension
1, then H'(M,GL(V)) is a usual cohomology group with coefficients in the sheaf
GL(V) and it can be computed with the methods of algebraic topology. If GL(V)
is not abelian, then the situation is rather mysterious: there is no clear definition
for H?(M,GL(V)) for example. So H*(M,GL(V)) is more a notation than a
mathematical concept.

A coarser relation on vector bundles (stable isomorphism) leads to the concept
of topological K-theory, which can be handled much better, but is only a quotient
of the whole situation.

6.5. Let (Uy,vq) be a vector bundle atlas on a vector bundle (E,p, M). Let
(ej)le be a basis of the standard fiber V. We consider the section s;(z) :=
¥y (z,ej) for € U,. Then the s; : U, — E are local sections of E such that
(sj(x)ﬁ:l is a basis of E, for each x € U,: we say that s = (s1,...,s;) is a
local frame field for E over U,,.

Now let conversely U C M be an open set and let s; : U — E be local
sections of E such that s = (s1,...,sg) is a local frame field of E over U. Then s
determines a unique vector bundle chart (U, ) of E such that s;(z) = ¢~ (z, e;),
in the following way. We define f : U x R¥ — E|U by f(z,v!,... ,v%) :=
Z§:1 v/s;(z). Then f is smooth, invertible, and a fiber linear isomorphism, so
(U, = f~1) is the vector bundle chart promised above.

6.6. A vector sub bundle (F,p, M) of a vector bundle (E, p, M) is a vector bundle
and a vector bundle homomorphism 7 : ' — FE, which covers Id,;, such that
7 : Ep — F is a linear embedding for each x € M.

Lemma. Let ¢ : (E,p,M) — (E’,q,N) be a vector bundle homomorphism

such that rank(p,, : E, — E;(x)) is constant in x € M. Then ker ¢, given by

(ker ), = ker(¢,), is a vector sub bundle of (E,p, M).

Proof. This is a local question, so we may assume that both bundles are trivial:



6. Vector bundles 53

let E =M x RP and let F = N x R, then ¢(z,v) = (¢(x),5(z).v), where P :
M — L(RP,R?). The matrix (z) has rank k, so by the elimination procedure
we can find p— k& linearly independent solutions v;(z) of the equation @(z).v = 0.
The elimination procedure (with the same lines) gives solutions v;(y) for y near
x, so near & we get a local frame field v = (v1,... ,vp_y) for ker p. By 6.5 ker ¢
is then a vector sub bundle. [

6.7. Constructions with vector bundles. Let F be a covariant functor from
the category of finite dimensional vector spaces and linear mappings into itself,
such that F : L(V,W) — L(F(V),F(W)) is smooth. Then F will be called a
smooth functor for shortness sake. Well known examples of smooth functors are
F(V) = A*(V) (the k-th exterior power), or F(V) = ®" V, and the like.

If (E, p, M) is a vector bundle, described by a vector bundle atlas with cocycle
of transition functions ¢pug : Usg — GL(V), where (U,) is an open cover of M,
then we may consider the smooth functions F(¢ag) : © +— F(pas(x)), Uas —
GL(F(V)). Since F is a covariant functor, F(p.g) satisfies again the cocycle
condition 6.4.1, and cohomology of cocycles 6.4.2 is respected, so there exists
a unique vector bundle (F(E) := VB(F(pas)),p, M), the value at the vector
bundle (E,p, M) of the canonical extension of the functor F to the category of
vector bundles and their homomorphisms.

If F is a contravariant smooth functor like duality functor F(V) = V*, then
we have to consider the new cocycle f((p;é) instead of F(pags)-

If F is a contra-covariant smooth bifunctor like L(V, W), then the rule

F(VB(Yap), VB(pap)) = VB(F (V3 ap))

describes the induced canonical vector bundle construction, and similarly in
other constructions.

So for vector bundles (E,p, M) and (F,q, M) we have the following vector
bundles with base M: A*E, E @ F, E*, AE = Do ANFE, EQF, L(E,F) =
E*® F, and so on. B

6.8. Pullbacks of vector bundles. Let (E,p, M) be a vector bundle and let
f: N — M be smooth. Then the pullback vector bundle (f*E, f*p, N) with the
same typical fiber and a vector bundle homomorphism

FE p*f >
f *pJ JP
f

N———M

are defined as follows. Let E be described by a cocycle (¢op) of transition
functions over an open cover (U,) of M, E = VB(ta3). Then (¢ag o f) is
a cocycle of transition functions over the open cover (f~1(U,)) of N and the

bundle is given by f*E := VB(iq30f). As a manifold we have f*E=N x FE
(f.M,p)
in the sense of 2.19.
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The vector bundle f*FE has the following universal property: For any vector
bundle (F,gq, P), vector bundle homomorphism ¢ : F — E and smooth g :
P — N such that fog = ¢, there is a unique vector bundle homomorphism

P F — f*E with ¢ = g and p*f ot = .

F SD
X
q Pt
Jf*p p

6.9. Theorem. Any vector bundle admits a finite vector bundle atlas.

Proof. Let (E,p, M) be the vector bundle in question, let dim M = m. Let
(Ua, a)aca be a vector bundle atlas. Since M is separable, by topological
dimension theory there is a refinement of the open cover (U, )aeca of the form
(Vij)i=1,....m+1;jen, such that V;; N V;, = 0 for j # k, see the remarks at the end
of 1.1. We define the set W; :=J;oy Vi; (a disjoint union) and ¢;[Vi; = ¢a( ),
where o : {1,...,m + 1} x N — A is a refining map. Then (W, 1;)i=1,...m+1 IS
a finite vector bundle atlas of £. [

6.10. Theorem. For any vector bundle (E,p, M) there is a second vector
bundle (F,p, M) such that (E®F,p, M) is a trivial vector bundle, i.e. isomorphic
to M x RYN for some N € N.

Proof. Let (U;,1;)?_, be a finite vector bundle atlas for (E,p, M). Let (g;) be
a smooth partition of unity subordinated to the open cover (U;). Let £; : RF —
(R¥)" = R¥ x ... x R¥ be the embedding on the i-th factor, where R* is the
typical fiber of E. Let us define ¢ : E — M x R™ by

P(u) = <p(U), > gip(w)) (Gioprz o %)(U)> ;

i=1

then v is smooth, fiber linear, and an embedding on each fiber, so E is a vector
sub bundle of M x R™ via 1. Now we define F, = E+ in {z} x R"* with respect
to the standard inner product on R™*. Then F — M is a vector bundle and
EeF=MxR™. 0O

6.11. The tangent bundle of a vector bundle. Let (E,p, M) be a vector
bundle with fiber addition +g : E x3; E — E and fiber scalar multiplication
mP : E — E. Then (TE, g, E), the tangent bundle of the manifold E, is itself
a vector bundle, with fiber addition denoted by +75 and scalar multiplication
denoted by mI'F.
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If (Ug,%a @ E|Uy — Uy X V)geca is a vector bundle atlas for E, such that
(Ua, tg) is also a manifold atlas for M, then (E|U,,v¥))aca is an atlas for the
manifold F, where

Py = (tua x Idy) 0 g : BlUs — Ua XV = ua(Ua) x VCR™ x V.

[e3

Hence the family (T(E|U,), TV, : T(E|Us) — T(uq(Us) X V) = ua(Uy) X V' x
R™ x V)qaeca is the atlas describing the canonical vector bundle structure of
(TE,ng, E). The transition functions are in turn:

(e © 1/}51)( ,0) = (z,0ap(x)v)  for x € Uyg
(o 0uz)(y) = tapy)  for y € ug(Uap)
(W4 0 (¥5) ™) (Y, v) = (uap(y) Yap(ug ' (y))v)
(Tt 0 T(W5) )y, v3 €, w) = (wap(y), Yas(ug' (1))v; d(uap) (V)€
(d(®ap 0 ug')(©)E)v + Yap(uy' (y))w).

So we see that for fixed (y,v) the transition functions are linear in (§,w) €
R™ x V. This describes the vector bundle structure of the tangent bundle
(TE,7g, E).

For fixed (y, £) the transition functions of T'E are also linear in (v, w) € Vx V.
This gives a vector bundle structure on (T'E,Tp, TM). Its fiber addition will be
denoted by T'(+g) : T(E Xy E) = TE xppy TE — TE, since it is the tangent
mapping of +p. Likewise its scalar multiplication will be denoted by T(mF).
One may say that the second vector bundle structure on T'E, that one over T'M,
is the derivative of the original one on E.

The space {Z € TE : Tp.2 =0 in TM} = (Tp)~1(0) is denoted by V E and is
called the vertical bundle over E. The local form of a vertical vector Zis T/, .2 =
(y,v;0,w), so the transition function looks like (T'%y, o T'(¢)j5)~ H(y,v;0, w) =
(uap(y), 1/)ag(ugl(y))v; O,Q/Jag(ugl(y))w). They are linear in (v,w) € V x V for
fixed y, so VE is a vector bundle over M. It coincides with 0%,(TE,Tp,TM),
the pullback of the bundle TE — T'M over the zero section. We have a canonical
isomorphism vlg : E Xy E — VE| called the vertical lift, given by vlg (ug, v, ) :=
dt\ (ug + tv,), which is fiber linear over M. The local representation of the
vertical lift is (T, o vlg o (¢!, x ¥.) ") ((y,u), (y,v)) = (y,u;0,v).

If (and ouly if) ¢ : (E,p, M) — (F,q,N) is a vector bundle homomorphism,
then we have vipo(pXx ) = Twovly : Exy E — VF CTF. Sowvlis anatural
transformation between certain functors on the category of vector bundles and
their homomorphisms.

The mapping vprg := pra o vlgl : VE — FE is called the vertical projection.
Note also the relation pry o vl,}1 =7g|VE.

6.12. The second tangent bundle of a manifold. All of 6.11 is valid
for the second tangent bundle 72M = TTM of a manifold, but here we have

one more natural structure at our disposal. The canonical flip or involution
kar : T2M — T2M is defined locally by

(T*u o kar o T?u™ ) (@, 61, ¢) = (2,1:€, ),
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where (U, u) is a chart on M. Clearly this definition is invariant under changes
of charts (Tu, equals ], from 6.11).
The flip kps has the following properties:

1) kyoT?f =T?f o ky for each f € C°(M, N).

2) T(?T]u) OCRM = TTM-

3) TTM © Ry = T(?TM)

4) HJ_Ml = KM-

5) kar is a linear isomorphism from the bundle (TTM,T(mp), TM) to
(TTM, 7y, TM), so it interchanges the two vector bundle structures
on TTM.

(6) Tt is the unique smooth mapping TTM — TT M which satisfies

B9 c(t,s) = ka2 Belt, s) for each ¢ : R? — M.

All this follows from the local formula given above. We will come back to the
flip later on in chapter VIII from a more advanced point of view.

6.13. Lemma. For vector fields X, Y € X(M) we have
(X, Y] =wvprrpro(TY o X —kpoTX oY),
We will give global proofs of this result later on: the first one is 6.19. Another
one is 37.13.

Proo_f. We prove this locally, so we assume that M is open in R™, X (x) =
(z,X(z)), and Y (z) = (2,Y(x)). By 3.4 we get [X,Y](z) = (v,dY (z).X(z) —
dX(x).Y(x)), and

vprT M © (TYOX — KM oTX OY)(x) =

= vprrar o (TY.(2, X (x)) — kar o TX.

) Y (x))) =
vprra (.Y (2); X (2), dY (). (
)

—

— rar((2, X (2); Y (2),dX (2).Y (2))) =
= vprra(z, Y (2); 0 (:E)X' (fv) dX' (2)-Y (x)) =
= (2,dY (2).X(z) — dX(2).Y (z)). O

6.14. Natural vector bundles. Let Mf,, denote the category of all m-
dimensional smooth manifolds and local diffeomorphisms (i.e. immersions) be-
tween them. A wector bundle functor or natural vector bundle is a functor F
which associates a vector bundle (F(M),pas, M) to each m-manifold M and a
vector bundle homomorphism
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to each f : M — N in Mf,,, which covers f and is fiberwise a linear iso-
morphism. We also require that for smooth f : R x M — N the mapping
(t,z) — F(f)(x) is also smooth R x F(M) — F(N). We will say that F maps
smoothly parametrized families to smoothly parametrized families. We shall see
later that this last requirement is automatically satisfied. For a characterization
of all vector bundle functors see 14.8.

Examples. 1. TM, the tangent bundle. This is even a functor on the category
Mf.

2. T*M, the cotangent bundle, where by 6.7 the action on morphisms is given
by (T*f)z = (T f)~1)* : TyM — T}, )N. This functor is defined on Mf,,
only.

3. AFT*M, AT*M = @, o AFT* M.

4. QT'MeQ TM =T"M®--@T*M @ TM @ --- ® TM, where the
action on morphisms involves T f~! in the 7% M-parts and T'f in the T M-parts.

5. F(TM), where F is any smooth functor on the category of finite dimen-
sional vector spaces and linear mappings, as in 6.7.

6.15. Lie derivative. Let F' be a vector bundle functor on M f,, as described
in 6.14. Let M be a manifold and let X € X(M) be a vector field on M. Then
the flow Flf( , for fixed t, is a diffeomorphism defined on an open subset of M,
which we do not specify. The mapping

F(M) @) F(M)
PMJ JPM
Y FIX Y

is then a vector bundle isomorphism, defined over an open subset of M.
We consider a section s € C*(F(M)) of the vector bundle (F(M),pnr, M)
and we define for ¢t € R

FIX)*s .= F(F1%,) o s o FIX .
t t t

This is a local section of the vector bundle F(M). For each z € M the value
((F1)*s)(x) € F(M), is defined, if ¢ is small enough. So in the vector space
F(M), the expression %|0((Flix )*s)(z) makes sense and therefore the section

Lxs:= L]o(F5)*s

is globally defined and is an element of C°°(F'(M)). Tt is called the Lie derivative
of s along X.
Lemma. In this situation we have
(1) (FL)*(FI1X)*s = (Flfi_r)*s, whenever defined.
(2) L(FLY)*s = (FIY)* Lxs = Lx(F1)*s, so
[Lx,(F1¥)*] :== Lx o (FI,X)* — (FIX)* o Lx = 0, whenever defined.
(3) (F1;%)*s = s for all relevant t if and only if Lxs = 0.
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Proof. (1) is clear. (2) is seen by the following computations.

FFL)"s = Ao (FL)* (FIF)™s = Lx (FIY)*s.
L(FL)s) (@) = 2]o((FI)* (FI1Y)*s) ()

(
= deloF (FIX,)(F(FIX,) o s o FL)(FI;* (2))
= F(FI%,) o (F(F1X,) o s o FI) (FI;* (2))
= ((FIy)"Lxs)(@),

since F(FI%,) : F(M)pix (o) — F(M), is linear.
(3) follows from (2). O

6.16. Let Fy, Fy be two vector bundle functors on Mf,,. Then the tensor
product (F} ® Fy)(M) := F1 (M) ® F5(M) is again a vector bundle functor and
for s; € C®°(F;(M)) there is a section s1 ® s3 € C®°((Fy ® F»)(M)), given by
the pointwise tensor product.

Lemma. In this situation, for X € X(M) we have
,Cx(sl & 82) =Lx81 ® 82+ 851 ®LxSo.

In particular, for f € C°(M,R) we have Lx(fs) =df(X)s+ f Lxs.

Proof. Using the bilinearity of the tensor product we have

Lx(s1®59) = [o(FIY)* (51 ® 52)
= $1o((FIY)*s1 ® (FI)*s5)
= %|0(F15)*81 ® S92+ 51 X %‘O(Fli{)*SQ
=Lxs1®s3+ 8 @ Lxsy. O

6.17. Let ¢ : I} — F5 be a linear natural transformation between vector bun-
dle functors on M f,,, i.e. for each M € Mf,, we have a vector bundle ho-
momorphism @p; : F1(M) — F5(M) covering the identity on M, such that
Fy(f) oo = on o Fi(f) holds for any f : M — N in Mf,, (we shall see in
14.11 that for every natural transformation ¢ : F; — F5 in the purely categorical
sense each morphism @ : Fy (M) — Fy(M) covers Idyy).

Lemma. In this situation, for s € C*(Fi(M)) and X € X(M), we have
Lx(pms) = om(Lxs).

Proof. Since )y is fiber linear and natural we can compute as follows.

Lx(pars)(@) = lo(FL) (par 9))(2) = Flo(Fa(F1X,) 0 oar 0 s 0 FIY ) ()
= ou o flo(Fi(FIX,) 0 s o FIF ) (2) = (o Lxs)(x). O
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6.18. A tensor field of type (5) is a smooth section of the natural bundle

RIT*M @ ®"TM. For such tensor fields, by 6.15 the Lie derivative along
any vector field is defined, by 6.16 it is a derivation with respect to the tensor
product, and by 6.17 it commutes with any kind of contraction or ‘permutation
of the indices’. For functions and vector fields the Lie derivative was already
defined in section 3.

6.19. Let F be a vector bundle functor on Mf,, and let X € X(M) be a
vector field. We consider the local vector bundle homomorphism F(FL*) on
F(M). Since F(FI) o F(FI)) = F(FI\,) and F(Fly) = Idp(y) we have
LPFLY) = L, F(FIY) o F(FIX) = X o F(FIY), so we get F(FI¥) = FI},
where X' = %\OF(FI?’) € X(F(M)) is a vector field on F(M), which is called
the flow prolongation or the canonical lift of X to F(M). If it is desirable for
technical reasons we shall also write X = FX.

Lemma.

(1) XT = HMOTX.

(2) [X,Y]" =[x, V7],

(3) X' (F(M),pr, M) — (TF(M),T(pn), TM) is a vector bundle homo-
morphism for the T'(+)-structure.

(4) For s € C*(F(M)) and X € X(M) we have
Lxs=uwvprpan(TsoX —XFos).

(5) Lxs is linear in X and s.

Proof. (1) is an easy computation. F(FLX) is fiber linear and this implies (3).
(4) is seen as follows:

(Lxs)(x) = &|o(F(FI,) 0 s o FIY )(2) in F(M),
= oprpon (4o (F(FIX,) 0 s 0 FIY ) () in VE(M))
= vprpn (=X 0 s o FIY (z) + T(F(F1})) o T's 0 X ()
=wvprpon(Tso X — X os)(x).

(5) Lxs is homogeneous of degree 1 in X by formula (4), and it is smooth as a
mapping X(M) — C>®°(F(M)), so it is linear. See [Frolicher, Kriegl, 88] for the
convenient calculus in infinite dimensions.

(2) Note first that F' induces a smooth mapping between appropriate spaces
of local diffeomorphisms which are infinite dimensional manifolds (see [Kriegl,
Michor, 91]). By 3.16 we have

0= |, (F1¥, o F1¥, o FI} o FIY),

[X,Y] = L2 |(F1Y, o FI¥, o FI o FIX)

2 0t2
8 (X,Y]
= E]OFlt .
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Applying F to these curves (of local diffeomorphisms) we get

0= 2|, (FIY, oFIX; oFIY oFLX"),
XT, v =12, (FIY oF1Y, oFlY oFLX")
= % 2|0 F(F1Y, o FI¥, o F1Y o FI¥)

= w\% i

FEIFY) = (X, Y]F.

See also section 50 for a purely finite dimensional proof of a much more general
result. [

6.20. Proposition. For any vector bundle functor F' on Mf,, and X,Y €
X(M) we have

[ﬁx,ﬁy] = ﬁX OEY — Ey O[:X = E[XJ/] : COO(F(M)) — COO(F(M))

So L :X(M) — End C*°(F(M)) is a Lie algebra homomorphism.
Proof. See section 50 for a proof of a much more general formula. [J

6.21. Theorem. Let M be a manifold, let ' : R x M D U, — M be smooth
mappings for i = 1,...,k where each U,: is an open neighborhood of {0} x M
in R x M, such that each ! is a diffeomorphism on its domain, ¢} = Idy;, and
2ot = Xi € X(M). We put [¢",¢7]; = (¢}, ¢1] := (#]) 7 0 (#)) ™ 0 ] 0 ¢}
Let F be a vector bundle functor, let s € C°°(F(M)) be a section. Then for
each formal bracket expression P of lenght k we have

O:g—;bP(cp%,...,cpf)*s for1 </l <k,
k * 0o
Lpxi,..x08 = mioxloP(pl, ... of) s € C®(F(M)).

Proof. This can be proved with similar methods as in the proof of 3.16. A
concise proof can be found in [Mauhart, Michor, 92] O

6.22. Affine bundles. Given a finite dimensional affine space A modelled on
a vector space V = ff, we denote by + the canonical mapping A X A - A,
(p,v) — p+uvforpe Aand v € A. If Ay and A, are two affine spaces and
f: A — A is an affine mapping, tILen we denote by f: Ay — A, the linear
mapping given by f(p+v) = f(p) + f(v).

Let p: E — M be a vector bundle and ¢ : Z — M be a smooth mapping
such that each fiber Z, = ¢~ !(z) is an affine space modelled on the vector space
E, =p~1(z). Let A be an affine space modelled on the standard fiber V of E.
We say that Z is an affine bundle with standard fiber A modelled on the vector
bundle E, if for each vector bundle chart ¢ : E|U = p~}(U) — U x V on E
there exists a fiber respecting diffeomorphism ¢ : Z|U = ¢~} (U) — U x A such
that ¢, : Z, — A is an affine morphism satisfying g, = ¢, : B, — V for each
z € U. We also write E = Z to have a functorial assignment of the modelling
vector bundle.
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Let Z — M and Y — N be two affine bundles. An affine bundle morphism
f 1 Z — Y is a fiber respecting mapping such that each f, : Z, — Y}, is an
affine mapping, where f : M — N is the underlying base mapping of f. Clearly
the rule x — f; /A Yf(x) induces a vector bundle homomorphism f: Z-Y
over the same base mapping f.

7. Differential forms

7.1. The cotangent bundle of a manifold M is the vector bundle T*M := (T M)*,
the (real) dual of the tangent bundle.

If (U,u) is a chart on M, then (%, e, Buim) is the associated frame field
over U of TM. Since 52|, (u/) = du (52 |.) = 6] we see that (du',... ,du™) is
the dual frame field on T*M over U. It is also called a holonomous frame field.
A section of T*M is also called a 1-form.

7.2. According to 6.18 a tensor field of type (’;) on a manifold M is a smooth
section of the vector bundle

p times q times

p q
—— —
QRTMeQQTM=TM- - STM QT M- T M.

The position of p (up) and ¢ (down) can be explained as follows: If (U, u) is a
chart on M, we have the holonomous frame field

9 a a j j
(m@)m@...@auip ®du31®~'®dujq)

i€{l,...,m}P je{l,... , m}a

over U of this tensor bundle, and for any (5 ) -tensor field A we have

AlU=Y A0 @ @52 @du @ @ dul,
.

The coefficients have p indices up and ¢ indices down, they are smooth functions

on U. From a strictly categorical point of view the position of the indices should

be exchanged, but this convention has a long tradition.

7.3 Lemma. Let ® : X(M) x --- x X(M) = X(M)* — C=(®"'TM) be a
mapping which is k-linear over C*°(M,R) then ® is given by a (f;)—tensor field.

Proof. For simplicity’s sake we put k =1, £ =0, s0 ® : X(M) — C*(M,R) is a
C>°(M,R)-linear mapping: ®(f.X) = f.®(X).

Cram 1. If X | U = 0 for some open subset U C M, then we have ®(X) |
U=0.
Let € U. We choose f € C*°(M,R) with f(z) =0 and f | M\ U = 1. Then
fX=X,50 ®(X)(z) =2(f.X)(z) = f(x).2(X)(x) =0.

CLAIM 2. If X (x) = 0 then also ®(X)(z) = 0.
Let (U,u) be a chart centered at z, let V be open with x € V. C V C U. Then
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X |U=Y X" and X'(z) = 0. We choose g € C*°(M,R) with g | V' =1 and
suppg C U. Then (¢2.X) | V = X | V and by claim 1 ®(X) | V depends only on
X |Vand ¢>.X = Zi(g.Xi)(g.%) is a decomposition which is globally defined
on M. Therefore we have ®(X)(x) = ®(9%.X)(z) = ® (Z¢(9~Xi)(9~aii ) (z) =
(g X7)(2).B(g. 52) () = 0.

So we see that for a general vector field X the value ®(X)(x) depends only
on the value X (z), for each x € M. So there is a linear map ¢, : T, M — R for
each x € M with ®(X)(z) = ¢(X(x)). Then ¢ : M — T*M is smooth since
|V =3,®(g.52).du’ in the setting of claim 2. O

7.4. Definition. A differential form or an exterior form of degree k or a k-form
for short is a section of the vector bundle A¥T* M. The space of all k-forms will
be denoted by QF(M). It may also be viewed as the space of all skew symmetric
(2)—tensor fields, i.e. (by 7.3) the space of all mappings

D :X(M) x - x X(M) =X(M)* — C>®(M,R),
which are k-linear over C*°(M,R) and are skew symmetric:
(X1, ..  Xop) =signo - &(Xy, ..., Xy)
for each permutation o € S.
We put QV(M) := C>°(M,R). Then the space

dim M

QM) = P k)
k=0

is an algebra with the following product. For ¢ € QF(M) and o € QY(M) and
for X; in X(M) (or in T, M) we put

(e AV)Xa, .., Xigr) =
=r Y signo - o(Xor, o, Xok) (KXo (es1)s - s Xo(ore))-

O'Esk+z

This product is defined fiber wise, i.e. (¢ AY), = @, A, for each z € M. Tt
is also associative, i.e. (p AY) AT = A (¥ AT), and graded commutative, i.e.
© Ap = (—1)*p A . These properties are proved in multilinear algebra.

7.5. If f: N — M is a smooth mapping and ¢ € QF(M), then the pullback
f*o € QF(N) is defined for X; € T, N by

(1) (" @)e(Xa, o Xi) = gy (Tef - Xu, o T f- X).

Then we have f*(@ A1) = f*o A f*1, so the linear mapping f* : Q(M) — Q(N)
is an algebra homomorphism. Moreover we have (gof)* = f*og* : Q(P) — Q(N)
if g: M — P, and (Id]\,{)* = IdQ(M).

So M +— Q(M) = C>°(AT*M) is a contravariant functor from the category
M of all manifolds and all smooth mappings into the category of real graded
commutative algebras, whereas M — AT*M is a covariant vector bundle func-
tor defined only on Mf,,, the category of m-dimensional manifolds and local
diffeomorphisms, for each m separately.



7. Differential forms 63

7.6. The Lie derivative of differential forms. Since M — AFT*M is a
vector bundle functor on M f,,, by 6.15 for X € X(M) the Lie derivative of a
k-form ¢ along X is defined by

Lxp = L1o(FL) .

Lemma. The Lie derivative has the following properties.

(1) Lx(pAW)=Lxe A+ oA Lx, so Lx is a derivation.
(2) ForY; € X(M) we have

(Lxp)(Y1,... . V) = X(p(Y1,..., Y1) —Z«p(Yl,.--,[XJQL.-.,Yk).

(3) [Lx,Ly]p = Lix y)e-

Proof. The mapping Alt : ®k T*M — AFT*M, given by

(AItA)(Y1,... . Ye) =% > sign(0)A(Yor, ... . Yor),

is a linear natural transformation in the sense of 6.17 and induces an algebra
homomorphism from the tensor algebra @, C*(®" T*M) onto Q(M). So
(1) follows from 6.16. -

(2) Again by 6.16 and 6.17 we may compute as follows, where Trace is the
full evaluation of the form on all vector fields:

X(p(Y1,...,Y3)) = Lx oTrace(p @Y, @ --- @ Yy)
= TraceoLx (@Y1 ® - ®@Yy)
=Trace(Lxp @Y1 ® - @Ye)+¢@ (X, V1@ @ LxY; @@ Yy)).

Now we use LxY; = [X,Y;].
(3) is a special case of 6.20. O

7.7. The insertion operator. For a vector field X € X(M) we define the
insertion operator ix = i(X) : QF(M) — QF~1(M) by

(ix(p)(yl,... aYk—l) = (p(X, Yl,... aYk—l)-

Lemma.

(1) ix is a graded derivation of degree —1 of the graded algebra Q(M), so
we have ix (o A1) =ixe A+ (—1)48Pp Adxep.
(2) [ﬁx,iy] = ﬁX o iy - iy o EX = ’L'[ny].
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Proof. (1) For ¢ € QF(M) and ¢ € QY(M) we have
(ix, (P A (Xay oo, Xir) = (@ AP)(X, s i) =
= wa > _sign(0) o(Xo1.- -, Xok)P(Xo(er1)s - -+ Xo(rre)-

(ix, 0 AN+ (Do Nix, ) (Xa, ., Xige) =
= o ngn O(X1, Xo2y o s Xor)V(Xoogr)s s Xo(hro))+

+ m ; Slgn(a) QO(X027 e 7Xa(k+1))¢(X17 XU’(k-‘rQ)) . )

Using the skew symmetry of ¢ and 1) we may distribute X; to each position by
adding an appropriate sign. These are k+¢ summands. Since m+m =

Z,ief, and since we can generate each permutation in S, in this way, the result

follows.
(2) By 6.16 and 6.17 we have:

Lxiyp = Lx Trace; (Y @ ¢) = Trace; Lx (Y @ ¢)
= Tracel(EXY Rp+Y R Lxp) = Z'[ny](p +iyLxep. O

7.8. The exterior differential. We want to construct a differential operator
QF (M) — QFFL(M) which is natural. We will show that the simplest choice will
work and (later) that it is essentially unique.

So let U be open in R”, let ¢ € Q¥(R™). Then we may view ¢ as an element
of C>=(U, L¥,(R",R)). We consider Dy € C°°(U, L(R", Lk, (R",R))), and we
take its canonical image Alt(Dyp) in C*(U, L¥'(R™ R)). Here we write D for
the derivative in order to distinguish it from the exterior differential, which we

define as dp := (k + 1) Alt(D¢), more explicitly as

(1) (d(p>m(X07 e an) = % Z sign(a) D(p(x)(XUO)(XUL e ;Xak)

k
=> (-1 X)(Xo, ... Xay o, X8),
=0
where the hat over a symbol means that this is to be omitted, and where X; € R".
Now we pass to an arbitrary manifold M. For a k-form ¢ € QF(M) and
vector fields X; € X(M) we try to replace Dy(z)(X;)(Xo,...) in formula (1)
by Lie derivatives. We differentiate X;(¢(z)(Xo,...)) = Do(z)(X;)(Xo,...) +
> o<j<kjzi P(@)(Xo, ..., DX;(z)X;, ... ), so inserting this expression into for-
mula (1) we get (cf. 3.4) our working definition

k

(2) dp(Xo, .., Xi) = Y (1) Xi(p(Xo, ., Xi ., Xi))
=0

+3 ()X, X ), X0, Xy X X,

1<J
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dp, given by this formula, is (k+1)-linear over C*° (M, R), as a short computation

involving 3.4 shows. It is obviously skew symmetric, so by 7.3 dy is a (k + 1)-

form, and the operator d : Q¥(M) — QF1(M) is called the exterior derivative.
If (U,u) is a chart on M, then we have

U = Z ‘Pz‘l,..i,i,ﬁ,duil/\.../\duik’

i< <1y
where ¢;, i, = @(%Lil, e 781?’% ). An easy computation shows that (2) leads
to
(3) delU=">" dpj, .. i Ndu Ao Adu'™,
i< - <ig

so that formulas (1) and (2) really define the same operator.

7.9. Theorem. The exterior derivative d : Q¥ (M) — QF*1(M) has the follow-
ing properties:

(1) d(eAtp) = do A+ (—1)48Pp Adip, so d is a graded derivation of degree

1.

(2) Lx =ix od+ doix for any vector field X.

(3) & =dod=0.

(4) f*od=do f* for any smooth f : N — M.

(5) Lx od=do Lx for any vector field X.

Remark. In terms of the graded commutator
[Dh DQ} = D1 o D2 ( )deg(Dl) deg(Dg)D2 O D1

for graded homomorphisms and graded derivations (see 8.1) the assertions of
this theorem take the following form:

()Ex—[lxad]
(3) [dd}—o
()[ ,d] = 0.
()[ﬁx, dl =0.

This point of view will be developed in section 8 below.

Proof. (2) For ¢ € QF(M) and X; € X(M) we have
(EXOLP)(X17"' ,X >:X0< (le--- ,Xk)>+
+Z 1) o([Xo, X;], X1, ., X, .., Xg) by 7.6.2,

(ZXodSD>(X13 5 k) —d(p(XO, ?Xk)



66 Chapter II. Differential forms

+ ) (UM (X X)L Xos - Xy, X X,
0<i<y
k
(dixocp)(le s 7Xk) = Z(il)lilXi((iXo(p)(Xla . 7Xk))+
i=1
—|— Z H_] l ZXO(p)([Xi,X]'],Xl, e ,Xi, - ,Xj, e ,Xk)
1<i<
k —
= (-1 Xi(p(Xo, X, Xiy o X)) —
i=1
- Z Z+] XMX}XOale"'?j(\ia"'aj(;a"'7Xk)'
1<i<y
By summing up the result follows.
(1) Let ¢ € QP(M) and ¢ € Q4(M). We prove the result by induction on
p+q.
p+q=0:d(f-g)=df-g+f-dg.
Suppose that (1) is true for p+ ¢ < k. Then for X € X(M) we have by part (2)
and 7.6, 7.7 and by induction

ix dlp NY) = Lx(p NY) —dix (e A)
=LxpANp+oNLxp—dlixe A+ (=1)Pp ANixy)
=ixdp ANV +dixp AN+ ANixdy+ o ANdixyy —dixe ANy
— (=D lixp Ady — (=1)Pdp Nixy — o Adix
= ix(de A+ (=1)"p A dp)).
Since X is arbitrary, (1) follows.

(3) By (1) d is a graded derivation of degree 1, so d> = 1[d,d] is a graded
derivation of degree 2 (see 8.1), and is obviously local. Since Q(M) is locally
generated as an algebra by C°(M,R) and {df : f € C*°(M,R)}, it suffices to
show that d?f = 0 for each f € C>°(M,R) (d®f = 0is a consequence). But this is
easy: d>f(X,Y) = Xdf (V)= Ydf(X)—df([X,Y]) = XY f—Y X f—[X,Y]f = 0.

(4) f*: QM) — Q(N) is an algebra homomorphism by 7.6, so f* o d and
do f* are both graded derivations over f* of degree 1. By the same argument
as in the proof of (3) above it suffices to show that they agree on g and dg for
all g € C°(M,R). We have (f*dg),(Y) = (dg)su)(TyfY) = (TyfY)(9) =
Y(go f)(y) = (df*g)y(Y), thus also df*dg = ddf*g = 0, and f*ddg = 0.

(5) dLx =dixd+ddix =dixd+ixdd=Lxd. O
7.10. A differential form w € QF(M) is called closed if dw = 0, and it is called
ezact if w = dy for some p € QF~1(M). Since d?> = 0, any exact form is closed.
The quotient space
ker(d : QF(M) — QFFL(M))

im(d : QF—1(M) — Qk(M))
is called the k-th De Rham cohomology space of M. We will not treat cohomol-
ogy in this book, and we finish with the

H(M) =
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Lemma of Poincaré. A closed differential form is locally exact. More pre-
cisely: let w € QF(M) with dw = 0. Then for any x € M there is an open
neighborhood U of x in M and a ¢ € Q*~Y(U) with dp = w|U.

Proof. Let (U, u) be chart on M centered at = such that u(U) = R™. So we may
just assume that M = R™.

We consider a : RxR™ — R™, given by a(t,x) = ay(x) = tx. Let I € X(R™)
be the vector field I(z) = z, then a(e?,z) = F1! (z). So for t > 0 we have

I I
%a:w = %(Fllogt)*w = %(Fllogt)*‘clw
_ 1
—

<

o (irdw + dijw) = +dojiw.
Note that T}, (ay) = t.Id. Therefore

(Foyiw)e(Xa, ..., Xi) = Hijw)w(t X2, ..., tXk)

= %wm(tx,th, “- ,th) = (A)tw(l'7tX2, .- ,th).
So if k > 1, the (k—1)-form 1ajisw is defined and smooth in (¢, z) for all ¢ € R.
Clearly ajw = w and ajw = 0, thus

1
w=ajw—ajw = / %afu}dt
0

1 1
= / d(tafijw)dt =d (/ 1afi1wdt) =dp. O
0 0

7.11. Vector bundle valued differential forms. Let (E,p, M) be a vector
bundle. The space of smooth sections of the bundle A*T*M ® E will be denoted
by QF(M; E). Its elements will be called E-valued k-forms.

If V is a finite dimensional or even a suitable infinite dimensional vector space,
OF(M;V) will denote the space of all V-valued differential forms of degree k.
The exterior differential extends to this case, if V' is complete in some sense.

8. Derivations
on the algebra of differential forms
and the Frolicher-Nijenhuis bracket

8.1. In this section let M be a smooth manifold. We consider the graded
commutative algebra Q(M) = ffaM QF (M) = @2 QF(M) of differen-
tial forms on M, where we put Q¥(M) = 0 for k¥ < 0 and k > dim M.
We denote by Der, Q(M) the space of all (graded) derivations of degree k,
i.e. all linear mappings D : Q(M) — Q(M) with D(QY(M)) c QF¢(M) and
D(p Avp) = D(p) A+ (=1)*p A D(¥) for ¢ € Q°(M).
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Lemma. Then the space Der Q(M) = @, Dery Q(M) is a graded Lie alge-
bra with the graded commutator [Dy, Ds] := Dj o Dy — (—1)¥1%2Dy 0 D; as
bracket. This means that the bracket is graded anticommutative, [Dy, D3] =
—(=1)**2[Dy, Dy], and satisfies the graded Jacobi identity [Dy,[D2, D3]] =
[[Dl,DQ],Dg] + (71)]61162 [DQ,[Dl,Dg,H (SO that ad(Dl) = [Dl, ] is itself a
derivation of degree k).

Proof. Plug in the definition of the graded commutator and compute. O

In section 7 we have already met some graded derivations: for a vector field

X on M the derivation ix is of degree —1, Lx is of degree 0, and d is of
degree 1. Note also that the important formula Lx = dix + ix d translates to
Lx = [ix,d].
8.2. A derivation D € Dery Q(M) is called algebraic if D | Q°(M) = 0. Then
D(fw) = f.D(w) for f € C>°(M,R), so D is of tensorial character by 7.3. So D
induces a derivation D, € Dery AT M for each z € M. It is uniquely determined
by its restriction to 1-forms D,|T} M : T} M — A*T1T* M which we may view as
an element K, € A¥*'T*M ® T, M depending smoothly on z € M. To express
this dependence we write D = i = i(K), where K € C®°(A*'T*M @ TM) =:
QFFL(M;TM). Note the defining equation: i (w) = wo K for w € QY (M). We
call Q(M, TM) = ?ZHE)M QOF (M, TM) the space of all vector valued differential
forms.

Theorem. (1) For K € Q*1(M, TM) the formula

(’in)(Xl, . ,XkJrg) =
= m Z signo .w(K(Xs1,. .., Xoht1)) Xo(hta)s---)

UESkJrz

for w € QY (M), X; € X(M) (or T,M) defines an algebraic graded derivation
i € Dery Q(M) and any algebraic derivation is of this form.

(2) By i([K,L]") = [ik,iL] we get a bracket [ , ]" on Q*T'(M,TM)
which defines a graded Lie algebra structure with the grading as indicated, and
for K € QY (M, TM), L € QT (M, TM) we have

[K, L) =igL — (—1)*i K,

where ig(w® X) :=ig(w) ® X.

[ , " is called the algebraic bracket or the Nijenhuwis-Richardson bracket,
see [Nijenhuis-Richardson, 67].

Proof. Since AT;}M is the free graded commutative algebra generated by the
vector space TXM any K € QFH1(M,TM) extends to a graded derivation. By
applying it to an exterior product of 1-forms one can derive the formula in (1).
The graded commutator of two algebraic derivations is again algebraic, so the
injection i : Q**1(M,TM) — Der,(Q(M)) induces a graded Lie bracket on
Q*+L(M, TM) whose form can be seen by applying it to a 1-form. [
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8.3. The exterior derivative d is an element of Dery Q(M). In view of the formula
Lx = [ix,d] =ixd+ dix for vector fields X, we define for K € Q¥(M;TM)
the Lie derivation L = L(K) € Dery Q(M) by Lk := [ik,d).

Then the mapping £ : Q(M,TM) — DerQ(M) is injective, since Lk f =
igdf =df o K for f € C*(M,R).

Theorem. For any graded derivation D € Dery Q(M) there are unique K €
QF(M;TM) and L € QFtY(M;TM) such that

D="Lkg+ip.
We have L = 0 if and only if [D,d] = 0. D is algebraic if and only if K = 0.
Proof. Let X; € X(M) be vector fields. Then f — (Df)(X1,...,Xs) is a

derivation C*°(M,R) — C*(M,R), so by 3.3 there is a unique vector field
K(Xi,...,Xy) € X(M) such that

(DH(Xq,... , Xp)=K(Xy,...,Xp)f =df (K(Xy,...,Xk))-

Clearly K(X,...,X}) is C*°(M,R)-linear in each X; and alternating, so K is
tensorial by 7.3, K € QF(M;TM).

The defining equation for K is Df = df oK = igdf = L f for f € C>°(M,R).
Thus D — Lk is an algebraic derivation, so D — Lx = iy by 8.2 for unique
L € QF+L(M; TM).

Since we have [d,d] = 2d*> = 0, by the graded Jacobi identity we obtain
0 = [ix,[d,d]] = [[ix,d],d] + (=1)*"1[d, ik, d]] = 2[Lk,d]. The mapping K ~
[ir,d] = Lk is injective, so the last assertions follow. [

8.4. Applying i(Idras) on a k-fold exterior product of 1-forms we see that
i(Idrar)w = kw for w € QF(M). Thus we have L(Idry)w = i(Idpas)dw —
di(Idry)w = (k+ 1)dw — kdw = dw. Thus L(Idry) = d.

8.5. Let K € QF(M;TM) and L € QY(M;TM). Then obviously [[Lx, L], d] =
0, so we have
(LK), £(L)] = L([K, L])

for a uniquely defined [K, L] € Q*+¢(M;TM). This vector valued form [K, L] is
called the Frolicher-Nijenhuis bracket of K and L.

Theorem. The space Q(M;TM) = 2;“61\4 QOF(M; TM) with its usual grading
is a graded Lie algebra for the Frolicher-Nijenhuis bracket. So we have
K, L] = —(-D)™[L, K]
(K1, [K2, K3]] = [[K1, K], Ks] + (—=1)""2[Ka, [K1, Ks]]
Idry € QY(M;TM) is in the center, i.e. [K,Idry] = 0 for all K.
L:(QUM;TM),[ , ]) — DerQ(M) is an injective homomorphism of gra-

ded Lie algebras. For vector fields the Frolicher-Nijenhuis bracket coincides with
the Lie bracket.

Proof. df o [X,Y] = L([X,Y])f =[Lx,Ly]f. The rest is clear. O
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8.6. Lemma. For K € QF(M;TM) and L € Q"1 (M;TM) we have

[Lr,ip) = i([K, L) — (~D)L(iLK), or
lir, Lx] = LK) + (=1)Fi([L, K]).

This generalizes 7.7.2.

Proof. For f € C*°(M,R) we have [ip, Lx]f = irixdf —0 = ir(df o K) =
df o (it K) = L(irK)f. So [ir, Lx] — L(ir K) is an algebraic derivation.

[[iLa‘CKLd] = [iLa [‘CdeH - (_1)k€[£K’ [ZLvd]] =
=0 — (=D)*L(K, L) = (-1)*[i((L, K]), d].

Since [ ,d] kills the £’s and is injective on the ¢’s, the algebraic part of i, Lk]
is (~1)*4i([L,K]). O

8.7. The space Der Q(M) is a graded module over the graded algebra Q(M)
with the action (w A D)y = w A D(¢), because (M) is graded commutative.

Theorem. Let the degree of w be q, of ¢ be k, and of 1) be (. Let the other
degrees be as indicated. Then we have:

(1) [wA Dy, Dy] = w A [Dy, Dy] — (=1) TRk Dy () A Dy
(2) i(wAL)=wANi(L)
(3) wALg =L(wAK)+ (=1)TFYi(dw A K).
(4) [wA Ly, L) = w A [Ly, Ly]"—
— (=)@t DE=D( LYW A Ly

(5) [wA K1, K] =wA K1, Ko — (=1 @0k 20 A Ky
+ (=19 Fdw A i(K)) K.
(6) [eX, Y] =pAY®[X,Y]

— (iydp ANYp @ X — ()M ixdp Ap®Y)

— (dlivp A y) @ X — (=1)*d(ix A ) @Y)
=p ANV R[X, Y]+ o ALxY Q@Y — Ly Ay @ X
+ (=D (dp Nixp @Y +iyp Adip @ X).

Proof. For (1), (2), (3) write out the definitions. For (4) compute i([wALq, La]").
For (5) compute L([w A K7, K3]). For (6) use (5) . O
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8.8. Theorem. For K € QF(M;TM) and w € QY(M) the Lie derivative of w
along K is given by the following formula, where the X; are vector fields on M.
(EKw)(Xl, ce ,XkJrz) =
= mn >_signo LK (Xo1,. . Xor))(@(Xo(es1)s - > Xo(hro))

+ o Z sigh o W([K (Xo1, -+ s Xok)s Xo(er1))s Xo(hr)s---)

(Y i ([Xo1, Xoal, X, X
+ (k— 1)!(@ 1)12|ZSIgnUW ol 02]a 037”')7 o(k+2)a'~')~

Proof. Tt suffices to consider K = ¢ ® X. Then by 8.7.3 we have L(p ® X) =
oA Lx — (—=1)*tdp Nix. Now use the global formulas of section 7 to expand
this. O

8.9. Theorem. For K € QF(M;TM) and L € QY(M;TM) we have for the
Frélicher-Nijenhuis bracket [K, L] the following formula, where the X; are vector
fields on M.

Ka L](le s ;Xk+l) =
Signo [K(Xo-l, ce ,ng), L(Xg(k+1), ce ,XU(kJrg))]

+ wrey Zsigna LK (Xo1,- s Xok)s Xo bt 1))s Xo(hia)s - --)
_ 1)kt
+ (k: 11)|Z|Zblgn0'K 0'1)"' aXU€)7X0(£+1)]7XO'(€+2)?"')
k-t
+ (k— 1)!1(p 1)1 2! ZSlgI’IJL XUlyXUZLXo‘Sy-~~);Xa(k+2)7"')

1y (=1
+ (k 1).(5 1),2,251gnaK Xo1, Xool, Xo3, )y Xo(egays - -+ )-

Proof. Tt suffices to consider K = ¢ ® X and L = ¢ ® Y, then for [p® X, ¥ QY]
we may use 8.7.6 and evaluate that at (X7,... , Xiq¢). After some combinatorial
computation we get the right hand side of the above formula for K = ¢ ® X and
L=¢yxY. O

There are more illuminating ways to prove this formula, see [Michor, 87].

8.10. Local formulas. In a local chart (U,u) on the manifold M we put
K|U=YKd"®0, L|U=3YL,d 0, andw | U = Y w,d", where
a=(1<a <ag < <a, <dimM)is a form index, d* = du®* A...Adu®,
0; = % and so on.

Plugging X; = 0;, into the global formulas 8.2, 8.8, and 8.9, we get the
following local formulas:

(07
igw| U= § oo Wit antet @
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KD U =3 (Ko, Dy
() EDEDLE Ky, ) 90
Lrw | U= Z(Kgqak aiwak+1~~-ak+2
(D Do Ky ay,) Wi )
K L) U =3 (K, 0Ly

— (DMLY, o, 0K

[ VAT RERY e 7 " =iy)

- kK(‘ll...O{kfli aakLzlk+1.“Oék+g
ke j % e
+ (_1) gL]al...az,li aalKOée+1...Ozk+[> d*® aj

8.11. Theorem. For K; € Q% (M;TM) and L; € Q¥ +1(M;TM) we have
(1) Lk, +ir,, Lx, +ir,] =
=L (K1, Ko] +ip, Ko — (—1)"Fip, Ky)
+i ([L, L) + [K1, Lo] — (=1)M*2 Ky, Ly]) .

FEach summand of this formula looks like a semidirect product of graded Lie
algebras, but the mappings

i QM;TM) — End(QM;TM),[ , ]
ad : Q(M; TM) — End(Q(M;TM),[ , ")

do not take values in the subspaces of graded derivations. We have instead for
K € QF(M;TM) and L € Q“TY(M;TM) the following relations:

(2) in[K1, Ko] = [ip K1, K] + (—1)M* Ky, i K]
— (1), D K — (1) ORi(K, LK)
(3) [Ka [L1, LQ]/\] = [[Kv Ll]ﬂ L2]/\ + (_l)kkl [L1, [K, LQHA_

— (DL, Lo) = (~)®F0%i(Lo) K, L))

The algebraic meaning of the relations of this theorem and its consequences in
group theory have been investigated in [Michor, 89]. The corresponding product
of groups is well known to algebraists under the name ‘Zappa-Szep’-product.

Proof. Equation (1) is an immediate consequence of 8.6. Equations (2) and (3)
follow from (1) by writing out the graded Jacobi identity, or as follows: Consider
L(ir[K1, K2]) and use 8.6 repeatedly to obtain £ of the right hand side of (2).
Then consider i([K, [L1, L2]"]) and use again 8.6 several times to obtain 7 of the
right hand side of (3). O
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8.12. Corollary (of 8.9). For K, L € QY(M;TM) we have

[K,L)(X,Y) = [KX,LY] - [KY, LX]
— L(KX,Y] - [KY, X])
— K([LX,Y] - [LY, X])
+ (LK + KL)[X,Y].

8.13. Curvature. Let P € QY(M;TM) satisfy Po P = P, i.e. P is a pro-
jection in each fiber of TM. This is the most general case of a (first order)
connection. We may call ker P the horizontal space and im P the vertical space
of the connection. If P is of constant rank, then both are sub vector bundles of
TM. If im P is some primarily fixed sub vector bundle or (tangent bundle of) a
foliation, P can be called a connection for it. Special cases of this will be treated
extensively later on. The following result is immediate from 8.12.

Lemma. We have ~
[P,P] =2R+ 2R,

where R, R € Q%(M;TM) are given by R(X,Y) = P[(Id—P)X, (Id —P)Y] and

R(X,Y) = (Id—P)[PX, PY].

If P has constant rank, then R is the obstruction against integrability of the
horizontal bundle ker P, and R is the obstruction against integrability of the
vertical bundle im P. Thus we call R the curvature and R the cocurvature of the
connection P. We will see later, that for a principal fiber bundle R is just the
negative of the usual curvature.

8.14. Lemma (Bianchi identity). If P € Q'(M;TM) is a connection (fiber
projection) with curvature R and cocurvature R, then we have

[P,R+ R} =0
[R,P] =ipR+igR.

Proof. We have [P, P] = 2R + 2R by 8.13 and [P, [P, P]] = 0 by the graded
Jacobi identity. So the first formula follows. We have 2R = P o [P, P] = ip p| P.
By 8.11.2 we get ifp p|[P, P] = 2[ijp,p)P, P] — 0 = 4[R, P]. Therefore [R, P] =
Tip,p)[P, P] = i(R+ R)(R+ R) = irR + izR since R has vertical values and
kills vertical vectors, so ig R = 0; likewise for R. [

8.15. f-relatedness of the Frolicher-Nijenhuis bracket. Let [ : M —
N be a smooth mapping between manifolds. Two vector valued forms K €

QF(M;TM) and K' € QF(N;TN) are called f-related or f-dependent, if for all
X; € T,M we have

(1) oy (Lof - Xa, oo Tof - X3) = Tof - Ko(Xa,.., Xy).
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Theorem.

(2) If K and K’ as above are f-related then ix o f* = f*oif : Q(N) —

(3) Ifixg o f* | BY(N) = f*oig: | BY(N), then K and K' are f-related,
where B! denotes the space of exact 1-forms.

(4) If Kj and K are f-related for j = 1,2, then ix, Ky and if; K5 are
f-related, and also [K1, K3]" and [K}, K] are f-related.

(5) If K and K' are f-related then Ly o f* = f*o L/ : Q(N) — Q(M).

(6) If Lig o f* | QU(N) = f* o Ly | Q°(N), then K and K’ are f-related.

(7) If K; and K j/ are f-related for j = 1,2, then their Frélicher-Nijenhuis
brackets [K1, K] and [K{, K}] are also f-related.

Proof. (2) By 8.2 we have for w € Q4(N) and X; € T, M:

(i [ w)e(X1,. o Xgpro1) =
= i 2 Sign o (f*w)e (Ka(Xo, -, Xok)y Xo(rin)s )

= o= 2 Sign o Wi (Tof - Ko(Xot, ), Tof - oy,

= o= 2 Sien o Wiy (Ko (Tef - Xots o), Tof - Xo(hiys---)
= (f*ZK/w)T(Xla v 7Xq+k—1)

(3) follows from this computation, since the df, f € C°(M,R) separate
points.

(4) follows from the same computation for Ky instead of w, the result for the
bracket then follows 8.2.2.

(5) The algebra homomorphism f* intertwines the operators iy and igs by
(2), and f* commutes with the exterior derivative d. Thus f* intertwines the
commutators [ix,d] = Lx and [ig/,d] = Lg.

(6) For g € Q°(N) we have L f*g = ixdf*g = irx f*dg and f*Lxr g =
f*ir dg. By (3) the result follows.

(7) The algebra homomorphism f* intertwines Lx, and £ K thus also their
graded commutators, which are equal to L([K7, K»]) and L([K7, K}]), respec-
tively. Then use (6). O

8.16. Let f : M — N be a local diffecomorphism. Then we can consider the
pullback operator f*: Q(N;TN) — Q(M;TM), given by

(1) (P RK)2(X1, ., Xp) = (T f) 'Ky (Tof - X1, Tof - Xi).

Note that this is a special case of the pullback operator for sections of natural
vector bundles in 6.15. Clearly K and f*K are then f-related.

Theorem. In this situation we have:
(2) fr[K, L] =[f"K, f*L].
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(3) ffixgL =if-xf*L.

(4) [ K L)" = [ K, fr L)

(5) For a vector field X € X(M) and K € Q(M;TM) by 6.15 the Lie
derivative LxK = %|0 (FIX)*K is defined. Then we have LxK =

[X, K], the Frolicher-Nijenhuis-bracket.

This is sometimes expressed by saying that the Frolicher-Nijenhuis bracket,
[ , |", etc. are natural bilinear concomitants.

Proof. (2) — (4) are obvious from 8.15. They also follow directly from the geo-
metrical constructions of the operators in question. (5) Obviously £x is R-linear,
so it suffices to check this formula for K = ¢ @Y, ¢ € Q(M) and Y € X(M).
But then

Lx(WRY)=Lx@Y +9¢y®LxY by6.16
=Lxy QY +9[X,Y]
=[X,v®Y] by&76. O

8.17. Remark. At last we mention the best known application of the Frolicher-
Nijenhuis bracket, which also led to its discovery. A vector valued 1-form J €
QYM;TM) with JoJ = —1d is called a almost complex structure; if it exists,
dim M is even and J can be viewed as a fiber multiplication with v/—1 on T'M.
By 8.12 we have

7, J)(X,Y) =2([JX,JY] - [X,Y] — J[X, JY] — J[JX,Y)).

The vector valued form 3[J, J] is also called the Nijenhuis tensor of J, because
we have the following result:

A manifold M with an almost complex structure J is a complex
manifold (i.e., there exists an atlas for M with holomorphic chart-
change mappings) if and only if [.J, J] = 0. See [Newlander-Nirenberg,
57].

Remarks

The material on the Lie derivative on natural vector bundles 6.14-6.20 appears
here for the first time. Most of section 8 is due to [Frolicher-Nijenhuis, 56], the
formula in 8.9 was proved by [Mangiarotti-Modugno, 84| and [Michor, 87]. The
Bianchi identity 8.14 is from [Michor, 89a].
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CHAPTER III.
BUNDLES AND CONNECTIONS

We begin our treatment of connections in the general setting of fiber bundles
(without structure group). A connection on a fiber bundle is just a projection
onto the vertical bundle. Curvature and the Bianchi identity is expressed with
the help of the Frolicher-Nijenhuis bracket. The parallel transport for such a
general connection is not defined along the whole of the curve in the base in
general - if this is the case for all curves, the connection is called complete. We
show that every fiber bundle admits complete connections. For complete con-
nections we treat holonomy groups and the holonomy Lie algebra, a subalgebra
of the Lie algebra of all vector fields on the standard fiber.

Then we present principal bundles and associated bundles in detail together
with the most important examples. Finally we investigate principal connections
by requiring equivariance under the structure group. It is remarkable how fast
the usual structure equations can be derived from the basic properties of the
Frolicher-Nijenhuis bracket. Induced connections are investigated thoroughly -
we describe tools to recognize induced connections among general ones.

If the holonomy Lie algebra of a connection on a fiber bundle is finite dimen-
sional and consists of complete vector fields on the fiber, we are able to show,
that in fact the fiber bundle is associated to a principal bundle and the connec-
tion is induced from an irreducible principal connection (theorem 9.11). This is
a powerful generalization of the theorem of Ambrose and Singer.

Connections will be treated once again from the point of view of jets, when
we have them at our disposal in chapter IV.

We think that the treatment of connections presented here offers some di-
dactical advantages besides presenting new results: the geometric content of a
connection is treated first, and the additional requirement of equivariance under
a structure group is seen to be additional and can be dealt with later - so the
reader is not required to grasp all the structures at the same time. Besides that
it gives new results and new insights. There are naturally appearing connec-
tions in differential geometry which are not principal or induced connections:
The universal connection on the bundle J! P/G of all connections of a principal
bundle, and also the Cartan connections.

9. General fiber bundles and connections

9.1. Definition. A (fiber) bundle (E,p, M, S) consists of manifolds E, M, S,
and a smooth mapping p : E — M; furthermore it is required that each x € M
has an open neighborhood U such that E | U := p~}(U) is diffeomorphic to



9. General fiber bundles and connections s

U x S via a fiber respecting diffeomorphism:

Y

E|lU————UxS

N A

FE is called the total space, M is called the base space, p is a surjective submersion,
called the projection, and S is called standard fiber. (U,v) as above is called a
fiber chart or a local trivialization of E.

A collection of fiber charts (U,, s ), such that (Uy,) is an open cover of M,
is called a (fiber) bundle atlas. If we fix such an atlas, then (1o 0¥~ ') (x,5) =
(x,%ap(z,8)), where o : (Uy NUg) x S — S is smooth and ¢ug(z, ) is a
diffeomorphism of S for each x € U,g := U, N Ug. We may thus consider
the mappings a3 : Uss — Diff(S) with values in the group Diff(S) of all
diffeomorphisms of S; their differentiability is a subtle question, which will not
be discussed in this book, but see [Michor, 88]. In either form these mappings
Yap are called the transition functions of the bundle. They satisfy the cocycle
condition: Yag(x)otgy(z) = ay(x) for & € Uy, and Yaq(z) = Idg for z € U,.
Therefore the collection (q3) is called a cocycle of transition functions.

Given an open cover (U,) of a manifold M and a cocycle of transition func-
tions (¢ng) we may construct a fiber bundle (E,p, M, S) similarly as in 6.4.

9.2. Lemma. Let p: N — M be a surjective submersion (a fibered manifold)
which is proper (i.e., compact sets have compact inverse images) and let M be
connected. Then (N,p, M) is a fiber bundle.

Proof. We have to produce a fiber chart at each g € M. So let (U,u) be
a chart centered at zop on M such that w(U) = R™. For each x € U let
& (y) = (Tyu)~tu(x), then &, € X(U), depending smoothly on = € U, such
that u(F15* u=1(2)) = z + t.u(x), so each &, is a complete vector field on U.
Since p is a submersion, with the help of a partition of unity on p~!(U) we may
construct vector fields 1, € X(p~!(U)) which depend smoothly on 2 € U and are
prelated to &, Tp., = & o p. Thus po FI7* = FI5* op by 3.14, so FI7* is fiber
respecting, and since p is proper and &, is complete, 1, has a global flow too.
Denote p~*(zg) by S. Then ¢ : U x S — p~}(U), defined by ¢(x,y) = F17*(y),
is a diffeomorphism and is fiber respecting, so (U, ¢ ~!) is a fiber chart. Since M
is connected, the fibers p~1(x) are all diffeomorphic.

9.3. Let (E,p,M,S) be a fiber bundle; we consider the tangent mapping T'p :
TE — TM and its kernel ker Tp =: V E which is called the vertical bundle of
E. The following is special case of 8.13.

Definition. A connection on the fiber bundle (E, p, M, S) is a vector valued 1-
form ® € Q' (E; V E) with values in the vertical bundle VE such that o ® = &
and Im® = V E; so ® is just a projection TE — V E.

If we intend to contrast this general concept of connection with some special
cases which will be discussed later, we will say that ® is a general connection.
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Since ker ® is of constant rank, by 6.6 ker ® is a sub vector bundle of TE, it is
called the space of horizontal vectors or the horizontal bundle and it is denoted
by HE. Clearly TE = HE ® VE and T,FE = H,E ® V,E for u € E.

Now we consider the mapping (T'p,7g) : TE — TM x5 E. We have by
definition (Tp, 7)™ (Op(u),u) = VuE, so (Tp,ng) | HE : HE — TM x5 E is
fiber linear over E and injective, so by reason of dimensions it is a fiber linear
isomorphism: Its inverse is denoted by

C:=((Tp,ng) | HE)™' :TM xy E — HE — TE.

So C: TM xp E — TFE is fiber linear over E and is a right inverse for (T'p, 7g).
C is called the horizontal lift associated to the connection ®.

Note the formula ®(&,) = &, — C(Tp.&y,u) for &, € T, E. So we can equally
well describe a connection ® by specifying C. Then we call ® the vertical pro-
jection (no confusion with 6.11 will arise) and x := idpg —® = C o (Tp, ) will
be called the horizontal projection.

9.4. Curvature. Suppose that ® : TE — V' E is a connection on a fiber bundle
(E,p, M, S), then as in 8.13 the curvature R of ® is given by

2R = [®,®] = [Id —®,Id -] = [x, x] € Q*(E;VE)

(The cocurvature R vanishes since the vertical bundle V E is integrable). We
have R(X,Y) = 1[®,®|(X,Y) = ®[xX,xY], so R is an obstruction against
integrability of the horizontal subbundle. Note that for vector fields &,n €
X(M) and their horizontal lifts C¢,Cn € X(E) we have R(CE, Cn) = [CE, Cn) —
C([& )

Since the vertical bundle V F is integrable, by 8.14 we have the Bianchi iden-
tity [®, R] = 0.
9.5. Pullback. Let (E,p, M,S) be a fiber bundle and consider a smooth map-
ping f: N — M. Since p is a submersion, f and p are transversal in the sense
of 2.18 and thus the pullback N X as ) E exists. It will be called the pullback
of the fiber bundle E by f and we will denote it by f*E. The following diagram
sets up some further notation for it:

FE p*f >
f *pJ JP
/

N —— M.

Proposition. In the situation above we have:

(1) (f*E, f*p,N,S) is again a fiber bundle, and p*f is a fiber wise diffeo-
morphism.

(2) If ® € QY(E;TE) is a connection on the bundle E, then the vector valued
form f*®, given by (f*®),(X) := T, (p*f)~1.®.T,(p* f).X for X € T,E,
is a connection on the bundle f*E. The forms f*® and ® are p* f-related
in the sense of 8.15.

(3) The curvatures of f*® and ® are also p* f-related.
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Proof. (1) If (Uy, %) is a fiber bundle atlas of (E,p, M,S) in the sense of
9.1, then (f~Y(Uy),(f*p,pra o s o p*f)) is visibly a fiber bundle atlas for
(f*E, f*p,N,S), by the formal universal properties of a pullback 2.19. (2) is
obvious. (3) follows from (2) and 8.15.7. O

9.6. Let us suppose that a connection ® on the bundle (E,p, M,S) has zero
curvature. Then by 9.4 the horizontal bundle is integrable and gives rise to the
horizontal foliation by 3.25.2. Each point u € E lies on a unique leaf L(u) such
that T, L(u) = H,E for each v € L(u). The restriction p | L(u) is locally a
diffeomorphism, but in general it is neither surjective nor is it a covering onto
its image. This is seen by devising suitable horizontal foliations on the trivial
bundle pry : R x St — St

9.7. Local description. Let ® be a connection on (F,p, M, S). Let us fix a
fiber bundle atlas (U, ) with transition functions (1,3), and let us consider the
connection ((10,)~1)*® € QY(U, x S;U, x TS), which may be written in the
form

((%)’1)*@)(51,777,) = —I'“(&,y) +n, for & € T, U, and n, € T},S,

since it reproduces vertical vectors. The I'* are given by

(017 Fa(&za y)) = _T("/}a)-q)'T("/Ja)_l'(fm 0y)~

We consider I'* as an element of the space Q' (U,; X(9)), a 1-form on U with
values in the infinite dimensional Lie algebra X(.S) of all vector fields on the
standard fiber. The I'* are called the Christoffel forms of the connection ® with
respect to the bundle atlas (Uy, ¥4 ).

Lemma. The transformation law for the Christoffel forms is

Ty(waﬂ(xv ))-Fﬁ(frvy):Fa(gzﬂ/’aﬁ(%y))*Tz(ﬂ’aﬂ( ,y))ﬁz

The curvature R of ® satisfies
(Y3 1) R =dl'* + [0, T x(s).

Here dI'® is the exterior derivative of the 1-form T'* € QY(U,;X(9)) with
values in the complete locally convex space X(S). We will later also use the
Lie derivative of it and the usual formulas apply: consult [Frolicher, Kriegl, 88|
for calculus in infinite dimensional spaces. By [I'“,I'*|y(s) we just mean the
2-form (&,n) = [['*(£),T'*(n)]x(s). See 11.2 for the more sophisticated notation
1[0, 1], for this.

The formula for the curvature is the Maurer-Cartan formula which in this
general setting appears only in the level of local description.

Proof. From (1q o (¥p)~")(x,y) = (x,%ap(z,y)) we get that
T (thq 0 (Qpﬂ)_l)'(fmny) = (& T(wﬁy)(waﬁ)'(fwny)) and thus:

T(15")-(02, 7 (&) = —®(T(15 ") (£x,0y)) =
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= —®(T(y").T(ha 0tb5").(62,0y)) =
=~ (T3 ") (Eas Tiay) (ap) (Ex, 0y))) =
= = (T3 ) (Ees Oy () — (T (V5 ) (0 Tz )Y (€5 0y))) =
=T (1) (00, T (&as Pap(2,9)) = T(00 ) (0n, Te(ap( ,v))-Ex)-

This implies the transformation law.
For the curvature R of ® we have by 9.4 and 9.5.3

(W) R((E Y, (€%,1%) =

= (o ) @ [Id (v, )@)€, '), (Id —(v ) @) (€%, 7°)] =

= (P 1) @[(E",T(EY), (€2, T(e?))] =

(%1) ([€',€71,6'T(&?) — 2T (eh) + [T(€1), T(&)]) =
To([eh,€%)) + €'T(€?) — 2T (€h) + [T (€1), T (%)) =

= dr (¢! 75 )+ [0(€), T ()] x(s). O

9.8. Theorem (Parallel transport). Let ® be a connection on a bundle
(E,p,M,S) and let ¢ : (a,b) — M be a smooth curve with 0 € (a,b), ¢(0) = x.
Then there is a neighborhood U of E, x {0} in E, X (a,b) and a smooth
mapping Pt. : U — E such that:
(1) p(Pt(c, ug, t)) = c(t) if defined, and Pt(c, uy,0) = uy.
(2) ®(4 Pt(c,uy,t)) = 0 if defined.
(3) Reparametrisation invariance: If f : (a/,b') — (a,b) is smooth with
0 € (a',V"), then Pt(c, uy, f(t)) = Pt(co f,Pt(c, us, f(0)),t) if defined.
(4) U is maximal for properties (1) and (2).
(5) If the curve ¢ depends smoothly on further parameters then Pt(c, us,t)
depends also smoothly on those parameters.

First proof. In local bundle coordinates @(% Pt(c,usz,t)) = 0 is an ordinary
differential equation of first order, nonlinear, with initial condition Pt(c, u,,0) =
uz. So there is a maximally defined local solution curve which is unique. All
further properties are consequences of uniqueness.

Second proof. Consider the pullback bundle (¢*E, ¢*p, (a,b), S) and the pullback
connection ¢*® on it. It has zero curvature, since the horizontal bundle is 1-
dimensional. By 9.6 the horizontal foliation exists and the parallel transport just
follows a leaf and we may map it back to F, in detail: Pt(c,u,,t) = p*e((c*p |
L(uz)) =" (2)).

Third proof. Consider a fiber bundle atlas (Uy, %) as in 9.7. Then we have
Ya(Pte, 95 (2, 9),)) = (c(t),7(y, ), where

0= ((Wa')®) (gGe), £y 1) = =T (Fe(), (v, 1) + (v, t),

so v(y, t) is the integral curve (evolution line) through y € S of the time depen-
dent vector field I'* (%c(t)) on S. This vector field visibly depends smoothly

on c¢. Clearly local solutions exist and all properties follow. For (5) we refer to
[Michor, 83]. O
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9.9. A connection ® on (E,p, M, S) is called a complete connection, if the par-
allel transport Pt along any smooth curve ¢ : (a,b) — M is defined on the whole
of Ecy x (a,b). The third proof of theorem 9.8 shows that on a fiber bundle
with compact standard fiber any connection is complete.

The following is a sufficient condition for a connection ® to be complete:

There exists a fiber bundle atlas (Uy, 1, ) and complete Riemannian met-
rics g, on the standard fiber S such that each Christoffel form I'* €
OY(U,,X(9)) takes values in the linear subspace of g,-bounded vector
fields on S.

For in the third proof of theorem 9.8 above the time dependent vector field
I*(4¢(t)) on S is go-bounded for compact time intervals. So by continuation
the solution exists over ¢~ (U, ), and thus globally.

A complete connection is called an Ehresmann connection in [Greub, Halperin,
Vanstone I, 72, p. 314], where it is also indicated how to prove the following
result.

Theorem. Fach fiber bundle admits complete connections.

Proof. Let dimM = m. Let (Uy,%s) be a fiber bundle atlas as in 9.1. By
topological dimension theory [Nagata, 65] the open cover (U,) of M admits a
refinement such that any m + 2 members have empty intersection, see also 1.1.
Let (U,) itself have this property. Choose a smooth partition of unity (fs)
subordinated to (Uy). Then the sets V,, 1= {x : fo(x) > %H } C U, form still
an open cover of M since Y fo(x) = 1 and at most m + 1 of the f,(x) can be
nonzero. By renaming assume that each V,, is connected. Then we choose an
open cover (W,,) of M such that W, C V.

Now let g1 and go be complete Riemannian metrics on M and S, respectively
(see [Nomizu - Ozeki, 61] or [Morrow, 70]). For not connected Riemannian
manifolds complete means that each connected component is complete. Then
91|Uqs X g2 is a Riemannian metric on U, x S and we consider the metric g :=
> fati(g1|1Uq X g2) on E. Obviously p : E — M is a Riemannian submersion
for the metrics g and ¢g;. We choose now the connection ® : TE — VE as the
orthonormal projection with respect to the Riemannian metric g.

Claim. ® is a complete connection on E.

Let ¢ : [0,1] — M be a smooth curve. We choose a partition 0 = ty <
t; < .-+ <ty = 1 such that ¢([t;,t;11]) C Vg, for suitable «;. It suffices to
show that Pt(c(ti+ ), ucqu,),t) exists for all 0 < ¢t < ;41 —t; and all ue,),
for all ¢+ — then we may piece them together. So we may assume that ¢ :
[0,1] — V,, for some . Let us now assume that for some (z,y) € V, x S
the parallel transport Pt(c, ¥, (z,y),t) is defined only for ¢t € [0,t') for some
0 < t' < 1. By the third proof of 9.8 we have Pt(c, Vo (z,y),t) = ¥ (c(t),v(t)),
where v : [0,#) — S is the maximally defined integral curve through y € S

of the time dependent vector field I'*(£c(t), ) on S. We put go := (¥3')*g,

then (ga)(a:,y) = (gl)a: X (Z,@ f,@(x)wﬁa(xa )*92)y~ Since pry : (Va xS, ga) -
(Vi, 91|V4) is a Riemannian submersion and since the connection (1, 1)*® is also
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given by orthonormal projection onto the vertical bundle, we get

t/
o0 > gi-lengthf (c) = ga-length(c,v) = / I(/(£), Lr(1))]g., dt =
0

= | I OR, + Sl Wap(c(0). =) a) (0 dr () de >

t’ 1 t’
> [ V) 0l > <= [ 1t

So go-lenght() is finite and since the Riemannian metric g on S is complete,
lim;_,y y(t) =: y(t') exists in S and the integral curve 4 can be continued. O

9.10. Holonomy groups and Lie algebras. Let (F,p, M,S) be a fiber bun-
dle with a complete connection ®, and let us assume that M is connected. We
choose a fixed base point o € M and we identify E,, with the standard fiber S.
For each closed piecewise smooth curve ¢ : [0,1] — M through xo the parallel
transport Pt(c, ,1) =: Pt(¢,1) (pieced together over the smooth parts of ¢)
is a diffeomorphism of S. All these diffeomorphisms form together the group
Hol(®, zg), the holonomy group of ® at xg, a subgroup of the diffeomorphism
group Diff(S). If we consider only those piecewise smooth curves which are ho-
motopic to zero, we get a subgroup Holg(®, ), called the restricted holonomy
group of the connection ® at zg.

Now let C' : TM xj; E — TFE be the horizontal lifting as in 9.3, and let R
be the curvature (9.4) of the connection ®. For any z € M and X, € T, M
the horizontal lift C(X,) := C(X,, ): E, — TFE is a vector field along F,.
For X, and Y, € T,M we consider R(CX,,CY,) € X(E,). Now we choose
any piecewise smooth curve ¢ from xy to = and consider the diffeomorphism
Pt(c,t) : S = E,, — E, and the pullback Pt(c, 1)*R(CX,,CY,) € X(S5). Let
us denote by hol(®, z() the closed linear subspace, generated by all these vector
fields (for all x € M, X, Y, € T,,M and curves ¢ from zg to z) in X(S) with
respect to the compact C*°-topology (see [Hirsch, 76]), and let us call it the
holonomy Lie algebra of ® at xg.

Lemma. hol(®,x) is a Lie subalgebra of X(S5).

Proof. For X € ¥(M) we consider the local flow FIC® of the horizontal lift of
X. It restricts to parallel transport along any of the flow lines of X in M. Then
for vector fields X, Y, U,V on M the expression

Lo (FIS)*(FI7)* (FIC5) " (FIS?)* R(CU, OV) | By,
= (FIS%)*[CY, (FICX)(FISZ)* R(CU, CV)]| By,
= [(FIS%)*CY, (FISZ)* R(CU, CV)]| By,

is in hol(®, ), since it is closed in the compact C*°-topology and the derivative
can be written as a limit. Thus

[(FI9%)*[CY1, CYa), (FISZ)* R(CU, CV)]| By, € hol(®, 2)
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by the Jacobi identity and
[(FISX)*C[Y1, Ya], (FIS?)*R(CU,CV)]|Ey, € hol(®, z),
so also their difference
[(FIT)* R(CY:, CY2), (FI?) " R(CU, CV)| |y,

is in hol(®,z¢). O

9.11. The following theorem is a generalization of the theorem of Ambrose
and Singer on principal connections. The reader who does not know principal
connections is advised to read parts of sections 10 and 11 first. We include this
result here in order not to disturb the development in section 11 later.

Theorem. Let ® be a complete connection on the fibre bundle (E,p, M, S) and
let M be connected. Suppose that for some (hence any) xg € M the holonomy
Lie algebra hol(®, x¢) is finite dimensional and consists of complete vector fields
on the fiber E,,

Then there is a principal bundle (P, p, M, G) with finite dimensional structure
group G, an irreducible connection w on it and a smooth action of G on S such
that the Lie algebra g of G equals the holonomy Lie algebra hol(®, xq), the fibre
bundle E is isomorphic to the associated bundle P[S], and ® is the connection
induced by w. The structure group G equals the holonomy group Hol(®,z). P
and w are unique up to isomorphism.

By a theorem of [Palais, 57] a finite dimensional Lie subalgebra of X(FE,,)
like hol(®, ) consists of complete vector fields if and only if it is generated by
complete vector fields as a Lie algebra.

Proof. Let us again identify F,, and S. Then g := hol(®, z) is a finite dimen-
sional Lie subalgebra of X(S), and since each vector field in it is complete, there
is a finite dimensional connected Lie group Gy of diffeomorphisms of S with Lie
algebra g, see [Palais, 57].

Claim 1. Gy contains Holy(®, z(), the restricted holonomy group.

Let f € Holg(®,x0), then f = Pt(c, 1) for a piecewise smooth closed curve ¢
through xg, which is nullhomotopic. Since the parallel transport is essentially
invariant under reparametrisation, 9.8, we can replace ¢ by c o g, where g is
smooth and flat at each corner of ¢. So we may assume that c itself is smooth.
Since ¢ is homotopic to zero, by approximation we may assume that there is a
smooth homotopy H : R? — M with H;|[0,1] = ¢ and Ho|[0,1] = xo. Then
fr :=Pt(Hy, 1) is a curve in Holg(®, z¢) which is smooth as a mapping Rx S — S.
The rest of the proof of claim 1 will follow.

Claim 2. (L f)o f; " =:Z, isin g for all t.
To prove claim 2 we consider the pullback bundle H* E — R? with the induced
connection H*®. It is sufficient to prove claim 2 there. Let X = d% and Y = %
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be the constant vector fields on R2, so [X,Y] = 0. Then Pt(c, s) = FI* |S and
so on. We put

frs = FIF o F19Y o FISX 0 FIFY 1 § — S,
so fe1 = fi. Then we have in the vector space X(.5)

(i fes) 0 fid = =(FITT)"CY + (FITH) (FIFY) " (FICE)*CY,
(o sid = [ & (o st as
:/01( (FISX)*[CX, CY] + (FISX)*[OX, (FICY )*(FICX ) Oy
—(FI9%)*(FICY ) (FI°X)*[OX, CY]) ds.
Since [X,Y] = 0 we have [CX,CY] = ®[CX,CY] = R(CX,CY) and
(FIFX) 0y = C (FF)Y) + @ (FIF¥) CY)

_CY+/0t Lo(FIFY)*CY dt
=CY + /Ot B(FI)* [CX,CY] dt
=CY + /Ot O(FICN)*R(CX,CY) dt
=CY + /Ot(Flth)*R(CX, CY) dt.

The flows (F1¢ X,)* and its derivative at 0 Lox = [CX, ] do not lead out of
g, thus all parts of the integrand above are in g. So (%ft,l) o ftjll is in g for all
t and claim 2 follows.

Now claim 1 can be shown as follows. There is a unique smooth curve g(t)
in G satisfying Te(pgt))Z: = Zi-g(t) = g(t) and g(0) = e; via the action of
Go on S the curve g(t) is a curve of diffeomorphisms on S, generated by the
time dependent vector field Z;, so g(t) = f; and f = f1 is in Gy. So we get
HOlo((I),lL'()) g Go.

Claim 3. Holy(®, zp) equals Gy.

In the proof of claim 1 we have seen that Holg(®, o) is a smoothly arcwise
connected subgroup of Gy, so it is a connected Lie subgroup by the results cited

5.6. It suffices thus to show that the Lie algebra g of G is contained in the
Lie algebra of Holy(®, x¢), and for that it is enough to show, that for each ¢ in a
linearly spanning subset of g there is a smooth mapping f : [-1,1] x S — S such
that the associated curve f lies in Holy(®, o) with f/(0) = 0 and f”(0) = €.

By definition we may assume § = Pt(c, 1)*R(CX,,CYy) for X,, Y, € T, M
and a smooth curve ¢ in M from xy to . We extend X, and Y, to vector fields
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X and Y € X(M) with [X,Y] = 0 near . We may also suppose that Z € X(M)
is a vector field which extends ¢/(t) along ¢(t): if ¢ is simple we approximate it
by an embedding and can consequently extend ¢/(¢) to such a vector field. If ¢
is not simple we do this for each simple piece of ¢ and have then several vector
fields Z instead of one below. So we have

¢ = (FIY?)*R(CX,CY) = (FI{?)*[CX,CY] since [X,Y](z) =0
= (FISZ)* L &1, _((FICY o FIZY o FICY o FIZY) by 3.16
2o (FIZZ o FIZ) o FIZF o FITY o FITX o FITZ),

where the parallel transport in the last equation first follows ¢ from x( to x, then
follows a small closed parallelogram near  in M (since [X,Y] = 0 near x) and
then follows ¢ back to xg. This curve is clearly nullhomotopic.

Step 4. Now we make Hol(®,z() into a Lie group which we call G, by taking
Holp(®, x9) = G as its connected component of the identity. Then the quotient
group Hol(®, z()/ Holg(®, zg) is countable, since the fundamental group 7 (M)
is countable (by Morse theory M is homotopy equivalent to a countable CW-
complex).

Step 5. Construction of a cocycle of transition functions with values in G. Let
(Uasue @ Uy — R™) be a locally finite smooth atlas for M such that each
Uy : Uy — R™) is surjective. Put z, := u_'(0) and choose smooth curves ¢, :
[0,1] = M with ¢, (0) = z¢ and ¢4 (1) = x,. For each x € U, let ¢Z : [0,1] — M
be the smooth curve ¢t — u_!(t.uq(z)), then ¢ connects z, and x and the
mapping (z,t) — ¢Z(t) is smooth U, x [0,1] — M. Now we define a fibre bundle
atlas (Un, Yo @ E|Uy — Uq x S) by ¥ 1 (2, 5) = Pt(c%, 1) Pt(ca, 1) s. Then 1, is
smooth since Pt(cZ, 1) = FIZ*= for a local vector field X, depending smoothly
on z. Let us investigate the transition functions.

wawﬁ_l(x, s) = (a:, Pt(cq, 1) Pt(c®,1)7! Pt(cj, 1) Pt(cg, 1) s)

= (2, Pt(cp.ch.(ch) " (ca) " 4) 5)
=: (z,¢¥ap(x)s), where 135 : Uyg — G.

Clearly 934 : Ugq x S — S is smooth which implies that g, : Ugey — G is
also smooth. (t,3) is a cocycle of transition functions and we use it to glue
a principal bundle with structure group G over M which we call (P, p, M, Q).
From its construction it is clear that the associated bundle P[S] = P xS equals
(E,p,M,S).

Step 6. Lifting the connection ® to P.

For this we have to compute the Christoffel symbols of & with respect to the
atlas of step 5. To do this directly is quite difficult since we have to differentiate
the parallel transport with respect to the curve. Fortunately there is another
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way. Let ¢:[0,1] — U, be a smooth curve. Then we have

Yo (Pt(C, t)¢;1<c(0)7 S)) =
- (c(t), Pt((ca)~ L, 1) PH((c2©) 1, 1) Pt(e, £) Pt(c2®, 1) Pt(ca, 1)3)
= (c(t),7(t)-s),

where 7(t) is a smooth curve in the holonomy group G. Let I'* € QY (U,, X(S))
be the Christoffel symbol of the connection ® with respect to the chart (Uy, ¥s ).
From the third proof of theorem 9.8 we have

o (Pt(e, )15 (c(0), 5)) = (e(t), 7(t, 9)),

where (¢, s) is the integral curve through s of the time dependent vector field
I*(4c(t)) on S. But then we get

s)) = Gt,s) = F(1(t).5) = (F(8))-s,
T (get) = (1) o)™ € g

So I'* takes values in the Lie sub algebra of fundamental vector fields for the
action of G on S. By theorem 11.9 below the connection ® is thus induced by a
principal connection w on P. Since by 11.8 the principal connection w has the
‘same’ holonomy group as ® and since this is also the structure group of P, the
principal connection w is irreducible, see 11.7. [

10. Principal fiber bundles and G-bundles

10.1. Definition. Let G be a Lie group and let (E,p, M, S) be a fiber bundle
as in 9.1. A G-bundle structure on the fiber bundle consists of the following
data:

(1) A left action £: G x S — S of the Lie group on the standard fiber.

(2) A fiber bundle atlas (Uy,9q) whose transition functions (¢ag) act on S
via the G-action: There is a family of smooth mappings (¢as : Usg — G)
which satisfies the cocycle condition pag()@sy () = pay(x) for = €
Uapy and @aq(x) = e, the unit in the group, such that ¢.s(z,s) =
U(pap(x),s) = Pap(z).s.

A fiber bundle with a G-bundle structure is called a G-bundle. A fiber bundle
atlas as in (2) is called a G-atlas and the family (¢.g) is also called a cocycle of
transition functions, but now for the G-bundle. G is called the structure group
of the bundle.

To be more precise, two G-atlases are said to be equivalent (to describe the
same G-bundle), if their union is also a G-atlas. This translates as follows to
the two cocycles of transition functions, where we assume that the two coverings
of M are the same (by passing to the common refinement, if necessary): (¢as)
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and (i, 5) are called cohomologous if there is a family (7, : Uy — G) such that
Yap(z) = Ta(:zz)*l.gogﬂ(a:).m(x) holds for all x € U,g, compare with 6.4.

In (2) one should specify only an equivalence class of G-bundle structures
or only a cohomology class of cocycles of G-valued transition functions. The
proof of 6.4 now shows that from any open cover (U,) of M, some cocycle of
transition functions (pas : Usg — @) for it, and a left G-action on a manifold
S, we may construct a G-bundle, which depends only on the cohomology class
of the cocycle. By some abuse of notation we write (F,p, M,S,G) for a fiber
bundle with specified G-bundle structure.

Examples. The tangent bundle of a manifold M is a fiber bundle with structure
group GL(m). More general a vector bundle (E,p, M,V) as in 6.1 is a fiber
bundle with standard fiber the vector space V' and with GL(V')-structure.

10.2. Definition. A principal (fiber) bundle (P,p, M,G) is a G-bundle with
typical fiber a Lie group G, where the left action of G on G is just the left
translation.

So by 10.1 we are given a bundle atlas (Uy,¢n : PlUs — U, x G) such
that we have Lpagpgl(a:, a) = (z, pap(x).a) for the cocycle of transition functions
(pap : Uap — G). This is now called a principal bundle atlas. Clearly the
principal bundle is uniquely specified by the cohomology class of its cocycle of
transition functions.

Each principal bundle admits a unique right action r : P x G — P, called the
principal Tight action, given by ¢, (r(¢5 (z,a),g)) = (x,ag). Since left and right
translation on G commute, this is well defined. As in 5.10 we write r(u, g) = u.g
when the meaning is clear. The principal right action is visibly free and for any
uy € P, the partial mapping r,, = r(uz, ):G — P, is a diffeomorphism onto
the fiber through u,, whose inverse is denoted by 7,, : P, — G. These inverses
together give a smooth mapping 7 : P X3y P — G, whose local expression is
(o7 (x,a), 5 (2,b)) = a~1.b. This mapping is also uniquely determined by
the implicit equation r(ug, 7(uyz,v:)) = v, thus we also have 7(u,.g,ul.g") =
g L7 (ug,ul).g" and 7(ug, ug) = e.

When considering principal bundles the reader should think of frame bundles
as the foremost examples for this book. They will be treated in 10.11 below.

10.3. Lemma. Letp: P — M be a surjective submersion (a fibered manifold),
and let G be a Lie group which acts freely on P from the right such that the
orbits of the action are exactly the fibers p~1(x) of p. Then (P,p, M,G) is a
principal fiber bundle.

If the action is a left one we may turn it into a right one by using the group
inversion if necessary.

Proof. Let s, : U, — P belocal sections (right inverses) for p : P — M such that
(U,) is an open cover of M. Let ¢! : U, x G — P|U, be given by ¢_1(r,a) =
Sq(x).a, which is obviously injective with invertible tangent mapping, so its
inverse @, : P|U, — U, x G is a fiber respecting diffeomorphism. So (U,, ¥4 )
is already a fiber bundle atlas. Let 7 : P x3; P — G be given by the implicit
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equation r(ug, 7(ug,ul)) = ul, where r is the right G-action. 7 is smooth
by the implicit function theorem and clearly we have 7(ug,ul.g) = 7(ugz,u).g
and ¢q(uy) = (2, 7(sa(x),uy)). Thus we have goagogl(x,g) = pu(sp(x).g9) =
(x,7(sa(x),s58(2).9)) = (x,T(sa(x), s3(x)).g) and (Ua, @) is a principal bundle
atlas. O

10.4. Remarks. In the proof of lemma 10.3 we have seen, that a principal
bundle atlas of a principal fiber bundle (P, p, M, @) is already determined if we
specify a family of smooth sections of P, whose domains of definition cover the
base M.

Lemma 10.3 can serve as an equivalent definition for a principal bundle. But
this is true only if an implicit function theorem is available, so in topology
or in infinite dimensional differential geometry one should stick to our original
definition.

From the lemma itself it follows, that the pullback f* P over a smooth mapping
f: M’ — M is again a principal fiber bundle.

10.5. Homogeneous spaces. Let G be a Lie group with Lie algebra g. Let K
be a closed subgroup of G, then by theorem 5.5 K is a closed Lie subgroup whose
Lie algebra will be denoted by . By theorem 5.11 there is a unique structure
of a smooth manifold on the quotient space G/K such that the projection p :
G — G/K is a submersion, so by the implicit function theorem p admits local
sections.

Theorem. (G,p,G/K,K) is a principal fiber bundle.

Proof. The group multiplication of G restricts to a free right action p: Gx K —
G, whose orbits are exactly the fibers of p. By lemma 10.3 the result follows. [

For the convenience of the reader we discuss now the best known homogeneous
spaces.

The group SO(n) acts transitively on S"~! C R™. The isotropy group of the
‘north pole’ (1,0,...,0) is the subgroup

(o so¢-1)

which we identify with SO(n —1). So S"~! = SO(n)/SO(n — 1) and we have a
principal fiber bundle (SO(n),p, S"~1,S0(n — 1)). Likewise
(O(n)7pa Sn_la O(n - 1))a
(SU(n)7p7 S2n—17 SU(n - 1))7
(U(n),p,S*1,U(n —1)), and
(Sp(n),p, S*"=1 Sp(n — 1)) are principal fiber bundles.

The Grassmann manifold G(k,n;R) is the space of all k-planes containing 0
in R™. The group O(n) acts transitively on it and the isotropy group of the
k-plane R¥ x {0} is the subgroup

(8 own):
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therefore G(k,n;R) = O(n)/O(k) x O(n — k) is a compact manifold and we get
the principal fiber bundle (O(n), p, G(k,n;R),O(k) x O(n — k)). Likewise
(SO(n), p, G(k,n;R), SO(k) x SO(n — k)),

(U(n),p, G(ka n; (C)a U(k) X U(Tl - k))a and

(Sp(n),p, G(k,n; H), Sp(k) x Sp(n — k)) are principal fiber bundles.

The Stiefel manifold V(k,n;R) is the space of all orthonormal k-frames in
R™. Clearly the group O(n) acts transitively on V(k,n;R) and the isotropy
subgroup of (e1,...,ex) is Iy x O(n — k), so V(k,n;R) = O(n)/O(n — k) is a
compact manifold and (O(n),p, V(k,n;R),O(n —k)) is a principal fiber bundle.
But O(k) also acts from the right on V(k,n;R), its orbits are exactly the fibers
of the projection p : V(k,n;R) — G(k,n;R). So by lemma 10.3 we get a prin-
cipal fiber bundle (V(k,n,R),p, G(k,n;R),O(k)). Indeed we have the following
diagram where all arrows are projections of principal fiber bundles, and where
the respective structure groups are written on the arrows:

om) —20 =8y )
(a) O(k)J JO(k)
Vin—knR) G(k,n;R)

O(n —k)

It is easy to see that V(k,n) is also diffeomorphic to the space { A € L(R¥ R") :
At A =T}, i.e. the space of all linear isometries R* — R™. There are further-
more complex and quaternionic versions of the Stiefel manifolds.

Further examples will be given by means of jets in section 12.

10.6. Homomorphisms. Let x : (P,p, M,G) — (P',p’, M',G) be a principal
fiber bundle homomorphism, i.e. a smooth G-equivariant mapping x : P — P’.
Then obviously the diagram

X

P—=— P

(a) PJ Jp’

M — M’
commutes for a uniquely determined smooth mapping x : M — M'. For each

x € M the mapping x, := x|P: : Pr — P)I((.T) is G-equivariant and therefore a

diffeomorphism, so diagram (a) is a pullback diagram. We denote by PB(G) the
category of principal G-bundles and their homomorphisms.

But the most general notion of a homomorphism of principal bundles is the
following. Let ® : G — G’ be a homomorphism of Lie groups. x : (P,p, M,G) —
(P',p', M' @) is called a homomorphism over ® of principal bundles, if x : P —
P’ is smooth and y(u.g) = x(u).®(g) holds for all u € P and g € G. Then x is
fiber respecting, so diagram (a) makes again sense, but it is no longer a pullback
diagram in general. Thus we obtain the category PB of principal bundles and
their homomorphisms.
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If x covers the identity on the base, it is called a reduction of the structure
group G’ to G for the principal bundle (P’,p’, M’,G’) — the name comes from
the case, when @ is the embedding of a subgroup.

By the universal property of the pullback any general homomorphism y of
principal fiber bundles over a group homomorphism can be written as the com-
position of a reduction of structure groups and a pullback homomorphism as
follows, where we also indicate the structure groups:

(P,G) —— (X*P/7 G)—(P',G"

) K J iy

M # M.
10.7. Associated bundles. Let (P,p, M,G) be a principal bundle and let
£:G xS — S be a left action of the structure group G on a manifold S. We
consider the right action R : (P x S) x G — P x S, given by R((u,s),g) =
(u.g,97".5).
Theorem. In this situation we have:

(1) The space P x¢ S of orbits of the action R carries a unique smooth
manifold structure such that the quotient map q: P xS — P xg S is a
submersion.

(2) (PxgS,p,M,S,G) is a G-bundle in a canonical way, wherep : PxgS —
M is given by

PXSLPXGS

(a) me pJ

PLM.

In this diagram q, : {u} xS — (P xgS)p) is a diffeomorphism for each
uc P.
(3) (PxS,q,P x¢S,G) is a principal fiber bundle with principal action R.
(4) If (Uy, 90 : PlUy — U, x G) is a principal bundle atlas with cocycle
of transition functions (pag : Uag — @), then together with the left
action ¢ : G x S — S this cocycle is also one for the G-bundle (P x¢
S,p, M, S,G).

Notation. (P x¢ S,p, M, S,G) is called the associated bundle for the action
¢:GxS — S. We will also denote it by P[S,¢] or simply P[S] and we will
write p for p if no confusion is possible. We also define the smooth mapping
75 =71 Pxp PS, 0] = S by 7(us,ve) == g (vg). It satisfies 7(u, q(u, s)) = s,
q(ug, T(Ug, v2)) = vz, and 7(ug.g,v2) = g~ 1.7 (ug, v,). In the special situation,
where S = G and the action is left translation, so that P[G] = P, this mapping
coincides with 7 = 7¢ considered in 10.2. We denote by {u,s} € P xg S the
G-orbit through (u,s) € P x S.
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Proof. In the setting of the diagram in (2) the mapping p o prq is constant on
the R-orbits, so p exists as a mapping. Let (Uy, @0 : P|lUy — Uy X G) be a
principal bundle atlas with transition functions (¢as : Uss — G). We define
Yyl iU xS — pHUs) C PxgSby vz, s) =q(p,!(z,e),s), which is fiber
respecting. For each orbit in p~!(z) C P x¢g S there is exactly one s € S such
that this orbit passes through (¢;(x,€),s), namely s = 7% (ug, (7, €))7 1.8
if (ug,s') is the orbit, since the principal right action is free. Thus ¢, (z, ):
S — p~1(x) is bijective. Furthermore

U5 (2,5) = qleg (x,€), 5)

q
1(pa (7, 0ap(w).€), 5) = a(05" (2, €)-Pap(x), 5)
q =

(@;1(x7€)790a5(x)'8) gl(mvwaﬁ(x)'8)7

SO wawgl(x,s) = (2, pap(x).s) So (Ua,a) is a G-atlas for P x¢ S and makes
it into a smooth manifold and a G-bundle. The defining equation for v, shows
that ¢ is smooth and a submersion and consequently the smooth structure on
P X S is uniquely defined, and p is smooth by the universal properties of a
submersion.

By the definition of 3, the diagram

p‘l(Ua)xS%‘—XI(i>Ua><G><S

(b) qJ JId </
— wa

P (Uy) ————— Uy x S

commutes; since its lines are diffeomorphisms we conclude that ¢, : {u} x S —
p1(p(u)) is a diffeomorphism. So (1), (2), and (4) are checked.
(3) follows directly from lemma 10.3. O

10.8. Corollary. Let (E,p, M, S,G) be a G-bundle, specified by a cocycle of
transition functions (¢.g) with values in G and a left action ¢ of G on S. Then
from the cocycle of transition functions we may glue a unique principal bundle

(P,p, M, Q) such that E = P[S,¢]. O

This is the usual way a differential geometer thinks of an associated bundle.
He is given a bundle E, a principal bundle P, and the G-bundle structure then
is described with the help of the mappings 7 and q. We remark that in standard
differential geometric situations, the elements of the principal fiber bundle P play
the role of certain frames for the individual fibers of each associated fiber bundle
E = PI[S,{]. Every frame u € P, is interpreted as the above diffeomorphism
Gqu:S — E,.

10.9. Equivariant mappings and associated bundles.

1. Let (P,p, M,G) be a principal fiber bundle and consider two left actions
of G,/ :GxS — Sand V' : Gx S — S Let furthermore f : S — S’ be
a G-equivariant smooth mapping, so f(g.s) = g.f(s) or fol, = {{ o f. Then
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Idp xf : Px S — P xS’ is equivariant for the actions R: (Px S)xG — P x S
and R’ : (PxS’")xG — P xS and is thus a homomorphism of principal bundles,
so there is an induced mapping

PxS ld xf PxS

[

PxGSM»PxGS',

—
&
Ny

which is fiber respecting over M, and a homomorphism of G-bundles in the sense
of the definition 10.10 below.

2. Let x : (P,p, M,G) — (P',p', M’', G) be a homomorphism of principal fiber
bundles as in 10.6. Furthermore we consider a smooth left action £ : G x .S — S.
Then x xIdg : P x S — P’ x S is G-equivariant (a homomorphism of principal
fiber bundles) and induces a mapping x X gIdg : Px5S — P’/ xS, which is fiber
respecting over M, fiber wise a diffeomorphism, and again a homomorphism of
G-bundles in the sense of definition 10.10 below.

3. Now we consider the situation of 1 and 2 at the same time. We have two
associated bundles P[S, ] and P'[S’,¢']. Let x : (P,p, M,G) — (P',p’, M',G) be
a homomorphism principal fiber bundles and let f : S — S’ be an G-equivariant
mapping. Then x X f: P x S — P’ x 8 is clearly G-equivariant and therefore
induces a mapping x X¢ f : P[S,¢] — P'[S’,¢'] which again is a homomorphism
of G-bundles.

4. Let S be a point. Then P[S] = P x¢ S = M. Furthermore let y € S’ be
a fixed point of the action ¢’ : G x " — S’ then the inclusion i : {y} — S’ is
G-equivariant, thus Idp xi induces the mapping Idp xgi : M = P[{y}] — P[5],
which is a global section of the associated bundle P[S’].

If the action of G on S is trivial, so g.s = s for all s € S, then the associ-
ated bundle is trivial: P[S] = M x S. For a trivial principal fiber bundle any
associated bundle is trivial.

10.10. Definition. In the situation of 10.9, a smooth fiber respecting mapping
v : P[S, 0] — P'[S', V'] covering a smooth mapping v : M — M’ of the bases is
called a homomorphism of G-bundles, if the following conditions are satisfied:
P is isomorphic to the pullback ~*P’, and the local representations of 7 in
pullback-related fiber bundle atlases belonging to the two G-bundles are fiber
wise G-equivariant.

Let us describe this in more detail now. Let (U, .,) be a G-atlas for P'[S’, (']
with cocycle of transition functions (7, 5), belonging to the principal fiber bundle
atlas (UL, ¢!) of (P',p’, M’, G). Then the pullback-related principal fiber bundle
atlas (Uy = vy~ H(UL), pqo) for P = 4*P" as described in the proof of 9.5 has the
cocycle of transition functions (pas = ¢,,5 ©7); it induces the G-atlas (Ua, %a)
for P[S,¢]. Then (¢!, oyoy ) (z,s) = (y(x),Valx,s)) and vo(z, ): S — 5
is required to be G-equivariant for all o and all z € U,.
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Lemma. Let v : P[S,{] — P'[S’,{'] be a homomorphism of G-bundles as de-
fined above. Then there is a homomorphism x : (P,p, M,G) — (P',p', M', Q)
of principal bundles and a G-equivariant mapping f : S — S’ such that v =
X X f: P[S, ] — P'[S", ¢].

Proof. The homomorphism x : (P,p, M,G) — (P’,p', M',G) of principal fiber
bundles is already determined by the requirement that P = v*P’, and we have
v = x. The G-equivariant mapping f : S — S’ can be read off the following
diagram which by the assumptions is seen to be well defined in the right column:

P PlS| —T 5
(@) X vaJ ‘f

PIXM/P/[S/]T—>S/ (]

So a homomorphism of G-bundles is described by the whole triple (x : P —
P.f : S — 8 (G-equivariant),y : P[S] — P’[S]), such that diagram (a)
commutes.

10.11. Associated vector bundles. Let (P,p, M, G) be a principal fiber bun-
dle, and consider a representation p : G — GL(V) of G on a finite dimensional
vector space V. Then P[V, p| is an associated fiber bundle with structure group
G, but also with structure group GL(V'), for in the canonically associated fiber
bundle atlas the transition functions have also values in GL(V'). So by section 6
P[V, p] is a vector bundle.

Now let F be a covariant smooth functor from the category of finite dimen-
sional vector spaces and linear mappings into itself, as considered in section
6.7. Then clearly Fop : G — GL(V) — GL(F(V)) is another representa-
tion of G and the associated bundle P[F(V),F o p] coincides with the vector
bundle F(P[V,p]) constructed with the method of 6.7, but now it has an ex-
tra G-bundle structure. For contravariant functors F we have to consider the
representation F o p o v, similarly for bifunctors. In particular the bifunctor
L(V, W) may be applied to two different representations of two structure groups
of two principal bundles over the same base M to construct a vector bundle
L(PIV. ), P'[V",p')) = (P s P)[L(V, V"), L (pov) x o).

If (E,p, M) is a vector bundle with n-dimensional fibers we may consider
the open subset GL(R"™, E) C L(M x R™ E), a fiber bundle over the base M,
whose fiber over x € M is the space GL(R"™, E,) of all invertible linear map-
pings. Composition from the right by elements of GL(n) gives a free right
action on GL(R™, E) whose orbits are exactly the fibers, so by lemma 10.3 we
have a principal fiber bundle (GL(R", E),p, M, GL(n)). The associated bundle
GL(R"™, E)[R"] for the standard representation of GL(n) on R™ is isomorphic
to the vector bundle (E,p, M) we started with, for the evaluation mapping
ev: GL(R™ E) x R"® — E is invariant under the right action R of GL(n), and
locally in the image there are smooth sections to it, so it factors to a fiber linear
diffeomorphism GL(R™, E)[R"] = GL(R", E) Xgrn) R" — E. The principal
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bundle GL(R™, E) is called the linear frame bundle of E. Note that local sec-
tions of GL(R", E) are exactly the local frame fields of the vector bundle E as
discussed in 6.5.

To illustrate the notion of reduction of structure group, we consider now
a vector bundle (E,p, M,R™) equipped with a Riemannian metric g, that is
a section g € C°(S?E*) such that g, is a positive definite inner product on
E, for each x € M. Any vector bundle admits Riemannian metrics: local
existence is clear and we may glue with the help of a partition of unity on
M, since the positive definite sections form an open convex subset. Now let
s' = (sh,...,s)) € C*(GL(R",E)|U) be a local frame field of the bundle F
over U C M. Now we may apply the Gram-Schmidt orthonormalization pro-
cedure to the basis (s1(z),...,s,(x)) of E, for each x € U. Since this proce-
dure is smooth (even real analytic), we obtain a frame field s = (s1,...,8,)
of E over U which is orthonormal with respect to g. We call it an orthonor-
mal frame field. Now let (U,) be an open cover of M with orthonormal frame

fields s* = (s§,...,s%), where s* is defined on U,. We consider the vector
bundle charts (U,,%q : E|Uy — U, x R™) given by the orthonormal frame
fields: ¥ (x,0l, ... 0") = Y s%(x).0t = sY(z).w. For z € Uyp we have

s¢(x) = Zsf(w)g,gaf(:r) for C*°-functions gas? : Uss — R. Since s*(x) and
s7(z) are both orthonormal bases of E,, the matrix gos(z) = (gag? (x)) is an
element of O(n). We write s* = s.gs, for short. Then we have w;l(x,v) =
sP(x)v = $%(x).gap(r).v = Y5 (2, gap(x).v) and consequently z/)awgl(:v,v) =
(2, gap(x).v). So the (gas : Uap — O(n)) are the cocycle of transition functions
for the vector bundle atlas (Uq, %4 ). So we have constructed an O(n)-structure
on E. The corresponding principal fiber bundle will be denoted by O(R™, (E, g));
it is usually called the orthonormal frame bundle of E. It is derived from the
linear frame bundle GL(R", E) by reduction of the structure group from GL(n)
to O(n). The phenomenon discussed here plays a prominent role in the theory
of classifying spaces.

10.12. Sections of associated bundles. Let (P, p, M, G) be a principal fiber
bundle and ¢ : G x S — S a left action. Let C°°(P,S)“ denote the space
of all smooth mappings f : P — S which are G-equivariant in the sense that
f(u.g) = g~ t.f(u) holds for g € G and u € P.

Theorem. The sections of the associated bundle P[S,{] correspond exactly
to the G-equivariant mappings P — S; we have a bijection C*>(P,S)¢ =
C>(P[S)).

Proof. If f € C°°(P,S)¢ we get sy € C°°(P[S]) by the following diagram:
(Id, f)
P——>PxS

7

M2 plg]
which exists by 10.9 since graph(f) = (Id, f) : P — P x S is G-equivariant:
(Id, f)(u.g) = (u.g, f(u.g)) = (u.g,g~".f(uw)) = ((Id, f)(u)).g.
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If conversely s € C>°(P[S]) we define f, € C*(P,S)% by f, := ro(Idp xu8) :
P =P xy M — P xpy P[S] — S. This is G-equivariant since fs(ug.g) =
T(tg-g9,8(2)) = g7 7 (ug, 8(2)) = g7 1. fs(uz) by 10.7. The two constructions are
inverse to each other since we have fys)(u) = 7(u, s¢(p(uw))) = 7(u, q(u, f(u))) =
() and s o) (p(u)) = a(u, £3(w)) = @, 7(, 5(p(w))) = 5(p(a)). D

The G-mapping fs : P — S determined by a section s of P[S] will be called
the frame form of the section s.

10.13. Theorem. Consider a principal fiber bundle (P,p, M,G) and a closed
subgroup K of G. Then the reductions of structure group from G to K corre-
spond bijectively to the global sections of the associated bundle P[G/K,)\] in a
canonical way, where \ : G x G /K — G /K is the left action on the homogeneous
space from 5.11.

Proof. By theorem 10.12 the section s € C*°(P[G/K]) corresponds to fs €
C>(P,G/K)%, which is a surjective submersion since the action A : G x G/K —
G/K is transitive. Thus P, := f;1(€) is a submanifold of P which is stable under
the right action of K on P. Furthermore the K-orbits are exactly the fibers of
the mapping p : Py — M, so by lemma 10.3 we get a principal fiber bundle
(Ps,p, M, K). The embedding P; < P is then a reduction of structure groups
as required.

If conversely we have a principal fiber bundle (P’,p’, M, K) and a reduction of
structure groups x : P’ — P, then x is an embedding covering the identity of M
and is K-equivariant, so we may view P’ as a sub fiber bundle of P which is stable
under the right action of K. Now we consider the mapping 7 : P x3; P — G
from 10.2 and restrict it to P x; P’. Since we have 7(ug, vy.k) = 7(ugz, vg).k
for k € K this restriction induces f: P — G/K by

PxypP ——T @G

| i

P=PxuP/K—1q/K;

and from 7(us.g,v;) = g~ .7(uz,v,) it follows that f is G-equivariant as re-
quired. Finally f~*(e) = {u € P:7(u, Py ) € K} =P, so the two construc-
tions are inverse to each other. [J

10.14. The bundle of gauges. If (P,p, M,G) is a principal fiber bundle we
denote by Aut(P) the group of all G-equivariant diffeomorphisms x : P — P.
Then po x = x op for a unique diffeomorphism x of M, so there is a group
homomorphism from Aut(P) into the group Diff(M) of all diffeomorphisms of
M. The kernel of this homomorphism is called Gau(P), the group of gauge
transformations. So Gau(P) is the space of all x : P — P which satisfy poy = p
and x(u.g) = x(u).g.

Theorem. The group Gau(P) of gauge transformations is equal to the space
O (P, (@, conj)) = C*(P[G, conj]).
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Proof. We use again the mapping 7 : P Xy P — G from 10.2. For y €
Gau(P) we define f,, € C°(P, (G, conj)) by f, :=7o0 (Id,x). Then f,(u.g) =
7(u.g, x(u.g)) = g~ .7 (u, x(u)).g = conj,—1 fy(u), so fy is indeed G-equivariant.

If conversely f € C*(P,(G,conj))¢ is given, we define y; : P — P by
Xr(u) == u.f(u). It is easy to check that x; is indeed in Gau(P) and that the
two constructions are inverse to each other. [J

10.15. The tangent bundles of homogeneous spaces. Let G be a Lie
group and K a closed subgroup, with Lie algebras g and €, respectively. We
recall the mapping Adg : G — Autpie(g) from 4.24 and put Adg g = Adg | K :
K — Autri(g). For X € tand k € K we have Adg (k)X = Adg(k)X =
Adg (k)X € ¢ so tis an invariant subspace for the representation Adg g of K
in g, and we have the factor representation Ad* : K — GL(g/¢). Then

(a) 0—-t—g—g/t—0

is short exact and K-equivariant.
Now we consider the principal fiber bundle (G, p, G/K, K) and the associated
vector bundles G[g/¢, Ad*] and G[¢, Adg].

Theorem. In these circumstances we have

T(G/K) = Gla/t, Ad"] = (G xx 9/t,p, G/ K, g/t).
The left action g — T(\,) of G on T(G/K) corresponds to the canonical left
action of G on G x i g/t. Furthermore G[g/t, Ad]®Ge, Adg] is a trivial vector
bundle.

Proof. For p: G — G/K we consider the tangent mapping T.p : g — Te(G/K)
which is linear and surjective and induces a linear isomorphism T.p : g/t —
T:(G/K). For k € K we have poconj, = poA,0ops—1 = Ay op and consequently
TepoAdG,K(k) = T.poT,(conj,) = TeAyoT,.p. Thus the isomorphism T,p : g/t —
T:(G/K) is K-equivariant for the representations Ad- and Tu\ : k — ThAg.
Now we consider the associated vector bundle GI[T; (G/K) T\ = (G xx
T:(G/K),p,G/K,Ts(G/K)), which is isomorphic to G[g/t, Ad*], since the rep-
resentation spaces are isomorphic. The mapping Th\ : G x Te(G/K) — T(G/K)
(where Ty is the second partial tangent functor) is K-invariant and therefore
induces a mapping 1 as in the following diagram:

G xT:(G/K)

i \G/K

This mapping 1 is an isomorphism of vector bundles.

(b) G xx T:(G/K)



10. Principal fiber bundles and G-bundles 97

It remains to show the last assertion. The short exact sequence (a) induces a
sequence of vector bundles over G/K:

G/K x 0 — G[t, Adx] — Glg, Adg k] — Glg/t, Adt] — G/K x 0

This sequence splits fiberwise thus also locally over G/K, so G[g/t,Ad] @
Glt, Adk] = G[g, Adg k] and it remains to show that G[g, Adg, k] is a trivial vec-
tor bundle. Let ¢ : Gxg — G x g be given by ¢(g, X) = (g9, Adg(g)X). Then for
k € K we have p((g,X).k) = ¢(gk,Adg (k™) X) = (gk,Adg(g.k.k1)X) =
(gk,Adc(g)X). So ¢ is K-equivariant from the ‘joint’ K-action to the ‘on the
left’ K-action and therefore induces a mapping ¢ as in the diagram:

¥

Gxg Gxg
d |
(c) Gxkg L2 G/K x g

G/K
The map ¢ is a vector bundle isomorphism. O

10.16. Tangent bundles of Grassmann manifolds. From 10.5 we know
that (V(k,n) = O(n)/O(n — k),p,G(k,n),O(k)) is a principal fiber bundle.
Using the standard representation of O(k) we consider the associated vector
bundle (Ej, := V(k,n)[R¥],p, G(k,n)). Tt is called the universal vector bundle
over G(k,n). Recall from 10.5 the description of V'(k,n) as the space of all linear
isometries R¥ — R"™; we get from it the evaluation mapping ev : V(k,n) x R¥ —
R™. The mapping (p, ev) in the diagram

V(k,n) x R¥
) g &A)

V(k,n) xo) R — G(k,n) x R"

is O(k)-invariant for the action R and factors therefore to an embedding of
vector bundles v : E, — G(k,n) x R™. So the fiber (E})w over the k-plane W
in R™ is just the linear subspace W. Note finally that the fiber wise orthogonal
complement Ej* of Ej in the trivial vector bundle G (k,n) x R™ with its standard
Riemannian metric is isomorphic to the universal vector bundle E,,_j, over G(n—
k,m), where the isomorphism covers the diffecomorphism G(k,n) — G(n — k,n)
given also by the orthogonal complement mapping.

Corollary. The tangent bundle of the Grassmann manifold is

TG(k,n) = L(Ey, E,b).
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Proof. We have G(k,n) = O(n)/(O(k) x O(n —k)), so by theorem 10.15 we get

TG(k,n) = O(n) O(k)xé(n_k)(sa(n)/(so(k) x so(n —k))).

On the other hand we have V(k,n) = O(n)/O(n — k) and the right action of
O(k) commutes with the right action of O(n — k) on O(n), therefore

V(k,n)[R*] = (O(n)/O(n —k)) x R*=0(n)

X RF,
O(k) O(k)xO(n—Fk)

where O(n — k) acts trivially on R*. Finally

L(Ey, Ext) =L (O(n) X R*,O(n) X R”‘k>
O(k)xO(n—k) O(k)xO(n—k)

=0(n) X L(RF,R"™F),
O(k)xO(n—k)

where the left action of O(k) x O(n—k) on L(R* R"~*) is given by (4, B)(C) =
B.C.A7!. Finally we have an O(k) x O(n — k) - equivariant linear isomorphism
L(RF R"=*) — s0(n)/(so(k) x so(n — k)), as follows:

so(n)/(so(k) x so(n—k)) =

(4 ) e}

0 skew

10.17. The tangent group of a Lie group. Let G be a Lie group with
Lie algebra g. We will use the notation from 4.1. First note that TG is
also a Lie group with multiplication Tu and inversion T, given by (see 4.2)
T(a,b)/’é'(faanb) = Ta(pb)~§a + Tb()\a)~77b and Tay-ga = _Te()\afl)-Ta(pafl)-ga-

Lemma. Via the isomomorphism Tp:gx G — TG, Tp.(X,g) = Te(pg). X, the
group structure on T'G looks as follows: (X,a).(Y,b) = (X + Ad(a)Y, a.b) and
(X,a) ! = (=Ad(a 1) X,a™'). So TG is isomorphic to the semidirect product
g X G, see 5.16.

Proof. Tiaqpp-(Tpa-X,Tpp.Y) =Tpy.Tpa. X +TAa.Tpp.Y =
=Tpa-X +TppTpa.Tpa—1.TA.Y =Tpap(X + Ad(a)Y).
Tov.TpeX = —Tpa-—1.TAg-1.Tpe.X = —Tp,—1.Ad(a"1)X. O

Remark. In the left trivialisation TA : G x g — TG, TA.(g,X) = Te(N\g). X,
the semidirect product structure is: (a, X).(b,Y) = (ab,Ad(b~1)X +Y) and
(a,X)"' = (a7, — Ad(a)X).

Lemma 10.17 is a special case of 37.16 and also 38.10 below.

10.18. Tangent bundles and vertical bundles. Let (E,p, M, S) be a fiber
bundle. The subbundle VE = {{ € TE : Tp.§ = 0} of TE is called the
vertical bundle and is denoted by (VE,7g, E).
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Theorem. Let (P,p, M,G) be a principal fiber bundle with principal right ac-
tionr: PxG — P. Let { : G xS — S be a left action. Then the following
assertions hold:
(1) (TP, Tp,TM,TQG) is again a principal fiber bundle with principal right
action Tr : TP x TG — TP.
(2) The vertical bundle (VP,, P,g) of the principal bundle is trivial as a
vector bundle over P: VP = P X g.
(3) The vertical bundle of the principal bundle as bundle over M is again a
principal bundle: (VP,pomw, M,TG).
(4) The tangent bundle of the associated bundle P[S, (] is given by
T(P[S,¢) =TP[TS,TY).
(5) The vertical bundle of the associated bundle P[S,{] is given by
V(P[S,f)) = P[TS,Txf] = P xg TS, where Ty is the second partial
tangent functor.

Proof. Let (Uy,¢a : PlUy — Uy x G) be a principal fiber bundle atlas with
cocycle of transition functions (¢ag : Usg — G). Since T is a functor which
respects products, (TU,,Tys : TP|TU, — TU, x TG) is again a principal
fiber bundle atlas with cocycle of transition functions (T'pag : TUap — TG),
describing the principal fiber bundle (TP, Tp, TM,TG). The assertion about
the principal action is obvious. So (1) follows. For completeness sake we include
here the transition formula for this atlas in the right trivialization of T'G:

T(‘P(x o @El)(ga?;Te(pg)'X) = (facvTe(papag(a:).g)'(&paﬁ(gx) + Ad((pag(x))X)),

where §pa5 € Q' (Uap; g) is the right logarithmic derivative of ¢,3, see 4.26.
(2) The mapping (u, X) = Te(ry). X = T(y,e)r-(0u, X) is a vector bundle iso-
morphism P x g — VP over P.

(3) Obviously Tr : TP xTG — TP is a free right action which acts transitive on
the fibers of Tp: TP — TM. Since VP = (Tp)~*(0ar), the bundle VP — M is
isomorphic to TP|0y; and T'r restricts to a free right action, which is transitive
on the fibers, so by lemma 10.3 the result follows.

(4) The transition functions of the fiber bundle P[S, ¢] are given by the expression
lo(papxIdg) : Uypx S — GxS — S. Then the transition functions of T'(P[S, {])
are T (0o (pap x Idg)) =Tl o (Twap X Idpg) : TUap X TS — TG x TS — TS,
from which the result follows.

(5) Vertical vectors in T'(P[S, ¢]) have local representations (05, 7s) € TUasxT'S.
Under the transition functions of T'(P[S,¢]) they transform as T(f o (¢ag X
1ds))-(0z,m5) = T.(0p ) Ms) = T(lypos@) s = Tol.(ap(z),ms) and this
implies the result. [

11. Principal and induced connections

11.1. Principal connections. Let (P,p, M,G) be a principal fiber bundle.
Recall from 9.3 that a (general) connection on P is a fiber projection ® : TP —
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V P, viewed as a 1-form in Q' (P; TP). Such a connection ® is called a principal
connection if it is G-equivariant for the principal right action r : P x G — P, so
that T'(r9).® = ®.T(r9), i.e. @ is rI-related to itself, or (r9)*® = & in the sense
of 8.16, for all g € G. By theorem 8.15.7 the curvature R = %.[@, ®] is then also
r9-related to itself for all g € G.

Recall from 10.18.2 that the vertical bundle of P is trivialized as a vector
bundle over P by the principal action. So we have w(X,,) := T.(r,) " 1.®(X,) € g
and in this way we get a g-valued 1-form w € Q'(P;g), which is called the
(Lie algebra valued) connection form of the connection ®. Recall from 5.13 the
fundamental vector field mapping ¢ : g — X(P) for the principal right action.
The defining equation for w can be written also as ®(X,) = (u(x,)(u).

Lemma. If ® € QY(P;VP) is a principal connection on the principal fiber
bundle (P,p, M,G) then the connection form has the following properties:

(1) w reproduces the generators of fundamental vector fields, so we have
w(Cx(u)) =X for all X € g.

(2) w is G-equivariant, so ((r9)*w)(X,) = w(T,(r9).X,) = Ad(g™1).w(X,)
for all g € G and X, € T, P.

(3) For the Lie derivative we have L w = —ad(X).w.

Conversely a 1-form w € QY(P,g) satisfying (1) defines a connection ® on P
by ®(X,) = Te(ry).w(Xy), which is a principal connection if and only if (2) is
satisfied.
Proof. (1) Te(ry).w(Cx(u)) = ®(Cx(u)) = (x(u) = Te(ry).X. Since To(ry) :
g — V,, P is an isomorphism, the result follows.

(2) Both directions follow from

Te(rug)'w(Tu(rg)-Xu) = Cw(Tu(rg).Xu)(u.g) = O(Tu(r). Xu)
Te(rug).- Ad(g™ ") w(Xy) = CAd(g—1).w(x,)(ug) =
= T (1) .Cu(x) (1) = Ty (r?).(Xy).

(3) is a consequence of (2). O

11.2. Curvature. Let @ be a principal connection on the principal fiber bundle
(P,p, M,G) with connection form w € Q!(P;g). We already noted in 11.1 that
the curvature R = £[®, ®] is then also G-equivariant, (r9)*R = R for all g € G.
Since R has vertical values we may again define a g-valued 2-form Q € Q?(P; g)
by Q(Xy,Yy) := —Tu(ry,) "t .R(Xy, Yy), which is called the (Lie algebra-valued)
curvature form of the connection. We also have R(X,,Yy) = —Co(x,,,v,)(u). We
take the negative sign here to get the usual curvature form as in [Kobayashi-
Nomizu I, 63].

We equip the space Q(P;g) of all g-valued forms on P in a canonical way
with the structure of a graded Lie algebra by

(W, 0A(X1,... ., Xpyq) =

1 .
=i > signo [(U(Xo1,. ., Xop), O Xopi1)s -+ » Xopra)la
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or equivalently by [ ® X,0®Y |5 := Yy ANO®[X,Y],. From the latter description
it is clear that d[¥, 0], = [d¥, O], + (—1)%&¥[¥, dO],. In particular for w €
Q' (P; g) we have [w,w]A(X,Y) = 2[w(X),w(Y)],.

Theorem. The curvature form ) of a principal connection with connection
form w has the following properties:

(1) Q is horizontal, i.e. it kills vertical vectors.

(2) Q is G-equivariant in the following sense: (r9)*Q = Ad(g~1).Q. Conse-
quently L¢, Q= —ad(X).Q.

(3) The Maurer-Cartan formula holds: Q = dw + [w,w]A.

Proof. (1) is true for R by 9.4. For (2) we compute as follows:

Te(rug).-((r?) Q) ( Xy, Yy) = Te(rug) UTu(r?). Xy, T, (17).Y,) =
= —Ryg(T,(r9). Xy, Ty (r9).Yy) = =T, (r?).((r9)"R)(X,, Y,) =
= —Tu(r?).R(Xy,Yy) = TU(TQ)'CQ(X,“YH)(“) =
= CAd(g—1).0(X.,v,) (ug) =
=T.(rug)-Ad(g71).Q(Xu, Ys), by 5.13.

(3) For X € g we have i¢c, R =0 by (1), and using 11.1.(3) we get

. 1 . 1. 1 .
tix (dw + 5[‘*‘),‘*}]/\) =i¢ydw + 5[2Cxw,w]/\ - §[W>ZCXW]/\ =
=Leyw+ [X,wp = —ad(X)w + ad(X)w = 0.

So the formula holds for vertical vectors, and for horizontal vector fields X,Y €
C*(H(P)) we have

R(X,Y)=®[X —®X,Y — ®Y] = [X,Y] = Cu(x.v))

(dw + %[w,w])()ﬂy) = XwY) - YwX) -w(X,Y]) = —w(X,Y]). O

11.3. Lemma. Any principal fiber bundle (P,p, M,G) admits principal con-
nections.

Proof. Let (Uy, pa : PlUs — U, X G), be a principal fiber bundle atlas. Let
us define v, (To5t (&x, TeAg. X)) = X for & € T,U, and X € g. An easy
computation involving lemma 5.13 shows that v, € Q'(P|U,;g) satisfies the
requirements of lemma 11.1 and thus is a principal connection on P|U,. Now
let (fa) be a smooth partition of unity on M which is subordinated to the open
cover (U,), and let w := 3" _(fa ©p)7Ya. Since both requirements of lemma 11.1
are invariant under convex linear combinations, w is a principal connection on
pP. O
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11.4. Local descriptions of principal connections. We consider a principal

fiber bundle (P, p, M, G) with some principal fiber bundle atlas (Uy, ¢q : P|Uy —

Uy x G) and corresponding cocycle (pag : Uag — G) of transition functions.

We consider the sections s, € C*°(P|U,) which are given by ¢, (sa(z)) = (z,€)

and satisfy sq.¢0as = 3.

(1) Let © € QY(G,g) be the left logarithmic derivative of the identity,

ie. O(ng) = Ty(Ag-1).ng. We will use the forms O3 = pas*0 €
ot (UaﬁQ 9)-

Let ® = (ow € QY(P;VP) be a principal connection with connection form

w € NY(P;g). We may associate the following local data to the connection:

(2) wa = 84w € Q1 (Uy,; g), the physicists version of the connection.
(3) The Christoffel forms T'* € Q(U,; X(G)) from 9.7, which are given by

(02,76, 9)) = —T(9a)- 2. T(pa) " (&, 0y).
(4) Yo = (p1)'w e QY (U, x G; g), the local expressions of w.

Lemma. These local data have the following properties and are related by the
following formulas.

(5) The forms w, € N (Uy; g) satisfy the transition formulas
Wa = Ad(gog;)um + O34,

and any set of forms like that with this transition behavior determines a
unique principal connection.
(6) We have 7o (&2, TAg-X) = Ya (&2, 04) + X = Ad(g  wa (&) + X.

(7) We have Fa(gmg) = _Te()‘g)f}’a(gmog) = _Te()\g)~Ad(g_l)woz(§z) =
—T(pg)wa(&e), 50 (&) = =Ry, (¢,), @ right invariant vector field.

Proof. From the definition of the Christoffel forms we have
(02, T%(€2,.9)) = ~T(¢a)- . T(0a) " (&, 09)
= _T(‘Pa)-Te(Tcpgl(gc,g))WT(SOa)_l(fmOg)
(a0 7yt ) T () s Oy)
= (02, Te(Ag)w.T(¢a) ™" (&2, 0g)) = = (0, Te(Ng)Va(&as Og))-
This is the first part of (7). The second part follows from (6).
Ya(€a: TAg-X) = Ya(&s,0g) + Va(0z, TAg. X)
= Ya(€a, 0g) + w(T(0a) 7 (02, TAg. X))
= Ya(€x: 0g) + w(Cx (95 (2.9))) = Va(Es, 0g) + X.
So the first part of (6) holds. The second part is seen from
YalEar 04) = Ya(Ea, To(pg)00) = (w0 T(pa) ™ 0 T(Idx X pg))(Ers Oc) =
= (@0 T(r 0 97 "))(Enr 00) = Ad(g™ (T (5 1) (€. 0.)
= Ad(g7") (50" w) (&) = Ad(g™ M wa(&e)-

Via (7) the transition formulas for the w, are easily seen to be equivalent to the
transition formulas for the Christoffel forms in lemma 9.7. [
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11.5. The covariant derivative. Let (P,p, M, G) be a principal fiber bundle
with principal connection ® = ( o w. We consider the horizontal projection
x = Idpp—® : TP — HP, cf. 9.3, which satisfies x o x = x, imx = HP,
kery =V P,and xy o T(r9) =T(r9) o x for all g € G.

If W is a finite dimensional vector space, we consider the mapping x* :
Q(P; W) — Q(P; W) which is given by

@)Xy X)) = ou(X(X1), - x (X))

The mapping x* is a projection onto the subspace of horizontal differential forms,
i.e. the space Qo (P; W) :={tp € Q(P; W) :ixt¢ = 0 for X € VP}. The notion
of horizontal form is independent of the choice of a connection.

The projection x* has the following properties where in the first assertion one
of the two forms has values in R:

X AY) = X" AX),

XTox"=x"
X o (r) =) ox” for all g € G,
X'w=0

X" o L(Cx)=L(Cx)ox"

They follow easily from the corresponding properties of x, the last property uses
that FI§X) = pewtX,

Now we define the covariant esterior derivative d,, : Q¥ (P; W) — QFL(P; W)
by the prescription d, := x* o d.

Theorem. The covariant exterior derivative d,, has the following properties.

(1) du(p A1) =du(p) A+ (=1)%8ex*p Ad,, () if ¢ or 1 is real valued.

) L(Cx)od, =d, o L((x) for each X € g.
) (r9)* od,, =d, o (r9)* for each g € G.
) dyop* =dop*=p od: QM;W) — Qpor(P; W).

) dyw = €, the curvature form.

) d,Q =0, the Bianchi identity.

) dyox* —d, = x"0i(R), where R is the curvature.

) dyod,=x"0i(R)od.

) Let Quor(P,g)¢ be the algebra of all horizontal G-equivariant g-valued
forms, i.e. (r9)*¢ = Ad(g~)y. Then for any ¢ € Qyor(P,g)¢ we have
dop = dip + [WM/J]A-

(10) The mapping 1 +— Cy, where Gy (X1, ..., Xi)(u) = Cpixy,.. x40 (w) (1), 18

an isomorphism between Quo.(P, )¢ and the algebra Quo.(P,VP)¢ of
all horizontal G-equivariant forms with values in the vertical bundle V P.
Then we have (4 = —[P, ().

Proof. (1) through (4) follow from the properties of x*.
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(5) We have

(dow)(&n) = (X"dw)(&n) = dw(xE, xn)
= (x&w(xn) — (xmw(x€) — w(x&: xnl)
= —w([x¢&, xn]) and

—C(U&m)) = R(&,n) = @[XE, x1] = Cu(ixexn)-

(6) Using 11.2 we have
duQ = dy(dw + [w,w],)

= X"ddw + 5x"dlw, w]x
= 3" ([dw, w]p = [w, dw]p) = X" [dw, W]
= [x"dw, x*w]r = 0, since x*w = 0.

(7) For ¢ € Q(P; W) we have

(dox"¢)(Xo, -, Xi) = (dx @) (x(X0), - -, x(Xk))
= > DX (X(Xo), -, X(X), -, X(Xk)))

0<i<k
+Z D (x"0) (x(X3), x(X;)], x(Xo), .- -
= 3 (D XD OO (X)X, s X(X)))
0<i<k
()X (X)) = X)X ()] (Ko .

—

(XD (X)), )
= (de)(x(Xo), - - -, x(Xk)) + (ire) (x(X0), - - -, X(Xk))
= (dw + x"ir)(¢)(Xo, - - , X).
(8) duwdy, = x*dx*d = (x*ir + x*d)d = x™ird holds by (7).

(9) If we insert one vertical vector field, say (x for X € g, into d,v¢, we
get 0 by definition. For the right hand side we use ic, ¢ = 0 and L¢ ¢ =

21, (FI$¥)*qp = 2|, (roPt )y = 2| Ad(exp(—tX))yh = —ad(X) to get

iCX (dQ/J + [WW]A) = i(xdw + dZCX¢ + [Z'Cxwvw] - [wJCxw]
=L+ [X, 9] = —ad(X)y + [X, 4] = 0.

Let now all vector fields &; be horizontal, then we get

(dwt))(§os -+ 5 &k) = (X" dY) (S0, - -+, Ek) = d(&os - -+, Ek),
(dp + [w, ¥]a) (o - -+ »Ek) = d(&os - - - 5 Ek)-
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So the first formula holds.

(10) We proceed in a similar manner. Let ¥ be in the space Qf  (P,VP)¢
of all horizontal G-equivariant forms with vertical values. Then for each X € g
we have i, U = 0; furthermore the G-equivariance (r9)*¥ = ¥ implies that

Loy =[Cx, V] =0 by 816.(5). Using formula 8.11.(2) we have

icx [@7\11] = [iCx(I)’\I/] - [(I)viCX\IJ] +i([q>7<X])\II +i([\I/7CX])q>
=[¢x,¥]-0+0+0=0.

Let now all vector fields &; again be horizontal, then from the huge formula 8.9
for the Frolicher-Nijenhuis bracket only the following terms in the third and fifth
line survive:

(@, U](&, .., E01) = (}P[ ZSignU Q([W(&o1,--- 1 E00)s Eaer1)])

+ m Zsigna D(V([6o1,802)5 €035+ -+ > Eaer1))-

For f : P — g and horizontal § we have ®[¢,(f] = (e(p) = (ap(e) since it is
C°(P,R)-linear in £. So the last expression becomes

_C(d¢(€07 cee afk)) = _C(dww(£07 s 7516)) = _C((Cw + [w7¢]/\)(€07 s 7576))

as required. [

11.6. Theorem. Let (P,p, M,G) be a principal fiber bundle with principal
connection w. Then the parallel transport for the principal connection is globally
defined and G-equivariant.

In detail: For each smooth curve ¢ : R — M there is a smooth mapping
Pte : R x P,y — P such that the following holds:

(1) Pt(e,t,u) € Py, Pt(c,0) = Idp,,, and w(% Pt(c,t,u)) = 0.

(2) Pt(c,t) : Pyoy — Peoy is G-equivariant, i.e. Pt(c,t,u.g) = Pt(c,t,u).g
holds for all g € G and uw € P. Moreover we have Pt(c,t)*(Cx|Pey)) =
<X‘Pc(0) for all X € g.

(3) For any smooth function f: R — R we have

Pt(c, f(t),u) = Pt(co f,t,Pt(c, f(0),u)).

Proof. By 11.4 the Christoffel forms T'® € Q' (U,, X(G)) of the connection w with
respect to a principal fiber bundle atlas (U, @) are given by T'*(£,) = Ry, (¢,)s
so they take values in the Lie subalgebra Xz(G) of all right invariant vector
fields on G, which are bounded with respect to any right invariant Riemannian
metric on G. Each right invariant metric on a Lie group is complete. So the
connection is complete by the remark in 9.9.

Properties (1) and (3) follow from theorem 9.8, and (2) is seen as follows:

w(% Pt(c,t,u).g) = Ad(g_l)w(% Pt(C,t, u)) =0
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implies that Pt(c,t,u).g = Pt(c,t,u.g). For the second assertion we compute for
u e PC(O):

Pt(c,t)*(Cx |Puy) (w) = TPt(c,t) ' Cx (Pt(c, t,u)) =
= T Pt(e, t)_1%|0 Pt(c,t,u). exp(sX) =
= T Pt(c, t)71%|0 Pt(c,t,u.exp(sX)) =
= d%|0 Pt(e, t)*l Pt(c, t,u. exp(sX))
= d%|0u. exp(sX) =(x(u). O

11.7. Holonomy groups. Let (P,p, M,G) be a principal fiber bundle with
principal connection ® = ( o w. We assume that M is connected and we fix
xg € M.

In 9.10 we defined the holonomy group Hol(®,z) C Diff(P,,) as the group
of all Pt(c,1) : Py, — Py, for ¢ any piecewise smooth closed loop through
xo. (Reparametrizing ¢ by a function which is flat at each corner of ¢ we may
assume that any ¢ is smooth.) If we consider only those curves ¢ which are
nullhomotopic, we obtain the restricted holonomy group Holy(®, x¢).

Now let us fix ug € P,,. The elements 7(ug, Pt(c,t,up)) € G form a subgroup
of the structure group G which is isomorphic to Hol(®,zp); we denote it by
Hol(w, up) and we call it also the holonomy group of the connection. Considering
only nullhomotopic curves we get the restricted holonomy group Holg(w,up) a
normal subgroup of Hol(w, ug).

Theorem. The main results for the holonomy are as follows:

(1) We have Hol(w, ug.g) = conj(g~') Hol(w, ug) and
Holg (w, ug.g) = conj(g~1) Holg(w, ug).

(2) For each curve ¢ in M with ¢(0) = xzo we have Hol(w, Pt(c,t,up)) =
Hol(w, ug) and Holyp(w, Pt(c, t,up)) = Holp(w, up).

(3) Holp(w,up) is a connected Lie subgroup of G and the quotient group
Hol(w, up)/ Holp(w, ug) is at most countable, so Hol(w, ug) is also a Lie
subgroup of G.

(4) The Lie algebra hol(w,ug) C g of Hol(w,ug) is linearly generated by
{QUX,,Y) : X, Yy € T, P}, and it is isomorphic to the holonomy Lie
algebra hol(®, zy) we considered in 9.10.

(5) For ug € Py, let P(w,ug) be the set of all Pt(c, t, ug) for ¢ any (piecewise)
smooth curve in M with ¢(0) = z¢ and for ¢ € R. Then P(w,ug) is
a sub fiber bundle of P which is invariant under the right action of
Hol(w, ug); so it is itself a principal fiber bundle over M with structure
group Hol(w, up) and we have a reduction of structure group, cf. 10.6 and
10.13. The pullback of w to P(w, ug) is then again a principal connection
form i*w € QY (P(w, up); hol(w, up)).

(6) P is foliated by the leaves P(w,u), u € Py, .

(7) If the curvature Q = 0 then Holp(w,ug) = {e} and each P(w,u) is a
covering of M.
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(8) If one uses piecewise C*-curves for 1 < k < oo in the definition, one gets
the same holonomy groups.

In view of assertion 5 a principal connection w is called irreducible if Hol(w, ug)
equals the structure group G for some (equivalently any) ug € Py, .

Proof. 1. This follows from the properties of the mapping 7 from 10.2 and from
the G-equivariance of the parallel transport.

The rest of this theorem is a compilation of well known results, and we refer
to [Kobayashi-Nomizu I, 63, p. 83ff] for proofs. O

11.8. Inducing connections on associated bundles. Let (P,p, M,G) be a
principal bundle with principal right action r : P x G — P and let £/ : G x S —
S be a left action of the structure group G on some manifold S. Then we
consider the associated bundle P[S] = P[S,{] = P x¢g S, constructed in 10.7.
Recall from 10.18 that its tangent and vertical bundle are given by T'(P[S,{]) =
TP[TS, Tl| =TP xrg TS and V(P[S,¢]) = P[TS, Txl] = P x¢ TS.

Let ® = (ow € Q' (P;TP) be a principal connection on the principal bundle
P. We construct the induced connection ® € Q' (P[S], T(P[S])) by the following
diagram:

TPx7s —2XM rpyrs = . pPxs)

T

TP xr¢ TS —2 TP xr6 TS —=T(P x¢ S).
Let us first check that the top mapping ® x Id is T'G-equivariant. For g € G and
X € g the inverse of T.(\,)X in the Lie group T'G is denoted by (T.(A\y)X)™!,
see lemma 10.17. Furthermore by 5.13 we have
Tr(§us Te(Mg) X) = Tu(r?)€u + Tr((0p x Lx)(u, g))
=Tu(r?)&u + To(ru)(Te(Ag) X)
= Tu(r?)&u + Cx (ug).

We may compute

(@ X IA)(T7r(8u, Te(Ag) X), TU((Te(Ag) X) ™, 1))
= (P(Tu(r")€u + Cx (ug)), TU(Te(Xg) X) ™, 1))
= (P(Tu(r?)€u) + (Cx (ug)), TU(Te(Ag) X) ™", 115))
= (Tu(r")®€u) + Cx (ug), TU(Te(Xg) X) ™", 1))

= (T7(® (), Te(Ag) X), TU(Te(Ag) X) ™", 1s)).-

So the mapping ® x Id factors to ® as indicated in the diagram, and we have
®od = from (® x Id) o (® x Id) = ® x Id. The mapping ® is fiberwise linear,
since ® x Id and ¢ = Tq are. The image of ® is
(VP xTS)=¢ (ker(Tp: TP xTS — TM))
=ker(Tp: TP xrc TS — TM) =V (P[S,1]).
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Thus @ is a connection on the associated bundle P[S]. We call it the induced
connection.

From the diagram it also follows, that the vector valued forms ® x Id €
QYP x S;TP xTS) and ® € QY (P[S]; T(P[S))) are (¢ : P x S — P[S])-related.
So by 8.15 we have for the curvatures

Roxia = 3[® x Id, ® x Id] = £[®, D] x 0 = Rg x 0,
Ri) = %[@76]7

that they are also g-related, i.e. Tgo (Re X 0) = Rg o (T'q X Tq).
By uniqueness of the solutions of the defining differential equation we also get
that

Ptg (Cv t, Q(U, 8)) = q(Ptq)(Ca L, ’U,), S)

11.9. Recognizing induced connections. We consider again a principal
fiber bundle (P,p, M,G) and a left action ¢ : G x S — S. Suppose that ¥ €
QY(P[S]; T(P[S])) is a connection on the associated bundle P[S] = P[S, ¢]. Then
the following question arises: When is the connection ¥ induced from a principal
connection on P? If this is the case, we say that ¥ is compatible with the G-
bundle structure on P[S]. The answer is given in the following

Theorem. Let ¥ be a (general) connection on the associated bundle P[S]. Let
us suppose that the action ¢ is infinitesimally effective, i.e. the fundamental
vector field mapping ¢ : g — X(5) is injective.

Then the connection V¥ is induced from a principal connection w on P if and
only if the following condition is satisfied:

In some (equivalently any) fiber bundle atlas (Uy,1,) of P[S]| belong-
ing to the G-bundle structure of the associated bundle the Christoffel
forms T'™ € QY (U,; X(S)) have values in the sub Lie algebra X fyna(S) of
fundamental vector fields for the action £.

Proof. Let (Uy, ¢ : PlUy — U, X G) be a principal fiber bundle atlas for P.
Then by the proof of theorem 10.7 it is seen that the induced fiber bundle atlas
(Ua, o : P[S)|Uy — Uy x S) is given by

(1) ¢;1(5€73) = q(‘ﬁ;l(xae)’s)a
(2) (¢a o Q)(<p;1<x’g)vs) = (x’g's)'

Let ® = Cow be a principal connection on P and let ® be the induced connection
on the associated bundle P[S]. By 9.7 its Christoffel symbols are given by

(Ox,F (€zy8)) = — sza)oq)oT( ))(fanS)
)o@quo(T( _1) de))(gwaoeaos) by (1)
$a) 0 Tgo (® x 1)(T(¢71)(E,0,),0,) by 11.8
)

~(T(%a) o Ta)(®(T (5 ") (€s, 0c)), 05)
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= (T(a) o TQ)(T (2 ") (02, TG (£x,€)), 0s) by 11.4.(3)
= T (a0 qo (v, x1d))(0z,wa(Ex), 05) by 11.4.(7)
= —Te(0*)wa (&) by (2)

= —Cuu(ea)(8)-

So the condition is necessary. Now let us conversely suppose that a connection
¥ on P[S] is given such that the Christoffel forms I' with respect to a fiber
bundle atlas of the G-structure have values in Xf,,q(S). Then unique g-valued
forms w, € Q'(Uy,;g) are given by the equation I'$ (€,) = ((wa(&:)), since the
action is infinitesimally effective. From the transition formulas 9.7 for the I'y,
follow the transition formulas 11.4.(5) for the w®, so that they give a unique
principal connection on P, which by the first part of the proof induces the given
connection ¥ on P[S]. O

11.10. Inducing connections on associated vector bundles.

Let (P,p, M,G) be a principal fiber bundle and let p : G — GL(W) be a
representation of the structure group G on a finite dimensional vector space W.
We consider the associated vector bundle (E := P[W, p|,p, M, W), from 10.11.
Recall from 6.11 that T(E) = TP Xpg TW has two vector bundle structures
with the projections

g : T(E)=TP XpgTW — P xgW =E,
Tpopry: T(E) =TP xXpg TW — TM.

Now let ® = ( ow € QY(P;TP) be a principal connection on P. We consider
the induced connection ® € Q'(E;T(E)) from 11.8. Inserting the projections
of both vector bundle structures on T(E) into the diagram in 11.8 we get the
following diagram

TP x TW ® x 1d TPXxTW — TP xW x W
Vi Vi
PxW
Tq Jq Tq
PxcW=F
TP XTa W (I) TP XTa W TE
Tp Tp
™M

and from it one easily sees that the induced connection is linear in both vector
bundle structures. We say that it is a linear connection on the associated bundle.
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Recall now from 6.11 the vertical lift vlg : E X3y E — VE, which is an
isomorphism, pri-mp-fiberwise linear and also p-T'p-fiberwise linear.
Now we define the connector K of the linear connection ® by

K:=proo(vlg) 'o®:TE—-VE —>ExyE— E.

Lemma. The connector K : TE — FE is a vector bundle homomorphism for
both vector bundle structures on TE and satisfies K ovlg = pro : E Xy E —
TE — E.

So K is mg—p—fiberwise linear and Tp—p—fiberwise linear.

Proof. This follows from the fiberwise linearity of the components of K and from
its definition. O

11.11. Linear connections. If (E,p, M) is a vector bundle, a connection
U € QYE;TE) such that ¥ : TE — VE — TE is also Tp-Tp-fiberwise linear
is called a linear connection. An easy check with 11.9 or a direct construction
shows that ¥ is then induced from a unique principal connection on the linear
frame bundle GL(R"™, E) of E (where n is the fiber dimension of E).

Equivalently a linear connection may be specified by a connector K : TE — E
with the three properties of lemma 11.10. For then HE := {&, : K(&u) = Op(u) }
is a complement to V' E in T FE which is T'p—fiberwise linearly chosen.

11.12. Covariant derivative on vector bundles. Let (E,p, M) be a vector
bundle with a linear connection, given by a connector K : TE — FE with the
properties in lemma 11.10.

For any manifold N, smooth mapping s : N — E, and vector field X € ¥(N)
we define the covariant derivative of s along X by

(1) Vxs:=KoTsoX:N—-TN—-TE — E.

If f+ N — M is a fixed smooth mapping, let us denote by C3°(N, E) the vector
space of all smooth mappings s : N — E with pos = f — they are called sections
of E along f. From the universal property of the pullback it follows that the
vector space C7°(N, E) is canonically linearly isomorphic to the space C>°(f*E)
of sections of the pullback bundle. Then the covariant derivative may be viewed
as a bilinear mapping

(2) V : X(N) x CF(N, E) — C¥(N, E).

Lemma. This covariant derivative has the following properties:

(3) Vxs is C°(N,R)-linear in X € X(N). So for a tangent vector X, €
TN the mapping Vx, : C°(N,E) — Ej(,) makes sense and we have
(VXs)(.Z') = Vx(z)s.

(4) Vxs is R-linear in s € C3°(N, E).

(5) Vx(h.s) =dh(X).s+ h.Vxs for h € C(N,R), the derivation property
of VX.

(6) For any manifold () and smooth mapping g : Q — N and Y, € T,Q we
have Vrgy,s = Vy,(sog). IfY € X(Q) and X € X(N) are g-related,
then we have Vy (sog) = (Vxs)og.



11. Principal and induced connections 111

Proof. All these properties follow easily from the definition (1). O

For vector fields X, Y € X(M) and a section s € C*®°(E) an easy computation
shows that

RE(X, Y)s:=VxVys—VyVxs—Vixy]s
=([Vx,Vy] = Vixy))s

is C°°(M, R)-linear in X, Y, and s. By the method of 7.3 it follows that R¥ is a 2-
form on M with values in the vector bundle L(E, E), i.e. RF € Q*(M; L(E, E)).
It is called the curvature of the covariant derivative.

For f: N — M, vector fields X, Y € X(N) and a section s € C°(N, E)
along f one may prove that

VxVys—VyVxs—Vixys=(["R")(X,Y)s = RF(Tf.X, TfY)s.

We will do this in 37.15.(2).

11.13. Covariant exterior derivative. Let (F,p, M) be a vector bundle with
a linear connection, given by a connector K : TE — FE.

For a smooth mapping f : N — M let Q(N; f*E) be the vector space of all
forms on N with values in the vector bundle f*E. We can also view them as
forms on N with values along f in E, but we do not introduce an extra notation
for this.

The graded space Q(N; f*E) is a graded Q(N)-module via

(P A®) Xy, .. , Xprq) =
= ﬁ Z Sign(a) @(Xala cee 7XUI))(I)(X0(;D+1)) s aXa(p+q))'
It can be shown that the graded module homomorphisms H : Q(N; f*E) —

Q(N; f*E) (so that H(p A ®) = (—1)dee H-deewy A (D)) are exactly the map-
pings p(A) for A € QP(N; f*L(E, E)), which are given by

(W(A)D) (X1, .., Xpyg) =
= L3 sign(0) AXor, -+, Xep)@(Xopiny- - s Xopra))-

The covariant exterior derivative dy : QP(N; f*E) — QPTY(N; f*E) is defined
by (where the X; are vector fields on V)

P

(dy®)(Xo,...,X,) = Z(* NV x, ®( X0, Xiy .o Xp)

+ Z DXy, X, Xo, ..., X, - .

0<i<j<p
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Lemma. The covariant exterior derivative is well defined and has the following
properties.
(1) For s € C*(f*E) = Q°(N; f*E) we have (dvys)(X) = Vxs.
(2) dy(pA®) =dp AP+ (—1)48¢p A dy®.
(3) Forsmoothg:Q — N and ® € Q(N; f*E) we have dy (¢*®) = g*(dv ).
(4) dydg® = u(f*RE)®.

Proof. Tt suffices to investigate decomposable forms ® = ¢ ® s for ¢ € QP(N)
and s € C®°(f*E). Then from the definition we have dv(p ® s) = dp ® s +
(—=1)P¢ A dys. Since by 11.12.(3) dys € QY(N; f*E), the mapping dy is well
defined. This formula also implies (2) immediately. (3) follows from 11.12.(6).
(4) is checked as follows:
dydy(p ® s) = dy(dp ® s+ (=1)"¢ A dys) by (2)
=0+ (=1D)*p Adydys
= o A p(f*RF)s by the definition of R

= u(f*RP)(p®s). O

11.14. Let (P,p, M,G) be a principal fiber bundle and let p : G — GL(W) be
a representation of the structure group G on a finite dimensional vector space
w.

Theorem. There is a canonical isomorphism from the space of P[W, p]-valued
differential forms on M onto the space of horizontal G-equivariant W -valued
differential forms on P:

¢ QM; PIW, p]) = Quor(P; W)Y = {p € QP; W) :ixp =0
for all X € VP, (r9)*¢ = p(g~*) o p for all g € G}.
In particular for W = R with trivial representation we see that
p* QM) — QhOT(P)G = {¢ € Qpor(P) : (r)" ¢ = ¢}
is also an isomorphism. The isomorphism
¢ : QU(M; P[W]) = C=(P[W]) — O}, (P;W)¢ = C=(P, W)
is a special case of the one from 10.12.

Proof. Recall the smooth mapping 7¢ : P x5, P — G from 10.2, which satisfies
(U, T (Ug, V1)) = Ve, T (Ug.g,1l.g') = g7 17 (ug, ul).g', and 7€ (up, u,) = €.
Let p € QF (P;W)C, X1,..., Xy € T, P, and X{,..., X € T, P such that

Tup-Xi = Tywp. X! for each i. Then we have for g = 7% (u, /), so that ug = u':

q(u, pu(X, - Xx)) = qlug, pg™ ) pu(Xa, .., Xi))
= q(’, ((r*)")u(X1, ..., Xi))
=q(u, ug(Tu(r?).Xq, ..., Tu(r?).Xy))
=q(u, 0w (X1,...,X})), since T, (r9)X; — X] € V,y P.
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By this prescription a vector bundle valued form ® € QF(M; P[W]) is uniquely
determined.

For the converse recall the smooth mapping 7V : P x5 P[W,p] — W
from 10.7, which satisfies 7" (u, q(u,w)) = w, q(uz, ™V (usz,v,)) = v, and
TV (urg, ve) = plg )" (s, v2).

For ® € QF(M; P[W]) we define ¢*® € QF(P; W) as follows. For X; € T, P
we put

(@) (X1, ..., Xp) = 7" (w0, ©py (Tup- X1, ..., Tup-Xi)).
Then ¢*® is smooth and horizontal. For ¢ € G we have

(D (¢ ®)) (X1, o, Xi) = (¢ ®) g (T (r9). X1, ..., Tu(r9). Xy)
W(ug, @y (ug)(Tugp Tu(r?). X1, ..., Tugp.Ty(r9).Xy))
= plg™ )TV (, @y (Tup- X1, .., Tup- X))

= p(g N ®)u( X1, Xi).

Clearly the two constructions are inverse to each other. [J

11.15. Let (P,p, M, G) be a principal fiber bundle with a principal connection
® =(ow, and let p: G — GL(W) be a representation of the structure group G
on a finite dimensional vector space W. We consider the associated vector bundle
(E = P[W, p],p, M, W), the induced connection ® on it and the corresponding
covariant derivative.

Theorem. The covariant exterior derivative d, from 11.5 on P and the co-
variant exterior derivative for P[W]-valued forms on M are connected by the
mapping ¢* from 11.14, as follows:

¢ ody =d,oq" : QM; P[W]) = Qpor(P; W)E.

Proof. Let first f € Q9 (P; W)Y = C°°(P,W)Y, then we have f = ¢*s for s €
C>(P[W]). Moreover we have f(u) = 7 (u,s(p(u))) and s(p(u)) = q(u, f(u))
by 11.14 and 10.12. Therefore Ts.Tp.X,, = Tq(Xu, Tf.X,), where Tf. X, =
(f(u),df(X,)) e TW =W x W. If x : TP — HP is the horizontal projection
as in 11.5, we have Ts.Tp.X,, = Ts.Tp.x.Xu = Tq(x-Xu, T f.x-Xu). So we get

(¢*dvs)(Xu) = 7" (u, (dvs)(Tp-Xu))

=7 (u,Vrpx,5) by 11.13.(1)
=W (u, K.Ts.Tp.X,) by 11.12.(1)
=1V (u, KTq(X Xu, Tfx.-Xu)) from above
=7V (u, pro. Olp - D.Tq(x.Xu, Tfx-Xu)) by 11.10
=7V (u,pro.vl, ]Tq (® x 1d)(x.Xu, Tf.x.Xu))) by 11.8
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=7 (u, pro.vl, [ 1 Tq(00, Tfx- X ))) since ®.x =0

=7V (u, q.pra.vlpk - (0u, T X X0))) since ¢ is fiber linear
=7 (u,q(u, df x.-Xu)) = (Cdf)(X)

= (dug*s)(X.).

Now we turn to the general case. It suffices to check the formula for a decom-
posable P[W]-valued form ¥ = ¢ ® s € QF(M, P[W]), where ¢ € QF(M) and
s € C*°(P[W]). Then we have
dud* ($ ® 5) = du(p™¢ - ¢*s)

=d,(p* ) - ¢*s + (=1)Ex*p* i Adyug's by 11.5.(1)

= X*p*dy - ¢Fs + (=1)Fp Y A ¢Pdys from above and 11.5.(4)

=p'dy - s + (—1)*p"Y A gidys

= ¢ (dy ® s+ (—=1)*¢ A dys)

=gdv(yp®s). O
11.16. Corollary. In the situation of theorem 11.15 above we have for the cur-

vature form Q € Q3_ (P;g) and the curvature R”W1 € Q2(M; L(P[W], P[W]))
the relation

hor

f PW] _
arpiwy,piw) Wl=poq,
where p' = T.p: g — L(W, W) is the derivative of the representation p.

Proof. We use the notation of the proof of theorem 11.15. By this theorem we
have for X, Y € T, P

(do dqu[W] $)u(X,Y) = (¢'dydys)u(X,Y)
= (¢"R"™s5), (X, Y)
=7 (u, RPN (T, p. X, Tup.Y ) s(p(u)))
— (@ o py B (V) @y 5) ()
On the other hand we have by theorem 11.5.(8)
(dwdwd®s)u(X,Y) = (x"irdg*s)u(X,Y)
= (dg¢*s),(R(X,Y)) since R is horizontal
= (dg*s)(~Cacx.y)(w) by 11.2
= &lo (@) (P (w)
= Gilo ™" (w. exp(—tQUX,Y)), s(p(u. exp(—tUX, Y)))))
= Gilo " (u-exp(—19(X, ), 5(p(u)))
= 8t|0 (exptQ(X,Y))7" (u, s(p(u))) by 10.7
P QX Y))(¢*s)(w). O
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Remarks

The concept of connections on general fiber bundles was formulated at about
1970, see e. g. [Libermann, 73]. The theorem 9.9 that each fiber bundle admits
a complete connection is contained in [Wolf, 67], with an incorrect proof. It is
an exercise in [Greub-Halperin-Vanstone I, 72, p 314]. The proof given here and
the generalization 9.11 of the Ambrose Singer theorem are from [Michor, 88], see
also [Michor, 91], which are also the source for 11.8 and 11.9. The results 11.15
and 11.16 appear here for the first time.
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CHAPTER 1V.
JETS AND NATURAL BUNDLES

In this chapter we start our systematic treatment of geometric objects and
operators. It has become commonplace to think of geometric objects on a man-
ifold M as forming fiber bundles over the base M and to work with sections
of these bundles. The concrete objects were frequently described in coordinates
by their behavior under the coordinate changes. Stressing the change of coor-
dinates, we can say that local diffeomorphisms on the base manifold operate on
the bundles of geometric objects. Since a further usual assumption is that the
resulting transformations depend only on germs of the underlying morphisms,
we actually deal with functors defined on all open submanifolds of M and local
diffeomorphisms between them (let us recall that local diffeomorphisms are glob-
ally defined locally invertible maps), see the preface. This is the point of view
introduced by [Nijenhuis, 72] and worked out later by [Terng, 78|, [Palais, Terng,
77], [Epstein, Thurston, 79] and others. These functors are fully determined by
their restriction to any open submanifold and therefore they extend to the whole
category M f,, of m-dimensional manifolds and local diffeomorphisms. An im-
portant advantage of such a definition of bundles of geometric objects is that we
get a precise definition of geometric operators in the concept of natural opera-
tors. These are rules transforming sections of one natural bundle into sections of
another one and commuting with the induced actions of local diffeomorphisms
between the base manifolds.

In the theory of natural bundles and operators, a prominent role is played
by jets. Roughly speaking, jets are certain equivalence classes of smooth maps
between manifolds, which are represented by Taylor polynomials. We start this
chapter with a thorough treatment of jets and jet bundles, and we investigate the
so called jet groups. Then we give the definition of natural bundles and deduce
that the r-th order natural bundles coincide with the associated fibre bundles to
r-th order frame bundles. So they are in bijection with the actions of the r-th
order jet group Gj, on manifolds. Moreover, natural transformations between
the r-th order natural bundles bijectively correspond to G7,-equivariant maps.
Let us note that in chapter V we deduce a rather general theory of functors on
categories over manifolds and we prove that both the finiteness of the order and
the regularity of natural bundles are consequences of the other axioms, so that
actually we describe all natural bundles here. Next we treat the basic properties
of natural operators. In particular, we show that k-th order natural operators
are described by natural transformations of the k-th order jet prolongations of
the bundles in question. This reduces even the problem of finding finite order
natural operators to determining G -equivariant maps, which will be discussed
in chapter VL.
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Further we present the procedure of principal prolongation of principal fiber
bundles based on an idea of [Ehresmann, 55] and we show that the jet prolonga-
tions of associated bundles are associated bundles to the principal prolongations
of the corresponding principal bundles. This fact is of basic importance for the
theory of gauge natural bundles and operators, the foundations of which will be
presented in chapter XII. The canonical form on first order principal prolonga-
tion of a principal bundle generalizes the well known canonical form on an r-th
order frame bundle. These canonical forms are used in a formula for the first jet
prolongation of sections of arbitrary associated fiber bundles, which represents a
common basis for several algorithms in different branches of differential geome-
try. At the end of the chapter, we reformulate a part of the theory of connections
from the point of view of jets, natural bundles and natural operators. This is
necessary for our investigation of natural operations with connections, but we
believe that this also demonstrates the power of the jet approach to give a clear
picture of geometric concepts.

12. Jets

12.1. Roughly speaking, two maps f, g: M — N are said to determine the
same r-jet at x € M, if they have the r-th order contact at x. To make this idea
precise, we first define the r-th order contact of two curves on a manifold. We
recall that a smooth function R — R is said to vanish to r-th order at a point,
if all its derivatives up to order r vanish at this point.

Definition. Two curves 7,d: R — M have the r-th contact at zero, if for every
smooth function ¢ on M the difference ¢ o v — ¢ o § vanishes to r-th order at
0eR.

In this case we write v ~,. §. Obviously, ~,. is an equivalence relation. For
r = 0 this relation means v(0) = §(0).

Lemma. If~ ~, d, then fo~ ~, fod for every map f: M — N.

Proof. If ¢ is a function on N, then o f is a function on M. Hence po fo~y —
@ o fod has r-th order zero at 0. [

12.2. Definition. Two maps f, g: M — N are said to determine the same
r-jet at © € M, if for every curve v: R — M with v(0) = x the curves f o~ and
g o~ have the r-th order contact at zero.

In such a case we write j7f = jrg or 5" f(z) = j"g(x).

An equivalence class of this relation is called an r-jet of M into N. Obviously,
juf depends on the germ of f at x only. The set of all r-jets of M into N is
denoted by J"(M,N). For X = jof € J(M,N), the point x =: aX is the
source of X and the point f(z) =: 8X is the target of X. We denote by 7,
0 < s < r, the projection jof — j5f of r-jets into s-jets. By JL(M,N) or
J"(M,N), we mean the set of all r-jets of M into N with source x € M or
target y € N, respectively, and we write J.(M,N), = JZ(M,N)NJ"(M,N),.
The map j"f: M — J"(M, N) is called the r-th jet prolongation of f: M — N.
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12.3. Proposition. If two pairs of maps f, f:M — N and g, g: N - Q
satisty j,.f = jof and jyg = jyg, f(x) =y = f(x), then j;(go f) = jz(go f).
Proof. Take a curve v on M with v(0) = z. Then j” f = j f implies foy ~,. fo~,

lemma 12.1 gives go foy ~, go fory and jyg = j;g yields go foy ~,. go for.

Hence go foy~ygofory. O

In other words, r-th order contact of maps is preserved under composition. If
X € J;(M,N), and Y € J;(N,Q). are of the form X = jif and Y = jjg, we
can define the composition Y o X € J7(M, Q). by

YoX=ji(gof).

By the above proposition, Y o X does not depend on the choice of f and g. We
remark that we find it useful to denote the composition of r-jets by the same
symbol as the composition of maps. Since the composition of maps is associative,
the same holds for r-jets. Hence all r-jets form a category, the units of which
are the r-jets of the identity maps of manifolds. An element X € J7 (M, N),
is invertible, if there exists X! € J; (N, M), such that X' o X = jI(idy)
and X o X~! = jr(idy). By the implicit function theorem, X € J"(M,N) is
invertible if and only if the underlying 1-jet 7] X is invertible. The existence of
such a jet implies dim M = dim N. We denote by invJ"(M, N) the set of all
invertible r-jets of M into N.

12.4. Let f: M — M be a local diffeomorphism and g: N — N be a map.
Then there is an induced map J"(f,g): J"(M,N) — J" (M, N) defined by

JT(f,9)(X) = (jyg) o X o (5. /)~
where z = aX and y = X are the source and target of X € J"(M, N). Since

the jet composition is associative, J" is a functor defined on the product category
M x Mf. (We shall see in 12.6 that the values of J” lie in the category F.M.)

12.5. We are going to describe the coordinate expression of r-jets. We recall

that a multiindex of range m is a m-tuple a« = (aq,...,q,,) of non-negative
integers. We write |a| = a3 + -+ + @, &l = gl ! (with 0! = 1), 2® =
(x)or .. (@™)om for x = (x!,...,2™) € R™. We denote by
olal ¢
Do f=

(Oxl)or ... (Qz™m)om

the partial derivative with respect to the multiindex a of a function f: U C
RTYL — R

Proposition. Given a Iocal coordinate system x* on M in a neighborhood of
and a local coordinate system y? on N in a neighborhood of f(x), two maps f,
g: M — N satisfy jo f = jrg if and only if all the partial derivatives up to order
r of the components fP and gP of their coordinate expressions coincide at x.

Proof. We first deduce that two curves y(t), 6(t): R — N satisfy v ~, § if and
only if

d*(y? 0)(0)  d*(y” 0 )(0)

1
(1) dtk dtk
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k=0, 1,...,r, for all coordinate functions y?. On one hand, if v ~, §, then
yP oy — yP o § vanishes to order r, i.e. (1) is true. On the other hand, let (1)
hold. Given a function ¢ on N with coordinate expression p(y!,...,y"), we find
by the chain rule that all derivatives up to order r of ¢ o é depend only on the
partial derivatives up to order r of ¢ at v(0) and on (1). Hence poy —¢@od
vanishes to order r at 0.

If the partial derivatives up to the order r of fP and g? coincide at x, then
the chain rule implies f oy ~, g o~y by (1). This means j% f = jrg. Conversely,
assume ;7 f = jrg. Consider the curves ' = a’t with arbitrary a’. Then the
coordinate condition for f oy ~, g o~ reads

(2) Y (DafP(@)a =Y (Dag’(x))a”

la|=k || =k

k=0, 1,...,r. Since a’ are arbitrary, (2) implies that all partial derivatives up
to order r of fP and ¢P coincide at x. [

Now we can easily prove that the auxiliary relation v ~,. § can be expressed
in terms of r-jets.

Corollary. Two curves 7, 6: R — M satisfy v ~, ¢ if and only if jiv = jgé.

Proof. Since x' o« and 2 o § are the coordinate expressions of v and 4, (1) is
equivalent to jyy = jié. O

12.6. Write Lj, , = Jj(R™,R")o. By proposition 12.5, the elements of L7, ,
can be identified with the r-th order Taylor expansions of the generating maps,
i.e. with the n-tuples of polynomials of degree r in m variables without absolute
term. Such an expression

S

1<[al<r

will be called the polynomial representative of an r-jet. Hence Ly, , is a nu-

merical space of the variables af,. Standard combinatorics yields dim Ly, , =
n [("™F") = 1]. The coordinates on L}, , will sometimes be denoted more explic-
itly by @}, a};,...,aj, , , symmetric in all subscripts. The projection 77 : Ly, ,
— L3, ,, consists in suppressing all terms of degree > s.

The jet composition Ly, , x Ly, . — Ly, . is evaluated by taking the composi-
tion of the polynomial representatives and suppressing all terms of degree higher
than r. Some authors call it the truncated polynomial composition. Hence the
jet composition Ly, ,, x Ly, . — Ly, . is a polynomial map of the numerical spaces
in question. The sets Ly, ,, can be viewed as the sets of morphisms of a category
L™ over non-negative integers, the composition in which is the jet composition.

The set of all invertible elements of Ly, ., with the jet composition is a Lie
group G, called the r-th differential group or the r-th jet group in dimension m.
For r = 1 the group G}, is identified with GL(m,R). That is why some authors
use GL"(m,R) for G7,.

In the case M = R™, we can identify every X € J"(R™,R"™) with a triple
(aX, (jgxtg)l() o X o (jltax),BX) € R™ x LI' . x R" where ¢, means the

m,n
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translation on R™ transforming 0 into x. This product decomposition defines
the structure of a smooth manifold on J"(R™,R™) as well as the structure of
a fibered manifold 7fj: J"(R™,R") — R™ x R™. Since the jet composition in
L" is polynomial, the induced map J"(f,g) of every pair of diffeomorphisms
f:R™ — R™ and ¢g: R® — R" is a fibered manifold isomorphism over (f,g).
Having two manifolds M and N, every local charts ¢: U — R™ and ¢: V' — R”
determine an identification (7)) ~1(U x V') = J"(R™,R"). Since the chart chang-
ings are smooth maps, this defines the structure of a smooth fibered manifold on
7o JT(M,N) — M x N. Now we see that J" is a functor M f,,, x M f — FM.
Obviously, all jet projections 7} are surjective submersions.

12.7. Remark. In definition 12.2 we underlined the geometrical approach to
the concept of r-jets. We remark that there exists a simple algebraic approach
as well. Consider the ring C°(M,R) of all germs of smooth functions on a
manifold M at a point = and its subset M(M,z) of all germs with zero value
at , which is the unique maximal ideal of C°(M,R). Let M(M,z)* be the
k-th power of the ideal M(M, z) in the algebraic sense. Using coordinates one
verifies easily that two maps f, g: M — N, f(z) = y = g(z), determine the
same r-jet if and only if po f — @ og e M(M,z)" ! for every ¢ € C;°(N,R).

12.8. Velocities and covelocities. The elements of the manifold 7T} M :=
JJ(R*, M) are said to be the k-dimensional velocities of order 7 on M, in short
(k,r)-velocities. The inclusion Ty M C J"(R™, M) defines the structure of a
smooth fiber bundle on T} M — M. Every smooth map f: M — N is extended
into an FM-morphism T} f: Ty M — Ty} N defined by T} f(jgg) = j5(f o g).
Hence 77 is a functor M f — FM. Since every map R* — M, x M, coincides
with a pair of maps R¥ — M; and R¥ — My, functor T} preserves products.
For k = r = 1 we obtain another definition of the tangent functor 7' = T

We remark that we can now express the contents of definition 12.2 by saying
that jof = jog holds if and only if the restrictions of both 77 f and T7g¢g to
(T7 M), coincide.

The space Ty *M = J"(M,R¥)q is called the space of all (k,r)-covelocities on
M. In the most important case k = 1 we write in short 77* = T"*. Since R” is a
vector space, T *M — M is a vector bundle with jZo(u) + jii(u) = 52 (e(u) +
Y(u)), uw € M, and kjlo(u) = jrkp(u), k € R. Every local diffeomorphism
f: M — N is extended to a vector bundle morphism T7*f: T/*M — T/*N,
Jup j;(z)(go o f~1), where f~! is constructed locally. In this sense Ti* is a
functor on M f,,. For k = r = 1 we obtain the construction of the cotangent
bundles as a functor T{* = T* on M f,,,. We remark that the behavior of T.* on
arbitrary smooth maps will be reflected in the concept of star bundle functors
we shall introduce in 41.2.

12.9. Jets as algebra homomorphisms. The multiplication of reals induces
a multiplication in every vector space T, *M by

(Jzsp(w) Gz (w)) = iz (p(u)ip(u)),
which turns 7,*M into an algebra. Every jof € J7(M,N), defines an algebra
homomorphism hom(j; f): T)*N — T;*M by jy¢ — ji(p o f). To deduce
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the converse assertion, consider some local coordinates z* on M and y? on N
centered at x and y. The algebra T)*N is generated by jgy?. If we prescribe
quite arbitrarily the images (I)(]pr) in T7*M, this is extended into a unique
algebra homomorphism ®: T;*N — T;*M. The n-tuple ®(jgy”) represents
the coordinate expression of a jet X € JI(M,N), and one verifies easily ® =
hom(X). Thus we have proved

Proposition. There is a canonical bijection between J, (M, N), and the set of
all algebra homomorphisms Hom(T,* N, T;* M).

For r = 1 the product of any two elements in Ty M is zero. Hence the algebra
homomorphisms coincide with the linear maps TyN — T7M. This gives an
identification J*(M, N) = TN ® T*M (which can be deduced by several other
ways as well).

12.10. Kernel descriptions. The projection 77_;: T™*M — T " 1*M is a
linear morphism of vector bundles. Its kernel is described by the following exact
sequence of vector bundles over M

(1) 0 — STT*M — T™*M =5 7= )M —

where S” indicates the r-th symmetric tensor power. To prove it, we first con-

struct a map p: X T*M — T™M. Take r functions fi,-.., fr on M with
values zero at x and construct the r-jet at « of their product. One sees directly
that j7(f1 ... f,) depends on jlfi,...,jlf, only and lies in ker(n”_;). We have
ir(fi- o fr) =3 i O~ O jlfr, where O means the symmetric tensor prod-
uct, so that p is uniquely extended into a linear isomorphism of S™T*M into
ker(m)_4).

Next we shall use a similar idea for a geometrical construction of an iden-
tification, which is usually justified by the coordinate evaluations only. Let g
denote the constant map of M into y € N.

Proposition. The subspace (r/_,)~'(j7~19) C JZ(M,N), is canonically iden-
tified with TyN @ S"T; M

Proof. Let B € T,N and jlf, € T:M, p=1,...,r. For every Jyp € T;*N,
take the value By € R of the derivative of ¢ in direction B and construct a
function (Byp) f1(u) ... fr(u) on M. It is easy to see that j; — jr((Be)fi... fr)
is an algebra homomorphism 7,*N — T7*M. This defines a map p: T, N X

r-times

TXMx ... xTyM — J,(M,N),. Using coordinates one verifies that p generates
linearly the required identification. [

For r = 1 we have a distinguished element jl7 in every fiber of J1(M, N) —
M x N. This identifies J*(M, N) with TN @ T*M.

In particular, if we apply the above proposition to the projection
Ty (TP M)y — (T) ' M)y, 2 € M, we find

r

(2) (0 )7 (o) = TuM ® SR
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12.11. Proposition. 77_;: J"(M,N) — J"~}(M,N) is an affine bundle,
the modelling vector bundle of which is the pullback of TN @ S™T*M over
J"7Y(M, N).

Proof. Interpret X € J.(M,N), and A€ T,NQ S"TM C J,(M,N), as alge-
bra homomorphisms Ty *N — T,;*M. For every ® € Ty*N we have m_; (A(®))
= 0 and 73(X(®)) = 0. This implies X(®)A(¥) = 0 and A(P)A(T) = 0
for any other ¥ € T;*N. Hence X (®W¥) + A(®V¥) = X(P)X (V) = (X(®) +
A(®))(X (V) + A(¥)), so that X + A is also an algebra homomorphism 7,*N —
Tr*M. Using coordinates we find easily that the map (X, A) — X + A gives
rise to the required affine bundle structure. [

Since the tangent space to an affine space is the modelling vector space, we ob-
tain immediately the following property of the tangent map Tw)_;: TJ"(M, N)
— TJ—1(M,N).

Corollary. For every X € J,(M,N),, the kernel of the restriction of Tw_; to
TxJ'(M,N) isTyN @ STy M.

12.12. The frame bundle of order r. The set P"M of all r-jets with source
0 of the local diffeomorphisms of R™ into M is called the r-th order frame
bundle of M. Obviously, P"M = invT), (M) is an open subset of T, (M),
which defines a structure of a smooth fiber bundle on P"M — M. The group
G}, acts smoothly on P"M on the right by the jet composition. Since for
every jho, joib € PrM there is a unique element ji(¢~! o)) € GI, satisfying
(35p) o (j5 (¢~ tory)) = jiep, PTM is a principal fiber bundle with structure group
G".. For r = 1, the elements of invJ}(R™, M), are identified with the linear
isomorphisms R™ — T, M and G}, = GL(m), so that P*M coincides with the
bundle of all linear frames in T'M, i.e. with the classical frame bundle of M.
Every velocities space T}, M is a fiber bundle associated with P"M with stan-
dard fiber Ly .. The basic idea consists in the fact that for every jjf € (TP M),
and jio € PIM we have j5(o~to f) € LY . and conversely, every jhg € Ly m

k,m>?
and jio € Py M determine jj(pog) € (I} M),. Thus, if we formally define a left
action Gy, x Ly, — Ly . by (j5h, jbg) — Jjo(h o g), then Ty’ M is canonically
identified with the associated fiber bundle P" MLy, ].

Quite similarly, every covelocities space T} *M is a fiber bundle associated
with P"M with standard fiber Ly, , with respect to the left action G}, x L}, —
Ly, s (Gohs 369) = Jo(g o h~=1). Furthermore, P"M x PTN is a principal fiber
bundle over M x N with structure group G}, x G5,. The space J"(M,N) is a
fiber bundle associated with P"M x P"N with standard fiber Ly, |, with respect
to the left action (G, x G7) X LT, , — L, . (G50, 550, 35.) = d5 (o foro™).

Every local diffeomorphism f: M — N induces a map P"f: P"M — P"N
by P"f(j5¢) = j5(f o ). Since GJ, acts on the right on both P"M and P"N,
P" f is a local principal fiber bundle isomorphism. Hence P" is a functor from
M, into the category PB(G?).

Given a left action of G, on a manifold S, we have an induced map

{P"f,idg}: P"M[S] — P"NI[S]
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between the associated fiber bundles with standard fiber S, see 10.9. The rule
M — P"M][S], f — {P" f,ids} is a bundle functor on M f,, as defined in 14.1. A
very interesting result is that every bundle functor on M f,, is of this type. This
will be proved in section 22, but the proof involves some rather hard analytical
results.

12.13. For every Lie group G, T} G is also a Lie group with multiplication
(G5 F()(hg(w) = i5(F(w)g(u), u € RE, where f(u)g(u) is the product in
G. Clearly, if we consider the multiplication map u: G x G — G, then the
multiplication map of TG is T/ p: 1), G x T[ G — T]G. The jet projections
my: Ty G — T;G are group homomorphisms. For s = 0, there is a splitting
1: G = T[G of ny = f: T)G — G defined by t¢(g) = jj§, where § means the
constant map of R¥ into g € G. Hence T} G is a semidirect product of G and of
the kernel of 3: T} G — G.
If G acts on the left on a manifold M, then T} G acts on T M by

(do.f () (G5g(w)) = g (f (w)(g(w))),

where f(u)(g(w)) means the action of f(u) € G on g(u) € M. If we consider
the action map ¢: G x M — M, then the action map of the induced action is
T0C: TG x Ty M — T M. The same is true for right actions.

12.14. r-th order tangent vectors. In general, consider the dual vector
bundle T;P M = (T}*M)* of the (k,r)-covelocities bundle on M. For every map
Jf: M — N the jet composition A+ Ao (jif), x € M, A€ (T}*N) () defines
a linear map A(jpf): (T}*N)p@y — (T*M),. The dual map (A(jf))* =:
(TyPf)e: (TIEM), — (T,:DN)f(x) determines a functor ;5 on M f with values
in the category of vector bundles. For r > 1 these functors do not preserve
products by the dimension argument. In the most important case k = 1 we shall
write 775 = T() (in order to distinguish from the r-th iteration of 7). The
elements of T M are called r-th order tangent vectors on M. We remark that
for r = 1 the formula TM = (T*M)* can be used for introducing the vector
bundle structure on T'M.
Dualizing the exact sequence 12.10.(1), we obtain

(1) 0—T""YM —TWM — STM — 0.

This shows that there is a natural injection of the (r—1)-st order tangent vectors
into the r-th order ones. Analyzing the proof of 12.10.(1), one finds easily that
(1) has functorial character, i.e. for every map f: M — N the following diagram
commutes

| QR oG D V/ — L)V S"TM 0
(2) JT(T—D f JT(?‘) f JSTT f

0——70VUN — 70N STTN 0
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12.15. Contact elements. Let N be an n-dimensional submanifold of a man-
ifold M. For every local chart ¢: N — R", the rule  — ¢~ !() considered as a
map R” — M is called a local parametrization of N. The concept of the contact
of submanifolds of the same dimension can be reduced to the concept of r-jets.

Definition. Two n-dimensional submanifolds N and N of M are said to have
r-th order contact at a common point x, if there exist local parametrizations
¥: R™ — M of N and ¢: R® — M of N, 4(0) = z = 1(0), such that j5w = 5.

An equivalence class of n-dimensional submanifolds of M will be called an
n-dimensional contact element of order r on M, in short a contact (n, r)-element
on M. We denote by K M the set of all contact (n, r)-elements on M. We have
a canonical projection ‘point of contact’” K, M — M.

An (n,r)-velocity A € (T' M), is called regular, if its underlying 1-jet corre-
sponds to a linear map R™ — T, M of rank n. For every local parametrization
¥ of an n-dimensional submanifold, jjv¢ is a regular (n,r)-velocity. Since in
the above definition we can reparametrize ¢ and 1 in the same way (i.e. we
compose them with the same origin preserving diffeomorphism of R™), every
contact (n,r)-element on M can be identified with a class A o G}, where A is
a regular (n,r)-velocity on M. There is a unique structure of a smooth fibered
manifold on K; M — M with the property that the factor projection from the
subbundle regT M C T M of all regular (n,r)-velocities into K, M is a surjec-
tive submersion. (The simplest way how to check it is to use the identification
of an open subset in K R™ with the r-th jet prolongation of fibered manifold
R™ x R™™™ — R"™, which will be described in the end of 12.16.)

Every local diffeomorphism f: M — M preserves the contact of submanifolds.
This induces a map K f: KM — KM, which is a fibered manifold morphism
over f. Hence K! is a bundle functor on Mf,,. For r = 1 each fiber (K. M),
coincides with the Grassmann manifold of n-planes in T, M, see 10.5. That is
why K!M is also called the Grassmannian n-bundle of M.

12.16. Jet prolongations of fibered manifolds. Let p: Y — M be a fibered
manifold, dim M = m, dimY = m+n. The set J"Y (also written as J" (Y — M)
or J"(p: Y — M), if we intend to stress the base or the bundle projection) of
all r-jets of the local sections of Y will be called the r-th jet prolongation of Y.
Using polynomial representatives we find easily that an element X € JI(M,Y)
belongs to J"Y if and only if (jjxp)o X = j;(idar). Hence J'Y C J"(M,Y) is a
closed submanifold. For every section s of Y — M, j"s is a section of J"Y — M.

Let 2% or y? be the canonical coordinates on R™ or R™, respectively. Every
local fiber chart ¢: U — R™ " on Y identifies (7§)~*(U) with J”(R™,R™). This
defines the induced local coordinates y2 on J"Y, 1 < |a| < r, where « is any
multi index of range m.

Let ¢: Z — N be another fibered manifold and f: Y — Z be an FM-
morphism with the property that the base map fo: M — N is a local dif-
feomorphism. Then the map J"(f, fo): J"(M,Y) — J"(N,Z) constructed in
12.4 transforms J"Y into J"Z. Indeed, X € J"Y, X = y is characterized
by (jyp) o X = jiida, @ = p(y), and go f = fo o p implies (j5,a) o ((;f) ©
Xo (j?(](m)fo_l)) = (jzfo) o (4yp) o X o ﬁo(m)fo_l = J}y()idn. The restricted
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map will be denoted by J"f: J'Y — J"Z and called the r-th jet prolongation
of f. Let FM,, denote the category of fibered manifolds with m-dimensional
bases and their morphisms with the additional property that the base maps are
local diffeomorphisms. Then the construction of the r-th jet prolongations can
be interpreted as a functor J": FM,, — FM. (If there will be a danger of
confusion with the bifunctor J" of spaces of r-jets between pairs of manifolds,
we shall write Jf, for the fibered manifolds case.)

By proposition 12.11, 77_;: J"(M,Y) — J"=}(M,Y) is an affine bundle,
the associated vector bundle of which is the pullback of TY ® S"T*M over
J'=Y(M,Y). Taking into account the local trivializations of Y, we find that
771 J'Y — J"71Y is an affine subbundle of J"(M,Y') and its modelling vector
bundle is the pullback of VY ® S™T*M over J"~'Y, where VY denotes the
vertical tangent bundle of Y. For r» = 1 it is useful to give a direct description
of the affine bundle structure on J'Y — Y because of its great importance in
the theory of connections. The space J'(M,Y) coincides with the vector bundle
TY @ T*M = L(TM,TY). A l-jet X: T,M — T,Y, x = p(y), belongs to J'Y
if and only if Tpo X = idg, as. The kernel of such a projection induced by T'p is
VY ®T M, so that the pre-image of idp, a7 in T, Y ® T M is an affine subspace
with modelling vector space V,Y & T M.

If we specialize corollary 12.11 to the case of a fibered manifold Y, we deduce
that for every X € J"Y the kernel of the restriction of T7_,: TJ"Y — TJ"~'Y
to Tx J"Y is VgxY @ S"T; M.

In conclusion we describe the relation between the contact (n,r)-elements
on a manifold M and the elements of the r-th jet prolongation of a suitable
local fibration on M. In a sufficiently small neighborhood U of an arbitrary
x € M there exists a fibration p: U — N over an n-dimensional manifold N.
By the definition of contact elements, every X € K] M transversal to p (i.e.
the underlying contact 1-element of X is transversal to p) is identified with an
element of J"(U — N) and vice versa. In particular, if we take U = R x R™~",
then the latter identification induces some simple local coordinates on K M.

12.17. If E — M is a vector bundle, then J"E — M is also a vector bundle,
provided we define j7s1(u) + jrsa(u) = ji(s1(uw) + s2(u)), where u belongs to a
neighborhood of x € M, and kjls(u) = jrks(u), k € R.

Let Z — M be an affine bundle with the modelling vector bundle £ — M.
Then J"Z — M is an affine bundle with the modelling vector bundle J"E — M.
Given jis € J"Z and jlo € J'E, weset jis(u)+jio(u) = ji(s(u)+o(u)), where
the sum s(u) + o(u) is defined by the canonical map Z x; E — Z.

12.18. Infinite jets. Consider an infinite sequence
(1) A, Ags oA,

of jets A; € J'(M,N) satisfying A; = 771 (A;41) for all i = 1,.... Such a
sequence is called a jet of order oo or an infinite jet of M into N. Hence the set
J>°(M, N) of all infinite jets of M into N is the projective limit of the sequence

T rt1

7r2 7r3 T 1y
JHM,N) <~ J*(M,N) <% ... <2 J"(M,N) «“— ...



126 Chapter IV. Jets and natural bundles

We denote by 72°: J°(M,N) — J"(M,N) the projection transforming the
sequence (1) into its r-th term. In this book we usually treat J°(M,N) as a
set only, i.e. we consider no topological or smooth structure on J*°(M, N). (For
the latter subject the reader can consult e.g. [Michor, 80].)

Given a smooth map f: M — N, the sequence

Jof = daf = gof — ...

x € M, which is denoted by j°f or j*° f(x), is called the infinite jet of f at
x. The classical Borel theorem, see 19.4, implies directly that every element of
J®(M, N) is the infinite jet of a smooth map of M into N, see also 19.4.

The spaces T.° M of all k-dimensional velocities of infinite order and the infi-
nite differential group G;° in dimension m are defined in the same way. Having
a fibered manifold Y — M, the infinite jets of its sections form the infinite jet
prolongation JY of Y.

12.19. Jets of fibered manifold morphisms. If we consider the jets of mor-
phisms of fibered manifolds, we can formulate additional conditions concerning
the restrictions to the fibers or the induced base maps. In the first place, if we
have two maps f, g of a fibered manifold Y into another manifold, we say they
determine the same (r, s)-jet at y € Y, s > r, if

(1) Jyf = dyg and jy(f1Ya) = jy(9/Ya),

where Y, is the fiber passing through y. The corresponding equivalence class will
be denoted by j;* f. Clearly (r, s)-jets of F M-morphisms form a category, and
the bundle projection determines a functor from this category into the category
of r-jets. We denote by J™*(Y,Y) the space of all (r,s)-jets of the fibered
manifold morphisms of ¥ into another fibered manifold Y.

Moreover, let ¢ > r be another integer. We say that two F M-morphisms
f,g: Y — Y determine the same (7, s, q)-jet at y, if it holds (1) and

(2) JaBf = jiBg,

where Bf and Bg are the induced base maps and x is the projection of y to the
base BY of Y. We denote by j;»* f such an equivalence class and by J"*4(Y Y)
the space of all (r, s, ¢)-jets of the fibered manifold morphisms between Y and
Y. The bundle projection determines a functor from the category of (, s, q)-jets
of F M-morphisms into the category of g-jets. Obviously, it holds

(3) Jr(Y,Y) = (YY) X Jjr(BY,BY) JY(BY, BY)

where we consider the above mentioned projection J™*(Y,Y) — J"(BY, BY)
and the jet projection n?: J9(BY,BY) — J"(BY,BY).

12.20. An abstract characterization of the jet spaces. We remark that
[Kolér, 93b] has recently deduced that the r-th order jets can be characterized as
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homomorphic images of germs of smooth maps in the following way. According
to 12.3, the rule j" defined by

" (germg f) = jo. f

transforms germs of smooth maps into r-jets and preserves the compositions.
By 12.6, J"(M, N) is a fibered manifold over M x N for every pair of manifolds
M, N. So if we denote by G(M, N) the set of all germs of smooth maps of M
into IV, j” can be interpreted as a map

jr :jXI,N: G(MaN) - ‘]T(MaN)

More generally, consider a rule F' transforming every pair M, N of mani-
folds into a fibered manifold F(M,N) over M x N and a system ¢ of maps
omn: G(M,N) — F(M,N) commuting with the projections G(M, N) — M x
N and F(M,N) — M x N for all M, N. Let us formulate the following require-
ments [-IV.

I. Every oy n: G(M,N) — F(M, N) is surjective.

II. For every pairs of composable germs By, By and By, B, p(B1) = ¢(By)
and ¢(Bz) = ¢(Bz) imply ¢(Bz o B1) = ¢(Bz 0 By).

By I and II we have a well defined composition (denoted by the same symbol
as the composition of germs and maps)

XQ e} X1 = (p(BQ e} Bl)

for every Xy = p(By1) € Fy(M,N), and Xy = p(B2) € Fy(N, P).. Every local
diffeomorphism f: M — M and every smooth map g: N — N induces a map
F(f,g): F(M,N) — F(M,N) defined by

F(f,9)(X) = p(germyg) o X o p((germ, f)~"), X € Fy(M,N),.

ITII. Each map F(f,g) is smooth.

Consider the product Ny LLON; x Ny 22 N, of two manifolds. Then
we have the induced maps F(idp,p1) : F(M,N; x N3) — F(M,N;) and
F(idas,p2): F(M,Ny x Na) — F(M,Ny). Both F(M,N;) and F(M, Ns) are
fibered manifolds over M.

IV. F(M, N1 x N3) coincides with the fibered product F'(M, N1) X p F'(M, N3)
and F(idys, p1), F(idar, p2) are the induced projections.

Then it holds: For every pair (F, ) satisfying I-IV there exists an integer
r > 0 such that (F,¢) = (J",j"). (The proof is heavily based on the theory of
Weil functors presented in chapter VIII below.)

13. Jet groups

In spite of the fact that the jet groups lie at the core of considerations concern-
ing geometric objects and operations, they have not been studied very exten-
sively. The paper [Terng, 78] is one of the exceptions and many results presented
in this section appeared there for the first time.
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13.1. Let us recall the jet groups G%, = invJ¥(R™, R™)q with the multiplication
defined by the composition of jets, cf. 12.6. The jet projections 7Tll+1 define the
sequence

1) Gh = G G
and the normal subgroups B; = ker 7 (or By if more suitable) form the filtration
(2) Glfn:BoDBlD"'DBk_lDBk:L

Since we identify J¥(R™,R™) with the space of polynomial maps R™ — R™ of
degree less then or equal to k, we can write GX = {f = fi+ fo+---+fr; fi €
Li,n(R™R™),1<i<k, and f; € GL(m) = G},}, where L, (R™ R") is the
space of all homogeneous polynomial maps R™ — R™ of degree i. Hence G, is
identified with an open subset of an Euclidean space consisting of two connected
components. The connected component of the unit, i.e. the space of all invertible
jets of orientation preserving diffeomorphisms, will be denoted by GE*. Tt
follows that the Lie algebra g, is identified with the whole space J§(R™,R™)q,
or equivalently with the space of k-jets of vector fields on R™ at the origin that
vanish at the origin. Since each j&X, X € X(R™), has a canonical polynomial
representative, the elements of g¥, can also be viewed as polynomial vector fields
X = Zazx“ 8‘2{. Here the sum goes over ¢ and all multi indices p with 1 <
lul < k.

For technical reasons, we shall not use any summation convention in the rest of
this section and we shall use only subscripts for the indices of the space variables
r € R" ie. if (x1,...,7,) € R", then 2% always means x1.71, etc.

13.2. The tangent maps to the jet projections turn out to be jet projections
as well. Hence the sequence 13.1.(1) gives rise to the sequence of Lie algebra
homomorphisms

k k—1
Th—1 el k-2 ™1

gk

and we get the filtration by ideals b; = ker 71}’ (or b} if more suitable)
gh =by Dby D Dby Db, =0.

Let us define g, C gk .0 <p < k-1, as the space of all homogeneous polynomial
vector fields of degree p+1,i.e. g, = Lg;nll (R™,R™). By definition, g, is identified
with the quotient by, /b,11 and at the level of vector spaces we have

(1) Gﬁzgo@m@“'@gk—l-

For any two subsets L, Lo in a Lie algebra g we write [L1, Lo| for the linear
subspace generated by the brackets [l1,l2] of elements Iy € Ly, Il € La. A
decomposition g = goPg14. .. of a Lie algebra is called a grading if [g;, g;] C gi+;
for all 0 < 4,5 < oo. In our decomposition of gk, we take g; = 0 for all i > k.
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Proposition. The Lie algebra g, of the Lie group G, is the vector space
{j6X ; X € X(R™), X(0) =0} with the bracket

2) 6 X, 45 Y] = =g [X. Y]

and with the exponential mapping

(3) exp(jgX) =g FIY G5 X € gy

The decomposition (1) is a grading and for all indices 0 < i,j < k we have

(4) [9i, 9] = 0itj ifm>1,orifm=1andi#}j.

Proof. For every vector field X € X(R™), the map ¢ + j& FltX is a one-parameter
subgroup in G*, and the corresponding element in g¥ is

kX _ k X g
%‘OJO FI' =Jo (%’oFlt ) =JoX.
Hence exp(t.j8X) = jk FltX, see 4.18. Now, let us consider vector fields X, Y
on R™ vanishing at the origin and let us write briefly a := j&¥X, b := jFY.

According to 3.16 and 4.18.(3) we have

. . . 2
258X, Y] = 2581V, X] = b 2%

(Fl)_(t oF1Y, o FIX o F1Y )
0

82
= 3z
ot 0

(5 FI¥, 05 FIY, 0 F1Y o FLY)

(exp(—ta) o exp(—tb) o exp(ta) o exp(th))

82
= 3z
ot 0

2 . .
%) (Fif o FIfe o I 0 FIZG ) (€) = 206 X, Y.

ot?

So we have proved formulas (2) and (3). For all polynomial vector fields a =
Salar 2, b= bL:c“% € gk the coordinate formula for the Lie bracket of
vector fields, see 3.4, and formula (2) imply

;. 0
la,b] = ; cwa:'ya—mi where

¥ Z ()‘jbitak_'ujag\bu)'
1<j<m
pAA=1 =y

o
Il

Here 1; means the multi index o with o; = 6; and there is no implicit summation
in the brackets. This formula shows that (1) is a grading. Let us evaluate

0 0 0
a_ 7 B — (v — BNy tB—=1 2
|:l’ 0CCZ - (9131:| (al ﬁl)x 6.§CL
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and consider two degrees p, ¢, 0 < p+q < k — 1. If p # ¢ then for every v with
|7l = p+ g+ 1 and for every index 1 < i < m, we are able to find some a and
B with || =p+1,|8|=¢+1and a+ 8 =v+ 1;, 8; # «;. Since the vector
fields a:’ya%i, 1<i<m,|y|=p+q+1, form a linear base of the homogeneous
component g,.4, we get equality (4). If p = ¢, then the above consideration fails
only in the case v; = |y|. But if m > 1, then we can take the bracket

.P_0 q+1_9 1 _ ptet+l 9 ptq,. 0 ; ;
(2577 gors @ ;] = o — (a4 Dy 5 J#i

Since the second summand belongs to [g,, g4 this completes the proof. O

13.3. Let us recall some general concepts. The commutator of elements a1, as
of a Lie group G is the element alagaflagl € G. The closed subgroup K (S1,.52)
generated by all commutators of elements s; € S1 C G, s3 € S; C G is called
the commutator of the subsets S; and Ss. In particular, G’ := K (G, G) is called
the derived group of the Lie group G. We get two sequences of closed subgroups

GO =G =G
G = (@™ VY  neN
G(n) = K(G, G(n,l)) n € N.

A Lie group G is called solvable if G™ = {e} and nilpotent if G(ny = {e} for
some n € N. Since always G (,) D G| every nilpotent Lie group is solvable.

The Lie bracket determines in each Lie algebra g the following two sequences
of Lie subalgebras

g=9" =g

g =gV, g" V] neN
gn) = 8, 8(n-1)] neN.

The sequence g, is called the descending central sequence of g. A Lie algebra g
is called solvable if g™ = 0 and nilpotent if g(n) = 0 for some n € N, respectively.
Every nilpotent Lie algebra is solvable. If b is an ideal in g(") such that the factor
g(")/ b is commutative, then b D g(»*1). Consequently Lie algebra g is solvable
if and only if there is a sequence of subalgebras g = by D by D --- Db, =0
where b1 C by is an ideal, 0 < k < [, and all factors by /by1 are commutative.

Proposition. [Naymark, 76, p. 516] A connected Lie group is solvable, or nilpo-
tent if and only if its Lie algebra is solvable, or nilpotent, respectively.

13.4. Let i: GL(m) — G¥, be the map transforming every matrix A € GL(m)

into the r-jet at zero of the linear isomorphism =z — A(x), z € R™. This is a

splitting of the short exact sequence of Lie groups
AL S
(1) e B Gl ——q, — ¢

so that we have the situation of 5.16.
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Proposition. The Lie group G¥, is the semidirect product GL(m) x B; with
the action of GL(m) on By given by (1). The normal subgroup B; is connected,
simply connected and nilpotent. The exponential map exp: by — Bj is a global
diffeomorphism.

Proof. Since the normal subgroup B; is diffeomorphic to a Fuclidean space,
see 13.1, it is connected and simply connected. Hence B; is also nilpotent, for
its Lie algebra by is nilpotent, see 13.2.(4) and 13.3. By a general theorem, see
[Naymark, 76, p. 516], the exponential map of a connected and simply connected
solvable Lie group is a global diffeomorphism. Since our group is even nilpotent
this also follows from the Baker-Campbell-Hausdorff formula, see 4.29. 0O

13.5. We shall need some very basic concepts from representation theory. A
representation m of a Lie group G on a finite dimensional vector space V is a
Lie group homomorphism 7: G — GL(V). Analogously, a representation of
a Lie algebra g on V is a Lie algebra homomorphism g — gl(V). For every
representation 7: G — GL(V') of a Lie group, the tangent map at the identity
Tr: g — gl(V) is a representation of its Lie algebra, cf. 4.24.

Given two representations 7 on V; and 7 on V5 of a Lie group G, or a Lie
algebra g, a linear map f: V3 — V5 is called a G-module or g-module homo-
morphism, if f(m1(a)(x)) = m2(a)(f(x)) for alla € Gor a € g and all z € V,
respectively. We say that the representations 7 and o are equivalent, if there
is a G-module isomorphism or g-module isomorphism f: V3 — V5, respectively.

A linear subspace W C V in the representation space V' is called invariant if
m(a)(W) C W for all @ € G (or a € g) and 7 is called irreducible if there is no
proper invariant subspace W C V. A representation 7 is said to be completely
reducible if V' decomposes into a direct sum of irreducible invariant subspaces.
A decomposition of a completely reducible representation is unique up to the
ordering and equivalences. A classical result reads that the standard action of
GL(V) on every invariant linear subspace of @V @®@1V* is completely reducible
for each p and ¢, see e.g. [Boerner, 67].

A representation 7 of a connected Lie group G is irreducible, or completely
reducible if and only if the induced representation T'm of its Lie algebra g is
irreducible, or completely reducible, respectively, see [Naymark, 76, p. 346].

A representation 7: GL(m) — GL(V) is said to have homogeneous degree r if
m(t.idgm) = t"idy for all t € R\ {0}. Obviously, two irreducible representations
with different homogeneous degrees cannot be equivalent.

13.6. The GL(m)-module structure on b; C gk . Since B; C GF, is a
normal subgroup, the corresponding subalgebra b; = g1 ® - -+ @® gi_1 is an ideal.
The (lower case) adjoint action ad of go = gl(m) on by and the adjoint action
Ad of GL(m) = G on b; determine structures of a go-module and a GL(m)-
module on b;. As we proved in 13.2, all homogeneous components g, C by are
go-submodules.

Let us consider the canonical volume form w = dxy A --- A dx,, on R™ and
recall that for every vector field X on R™ its divergence is a function divX on
R™ defined by Lxw = (divX)w.
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In coordinates we have div(>" £10/0z;) = > 0¢*/Ox; and so every k-jet jEX €
g% determines the (k — 1)-jet j&~'(divX). Hence we can define div(jEX) =
jE=1(divX) for all j5X € g¥,. If X is the canonical polynomial representative
of j¥X of degree k, then divX is a polynomial of degree k — 1. Let C] C g, be
the subspace of all elements j¥ X € g, with divergence zero. By definition,

diV[X, Y]w = E[Xy]w = ﬁxﬁyw - Eyﬁxw

(1) = (X (divY) — Y (divX))w.

Since every linear vector field X € g¢ has constant divergence, C7 C g, is a
gl(m)-submodule. In coordinates,

i 0 ,
Za;\gM@ € C7 if and only if Z/\ Nahar =0,

ie. > (ui+1)al,,,, = 0 for each p with |u| = 7.

Further, let us notice that the Lie bracket of the field Yy = > j xj% with
any linear field X € g is zero. Hence, also the subspace C3 of all vector fields
Y € g, of the form Y = fY;, with an arbitrary polynomial f =Y f,a® of degree
r is go-invariant. Indeed, it holds [X, fYs] = —(X f)Yb.

Since div(fYo) = 3_;(a; +1) faz®, we see that g, = C7 & C5. In coordinates,
we have linear generators of C3

(2) X, = mo‘(zgck%), la] =7,
k

and if m > 1 then there are linear generators of C]

laf =,
Xag =2 (o + Vi — (a1 + sl ) s
=2,...,m

Yu,k:xM%7 k:17"'ama |‘LL|:7'+]., ,uk:()

3)

We shall write C; = Cl @ C} @ ---@Cy tand Co = C @ C3 @ --- @ CF 1.
According to (1), C; C by is a Lie subalgebra. Since for smooth functions f, g on
R™ we have [fX,gX] = (¢9(Xf)+ f(Xg))X, Co C by is a Lie subalgebra as well.
So we have got a decomposition b; = Cy @ Cy. According to the general theory
this is also a decomposition into G, *-submodules, but as all the spaces C7 are
invariant with respect to the adjoint action of any exchange of two coordinates,
the latter spaces are even GL(m)-submodules.

Proposition. If m > 1, then the GL(m)-submodules C7, Cj in g,, 1 <r <
k — 1, are irreducible and inequivalent. Form =1, C{ =0,1 <r <k —1, and
all C% are irreducible inequivalent GL(1)-modules.

Proof. Assume first m > 1. A reader familiar with linear representation the-
ory could verify that the modules C3 are equivalent to the irreducible modules



13. Jet groups 133

det_TCZ’T‘T 0 where the symbol C(’:f 70 corresponds to the Young’s dia-

gram (r,...,r,0), while C] are equivalent to det=("+1) CT+2 1, 1,0)7 S€€ €.8.
[Dieudonné, Carrell, 71]. We shall present an elementary proof of the proposi-
tion.

Let us first discuss the modules C3. Consider one of the linear generators X,

defined in (2) and a linear vector field x;5— 3 € gl(m). We have

(4) mlaw_, Zwkazk )| = ajzz® L Z(wk%)

k

If j = i, we get a scalar multiplication, but in all other cases the index o;
decreases while «; increases by one and if a; = 0, then the bracket is zero.
Hence an iterated action of suitable linear vector fields on an arbitrary linear
combination of the base elements X, yields one of the base elements. Further,
formula (4) implies that the submodule generated by any X, is the whole C%.
This proves the irreducibility of the GL(m)-modules C¥.

In a similar way we shall prove the irreducibility of C]. Let us evaluate the
action of Z; ; = xi% on the linear generators X 1, Y, -

[~ Zijs Xak] = (o + 1) (0 + 6Tzl 0
— (o +1)(ay + o)ttt 0

— 8 on + 1)z 2 4 6 (an + Dzl
1;+1; _0
(=Zij, Y] = pyja™ ErTs

J’ T

k@"# 6

In particular, we get

[~Zi1, Y1l =0
[~ Zi1, Xa k] = { (a1 + 1) Xot1,-1,6 ifar #0,i#1
| (o +146,)Yaq1,1 ifar=0,i#1
P Yu—1,41,.k if i #k
(=213, Ykl = ¢ X1 ifi =4k, pj #0

~Y,.; if i =k, jj = 0.

Hence starting with an arbitrary linear combination of the base elements, an
iterated action of suitable vector fields leads to one of the base elements Y, .
Then any other base element can be reached by further actions. Therefore also
the modules C are irreducible.

If m =1, then all C] = 0 by the definition and for all 0 <r < k — 1 we have
C% = g, = R with the action of gy given by [az ax,bm”l 60 |= rabx”l%.

The submodules C] and C§ cannot be equivalent for dimension reasons. The
adjoint action Ad of GL(m) on gF, is given by Ad(a)(j¥X) = jk(ao X oa™1).
So each irreducible component of g, has homogeneous degree —r. Therefore the
modules C7 with different r are inequivalent. [
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13.7. Corollary. The normal subgroup By C G¥, is generated by two closed
Lie subgroups D1, Dy invariant under the canonical action of GL . The group
D, is formed by the jets of volume preserving diffeomorphisms and Dy consists
of the jets of diffeomorphisms keeping all the one-dimensional linear subspaces
in R™. The corresponding Lie subalgebras are the subalgebras with grading
Ci=Cio @ Cf_l and Co = Ci @ - @ 6’5_1 where all the homogeneous
components are irreducible GL(m)-modules with respect to the adjoint action
and by = C| ® Cs.

Let us point out that an element j§¥f € GE belongs to D; or Dy if and
only if its polynomial representative is of the form f = idg,, + fo + -+ f
with f; € C1 N Li,,(R™ R™) = C{" or f; € Co N L, (R™,R™) = C3 ',
respectively.

13.8. Proposition. If m > 2 andl > 1, or m = 1 and | > 2, then there is no
splitting in the exact sequence e — B; — G* — G! — e. In dimension m = 1,
there is the exceptional projective splitting G? — G¥ defined by

k—1
(1) ax+bx2—>a(x+bx2+--~+bk 1xk>.
a ak-

Proof. Let us assume there is a splitting j in the exact sequence of Lie algebra
homomorphisms 0 — b, — gf — g/, — 0,1 >1. Soj:g® - g1 —
g0 P - P gr—1 and the restrictions jf,q of the components j,: g!, — g, to
the go-submodules C} in the homogeneous component g, are morphisms of go-
modules. Hence jg ¢ = 0 whenever p # ¢. Since j is a splitting the maps jﬁ p are
the identities.

Assume now m > 1. Since [g;_1, g1] equals g; in g&, but at the same time this
bracket equals zero in gl , we have got a contradiction.

If m =1 and [ > 2 the same argument applies, but the inclusion j: go® g1 —
90D g1 ®---Dgr_1 is a Lie algebra homomorphism, for in g§ the bracket [g1, g1]
equals zero. Let us find the splitting on the Lie group level. The germs of
transformations fq, g(z) = #—Hi’ B # 0, are determined by their second jets,
so we can view them as elements in G?. Since the composition of two such
transformations is a transformation of the same type, they give rise to Lie group
homomorphisms G7 — G7 for all r € N. One computes easily the derivatives

fén%(O) = (=1)""!nla"~137". Hence the 2-jet az+bx? corresponds to f, g with
a = —ba~2, B =a"'. Consequently, the homomorphism G? — G7 has the form

(1) and its tangent at the unit is the inclusion j. O

We remark that a geometric definition of the exceptional splitting (1) is based
on the fact that the construction of the second order jets determines a bijection
between G and the germs at zero of the origine preserving projective transfor-
mations of R.

13.9. Proposition. The Lie group G¥ is solvable. Its Lie algebra g¥ can be
characterized as a Lie algebra generated by three elements

d 2.4 3.4
Xo=zg; €8, Xi=z"j€g, Xo=a"7 €@
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with relations

(1) [Xo, Xa] = = X3
(2) (X0, Xa] = —2X,
(3) (ad(X1))' Xy =0  fori>Fk—2.

Proof. The filtration g¥ = by D --- D by_1 D 0 from 13.2 is a descending chain
of ideals with dim(b;/b; ;1) = 1. Hence g/ is solvable.

Let us write X; = 214 € g;. Since [X1, X;] = (1 — 9)X;11, we have

(4) X; = ((;1);!2(aLd(XI))Z'—QX2 fork—1>i>3

(5) (Xi, X5] = (i = ) Xitj -

Now, let g be a Lie algebra generated by Xy, X1, X, which satisfy relations
(1)-(3) and let us define X;, i > 2 by (4). Consider the linear map a: gf — g,
X; — X;,0<i<k—1. Then [X1, X;] = (1 —i)X;;1 and using Jacobi identity,
the induction on i yields [Xo, X;] = —iX;. A further application of Jacobi
identity and induction on i lead to [X;, X;] = (i — j)X;1;. Hence the map « is
an isomorphism. [J

13.10. The group G¥, with m > 2 has a more complicated structure. In par-
ticular G¥, cannot be solvable, for [gF , g¥ ] contains the whole homogeneous
component gg, so that this cannot be nilpotent. But we have

Proposition. The Lie algebra gF,, m > 2, k > 2, is generated by gy and any
2.9

element a € gy with a ¢ C1 UC3. In particular, we can take a = a3 5.
Proof. Let g be the Lie algebra generated by go and a. Since g = Cf & C3 is
a decomposition into irreducible go-modules, gy C g. But then 13.2.(4) implies

g=gr,. O

13.11. Normal subgroup structure. Let us first describe several normal
subgroups of G¥. For every r € N, 1 < r < k — 1, we define B.; C B,
Byy = {jofs f=idem + fro1r + -+ fa, fr1 € O, fi € Lgyn R™,R™)}.
The corresponding Lie subalgebra in g¥, is the ideal C] @ g1 @ -+ @ gr_1
so that B, is a normal subgroup. Analogously, we set B,o = {jif; [ =
idgm + fro1+- -+ fo, fry1 €03, fi € L;ym(Rm,Rm)} with the corresponding
Lie subalgebra C5 @ g,41®- - -@gr—1. We can characterize the normal subgroups
B,.; as the subgroups in B, with the projections ¥ (B, ;) belonging to the
subgroups D; C GIFt, j =1,2, ¢f. 13.7.

Proposition. Every connected normal subgroup H of Gk, m > 2, is one of the
following:

(1) {e}, the identity subgroup,

(2) B,, 1 <r < k, the kernel of the projection 7¥: Gk, — G”
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(3) Bra1, 1 < r < k, the subgroup in B, of jets of diffeomorphisms keeping
the standard volume form up to the order r + 1 at the origin,

(4) By2, 1 < r < k, the subgroup in B, of jets of diffeomorphisms keeping
the linear one-dimensional subspaces in R™ up to the order r 4+ 1 at the origin,

(5) N x By, where N is a normal subgroup of GL(m) = G}, .

Proof. Since we deal with connected subgroups H C GF,, we can prove the
proposition on the Lie algebra level.

Let us first assume that H C By. Then it suffices to prove that the ideal in
gk generated by C7, 7 =1,2,is the whole C7 & b,11. But the whole algebra gk
is generated by go and X; = x%a%l, and [g1,8;] = gi1 for all 2 < i < k. That
is why we have only to prove that g, is contained in the subalgebra generated
by go, X1 and C7 for both j = 1 and j = 2. Since C;H are irreducible go-
submodules, it suffices to find an element Y € C7 such that [X;,Y] ¢ CY +1and
at the same time [X;,Y] ¢ C5T.

Let us take first 7 = 2, i.e. Y = fYj for certain polynomial f. Since
[fYo, X1] = (X1 f)Yo + f[Yo, X1] = (X1 f)Yo — f X1, the choice f(z) = —a} gives
Y, X1] = :ch%a% which does not belong to C7™ U C5!, for its divergence
equals to 2zqah # 0, cf. 13.5.

; _ o+l 9 r r+1 89 .2 9.1 _
Further, consider Y = 25" 57= € C7 and let us evaluate [z5" 52-, 21 5.-] =

f2x1z§+1%. Since the divergence of the latter field does not vanish, [V, Xs] ¢

O]t U O3 as required. Hence we have proved that all connected normal
subgroups H C G¥, contained in By are of the form (1)—(4).

Consider now an arbitrary ideal b in g¥, and let us denote n = hNgy C go. By
virtue of 13.2.(4), if h contains a vector which generates g; as a go-module, then
by C h. We shall prove that for every X € go any of the equalities [X,C}] = 0
and [X, C3] = 0 implies X = 0. Therefore either h D by or n = 0 which concludes
the proof of the proposition.

Let X =3, . bijxja%i €goand Y = x5, xj%j € C}. Then [X,Y] =
—(>2, brjx;)Yo. Hence [X, C3] = 0 implies X = 0. Similarly, for Y = x%% €
Ci{ and X € go, the equalities [X,Y] = 0 for all k # [ yield X = 0. The simple
computation is left to the reader. [

13.12. G*-modules. In the next sections we shall see that the actions of
the jet groups on manifolds correspond to bundles of geometric objects. In
particular, the vector bundle functors on m-dimensional manifolds correspond
to linear representations of G¥,, i.e. to G -modules. Since there is a well known
representation theory of G'L(m) which is a subgroup in G¥,, we should try to
describe possible extensions of a given representation of GL(m) on a vector
space V to a representation of GF . A step towards such description was done
in [Terng, 78], we shall present only an observation showing that the study
of geometric operations on irreducible vector bundles restricts in fact to the
case of irreducible GL(m)-modules (with trivial action of the normal subgroup
By). According to 5.4, there is a bijective correspondence between Lie group
homomorphisms from B; to GL(V') and Lie algebra homomorphisms from b; to
gl(V), for By is connected and simply connected. Further, there is the semidirect
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product structure gf, = gl(m) x b; with the adjoint action of gl(m) on b; which
is tangent to the adjoint action of GL(m) and every representation of GL(m) on
V induces a GL(m)-module structure on gl(V) via the adjoint action of GL(V)
on gl(V). This implies immediately

Proposition. For every representation p: GL(m) — GL(V') there is a bijection
between the representations p: GE, — GL(V) with p|GL(m) = p and the set
of mappings T: by — gl(V)) which are both Lie algebra homomorphisms and
homomorphisms of GL(m)-modules.

13.13. A G-module is called primary if it is equivalent to a direct sum of copies
of a single irreducible G-module.

Proposition. If V is a G¥ -module such that the induced GL(m)-module is
primary, then the action of the normal subgroup By C G, is trivial.

Proof. Assume that the GL(m)-module V equals sW, where W is an irre-
ducible GL(m)-module. Then each irreducible component of the GL(m)-module
gl(V) = V ® V* has homogeneous degree zero. But all the irreducible compo-
nents of by have negative homogeneous degrees. So there are no non-zero ho-
momorphisms between the GL(m)-modules b; and gl(V') and 13.12 implies the
proposition. [l

13.14. Proposition. Let p: GE, — GL(V) be a linear representation such
that the corresponding GL(m)-module is completely reducible and let V =
>oi_,n;Vi, where V; are inequivalent irreducible GL(m)-modules ordered by
their homogeneous degrees, i.e. the homogeneous degree of V; is less than or equal
to the homogeneous degree of V; whenever i < j. Then W = (Zi: n;V;) @nV,
is a an—submodule of Vforalll <l <7randn <ny.

Proof. By definition, (Zi;i n;V;) ®nV, is a GL(m)-submodule. Since every ir-
reducible component of the GL(m)-module b; has negative homogeneous degree
and for all 1 <14 <[ the homogeneous degree of L(V;,V;) is non-negative, we get

-1 -1
Tp(X)(Q_mVi) @ nVi) € 3_niV,

i=1

for all n < n; and for every X € b;. Now the proposition follows from 13.12 and
13.5. O

13.15. Corollary. Every irreducible G -module which is completely reducible
as a GL(m)-module is an irreducible GL(m)-module with a trivial action of the
normal nilpotent subgroup By C G, .

Proof. Let V be an irreducible G¥ -module. Then V is irreducible when viewed
as a GL(m)-module, cf. proposition 13.14. But then By acts trivially on V' by
virtue of proposition 13.13. O
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13.16. Remark. In the sequel we shall often work with various subgroups in
the group of all diffeomorphisms R” — R™ which determine Lie subgroups in
the jet groups G¥ . Proposition 13.2 describes the bracket and the exponential
map in the corresponding Lie algebras and also their gradings g = go @ --- &
gr_1. Let us mention at least volume preserving diffeomorphisms, symplectic
diffeomorphisms, isometries and fibered isomorphisms on the fibrations R™+" —
R™. We shall essentially need the latter case in the next chapter, see 18.8. The

T

r-th jet group of the category F M., , is Gy, ,, C Gy, ., and the corresponding

Lie subalgebra gfnyn C gh ., consists of all polynomial vector fields Zi,u aix” a?c,,
with aj, = 0 whenever ¢ < m and p; # 0 for some j > m. The arguments from

the end of the proof of proposition 13.2 imply that even 13.2.(4) remains valid
in the following formulation.

The decomposition an,n =go® - D gr_1 is a grading and for every indices
0 <1i,5 < k it holds

(1) [9:,9;] = gitj ifm>1,n>1,orifi#j.

14. Natural bundles and operators

In the preface and in the introduction to this chapter, we mentioned that
geometric objects are in fact functors defined on a category of manifolds with
values in category FM of fibered manifolds. Therefore we shall use the name
bundle functors, in general. But the best known among them are defined on
category M f,, of m-dimensional manifolds and local diffeomorphisms and in
this case many authors keep the traditional name natural bundles. Throughout
this section, we shall use the original definition of natural bundles including
the regularity assumption, see [Nijenhuis, 72], [Terng, 78], [Palais, Terng, 77],
but we shall prove in chapter V that every bundle functor on M f,, is of finite
order and that the regularity condition 14.1.(iii) follows from the other axioms.
Since the presentation of these results needs rather long and technical analytical
considerations, we prefer to derive first geometric properties of bundle functors
in the best known situations under stronger assumptions. In fact the material of
this section presents a model for the more general situation treated in the next
chapter.

14.1. Definition. A bundle functor on Mf,, or a natural bundle over m-
manifolds, is a covariant functor F': M f,,, — FM satisfying the following con-
ditions

(1) (Prolongation) Bo F' = Iday,,, where B: FM — M f is the base functor.
Hence the induced projections form a natural transformation p: F' — Id g, -

(ii) (Locality) If i: U — M is an inclusion of an open submanifold, then
FU = p;/ (U) and Fi is the inclusion of py; (U) into FM.

(iii) (Regularity) If f: Px M — N is a smooth map such that for all p € P the
maps f, = f(p, ): M — N are local diffeomorphisms, then F'f: Px FM — FN,
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defined by ﬁ'f(p, ) = Ffp, p € P,issmooth, i.e. smoothly parameterized systems
of local diffeomorphisms are transformed into smoothly parameterized systems
of fibered local isomorphisms.

In sections 10 and 12 we met several bundle functors on M f,,.

14.2. Now let F' be a natural bundle. We shall denote by ¢,: R™ — R™ the
translation y — y + x and for any manifold M and point = € M we shall write
F, M for the pre image p]T/Il (). In particular, FyR™ will be called the standard
fiber of the bundle functor F. Every bundle functor F': M f,,, — FM determines
an action 7 of the abelian group R™ on FR™ via 1, = F't,.

Proposition. Let F': M f,, — FM be a bundle functor on M f,, and let S :=
FoR™ be the standard fiber of F'. Then there is a canonical isomorphism R™ x
S = FR™, (z,2) — Fty(z), and for every m-dimensional manifold M the value
F'M is a locally trivial fiber bundle with standard fiber S.

Proof. The map ¢: FR™ — R™ x S defined by z — (z, Ft_,(z)), = p(z), is
the inverse to the map defined in the proposition and both maps are smooth ac-
cording to the regularity condition 14.1.(iii). The rest of the proposition follows
from the locality condition 14.1.(ii). Indeed, a fibered atlas of F'M is formed by
the values of F' on the charts of any atlas of M. [

14.3. Definition. A natural bundle F': Mf,, — FM is said to be of finite
order r, 0 < r < oo, if for all local diffeomorphisms f, g: M — N and every
point & € M, the equality jIf = jrg implies F f|F,M = Fg|F, M.

14.4. Associated maps. Let us consider a natural bundle £': Mf,, — FM
of order r. For all m-dimensional manifolds M, N we define the mapping
Fyon:invJ"(M,N) xy FM — FN, (jof,y) — Ff(y). The mappings Fa n
are called the associated maps of the bundle functor F.

Proposition. The associated maps are smooth.

Proof. For m = 0 the assertion is trivial. Let us assume m > 0. Since smooth-
ness is a local property, we may restrict ourselves to M = N = R™. Indeed,
chosen local charts on M and N we get local trivializations on FFM and F'N and
the induced local chart on inv.J"(M, N). Hence we have

o

v " (R™, R™) xgm FR™ = invJ" (U, V) xp FU ~2% FV =, FR™

and we can apply the locality condition.

Now, let us recall that every jet in J"(R™,R™) has a canonical polynomial
representative and that this space coincides with the cartesian product of R™ and
the Euclidean space of coefficients of these polynomials, as a smooth manifold. If
we consider the map ev: invJ"(R™,R™) x R™ — R™, ev,. (45 f) = f(z), then the
associated map Frm gm coincides with the map F(ev) appearing in the regularity
condition. O
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14.5. Induced action. According to proposition 14.4 the restriction ¢ =
Fgm gm|G}, x S is a smooth left action of the jet group G, on the standard
fiber S.

Let us define gy = Fpm pinvJi(R™, M) x S: P"M x S — FM. For every
u=jhg € invJJ(R™ M), s € S and jif € G, we have

(1) th(]gg Ojgfag(jgfila 8)) = QM(]ggv 8)

and the restriction (qar)y = qam(J§9g, ) is a diffeomorphism. Hence g determines
the structure of the associated fiber bundle P"M[S;¢] on FM, cf. 10.7.

Proposition. For every bundle functor F': M f,, — FM of order r and every
m-dimensional manifold M there is a canonical structure of an associated bundle
P"M](S;¥¢) on FM given by the map qy; and the values of the functor F lie in
the category of bundles with structure group G, and standard fiber S.

Proof. The first part was already proved. Consider a local diffeomorphism
f+ M — N. For every jog € P"M, s € S we have

Ffoqu(jog,s)=FfoFg(s)=qn(jo(fog)s)

So we identify Ff with {P"f,ids}: P"M xqr S — P'N xgr S. O

14.6. Description of r-th order natural bundles. Every smooth left action
¢ of G on a manifold S determines a covariant functor L: PB(GL,) — FM,y,
LP = P[S;¢], Lf = {f,ids}. An r-th order bundle functor F' with standard
fiber S induces an action ¢ of G7,, on S and we can construct a natural bundle
G=LoP: Mf, — FM.

We claim that F' is naturally equivalent to G. For every u = jjg € P, M
there is the diffeomorphism (gps),: S — F, M which we shall denote F'u. Hence
we can define maps xyr: GM — FM by

xm({u, s}) = Fu(s) = qu(jog, s) = Fyg(s).

According to 14.5.(1), this is a correct definition, and by the construction, the
maps xa are fibered isomorphisms. Since Gf = {P"f,idg} for every local
diffeomorphism f: M — N, we have Ff o xpr({45g,5}) = F(fog)(s) = xn ©
Gf{jsg. 5})-

From the geometrical point of view, naturally equivalent functors can be
identified. Hence we have proved

Theorem. There is a bijective correspondence between the set of all r-th order
natural bundles on m-dimensional manifolds and the set of smooth left actions
of the jet group G}, on smooth manifolds.

In the next examples, we demonstrate on well known natural bundles, that
the identification in the theorem is exactly what the geometers usually do.
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14.7. Examples.

1. The reader should reconsider that in the case of frame bundles P" the
identification used in 14.6, i.e. the relation of the functor P" to the functor
G constructed from the induced action, is exactly the usual identification of
principal fiber bundles (P, p, M, G) with their associated bundles P[G, \], where
A is the left action of G on itself.

2. For the tangent bundle T, the map (qas), with u = jig € PLM is just the
linear map Tpg: ToR™ — T, M determined by jig, i.e. the linear coordinates
on T, M induced by local chart g. Hence the tangent bundle corresponds to the
canonical action of GL, = GL(m,R) on R™.

3. Further well known natural bundles are the functors T} of r-th order k-
velocities. More precisely, we consider the restrictions of the functors defined in
12.8 to the category M f,,. Let us recall that Ty M = J§(R¥, M) and the action
on morphisms is given by the composition of jets. Hence, in this case, for every
u = jbg € PrM the map (qar), transforms the classes of r-equivalent maps
(R* 0) — (M, x) into their induced coordinate expressions in the local chart g,

ie. (), ' (56 f) = 35(g7 o f).

14.8. Vector bundle functors. In accordance with 6.14, a bundle functor
F: Mf,, — FM is called a vector bundle functor on M f,,, or natural vector
bundle, if there is a canonical vector bundle structure on each value F'M and
the values F'f on morphisms are morphisms of vector bundles. Let F' be an
r-th order natural vector bundle with standard fiber V' and with induced action
¢: G, xV — V. Then ¢ is a group homomorphism G}, — GL(V) and so V
carries a structure of GJ,,-module. On the other hand, every G -module V gives
rise to a natural bundle F', see the construction in 14.6, and an application of F'
to charts of any atlas on a manifold M yields a vector bundle atlas on the value
FM — M. Therefore proposition 14.6 implies

Proposition. There is a bijective correspondence between r-th order vector
bundle functors on M f,, and G}, -modules.

14.9. Examples.

1. In our setting, the p-covariant and g-contravariant tensor fields on a man-
ifold M are just the smooth global sections of FM — M, where F is the vector
bundle functor corresponding to the GL(m)-module @ R™* @ @IR™, cf. 7.2.

2. In 6.7 we discussed constructions with vector bundles corresponding to a
smooth covariant functor F on the category of finite dimensional vector spaces
and these constructions can be applied to the values of any natural vector bundle
to get new natural vector bundles, cf. 6.14. There we applied F to the cocycle of
transition functions. Let us look what happens on the level of the corresponding
GI -modules. If we apply F to a G}, -module V' with action ¢: G, — GL(V),
we get a vector space FV with action /: G7, — GL(FV), {(g) = F(£(g)), i.e.
a new G, -module FV. Let us assume that G and G are the natural vector
bundles corresponding to V' and FV. The canonical vector bundle structure on
(FG)M = P"M x¢r FV coincides with that on F(GM) by 10.7.(4). Similarly,
we can handle contravariant functors and bifunctors on the category of vector
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spaces, cf. 6.7. In particular, the values of natural vector bundles corresponding
to direct sums of the modules are just fibered products over the base manifolds
of the individual bundles. Let us also note that C* (&"F;M) = &' (C*(F,M)).

3. There are also well known examples of higher order natural vector bun-
dles. First of all, we recall the functor of r-th order k-dimensional covelocities
J(,RF)y = Ty* introduced in 12.8. If r,k = 1, we get the dual bundles to
the tangent bundles J}(R,M) = TM. So the vector bundle structure on the
cotangent bundle is natural and the tangent spaces are the duals, from our point
of view. But we can apply the construction of a dual module to any G7,-module
and this leads to dual natural vector bundles according to 14.6. In this way we
get the r-th order tangent bundles T(") := (T™*)* or, more general the bundle
functors TJ™ = (T}*)*, see 12.14.

14.10. Affine bundle functors. A bundle functor F': Mf,, — FM is called
an affine bundle functor on M f,,, or natural affine bundle, if each value FM —
M is an affine bundle and the values on morphisms are affine maps. Hence the
standard fiber V of an r-th order natural affine bundle is an affine space and the
induced action /£ is a representation of G, in the group of affine transformations
of V. So for each g € G}, there is a unique linear map Z(g): VoV satisfying
U(g)(y) = L(g)(x) + (g)(y — ) for all z, y € V. It follows that ¢ is a linear rep-
resentation of G}, on the vector space V and there is the corresponding natural
vector bundle F. By the construction, for every m-dimensional manifold M the
value FM is just the modelling vector bundle to FM and for every morphism
f: M — N, ﬁf is the modelling linear map to F'f. Hence two arbitrary sections
of F'M ‘differ’ by a section of FM. The best known example of a second order
natural affine bundle is the bundle of elements of linear connections Q_Pl) which
we shall study in section 17. The modelling natural vector bundle QP"' is the
tensor bundle T'® T* ® T™* corresponding to GL(m)-module R” @ R™* @ R™*.

Next we shall describe all natural transformations between natural bundles
in the terms of G7,-equivariant maps.

14.11. Lemma. For every natural transformation x: F — G between two
natural bundles on M f,, all mappings xar: FM — GM cover the identities
idpy-

Proof. Let x: F — G be a natural transformation and let us write p: FM — M
and qg: GM — M for the canonical projections onto an m-dimensional manifold
M. If y € FM is a point with z := ¢(xam(y)) # p(y), then there is a local
diffeomorphism f: M — M such that germ,,f = germ,,idy and f(z) = 2,
Z # z. But now the localization condition implies gox o F f(y) # qoG foxnm (v),
for o Gf = f oq. This is a contradiction. [

14.12. Theorem. There is a bijective correspondence between the set of all
natural transformations between two r-th order natural bundles on M f,, and
the set of smooth G, -equivariant maps between their standard fibers.

Proof. Let F and G be natural bundles with standard fibers S and @ and let
x: F — G be a natural transformation. According to 14.11, we have the restric-
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tion xgm|S: S — @ and we claim that this is G7, -equivariant with respect to the
induced actions. Indeed, for any ji f € GI, we get (xgm|S)o Ff = Gfo(xrm|S),
but Ff: S — 5 and Gf: Q — Q are just the induced actions of jjf on S and
Q. Now we have to show that the whole transformation y is determined by the
map xgm|S. First, using translations ¢,: R™ — R™ we see this for the map
Xrm. Then, if we choose any atlas (Uy,,u,) on a manifold M, the maps Fu,,
form a fiber bundle atlas on F'M and we know x s 0 Fu, = Gug © xgm. Hence
the locality of bundle functors implies xar|(pk;) "1 (Us) = Gug 0 xrm 0 (Fugs) L

On the other hand, let xo: § — @ be an arbitrary G} -equivariant smooth
map. According to 14.6, the functors F' or G are canonically naturally equivalent
to the functors L o P" or K o P", where L or K are the functors corresponding
to the induced G),-actions ¢ or k on the standard fibers S or @), respectively.
So it suffices to define a natural transformation y: L o P" — K o P". We
set xpr = {idprar,xo}. It is an easy exercise to verify that x is a natural
transformation. Moreover, we have xgm|S = xo. O

In general, an operator is a rule transforming sections of a fibered manifold
Y — M into sections of another fibered manifold ¥ — M. We shall deal with
the case M = M in this section. Let us recall that C°Y means the set of all
smooth sections of a fibered manifold Y — M.

14.13. Definition. Let Y 2 M, Y 2 M be fibered manifolds. A local
operator A: C®°Y — C*Y is a map such that for every section s: M — Y
and every point @ € M the value As(x) depends on the germ of s at z only.
If, moreover, for certain k € N or k = oo the condition j¥s = j¥q implies
As(z) = Aq(z), then A is said to be of order k. An operator A: C*Y — C®Y
is called a regular operator if every smoothly parameterized family of sections of
Y is transformed into a smoothly parameterized family of sections of Y.

14.14. Associated maps to an k-th order operator. Consider an operator
A: C®Y — C*®Y of order k. We define a map A: J*Y — Y by A(jks) = As(z)
which is called the associated map to the k-th order operator A.

Proposition. The associated map to any finite order operator A is smooth if
and only if A is regular.

Proof. Let A: C®Y — C*°Y be an operator of order k. If we choose local fibered
coordinates on Y, we also get the induced fibered coordinates on J*Y. But
in these local coordinates, the jets of sections are identified with (polynomial)
sections. Thus, a chart on J*Y can be viewed as a smoothly parameterized
family of sections in C*°Y and so the smoothness of A follows from the regularity.
The converse implication is obvious. [

14.15. Natural operators. A natural operator A: F ~~ G between two
natural bundles F' and G is a system of regular operators Ap;: C®°(FM) —
C*®(GM), M € ObM f,,, satisfying
(i) for every section s € C*°(F'M — M) and every diffeomorphism f: M — N
it holds
An(Ffoso ) =GfoAysof
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(i) Ay (s|U) = (Ams)|U for every s € C°°(FM) and every open submanifold
UcCM.

In particular, condition (ii) implies that natural operators are formed by local
operators.

A natural operator A: F' ~~ G is said to be of order k, 0 < k < oo, if all
operators Ay are of order k. The system of associated maps Ayr: JEFFM — GM
to the k-th order operators Ajs is called the system of associated maps to the
natural operator A. The associated maps to finite order natural operators are
smooth.

We can look at condition (i) even from the viewpoint of the local coordinates
on a manifold M. Given a local chart u: U € M — V C R™, the diffeo-
morphisms f: V — W C R™ correspond to the changes of coordinates on U.
Combining this observation with localization property (ii), we conclude that the
natural operators coincide, in fact, with those operators, the local descriptions
of which do not depend on the changes of coordinates.

14.16. Proposition. For every r-th order bundle functor F' on Mf,, its
composition with the functor of k-th jet prolongations of fibered manifolds
J*k: FM — FM is a natural bundle of order r + k.

Proof. Let f: M — N be a local diffeomorphism. Then, by definition of the
associated maps Fs, n, we have

Ff=Fyno((j"fopm)xidpy): FM — FN.

Hence J*(F f) depends on (k + r)-jets of f in the underlying points in M only.
It is an easy exercise to verify the axioms of natural bundles. [

14.17. Proposition. There is a bijective correspondence between the set of
k-th order natural operators A: F ~ G between two natural bundles on M f,,
and the set of all natural transformations a: J* o F — G.

Proof. Let Ajs be the associated maps of an k-th order natural operator A: F' ~~
G. We claim that these maps form a natural transformation a: J*F — G. They
are smooth by virtue of 14.14 and we have to verify Gf o Ay = Ay o JEFf for
an arbitrary local diffeomorphism f: M — N. We have

An((J*Ff)(jzs)) = An(*(Ffoso 1) (f(@)))
= An(Ffoso f)(f(x)) = Gf o Ays(x)
= Gf o Au(jys).

On the other hand, consider a natural transformation a: J*F — G. We
define operators Ay;: FM ~~ GM by Ays(z) = an(jFs) for all sections
s € C*°(FM). Since the maps a;s are smooth fibered morphisms and according
to lemma 14.11 they all cover the identities idy;, the maps Ajp;s are smooth sec-
tions of GM. The straightforward verification of the axioms of natural operators
is left to the reader. [J
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14.18. Let F': Mf,, — FM be an r-th order natural bundle with standard
fiber S and let £: G, xS — S be the induced action. The identification R™ x.S =
FR™, (x,s) — F(t;)(s), induces the identification C*°(R™,S) = C*°(FR™),
(5: R™ — S) — (s(z) = Fty(5(x))) € C(FR™). Hence the standard fiber of
the natural bundle J*F equals 7% S. Under these identifications, the action of
F on an arbitrary local diffeomorphism is of the form

Fy(x,s) = (9(2), F(t_g(x) © g 0 t2)(5))

and the induced action ¢¥: GI'F* x Tk § — Tk § determined by the functor J*F
is expressed by the following formula

(1) 5 ™9,368) = £ (g ™9, 46 (Fto 0 3(2)))

i6(Fgo Fty—i(,)03(g~ " (x))) € JyFR™
g(Ft,EOFQOth_l(x) OE(g_l(x))) € T,IZS
6 (

In particular, if a = ngrkg € GL C GT+F ie. g is linear, then
2) (*(a,jo3) = G5 (059509~ (2)) = j§(lao o g™").

As a consequence of the last two propositions we get the basic result for
finding natural operators of prescribed types. Consider natural bundles F or F’
on M f,, of finite orders r or r’, with standard fibers S or S’ and induced actions
Cor ¢ of GI' or GQ;, respectively. If ¢ = max{r + k, '} with some fixed k € N
then the actions ¢* and ¢ trivially extend to actions of G4, on both Tk S and
S’ and we have

Theorem. There is a canonical bijective correspondence between the set of
all k-th order natural operators A: F' ~ F' and the set of all smooth GY,-
equivariant maps between the left G% -spaces T* S and S'.

14.19. Examples.

1. By the construction in 3.4, the Lie bracket of vector fields is a bilinear
natural operator [, |: T @ T ~ T of order one, see also corollary 3.11. The
corresponding bilinear G2 -equivariant map is

b= (',...,0™): TLR™ x TLR™ — R™

m

V(XL XEY™ Y = XY - YiX].

Later on we shall be able to prove that every bilinear equivariant map 0': T R™ x

m
T" R™ — R™ is a constant multiple of b composed with the jet projections and,
moreover, every natural bilinear operator is of a finite order, so that all bilinear
natural operators on vector fields are the constant multiples of the Lie bracket.

On the other hand, if we drop the bilinearity, then we can iterate the Lie bracket
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to get operators of higher orders. But nevertheless, one can prove that there are
no other G2 -equivariant maps o': TLR™ x T1R™ — R™ beside the constant
multiples of b and the projections T}, R™ x R™ — R™. This implies, that the
constant multiples of the Lie bracket are essentially the only natural operators
T®T ~ T of order 1.

2. The exterior derivative introduced in 7.8 is a first order natural oper-
ator d: AFT* ~» A*F1T* Formula 7.8.(1) expresses the corresponding G2 -
equivariant map

TT}L(AkRm*) N Ak+1Rm*
(Pir iy Piriningr) — Z(*l)ﬁlﬂl,_fj...z'kﬂ,ij
J
where the hat denotes that the index is omitted. We shall derive in 25.4 that
for k > 0 this is the only G2, -equivariant map up to constant multiples. Con-
sequently, the constant multiples of the exterior derivative are the only natural
operators of the type in question.

14.20. In concrete problems we often meet a situation where the representa-
tions of GT, are linear, or at least their restrictions to GL C G7, turn the
standard fibers into GL(m)-modules. Then the linear equivariant maps between
the standard fibers are GL(m)-module homomorphisms and so the structure of
the modules in question is often a very useful information for finding all equi-
variant maps. Given a G! -module V and linear coordinates y” on V, there are

the induced coordinates y? = 6‘;;310 on TEV, where z° are the canonical coor-
dinates on R™ and 0 < |a| < k. Then the linear subspace in 7%V defined by
yP =0, |a| # i, coincides with V' @ S“R™*. Clearly, these identifications do not
depend on our choice of the linear coordinates y”. Formula 14.18.(2) shows that
TEV =V @--- @V ® S*R™ is a decomposition of TXV into G}, -submodules
and the same formula implies the following result.

Proposition. Let V be a G}, -invariant subspace in @ R™ @ @IR™* and let us
consider a representation £: G" — Diff(V') such that its restriction to G, C GT,
is the canonical tensorial action. Then the restriction of the induced action £*
of Tk on TEV =V @ --- @V ® S¥R™ to G, C GIF* is also the canonical

tensorial action.

14.21. Some geometric constructions are performed on the whole category M f
of smooth manifolds and smooth maps. Similarly to natural bundles, the bundle
functors on the category M f present a special case of the more general concept
of bundle functors.

Definition. A bundle functor on the category M f is a covariant functor F': M f
— FM satisfying the following conditions

(i) BoF =Id iy, so that the fiber projections form a natural transformation
p: F— Idagy.

(ii) If i: U — M is an inclusion of an open submanifold, then FU = p, (U)
and Fi is the inclusion of p,; (U) into FM.
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(iii) If f: P x M — N is a smooth map, then Ff: Px FM — FN, defined
by Ff(p, ) = Ff,, p € P, is smooth.

For every non-negative integer m the restriction F;, of a bundle functor F’
on Mf to the subcategory M f,, C Mf is a natural bundle. Let us call the
sequence S = {So, S1,...,Sm, ...} of the standard fibers of the natural bundles
F,, the system of standard fibers of the bundle functor F. Proposition 14.2
implies that for every m there is the canonical isomorphism R™ x S, &2 FR™,
(z,s) — Ft,(s), and given an m-dimensional manifold M, py;: FM — M is a
locally trivial bundle with standard fiber S,,.

Analogously to 14.3 and 14.4, a bundle functor F on Mf is said to be of
order r if for every smooth map f: M — N and point z € M the restriction
Ff|F, M depends only on j7 f. Then the maps Fay n: J"(M,N)xy FM — FN,
Fyn(iif,y) = Ff(y) are called the associated maps to the r-th order functor
F. Since in the proof of proposition 14.3 we never used the invertibility of
the jets in question, the same proof applies to the present situation and so the
associated maps to any finite order bundle functor on M f are smooth. For every
m-~dimensional manifold M, there is the canonical structure of the associated
bundle FM = P"M]IS,,], cf. 14.5.

Let S = {Sp, S1, ...} be the system of standard fibers of an r-th order bundle
functor £ on Mf. The restrictions ¢,,, of the associated maps Fgm gr to
JH(R™,R™)g x Sy, have the following property. For every A € J§(R™,R")o,
B e JJ(R",RP)y and s € S,

(1) gm,,p(B © A7 S) = En,p(Bv gm,n (Aa S))

Hence instead of the action of one group G, on the standard fiber in the case
of bundle functors on M f,,, we get an action of the category L” on S, see
below and 12.6 for the definitions. We recall that the objects of L” are the
non-negative integers and the set of morphisms between m and n is the set
L7, , = J5(R™, R,

Let S = {Sp, S1, ...} be a system of manifolds. A left action ¢ of the category
L" on § is defined as a system of maps £y, n: Ly, ,, X Sy — Sy, satisfying (1).
The action is called smooth if all maps ¢,, ,, are smooth. The canonical action of
L™ on the system of standard fibers of a bundle functor F' is called the induced
action. Every induced action of a finite order bundle functor is smooth.

14.22. Consider a system of smooth manifolds S = {Sp, S, ...} and a smooth
action /£ of the category L" on §. We shall construct a bundle functor L deter-
mined by this action. The restrictions £, of the maps ¢, ,, to invertible jets
form smooth left actions of the jet groups G}, on manifolds S,,. Hence for every
m-dimensional manifold M we can define LM = P"M[S,,; {m]. Let us recall the
notation {u, s} for the elements in P"M X gr S, i.e. {u, s} = {uoA, (,, (A1, s)}
forallu e P"M, Ae G}, s € Sp. For every smooth map f: M — N we define
Lf: FM — FN by

Lf({u,s}) = {v, lmn(v™ 0 Aou,s)}
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where m = dimM, n = dimN, u € PPM, A=j7f, and v € P}(I)N is an arbi-
trary element. We claim that this is a correct definition. Indeed, chosen another
representative for {u, s} and another frame v' € P ), say {uo B,l,, (B~ 8)},
and v = v o C, formula 14.21.(1) implies

Lf({fuo B/, (B!, 5)} =
={v0C,lyp(C T ov oAouoB,l,(B7,s))} =
={v0C,l,(C  lpn(v o Aou,s))} =
={v, b (v 0o Aou,s)}.

One verifies easily all the axioms of bundle functors, this is left to the reader.

On the other hand, consider an r-th order bundle functor F on M f and
its induced action ¢. Let L be the corresponding bundle functor, we have
just constructed. Analogously to 14.6, there is a canonical natural equivalence
x: L — F. In fact, we have the restrictions of y to manifolds of any fixed di-
mension which consists of the maps ¢p; determining the canonical structures of
associated bundles on the values F'M, see 14.6. It remains only to show that
Ffoxm = xnoFf for all smooth maps f: M — N. But given jig € P, M,
joh € P}”(:C)N and s € S,,, we have

Ffoxu({iog,s}) = FfoFg(s)=FhoF(h™' o fog)(s)
= XN (J5 s bmn (55 (W™ 0 f 0 g),8)) = xv © Lf ({759, 5})-

Since in geometry we usually identify naturally equivalent functors, we have
proved

Theorem. There is a bijective correspondence between the set of r-th order
bundle functors on M f and the set of smooth left actions of the category L" on
systems S = {Sp, S1, ...} of smooth manifolds.

14.23. Natural transformations. Consider a smooth action £ or ¢’ of the
category L" on a system & = {Sp,51,...} or & = {S(,57,...} of smooth
manifolds, respectively. A sequence ¢ of smooth maps ¢;: S; — 5. is called a
smooth L"-equivariant map between £ and ¢’ if for every s € Sy, A € Ly, ,, it
holds

On(lmn(A,s)) = E;n,n(A7 om(s)).

Theorem. There is a bijective correspondence between the set of natural trans-
formations of two r-th order bundle functors on M f and the set of smooth L"-
equivariant maps between the induced actions of L™ on the systems of standard
fibers.

Proof. Let x: F' — G be a natural transformation, ¢ or k be the induced action
on the system of standard fibers § = {Sg, S1,...} or Q@ = {Qo,Q1,. ..}, respec-
tively. As we proved in 14.11, all maps xpar: FM — GM are over identities. Let
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us define ¢, : S, — @y as the restriction of xg» to S,. If j4f € Ly, ,, s € S,
then

‘Pn(zm,n(jgfa s5)) = xrn 0 Ff(s) = Gf oxgm(s) = km,n(jgfv om(s)),

so that the maps ¢,, form a smooth L"-equivariant map between ¢ and k. More-
over, the arguments used in 14.11 imply that x is completely determined by the
maps Q.

Conversely, by virtue of 14.22, we may assume that the functors F' and G
coincide with the functors L and K constructed from the induced actions. Con-
sider a smooth L"-equivariant map ¢ between ¢ and k. Then we can define for
all m-dimensional manifolds M maps xp: FM — GM by

X = {idpras, @m}-

The reader should verify easily that the maps x s form a natural transforma-
tion. O

14.24. Remark. Let F' be an r-th order bundle functor on Mf. Its in-
duced action can be interpreted as a smooth functor Fiys: L™ — M f, where
the smoothness means that all the maps Ly, ,, X Fing(m) — Fine(n) defined by
(A, x) — FinsA(x) are smooth. Then the concept of smooth L"-equivariant maps
between the actions coincides with that of a natural transformation. Hence we
can reformulate theorems 14.22 and 14.23 as follows. The full subcategory of
r-th order bundle functors on M f in the category of functors and natural trans-
formations is naturally equivalent to the full subcategory of smooth functors
L" — Mf. Let us also remark, that the L"-objects can be viewed as numerical
spaces R™, 0 < m < oo, with distinguished origins. Then every M f-object is
locally isomorphic to exactly one L"-object and, up to local diffeomorphisms,
L" contains all r-jets of smooth maps. Therefore, we can call L™ the r-th order
skeleton of M f. We shall work out this point of view in our treatment of general
bundle functors in the next chapter. Let us mention that the bundle functors
on Mf,, also admit such a description. Indeed, the r-th order skeleton then
consists of the group G, only.

15. Prolongations of principal fiber bundles

15.1. In the present section, we shall mostly deal with the category PB,,(G)
consisting of principal fiber bundles with m-dimensional bases and a fixed struc-
ture group G, with PB(G)-morphisms which cover local diffeomorphisms be-
tween the base manifolds. So a PB,,(G)-morphism ¢: (P,p, M) — (P',p', M’)
is a smooth fibered map over a local diffeomorphism ¢o: M — M’ satisfying
@ opg=pyoep forall g€ G, where p and p' are the principal actions on P and
P’. In particular, every automorphism p: R™ x G — R™ x G is fully determined
by its restriction @: R™ — G, @(x) = pra o p(z, e), where e € G is the unit, and
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by the underlying map @g: R™ — R™. We shall identify the morphism ¢ with
the couple (po, @), i.e. we have

(1) p(x,a) = (po(z), p(x).a).

Analogously, every morphism : R™ x G — P, i.e. every local trivialization of
P, is determined by v and 1 := ¥|(R™ x {e}): R™ — P covering ty. Further
we define ¥ = 1; o ¢0_1, so that 1, is a local section of the principal bundle P,
and we identify the morphism v with the couple (1, 1). We have

(2) P(x,a) = (Y1 0 ho(x)).a .

Of course, for an automorphism ¢ on R™ x G we have ¢ = pry o @.

15.2. Principal prolongations of Lie groups. We shall apply the construc-
tion of r-jets to such a situation. Since all PB,,,(G)-objects are locally isomorphic
to the trivial principal bundle R™ x G and all PB,,,(G)-morphisms are local iso-
morphisms, we first have to consider the group W, G of r-jets at (0,e) of all
automorphisms ¢: R™ x G — R™ x G with ¢((0) = 0, where the multiplication
w1 is defined by the composition of jets,

N(JTSO(Oa G)JTw(Oa 6)) = JTW © 90)(07 6).

This is a correct definition according to 15.1.(1) and the inverse elements are
the jets of inverse maps (which always exist locally). The identification 15.1 of
automorphisms on R™ x G with couples (¢g, ¢) determines the identification
(1) W;';LG = G:n X T;G7 jr(p(ov 6) = (]6@%]5@)

Let us describe the multiplication g in this identification. For every ¢, 9 €
PB..(G)(R™ x G,R™ x G) we have

Yo p(x,a) = P(po(2), p(x).a) = (Yo © po(2), Y(po(z)).p(2).a)
so that given any (A, B), (A, B’) € GI, x T} G we get
(2) 1((A,B),(A,B")) = (Ao A, (Bo A").B).

Here the dot means the multiplication in the Lie group 7 G, cf. 12.13. Hence
there is the structure of a semi direct product of Lie groups on W;,G. The Lie

group W) G = GT, xT" G is called the (m, r)-principal prolongation of Lie group
G.

15.3. Principal prolongations of principal bundles. For every principal
fiber bundle (P, p, M,G) € ObPB,,(G) we define

WP = {j"(0,€); 1 € PBp(G)(R™ x G, P)}.
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In particular, W"(R™ x G) is identified with R™ x W G by the rule
R™ x W) G > (x,77¢(0,€)) — j" (1, 0 ¢)(0,e) € W' (R™ x G)
where 7, = t, Xidg, and so there is a well defined structure of a smooth manifold

on W"(R™ x G). Furthermore, if we define the action of W on PB,,(G)-
morphisms by the composition of jets, i.e.

W x (3" (0,¢)) == j"(x 2 ¥)(0,e),
W™ becomes a functor. Now, taking any principle atlas on a principal bundle
P, the application of the functor W to the local trivializations yields a fibered
atlas on W". Finally, there is the right action of W) G on W"P defined for
every 77(0,€) € Wi,G and j7(0,¢) € WP by (j70(0,e))(j70(0, ) = 7 (1o
©)(0,€e). Since all the jets in question are invertible, this action is free and
transitive on the individual fibers and therefore we have got principal bundle
(WTP,po B, M,W!G) called the r-th principal prolongation of the principal
bundle (P,p, M,G). By the definition, for a morphism ¢ the mapping W7¢
always commutes with the right principal action of W] G and we have defined the
functor W": PB,,,(G) — PB,, (W G) of r-th principal prolongation of principal
bundles.
15.4. Every PB,,(G)-morphism ¢: R™ x G — P is identified with a couple
(10, 1), see 15.1.(2). This yields the identification
(1) W'P =P"M xp J'P
and also the smooth structures on both sides coincide. Let us express the corre-
sponding action of G7 <TG on P"M X p; J" P. If (u,v) = (§§0, 5711 (10 (0))) €
P"M xp J"P and (A, B) = (450, j0@) € Gr, x T G, then 15.2.(2) implies
Yo p(z,a) = P(po(2), p(x).a) = P1 (o © po(@))-¢(2).a
= (po (¥1,80 05" oy 1) o (Yo © po)(2)).a
where p is the principal right action on P. Hence we have
(2) (u,v)(A,B) = (uo A,v.(Bo A" ou™))
where ’. is the multiplication
m: JTP s (M, G) = J'P, (ji0,j1s) — j5(po (0,5)).
The decomposition (1) is natural in the following sense. For every PB,,(G)-
morphism v¢: (P,p, M,G) — (P',p', M, G), the PB,, (W, G)-morphism W7
has the form (P"tg, J"¢). Indeed, given ¢: R™ x G — P, we have () o )y =
Yoo, (Vo) =wo@o(hgopy) t=1o0p o wo_l Therefore, in the category
of functors and natural transformations, the following diagram is a pullback

W

]

ProB——B
Here B: PB,,(G) — Mf, is the base functor, the upper and left-hand natural
transformations are given by the above decomposition and the right-hand and
bottom arrows are the usual projections.
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15.5. For every associated bundle E = P[S;{] to a principal bundle (P, p, M, G)
there is a canonical left action ¢": W, G x TS =TS of W G=G,, xT)G
on 17 5. We simply compose the prolonged action 7,.¢ of T, G on 1, S, see
12.13, with the canonical left action of Gj,, on both T, G and 77,5, i.e. we set

(1) (57(0,€),45s) = Jo (Lo (powg ' s0 )

for every j"¢(0,¢€) = (j§o,jo@) € GL, x T G.

Proposition. For every associated bundle E = PI[S;{], there is a canonical
structure of the associated bundle W" P[T" S;{"] on the r-th jet prolongation
J'E.

Proof. Similarly to 14.6, every action £: G x S — S determines the functor L
on PB,,(G), P — P[S,{] and ¢ — {p,ids}, with values in the category of
the associated bundles with standard fiber S and structure group G. We shall
essentially use the identification

T7,S 2 Jj(R™ x ) = J5((R™ x G)[S: 1))
(2) jos = jo(idrm, s) = jg{é, s}

where é: R™ — R™ x G, é(z) = (x,e). Then the action ¢" becomes the form

(3) (57 (0,€), jo{é, s}) = jo{é, Lo (powy ' 5005 ')}
= J"(Lp)(j5{é, s}).

Now we can define a map ¢: WP x T} S — J"E determining the required
structure on J"E. Given u = j"(0,e) € W"P and B = jjs € T" S, we set

q(u, B) = J" (L) (jo e, s}).

Since the map ¥ is a local trivialization of the principal bundle P, the restriction
qu = q(u, ): T1S — Jyo(0)E is a diffeomorphism. Moreover, for every A =
J"¢(0,e) € W G, formula (3) implies

q(uA (A1, B)) = J"(L(¥ 0 ) (J" (Lo~ ") (G5 {é, 5})) = a(u, B)

and the proposition is proved. [J

For later purposes, let us express the corresponding map 7: W"P x; JTE —
T7.S. It holds

7(u, jps) = jg(TE o(poé,s01y))

where 7g: P xpr E — S is the canonical map of E and u = j"(0,e) € WL P.
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15.6. First order principal prolongation. We shall point out some special
properties of the groups W}, G and the bundles W' P. Let us start with the group
T;,G. Every map s: R™ — G can be identified with the couple (5(0), As(g)-105),
and for a second map s": R™ — G we have (we recall that A, and p® are the left
and right translations by a in G, p is the multiplication on G)

= 5'(0)s'(0) 715’ (x)s(0)s(0) " s(z)
= ((0)3(0)) (coniugoy-1 ((0) 15/ (2))) (5(0) "s(a)).

It follows that T G is the semi direct product G x Jj(R™,G),. This can be
described easily in more details in the case » = 1. Namely, the first order jets
are identified with linear maps between the tangent spaces, so that (1) implies
T:G = G x (g ® R™) with the multiplication

1) po(ss)(@)

(2) (', 2').(a, Z) = (a'a, Ad(a™")(Z') + Z),

where a, o’ € G, Z, Z' € Hom(R™, g). Taking into account the decomposition
15.2.(1) and formula 15.2.(2), we get

WG = (GL(m) x G) x (g @ R™)
with multiplication
(3) (A ', Z2).(Ava, Z) = (A" o Ad a, Ad(a™ 1) (Z)) o A+ 2).

Now, let us view fibers P!M as subsets in Hom(R™,T, M) and elements
in J!P as homomorphisms in Hom(7T,M,T,P), y € P,. Given any (u,v) €
PIM xp JIP=W'P and (A,a,Z) € (G}, x G) x (g @ R™), 15.4.(2) implies

(4) (u,v)(A,a,Z) = (uo A, Tp(v,TAg0 Zo A" ou™1))

where p is the principal right action on P.

15.7. Principal prolongations of frame bundles. Consider the r-th prin-
cipal prolongation W7 (P*M) of the s-th order frame bundle P*M of a manifold
M. Every local diffeomorphism ¢: R™ — M induces a principal fiber bundle
morphism P*p: P*R™ — P*M and we can construct ji, . \(P*p) € W"(P*M),
where e; denotes the unit of G3,. One sees directly that this element de-
pends on the (r + s)-jet j; "¢ only. Hence the map ji™°p — j(TO’eS)(Psgp)
defines an injection iyr: P"P*M — WT(P*M). Since the group multiplication
in both G7,7¢ and W/ G%, is defined by the composition of jets, the restriction
ig: GTT5 — W G5 of igm to the fibers over 0 € R™ is a group homomor-
phism. Thus, the (r+ s)-order frames on a manifold M form a natural reduction
ipg: PTTSM — WT(P*M) of the r-th principal prolongation of the s-th order
frame bundle of M to the subgroup io(GLF) C W GS..
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15.8. Coordinate expression of ig: GIt* — W' G5 . The canonical coordi-
nates # on R™ induce coordinates a’,, 0 < |a| < 7+ s, on GTF%, @ (jiT°f) =

L 6;25 (0), and the following coordinates on W), G2.: Any element j"¢(0,¢e) €

W G5, is given by jipo € Gy, and jop € T),G5,, see 15.2. Let us denote the

. m?
coordinate expression of ¢ by bl (z), 0 < |y| < s, so that we have the coordi-
. ) SHIT
nates b 5, 0 < \*y| <5, 0< 6] <ronThGy,, b s(jop) = é%(O), and the
coordinates (aj; b 5), 0 < [B] <7, 0 <[y < s, 0<[0] <7, on WiG;,. By

definition, we have

1) io(ak) = (ahil.5)

In the first order case, i.e. for r = 1, we have to take into account a further
structure, namely TLGS, = G2, x (g3, @ R™*), cf. 15.6. So given io(j5™' f) =
(j& f,jsq), where ¢: R™ — G%,, we are looking for b = ¢(0) € G, and Z =
TAy-10Tphq € g5, @ R™*. Let us perform this explicitly for s = 2.

In G2, we have (q;'-,q;.k)*l = (a},al;,) with a;'-_&{c =0}, and aly = —ajal agal.
Let X = (ag,ajy, A}, A%) € TG? and b= (b, bjy,) € G?,. Tt is easy to compute

TXy(X) = (bj.al, bjaly + b alaj, by AT 0L AP 4 b, APaj + bl a? A}).

psj P i VPt ik psj

Taking into account all our identifications we get a formula for ig: G2, — WL G?,

N A ) 7 I N S A A N A 2 ~i D s ~i D _S
ZO(aja ajkvajkl) = (a'ja Qs Qjges Ap Qs QpGipy + Gy @Ay + a’psaja’kl)'

If we perform the above consideration up to the first order terms only, we get

C 2 Ll (i i N (il il i P
i0: G, — W,,G,., zo(aj,ajk) = (aj,aj,ap jl)'

16. Canonical differential forms

16.1. Consider a vector bundle E = P[V,{] associated to a principal bundle
(P,p, M, @) and the space of all E-valued differential forms Q(M; E). By theo-
rem 11.14, there is the canonical isomorphism ¢* between Q(M; E) and the space
of horizontal G-equivariant V-valued differential forms on P. According to 10.12,
the image ® = ¢*(¢) € QF__(P; V)9 is called the frame form of ¢ € Q¥(M; E).
We have

(1) D(Xy,...,Xk) =7(u, )o(TpXy,...,TpXk)

where X; € T,P and 7: P X3y E — V is the canonical map. Convgrsely, for
every Xi,..., X € Tva we can choose arbitrary vectors Xi,...,X; € T, P
with v € P, and TpX; = X, to get

(2) o(X1,..., X)) =qu, )o®(Xy,...,Xp)

where q: PxV — E is the other canonical map. The elements ® € Q.- (P; V)G
are sometimes called the tensorial forms of type ¢, while the differential forms
in Q(P; V)¢ are called pseudo tensorial forms of type £.
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16.2. The canonical form on P'M. We define an R™-valued one-form 6 =
Orr on P1M for every m-dimensional manifold M as follows. Given u = jig €
P'M and X = jjc € T,P*M we set

O (X) =u"toTp(X) =jo(g ' opoc) € THR™ =R™

In words, the choice of u € P*M determines a local chart at x = p(u) up to the
first order and the form 0, transforms X € T,, P M into the induced coordinates
of TpX. If we insert ¢ = idrys into 16.1.(1) we get immediately

Proposition. The canonical form 0y; € Q'(P1M;R™) is a tensorial form which
is the frame form of the 1-form idry; € QY (M;TM).

Consider further a principal connection I on P'M. Then the covariant ex-
terior differential drfy; is called the torsion form of I'. By 11.15, drf,; is
identified with a section of TM ® A2T*M, which is called the torsion tensor of
T'. If dr@y; = 0, connection I is said to be torsion-free.

16.3. The canonical form on W!P. For every principal bundle (P,p, M, Q)
we can generalize the above construction to an (R™ @ g)-valued one-form on
W1P. Consider the target projection 3: WP — P, an element u = j(0,¢) €
WP and a tangent vector X = jic € T,(W!P). We define the form 6 = 0p by

0(X) =u" o TH(X) = (¥ 0 foc) € Tooy(R™ x G) = R™ @g.

Let us notice that if G = {e} is the trivial structure group, then we get P = M,
Wlp = PlM and 91:' = 0M

The principal action p on P induces an action of G on the tangent space
TP. We claim that the space of orbits TP/G is the associated vector bundle
E = W!'P[R™ & g; /] with the left action £ of W,,G on T ) (R™ x G) = R™ & g,

. . . - —1
05 ¢(0,€), jge) = 35 (07D opoc).

Indeed, every PB,,(G)-morphism commutes with the principal actions, so that ¢
is a left action which is obviously linear and the map ¢: W' P x T0,e) (R xG) —
E transforming every couple j'4(0,e) € WP and jjc € T(g ) (R™ x G) into the
orbit in TP/G determined by j} (1 oc) describes the associated bundle structure
on F.

Proposition. The canonical form §p on WP is a pseudo tensorial one-form
of type /.

Proof. We have to prove 0p € QY (WIP;R™ @ g)WnG. Let p and p be the
principal actions on P and W!P, X = jlc € T,W'P, u = j'4(0,e), A =
jte(0,e) € WLG, a = pry o B(A). We have

Bopt=p*op
(P X =Gg(p* 0 ¢) € TuaW'P
Opo(p*)X =ji(p oy oBoptoc)=ji(p" ot oh o Boc).
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Hence
£A71 OHP(X):€A71(jé(1/ﬁloﬂoc):6‘po(ﬁA)*(X). O

Unfortunately, 8p is not horizontal since the principal bundle projection on
WP ispof.

16.4. Lemma. Let (P,p, M,G) be a principal bundle and q: WP = P*M x 5,
J'P — P'M be the projection onto the first factor. Then the following diagram
commutes

R™ &g 0P pwip

[ j:rq

R M iy

Proof. Consider X = jic € T,W'P, u = jl4(0,e). Then Tq(X) = j'(goc) and
q(u) = jdbo. It holds

pri o 0p(X) =pri(jy(¥ "o Boc)) = ji(1hy  opoBoc)
=js(Wgtopogoc) =0 oTq(X)

where p: P'M — M is the canonical projection. O

16.5. Canonical forms on frame bundles. Let us consider a frame bun-
dle P"M and the first order principal prolongation W!(P"~1M). We know
the canonical form 6 € QY (W(PT=1M);R™ @ g7~ })W=G " and the reduction
irng: PPM — W(P"~1M) to the structure group G, see 15.7. So we can define
the canonical form 6" on P"M to be the pullback 3,0 € Q' (P"M,R™ & g/ 1).
By virtue of 16.3 there is the linear action ¢ = £ o x where & is the group ho-
momorphism corresponding to iy, see 15.7, and 6" is a pseudo tensorial form
of type £. The form 0" can also be described directly. Given X € T, P"M,
we set & = 77_ju, X = Tn’_(X) € TuP""'M. Since every u = jif € P'M
determines a linear map u = T(Oye)PT_lf: R"@g ! — Tjg_lfPT_lM we get
" (X) =a 1(X).

16.6. Coordinate functions of sections of associated bundles. Let us
fix an associated bundle E = P[S;/] to a principal bundle (P,p, M,G). The
canonical map 7g: P X E — S determines the so called frame formo: P — S
of a section s: M — E, o(u) = tg(u,s(p(u))). As we proved in 15.5, J'E =
WTP[T} S; ¢"], m = dimM, and so for every fixed section s: M — E the frame
form o" of its r-th prolongation j"s is a map ¢": W"P — T S. If we choose
some local coordinates (U, ¢), ¢ = (y?), on S, then there are the induced local
coordinates y? on () ~1(U) C T%S, 0 < |a| < r, and for every section s: M —
E the compositions y£oc” define (on the corresponding preimages) the coordinate
functions a?, of j”s induced by the local chart (U, ¢). We deduced in 15.5 that
for every u = j"(0, ¢) = (jrbo, "1 (1 (0))) € WP

o"(u) = jomE(Y1 0 Yo, s 0 ).
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In particular, for the first order case we get

@ (u) = 4 0 o(u)

af (u) = dy? (joe(¥1 © 1o, s 0 1) 0 ¢)

where ¢: R — R™ is the curve t — ta’.

We shall describe the first order prolongation in more details. Let us denote ¢;,
i =1,...,m, the canonical basis in R™ and let e, « = m+1,...,m+dimG, be
a linear basis of the Lie algebra g. So the canonical form § on WP decomposes
into @ = @e; + 0%e,. Let us further write Y,, for the fundamental vector fields
on S determined by e, and let w® be the dual basis to that induced from e,
on VP. Hence if the coordinate formulas for Y, are Y, = ng(y)a%p, then for
z2€FE,,u€ P, X €V,P,y=r1g(u,z) we get

TE(,2):X = Yo (y)w (X) = =18 (y)w™(X) 55

The next proposition describes the coordinate functions of j's on WP by
means of the canonical form € and the coordinate functions a? of s on P.

Proposition. Let aP? be the coordinate functions of a geometric object field
s: M — E and let a?, a? be the coordinate functions of j's. Then a? = @ o f3,
where 3: WP — P is the target projection, and

da? + P (a?)6* = al6".

Proof. The equality a? = aP o 3 follows directly from the definition. We shall
evaluate da?(X) with arbitrary X € T,, W' P, where u € WP, u = j1(0,e) =
(38100, j 101 (100(0))). The frame u determines the linear isomorphism

o ="To,ey: R" ©g— TuP,

4 = ((u). We shall denote 6"(X) = £, 0*(X) = £*, so that 0(X) = 4~ (8. X) =
Ele;+E%,. Let us write X = 8, X = X7 + Xo with X7 = @(&;), Xo = 0(£%4,)
and let ¢ be the curve t — t&%e; on R™. We have

da?(X1) = dyP (jo (o oY1 0 ¢g 0 ¢))
= dy? (jo (TE (Y1 © Yo, 5 0 Y) 0 ¢)) = af (u)¢’
da®(Xz) = dy?(te( , s(p(1)))« X2) = =k (a ())& 5%

O= OF

Hence
da”(X) = da” (8. X) = aj (u)§"(X) — n%(a?(w))8*(X). O
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17. Connections and the absolute differentiation

17.1. Jet approach to general connections. The (general) connections on
any fiber bundle (Y, p, M, S) were introduced in 9.3 as the vector valued 1-forms
® e QYY;VY) with ® o ® = & and Im® = VY. Equivalently, any connection
is determined by the horizontal projection y = idyy — @, or by the horizontal
subspaces x(T,Y) C T,Y in the individual tangent spaces, i.e. by the horizontal
distribution. But every horizontal subspace x(7,Y) is complementary to the
vertical subspace VY and therefore it is canonically identified with a unique
element j?},s € J;Y. On the other hand, each j;s € JZ}Y determines a subspace in
T,Y complementary to VY. This leads us to the following equivalent definition.

Definition. A (general) connection I' on a fiber bundle (Y, p, M) is a section
I': Y — J'Y of the first jet prolongation 3: J'Y — Y.

Now, the horizontal lifting v: T'M x ;Y — TY corresponding to a connection
I is given by the composition of jets, i.e. for every &, = jlc € T,M and y € Y,
p(y) = x, we have v(&;,y) = I'(y) 0o &. Given a vector field &, we get the I'-
lift T¢ € X(Y), Té(y) = I'(y) o &(p(y)) which is a projectable vector field on
Y — M. Note that for every connection I' on p: ¥ — M and ¢ € T, it holds
x(€) =v(T'p(§),y) and @ =idry — x.

Since the first jet prolongations carry a natural affine structure, we can con-
sider J! as an affine bundle functor on the category FM,, ,, of fibered manifolds
with m-dimensional bases and n-dimensional fibers and their local fibered mani-
fold isomorphisms. The corresponding vector bundle functor is V' ® T* B, where
B: FMp,n — Mfy, is the base functor, see 12.11. The choice of a (general)
connection I'on p: Y — M yields an identification of J'Y — Y with VY @T* M.
Chosen any fibered atlas p, : (R™T" — R™) — (Y — M) with ¢ (R™T") = U,,
we can use the canonical flat connection on R to get such identifications on
JU,. In this way we obtain the local sections v, : U, — (V @ T*B)(U,) which
correspond to the Christoffel forms introduced in 9.7. More explicitly, if we pull
back the sections 7, to R™™™ — R™ and use the product structure, then we
obtain exactly the Christoffel forms.

In 9.4 we defined the curvature R of a (general) connection I' by means of the
Frolicher-Nijenhuis bracket, 2R = [®, ®]. It holds R[X1, Xa] = ®([xX1, xX2])
for all vector fields Xy, Xo on Y. In other words, given two vectors A;, As €
T,Y, we extend them to arbitrary vector fields X; and X3 on Y and we have
R(A1, Az) = O([x X1, xX2](y)). Clearly, we can take for X; and X2 projectable
vector fields over some vector fields &1, & on M. Then xX; = v&;, i = 1,2. This
implies that R can be interpreted as a map R(y, &1,8&2) = ®([v&1,7€2](y)). Such
a map is identified with a section Y — VY ® A2T*M. Obviously, the latter
formula can be rewritten as

R(y,&1,82) = [v€1,7&)(y) — v([€1, &2]) (v)-

This relation is usually expressed by saying that the curvature is the obstruction
against lifting the bracket of vector fields.
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17.2. Principal connections. Consider a principal fiber bundle (P,p, M, G)
with the principal action r: P x G — P. We shall also denote by 7 the canonical
right action r: J'P x G — J'P given by r9(jls) = jl(r9 0 s) for all g € G
and jls € J'P. In accordance with 11.1 we define a principal connection T’ on
a principal fiber bundle P with a principal action r as an r-equivariant section
I': P — J'P of the first jet prolongation J'P — P.

Let us recall that for every principal bundle, there are the canonical right
actions of the structure group on its tangent bundle and vertical tangent bundle.
By definition, for every vector field £ € X(M) and principal connection I the T'-
lift T'¢ is a right invariant projectable vector field on P. Furthermore, a principal
connection induces an identification J'P = VP ® T*M which maps principal
connections into right invariant sections.

17.3. Induced connections on associated fiber bundles. Let us consider
an associated fiber bundle E = P[S;{]. Every local section o of P determines a
local trivialization of E. Hence the idea of the definition of induced connections
used in 11.8 gets the following simple form. For any principal connection I' on
P we define the section I'g: E — J'E by I'g{u,s} = jl{o, 35}, where u € P,
and s € S are arbitrary, I'(u) = jlo and § means the constant map M — S
with value s. It follows immediately that the parallel transport Ptg(c, {u, s}) of
an element {u,s} € F along a curve ¢: R — M is the curve t — {Pt(c,u,t), s}
where Pt is the G-equivariant parallel transport with respect to the principal
connection on P.

We recall the canonical principal bundle structure (TP, Tp, TM,TG) on TP
and TE = TP[TS,T/], see 10.18. The horizontal lifting determined by the
induced connection I'g is given for every £ € X(M) by

(1) I'pé({u, s}) = {T€(u), 05} € (TE)¢(p(u))

where 0, € T,S is the zero tangent vector. Let us now consider an arbi-
trary general connection 'y on E. Chosen an auxiliary principal connection
I'p on P, we can express the horizontal lifting vz in the form I'g({u,s}) =
{Tp&(u),7(&(p(u)), s)}. The map 7 is uniquely determined if the action £ is in-
finitesimally effective, i.e. the fundamental field mapping g — X(S) is injective.
Then it is not difficult to check that the horizontal lifting vp can be expressed
in the form (1) with certain principal connection I" on P if and only if the map
7 takes values in the fundamental fields on S. This is equivalent to 11.9.

17.4. The bundle of (principal) connections. We intend to treat principal
connections as sections of an appropriate bundle. We have defined them as right
invariant sections of the first jet prolongation of principal bundles, so that given
a principal connection I' on (P,p, M,G) and a point z € M, its value on the
whole fiber P, is determined by the value in any point from P,. We define QP
to be the set of orbits J!P/G. Since the source projection a: J'P — M is G-
invariant, we have the projection QP — M, also denoted by «. Furthermore, for
every morphism of principal fiber bundles (¢, ¢1): (P,p, M,G) — (P,p, M,G)
over ¢;: G — G it holds

T (i (r® o s)) = jby @ (P oposops?)
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for all jls € J'P, a € G. Hence the map J'¢: J'P — J!'P factors to a map
Qg: QP — QP and Q becomes a functor with values in fibered sets. More
explicitly, for every jls in an orbit A € QP the value Qy(A) is the orbit in J P
going through Jp(jls). By the construction, we have a bijective correspondence
between the sections of the fibered set QP — M and the G-equivariant sections
of J'P — P which are smooth along the individual fibers of P. It remains to
define a suitable smooth structure on QP.

Let us first assume P = R™ x (G. Then there is a canonical representative
in each orbit J1(R™ x G)/G, namely jls with s(z) = (z,e), e € G being
the unit. Moreover, J(R™ x G) is identified with R™ x J3(R™,G), jls
(z,ji(pra o sot,)). Hence there is the induced smooth structure Q(R™ x G) =
R™ x J(R™,G). and the canonical projection JL(R™ x G) — Q(R™ x G)
becomes a surjective submersion. Let PB,, be the category of principal fiber
bundles over m-manifolds and their morphisms covering local diffeomorphisms
on the base manifolds. For every PB,,-morphism ¢: R™ x G — R™ x G and
element jls € A € Q(R™ x G) with s(z) = (z, e), the orbit Qy(A) is determined
by J'¢(jls). This means that

. . -1 —
Qp(j25) = Jpo()(r* 0 posopyt)
where a = pry o p(x, e) and consequently Q¢ is smooth.
Now for every principal fiber bundle atlas (U, ¢o) on a principal fiber bundle
P the maps Qg, form a fiber bundle atlas (U,, Qp.) on QP — M. Let us

sumimarize.

Proposition. The functor Q: PB,, — F.M,, associates with each principal
fiber bundle (P,p, M, Q) the fiber bundle QP over the base M with standard
fiber JL(R™,G).. The smooth sections of QP are in bijection with the principle
connections on P.

The functor @ is a typical example of the so called gauge natural bundles
which will be studied in detail in chapter XII. On replacing the first jets by
k-jets in the above construction, we get the functor Q*: PB,, — FM,, of k-th
order (principal) connections.

17.5. The structure of an associated bundle on @QP. Let us consider a
principal fiber bundle (P,p, M,G) and a local trivialization ¢¥: R™ x G — P.
By the definition, the restriction of Q¢ to the fiber S := (Q(R™ x G))o is a
diffeomorphism onto the fiber Q Py, ). Since the functor @ is of order one, this
diffeomorphism is determined by j4(0,e) € WP, cf. 15.3. For the same reason,
every element jlp(0,¢) € WL G determines a diffeomorphism Qp|S: S — S. By
the definition of the Lie group structure on W! G, this defines a left action ¢ of

m

WLG on S. We define a mapping ¢q: WP x S — QP by
q(7' (0, e), A) = Qip(A).

Since q(j(409) (0, ), Qo1 (A)) = Q¥oQpoQp~"(A), the map ¢ identifies QP
with WLP[S;f]. We shall see in chapter XII that the map ¢ is an analogy to our
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identifications of the values of bundle functors on M f,,, with associated bundles
to frame bundles and that this construction goes through for every gauge natural
bundle.

We are going to describe the action £ in more details. We know that

S=J(R™" x@))G=(R™xTLG)/G = J3(R™,G), = g@R™,

see 17.4, and WL G = Gl x T!G. Moreover, we have introduced the identifica-
tion T, G = G'x (g@R™*) with the multiplication (a, Z)(a, Z) = (aa, Ad(a=1)Z+
Z), see 15.6. Let us now express the action £ of WG = (G, x G) x (g@R™*) on
S = (g@R™). Given (A, a,Z) = jlp(0,e) € WLG, and Y = jls € JHR™ xG),
5(0) = (0,e), we have A = jlpo, a = pra o p(0,¢e), Z = TA,-1 o Top and
Y = Tp3, where § = prp o 5. By definition, Qp(jis) = jlq and if we require

4(0) := proog(0) = e we have ¢ = p ' oposopyt, where p denotes the principal

right action of G. Then we evaluate

CL71

g=p" opo(p,3)op;' =conj(a)opo(Aa-10p3) 0wy’

Hence by applying the tangent functor we get the action ¢ in form
(1) (A,a,2)(Y) = Ad(a)(Y + Z) o A™L.

Proposition. For every principal bundle (P,p, M,G) the bundle of principal
connections QP is the associated fiber bundle W1 P[g @ R™*, (] with the action
¢ given by (1).

Since the standard fiber of QP is a Euclidean space, there are always global
sections of QP and so we have reproved in this way that every principal fiber
bundle admits principal connections.

17.6. The affine structure on QP. In 17.2 and 17.3 we deduced that every
principal connection on P determines a bijection between principal connections
on P and the right invariant sections in C*°(VP ® T*M — P). For every
principal fiber bundle (P, p, M,G), let us denote by LP the associated vector
bundle P[g,Ad]. Since the fundamental field mapping (u, A) — (a(u) € V,, P
identifies VP with P x g and (ua, Ad(a=!)(A4)) — TR o Ca(u), there is the
induced identification P[g, Ad] = VP/G. Hence every element in LP can be
viewed as a right invariant vertical vector field on a fiber of P. Let us now
consider g ® R™* as a standard fiber of the vector bundle LP ® T*M with the
left action of the product of Lie groups G x G given by

(1) (a, A)(Y) = Ad(a)(Y) 0 A1

At the same time, we can view g ® R™* as the standard fiber of QP with the
action ¢ of WL G given in 17.5.(1). Using the canonical affine structure on the
vector space g ® R™* we get for every two elements Y7, Yo € g @ R™*

(A, 0,2),Y7) — (A, 0, Z), Y3) = Ad(a) (Y1 — Y3) 0 A,
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cf. 15.6.(3). Hence QP is an associated affine bundle to W P with the modelling
vector bundle LP @ T*M = W'P[g ® R™*] corresponding to the action (1) of
the Lie subgroup GL, x G C WL G via the canonical homomorphism WG —
Gl, x G. Since the curvature R of a principal connection is a right invariant
section in C°°(VP @ A2T*M — P), we can view the curvature as an operator
R: C®(QP — M) — C*(LP® A?T*M — M). By the definition, R commutes
with the action of the PB,,(G)-morphisms, so that this is a typical example of
the so called gauge natural operators which will be treated in chapter XII.

17.7. Principal connections on higher order frame bundles. Let us con-
sider a frame bundle P"M and the bundle of principal connections QP"M. The
composition @ o P" is a bundle functor on M f,, of order r + 1, so that there
is the canonical structure QP"M = P"T'M[gr © R™*], but there also is the
identification QP"M = W1 P"[g" @ R™*;¢] described in 17.6. It is an easy exer-
cise to verify that the former structure of an associated bundle is obtained from
the latter one by the natural reduction iy, : P"T'M — W'P" M, see proposition
15.7.

The most important case is r = 1, since the functor QP! associates to each
manifold M the bundle of linear connections on M. Let us deduce the coordinate
expressions of the actions of W}, G and G2, on (g}, ® R™*) = Hom(R™, gl(m)).
Given (A,B,Z) € W,,G),, A = (a}) € G,,, B = (b)) € G}, Z~: (zj;) €
(gt @ R™*), T = (F;k) € (g,, ® R™), we have Ad(B)(Z) = (b},,z)501), so that
17.5.(1) implies

(A, B, 2)(I%y) = (b, (T + =)k 7).

The coordinate expression of the homomorphism ig: G2, — WL, G}, deduced in
15.8 yields the formula
(aé’aék)(rék) = (afnfﬁdid}’ + ai;zékfz}‘)-

We remark that the F; i introduced in this way differ from the classical Christoffel
symbols, [Kobayashi, Nomizu, 69], by sign and by the order of subscripts, see
17.15.

Let us mention briefly the second order case. We have to deal with (A, B, Z) €
WLG?, A= (aj) € Gl,B= (b5, b5) € G2, 7= (255 251a) € (g2, @ R™). We
compute

sm

i _p ~qInim i .p ~nimis i 5 ~nipPim
+ bpzmnqal bj bk + bpszmnal bj bk + bpszmnal bgbk )

Ad(B)(Z) 0 A7 = (bL2P, G, bizr, a by

and we have to compose this action with the homomorphism ig: G3, — W', G2..
For every a = (aj, Wi a;kl) € G2, the formula derived in 15.8 implies

7 7 _ 7 m~l ~n 7 ~l ~n
a.(Tj, Tigy) = (amrnlakaj + a,aia;,

s
k

i TP ~qd~n~m PP sms 7 P ~nmamx

a, I g0 apas’ + apl's, 4" ajy, + a, 10 ar'aj"a
~1Mm
Cll )

7 s ~m~=p~n 7 ~q~m~n 7 ~S
+ apsfnmal Q50 + Qg Q) A Q5 + Gy, O
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17.8. The absolute differential. Let us consider a fixed principal connection
I': P — J'P on a principal fiber bundle (P,p, M,G) and an associated fiber
bundle E = P[S;{]. We recall the maps q: PxS — Fand 7: Pxy E — S, see
10.7, and we denote @u: = q(u, ): S — Ejp(,). Hence given local sections o: M —
P and s: M — E with a common domain U C M and a point = € U, there is

—_— ——1
the map @.e: U 5y 0(2)oa(y)  05(y) € Ba, ice. g0y = a(0(x), Joro(0,5).
In fact we use the local trivialization of E induced by o to describe the local
behavior of s in a single fiber. If P and (consequently) also E are trivial bundles
and o(x) = (0,e), then we get just the projection onto the standard fiber. Since
the principal connection I' associates to every u € P, a l-jet I'(u) = jlo of a
section o, for every local section s: M — E and point z in its domain the one
jet of ¢, s at = describes the local behavior of s at « up to the first order. Our
construction does not depend on the choice of u € P,, for I is right invariant.
So we define the absolute (or covariant) differential Vs(x) of s at = with respect
to the principal connection I' by

V() = jao,s € Jo(M, Ey)s(z) = Hom(T, M, V) E).

If F is an associated vector bundle, then there is the canonical identification
Viz)E = E;. Then we have Vs(z) € Hom(T, M, E,) and we shall see that this
coincides with the values of the covariant derivative V as defined in section 11.

We can define a structure of an associated bundle on the union of the man-
ifolds J!(M,E,), * € M, where the mappings Vs take their values. Let
us consider the principal fiber bundle P'M x,; P with the principal action
7(@102) () ug) = (ug.a1,us.a2) of the Lie group G x G (here the dots mean
the obvious principal actions). We define

7: (P'M x 1 P) xp1 (Ugent JE (M, EL)) — TS
7((Go f,u), daw) = do(@ oo f).

Let us further define a left action £ of G}, x G on T, S by (remember E = P[S; {])

U((joh,a2),§3q) = j(Lay 0 @) 0 joh 1.

One verifies easily that 7 determines the structure of the associated bundle
Ey = (P'M xp P)[T}S; 0] and that for every section s: M — E its absolute
differential Vs with respect to a fixed principal connection I' on P is a smooth
section of E1. Hence V can be viewed as an operator

V:C®(E) — C°°((P1M X M P)[TrlnS;Z]).
17.9. Absolute differentiation along vector fields. Let E, P, I" be as in

17.8. Given a tangent vector X, € T, M, we define the absolute differentiation
in the direction X, of a section s: M — E to be the value Vs(z)(X;) € Vi) E.
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Applying this procedure to a vector field X € X(M) we get a map Vxs: M —
V E with the following properties

(1) TE O sz =S
(2) Vixigvs = fVxs+gVys

for all vector fields X, Y € X(M) and smooth functions f, g on M, ng: VE C
TFE — FE being the canonical projection.

So every X € X(M) determines an operator Vx: C®(E) — C*°(VE) and
the whole procedure of the absolute differentiation can be viewed as an operator
V:C®(TM xp E) — C®(VE).

By the definition of the connection form ® g of the induced connection I'g, it
holds

(3) Vxs=®goTsoX
(4) Vxs=TsoX — (I'gX)os.

17.10. The frame forms. For every vector field X € X(M) and every map
5: P — S we define

Vx5: P—TS, Vxs=T50TgX
V5: P'M xp P — TS, Vi(v,u)=Ts50Toouw,

where I'(u) = jlo, * = p(u). We call V5 the absolute differential of 5 while Vx5
is called the absolute differential along X.

Proposition. Let 5: P — S be the frame form of a section s: M — E. Then
V5 is the frame form of Vs and for every X € X(M), Vx§ is the frame form of
VXs.

Proof. The map Vxs is a section of VE = P[T'S] and 5(u) = 7g(u, s o p(u)),
u € P. Further, for every u € P, with T'(u) = jlo, we have Vs(z) = jl(@os00) €
Hom(T, M, V() E). Hence for every X € X(M) we get Vxs =TuoT(500)0X
and since the diffeomorphism T'S — (V E), determined by u € P is just T4, the
frame form of Vxsis V5.

In order to prove the other equality, let us evaluate

Vs(z) = {(v,u), (jz (@' 0 p)) o v}.
Since ¢ = @0 500, where I'(u) = jlo, the frame form of Vs is V3. [

17.11. If E = P[S; /] is an associated vector bundle, then we can use the canon-
ical identification S = T3S for each point y € S. Consider a section s: M — E
and its frame form 5: P — S. Then Vs(z) € J1(M, E,) can be viewed as a
value of a form Ds € Q'(M; E). The corresponding S-valued tensorial 1-form
Ds: TP — S is defined by D5 = dso x = (x*d)(8), where y is the horizontal
projection of I'g. Of course, this formula defines the absolute differentiation
D: QF(P;8) — QFL(P;8) for all k > 0, cf. section 11. The absolute differ-
entials of higher order can also be defined in the nonlinear case. However, this
requires an inductive procedure and we refer the reader to [Kolaf, 73 b].
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17.12. We are going to deduce a general coordinate formula for the absolute
differentiation of sections of an arbitrary associated fiber bundle. We shall do it
in a geometric way, which reduces the problem to the proposition 16.6. For every
principal connection I': P — J!'P the image of the map I' defines a reduction

R(T): P'M xp; P P'M x 3 T(P) = P'M x5 J'P = W'P
of the principal bundle WP to the structure group
Gl xG— G xTLG =G % (G x(ga@R™)).

Let us write 0 for the restriction of the canonical form 6 on WP to P1M x
T'(P), let w be the connection form of T" and 6y, will denote the canonical form
O € QY (PIM;R™).

Lemma. The following diagram is commutative
P T(P'M x5 T(P)) —22X s 7P M

| j g

g P12 R™ @ g Pri R™
Proof. For every u € WP, u = j'4(0,¢), B(u) = @, we have the isomorphism
a: R™ @ g — TyP and for every X € T,W'P, (X) = @ *(3.X). If X €
T(P'M % T(P)), we denote (X) =Y, +Ys € R™ & g. Then a(Yy) =T (11 0
¥0)Y1 = x(B.X) and u(Y2) = 5. X — u(Y7) = ®(B.X), where ® and x are the
vertical and horizontal projections determined by I'. Since the restriction of u to
the second factor in R™ &g coincides with the fundamental vector field mapping,
the commutativity of the left-hand square follows.

The commutativity of the right-hand one was proved in 16.4. [

17.13. Lemma. Let s: M — FE be a section, §: P — S its frame form and
let 3': WP — TL S be the frame form of j's. Then for all u € P*M x; P =
PIM xp T(P) C WP it holds 5 (u) = V3(u).

Proof. If u = j1(0,¢e), @ = B(u), then I'(a) = j41(¥(0)). Since we know
5 (u) = ji(tE (Y1 0o, s 0 1)), we get V5(u) = ji (5091 0h) = 5 (u). O
17.14. Proposition. Let E, S, P, ', w be as before and consider a local chart
(U,9), p=(yP),on S. Let e;, i = 1,...,m be the canonical basis in R™ and e,
a=m+1,...,m+ dimG be a base of Lie algebra g. Let us denote 0y, = 0% e;
the canonical form on P'M, w = w®e,, j1 and js be the canonical projections
on P'M x; P. Further, let us write ©® = j3w®, 04, = 0%, and let ng(y)a%
be the fundamental vector fields corresponding to e,. For a section s: M — E
let a?, a¥’ be the coordinate functions of Vs on P'M x5 P while aP be those of
s. Then it holds
da? + 1 (") = a2

Proof. In 16.6 we described the coordinate functions b7, b7 of j's defined on
WP, bP = B*aP, dbP + nh(b7)0~ = bY0°. According to 17.13, the functions a?,
a¥ are restrictions of b”, b¥ to P'M xp; P. But then the proposition follows

from lemma 17.12. O
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17.15. Example. We find it instructive to apply this general formula to the
simplest case of the absolute differential of a vector field £ on a manifold M
with respect to a classical linear connection I' on M. Since we consider the
standard action §* = a%y’ of GL(m) on R™, the fundamental vector fields 7} on
R™ corresponding to the canonical basis of the Lie algebra of GL(m) are of the
form (ﬂcyja%k. Every local coordinates (z%) on an open subset U C M define
a section p: U — P'M formed by the coordinate frames (8%1’ ey Mim) and it
holds p*6%,; = dz’. On the other hand, from the explicite equation 25.2.(2) of T’

we deduce easily that the restriction of the connection form w = (w;) of I to p

is (—F;k(x)dxk). Thus, if we consider the coordinate expression & (z) 8‘; of £ in

our coordinate system and we write iji for the additional coordinates of V¢,
we obtain from 17.14

o i Lk
= a7 kS
Comparing with the classical formula in [Kobayashi, Nomizu, 63, p. 144], we
conclude that our quantities F; i differ from the classical Christoffel symbols by
sign and by the order of subscripts.

\Z13

Remarks

The development of the theory of natural bundles and operators is described
in the preface and in the introduction to this chapter. But let us come back
to the jet groups. As mentioned in [Reinhart, 83], it is remarkable how very
little of existing Lie group theory applies to them. The results deduced in our
exposition are mainly due to [Terng, 78] where the reader can find some more
information on the classification of GJ,,-modules. For the first order jet groups,
it is very useful to study in detail the properties of irreducible representations,
cf. section 34. But in view of 13.15 it is not interesting to extend this approach
to the higher orders. The bundle functors on the whole category M f were first
studied by [Janyska, 83]. We shall continue the study of such functors in chapter
IX.

The basic ideas from section 15 were introduced in a slightly modified situation
by [Ehresmann, 55|. Every principal fiber bundle p: P — M with structure
group G determines the associated groupoid PP~! which can be defined as the
factor space P x P/ ~ with respect to the equivalence relation (u,v) ~ (ug,vg),
u, v € P, g € G. Writing uv~—! for such an equivalence class, we have two
projections a, b: PP~! — M, a(uv™!) = p(v), b(uv~') = p(u). If E is a fiber
bundle associated with P with standard fiber S, then every § = uv=! € PP~!
determines a diffeomorphism ¢, o (q,)"': Eq¢ — Ep, where q,: S — E,9 and
Gu: S — Epg are the ‘frame maps’ introduced in 10.7. This defines an action of
groupoid PP~! on fiber bundle E. The space PP~! is a prototype of a smooth
groupoid over M. In [Ehresmann, 55] the r-th prolongation ®" of an arbitrary
smooth groupoid ® over M is defined and every action of ® on a fiber bundle
E — M is extended into an action of ®” on the r-th jet prolongation J"F
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of E — M. This construction was modified to the principal fiber bundles by
[Libermann, 71], [Virsik, 69] and [Kolaf, 71b].

The canonical R™-valued form on the first order frame bundle P'M is one
of the basic concepts of modern differential geometry. Its generalization to r-th
order frame bundles was introduced by [Kobayashi, 61]. The canonical form
on WP (as well as on W”"P) was defined in [Kolaf, 71b] in connection with
some local considerations by [Laptev, 69] and [Gheorghiev, 68]. Those canonical
forms play an important role in a generalization of the Cartan method of moving
frames, see [Kolar, 7lc, 73a, 73b, 77].
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CHAPTER V.
FINITE ORDER THEOREMS

The purpose of this chapter is to develop a general framework for the theory
of geometric objects and operators and to reduce local geometric considerations
to finite order problems. In general, the latter is a hard analytical problem and
its solution essentially depends on the category in question. Roughly speaking,
our methods are efficient when we deal with a sufficiently large class of smooth
maps, but they fail e.g. for analytic maps.

We first extend the concepts and results from section 14 to a wider class of
categories. Then we present our important analytical tool, a nonlinear gener-
alization of well known Peetre theorem. In section 20 we prove the regularity
of bundle functors for a class of categories which includes M f, Mf,,, FM,
FMpy, FMy, p, and we get near to the finiteness of the order of bundle func-
tors. It remains to deduce estimates on the possible orders of jet groups acting
on manifolds. We derive such estimates for the actions of jet groups in the cat-
egory F M, , so that we describe all bundle functors on FM,, ,,. For n = 0
this reproves in a different way the classical results due to [Palais, Terng, 77]
and [Epstein, Thurston, 79] on the regularity and the finiteness of the order of
natural bundles.

The end of the chapter is devoted to a discussion on the order of natural
operators. Also here we essentially profit from the nonlinear Peetre theorem.
First of all, its trivial consequence is that every (even not natural) local operator
depends on infinite jets only. So instead of natural transformations between the
infinite dimensional spaces of sections of the bundles in question, we have to deal
with natural transformations between the (infinite) jet prolongations. The full
version of Peetre theorem implies that in fact the order is finite on large subsets
of the infinite jet spaces and, by naturality, the order is invariant under the
action of local isomorphisms on the infinite jets. In many concrete situations the
whole infinite jet prolongation happens to be the orbit of such a subset. Then all
natural operators from the bundle in question are of finite order and the problem
of finding a full list of them can be attacked by the methods developed in the
next chapter.
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18. Bundle functors and natural operators

Roughly speaking, the objects of a differential geometric category should be
manifolds with an additional structure and the morphisms should be smooth
maps. The following approach is somewhat abstract, but this is a direct modifi-
cation of the contemporary point of view to the concept of a concrete category,
which is defined as a category over the category of sets.

18.1. Definition. A category over manifolds is a category C endowed with a
faithful functor m: C — M f. The manifold mA is called the underlying manifold
of C-object A and A is said to be a C-object over mA.

The assumption that the functor m is faithful means that every induced map
ma.p: C(A,B) — C>®(mA,mB), A, B € ObC, is injective. Taking into account
this inclusion C(A, B) € C*°(mA,mB), we shall use the standard abuse of
language identifying every smooth map f: mA — mB in m4 p(C(A, B)) with a
C-morphism f: A — B.

The best known examples of categories over manifolds are the categories M f,,
or Mf, the categories FM, FM,,, FM,, ,, of fibered manifolds, oriented man-
ifolds, symplectic manifolds, manifolds with fixed volume forms, Riemannian
manifolds, etc., with appropriate morphisms.

For a category over manifolds m: C — M f, we can define a bundle functor on
C as a functor F': C — FM satisfying Bo F' = m where B: FM — Mf is the
base functor. However, we have seen that the localization property of a natural
bundle over m-dimensional manifolds plays an important role. To incorporate it
into our theory, we adapt the general concept of a local category by [Eilenberg,
57] and [Ehresmann, 57] to the case of a category over manifolds.

18.2. Definition. A category over manifolds m: C — M f is said to be local, if
every A € ObC and every open subset U C mA determine a C-subobject L(A,U)
of A over U, called the localization of A over U, such that

(a) L(A,mA) = A, L(L(A,U),V) = L(A,V) for every A € ObC and every
open subsets V C U C mA,

(b) (aggregation of morphisms) if (U, ), o € I, is an open cover of mA and f €
C*°(mA, mB) has the property that every foiy, is a C-morphism L(A,U,) — B,
then f is a C-morphism A — B,

(c) (aggregation of objects) if (U, ), « € I, is an open cover of a manifold M
and (A,), o € 1, is a system of C-objects such that mA, = U, and L(A,,U, N
Ug) = L(Ap, Uy NUp) for all «, § € I, then there exists a unique C-object A
over M such that A, = L(A,U,).

We recall that the requirement L(A,U) is a C-subobject of A means

(i) the inclusion iy : U — mA is a C-morphism L(A,U) — A,

(ii) if for a smooth map f: mB — U the composition iy o f is a C-morphism
B — A, then f is a C-morphism B — L(A,U).

There are categories like the category VB of vector bundles with no localiza-
tion of the above type, i.e. we cannot localize to an arbitrary open subset of the
total space. From our point of view it is more appropriate to consider VB (and
other similar categories) as a category over fibered manifolds, see 51.4.
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18.3. Definition. Given a local category C over manifolds, a bundle functor on
C is a functor F': C — FM satisfying Bo F = m and the localization condition:

(i) for every inclusion of an open subset iy: U — mA, F(L(A,U)) is the
restriction p;ll(U) of the value pg: FA — mA over U and Fiy is the
inclusion p}l(U) — FA.

In particular, the projections ps, A € ObC, form a natural transformation
p: ' — m. We shall see later on that for a large class of categories one can
equivalently define bundle functors as functors F': C — M f endowed with such
a natural transformation and satisfying the above localization condition.

18.4. Definition. A locally defined C-morphism of A into B is a C-morphism
f: L(A,U) — L(B,V) for some open subsets U C mA, V C mB. A C-object A
is said to be locally homogeneous, if for every x, y € mA there exists a locally
defined C-isomorphism f of A into A such that f(x) = y. The category C is called
locally homogeneous, if each C-object is locally homogeneous. A local skeleton of
a locally homogeneous category C is a system (C,,), a € I, of C-objects such that
locally every C-object A is isomorphic to a unique C,. In such a case we say
that A is an object of type a. The set [ is called the type set of C. A pointed local
skeleton of a locally homogeneous category C is a local skeleton (C,), a € I,
with a distinguished point 0, € mC,, for each a € I.

A C-morphism f: A — B is said to be a local isomorphism, if for every
x € mA there are neighborhoods U of z and V of f(z) such that the restricted
map U — V is a C-isomorphism L(A,U) — L(B,V). We underline that a local
isomorphism is a globally defined map, which should be carefully distinguished
from a locally defined isomorphism.

18.5. Examples. All the categories M f,,, M f, FMy, n, FM,,, FM are lo-
cally homogeneous. A pointed local skeleton of the category M f is the sequence
(R™,0), m = 0,1,2,..., while a pointed local skeleton of the category FM is
the double sequence (R™*" — R™ 0), m, n=0,1,2....

18.6. Definition. The space J"(A4, B) of all r-jets of a C-object A into a C-
object B is the subset of the space J"(mA, mB) of all r-jets of mA into mB
generated by the locally defined C-morphisms of A into B. If it is useful to
underline the category C, we write CJ"(A, B) for J" (A, B).

18.7. Definition. A locally homogeneous category C is called infinitesimally
admissible, if we have

(a) J"(A, B) is a submanifold of J"(mA, mB),

(b) the jet projections 7% : J"(A, B) — J*(A, B), 0 < k < r, are surjective
submersions,

(c) if X € J"(A, B) is an invertible r-jet of mA into mB, then X is generated
by a locally defined C-isomorphism.

Taking into account (c), we write

invJ" (A, B) = J"(A, B) NinvJ" (mA, mB).
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18.8. Assume C is infinitesimally admissible and fix a pointed local skeleton
(Ca,04), a € I. Let us write C"(a, 3) = J§_(Ca,Cp)o, for the set of all r-jets
of Cy into Cs with source 0, and target Og. Definition 18.7 implies that every
C"(a, B) is a smooth manifold, so that the restrictions of the jet composition
C"(a, B) x C"(B,y) — C"(av,y) are smooth maps. Thus we obtain a category C"
over [ called the r-th order skeleton of C.

By definition 18.7, G, := invJj (Ca,Ca)o, is a Lie group with respect to the
jet composition, which is called the r-th jet group (or the r-th differential group)
of type . Moreover, if A is a C-object of type a, then P"A :=invJj (Cy, A) is
a principal fiber bundle over mA with structure group G7,, which is called the
r-th order frame bundle of A. Let us remark that every jet group GJ, is a Lie
subgroup in the usual jet group G}, m = dimC,.

For example, all objects of the category F.M,, ,, are of the same type, so that
F M determines a unique r-th jet group Gy, , C GJ, ., in every order r. In
other words, G7, ,, is the group of all r-jets at 0 € R™*" of fibered manifold
isomorphisms f: (R™™" — R™) — (R™*" — R™) satisfying f(0) = 0.

18.9. The following assumption, which deals with the local skeleton of C only,
has purely technical character.

A category C is said to have the smooth splitting property, if for every smooth
curve v: R — J"(Cy,Cp), o, B € I, there exists a smooth map I': R x mC,, —
mClj such that (t) = jg(t)F(t, ), where ¢(t) is the source of r-jet ~(t).

Since () is a curve on J"(Cq,Cg), we know that (t) is generated by a
system of locally defined C-morphisms. So we require that on the local skeleton
this can be done globally and in a smooth way. In all our concrete examples
the underlying manifolds of the objects of the canonical skeleton are numerical
spaces and each polynomial map determined by a jet of J"(Cy, Cg) belongs to
C. This implies immediately that C has the smooth splitting property.

Definition. An infinitesimally admissible category C with the smooth splitting
property is called admissible.

18.10. Regularity. From now on we assume that C is an admissible category.
A family of C-morphisms f: M — C(A, B) parameterized by a manifold M is
said to be smoothly parameterized, if the map M xmA — mB, (u,z) — f(u)(z),
is smooth.

Definition. A bundle functor F': C — FM is called regular, if F' transforms
every smoothly parameterized family of C-morphisms into a smoothly parame-
terized family of F M-morphisms.

18.11. Definition. A bundle functor F: C — FM is said to be of order r,
r € N, if for any two locally defined C-morphisms f and g of A into B, the
equality jo f = jrg implies that the restrictions of F'f and Fg to the fiber F,A
of FA over x € mA coincide.

18.12. Associated maps. An r-th order bundle functor F' defines the so-called
associated maps

FA,B:JT(AaB) XmAFA_)FB? (];fvy)’_)Ff(y)
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where the fibered product is constructed with respect to the source projection
J"(A, B) — mA.

Proposition. The associated maps of an r-th order bundle functor F on an
admissible category C are smooth if and only if F' is regular.

Proof. By locality, it suffices to discuss
FCmCﬂ: JT<CO”C§) Xmo,, FC, — FCB.

Consider a smooth curve (y(t),d(¢)) on J"(Cy, Cg) Xmc, F'Ca, so that pc, d(t) =
c(t), where ¢(t) is the source of r-jet (). Since C has the smooth splitting
property, there exists a smooth map I': R x mC, — mCp such that (t) =
JeryL'(t, ). The regularity of F implies &(¢) := F(I'(¢, ))(6()) is a smooth curve
on FCpg. By the definition of the associated map, it holds Fe, c,(v(t),d(t)) =
e(t). Hence F¢, o, transforms smooth curves into smooth curves. Now, we can
use the following theorem due to [Boman, 67]

A mapping f: R™ — R™ is smooth if and only if for every smooth curve
c: R — R™ the composition f o ¢ is smooth.

Then we conclude Fc, c, is a smooth map. The other implication is obvi-
ous. U

18.13. The induced action. Consider an r-th order regular bundle functor
F on an admissible category C. The fibers S, = Fy_, Co, o € I, will be called the
standard fibers of F. Write Fyg for the restriction of Fe, ¢, to C"(a, f) X Sy —
Ss. In the following definition we consider an arbitrary system (S, ), a € I, of
manifolds with indices from the type set of C.

Definition. A smooth action of C™ on a system (S,), @ € I, of manifolds is a
system @q5: C"(a, B) X Sy — Sp of smooth maps satisfying

©ay(b, pap(a,s)) = Pay(boa,s)
forall a, B, v€ I, a€C(a,3),b€C"(B,7), s € Sa.
By proposition 18.12, Fi,3 are smooth maps so that they form a smooth action
of C" on the system of standard fibers.

18.14. Theorem. There is a canonical bijection between the regular r-th order
bundle functors on C and the smooth actions of the r-th order skeleton of C.

Proof. For every regular r-th order bundle functor F' on C, Fip is a smooth
action of C™ on (Fy, C,), a € I. Conversely, let (vqg) be a smooth action of
C" on a system of manifolds (S,), « € I. The inclusion G?, — C"(a, «) gives a
smooth left action of G7, on S,,. For a C-object A of type o we define GA to be
the fiber bundle associated to P" A with standard fiber S,. For a C-morphism
f: A— B we define Gf: GA — GB by

Gf({u7 S}) = {Ua @aﬁ(v_l © ];:f ou, 8)}
remA, ue PlA v e PJZ’(%)B7 s € S,. One verifies easily that G is a well-
defined regular r-th order bundle functor on C, cf. 14.22. Clearly, if we apply
the latter construction to the action F,3, we get a bundle functor naturally
equivalent to the original functor F. [
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18.15. Natural transformations. Given two bundle functors F, G: C —
FM, by a natural transformation T: F' — G we shall mean a system of base-
preserving morphisms Ty: FA — GA, A € ObC, satisfying Gf oTa =Tgo Ff
for every C-morphism f: A — B. (We remark that for a large class of admissi-
ble categories every natural transformation between any two bundle functors is
formed by base-preserving morphisms, see 14.11.)

Given two smooth actions (¢ag,Sa) and (Yas, Za), a C"-map

T (@a,@asa) - (waﬁaza)

is a system of smooth maps 7,: S, — Z,, o € I, satisfying

75(¢ap(a, 8)) = Yap(a, 7a(s))

for all s € S,, a € C" (o, ).

Theorem. Natural transformations ' — G between two r-th order regular
bundle functors on C are in a canonical bijection with the C"-maps between the
corresponding actions of C".

Proof. Given T: F — G, we define 7,: Fy, Co, — Go,Cy by 70(s) = Te, (s).
One verifies directly that (7,) is a C"-map (Fug, Fo,Ca) — (Gag, Go,Ca). Con-
versely, let (74): (¢as, Sa) — (Yas, Za) be a C"-map between two smooth ac-
tions of C". Then the induced bundle functors transform A € ObC of type « into
the fiber bundle associated with P" A with standard fibers S, and Z, and we
define T4 = (idpra, 7). One verifies easily that T is a natural transformation
between the induced bundle functors. [

18.16. Morphism operators. We are going to generalize the concept of nat-
ural operator from 14.15 in the following three directions: 1. We replace the
category M f,, by an admissible category C over manifolds. 2. We consider the
operators defined on morphisms of fibered manifolds. 3. We study an operator
defined on some morphisms only, not on all of them. We start with the general
concept of a morphism operator.

If Y7 — M and Y, — M are two fibered manifolds, we denote by C59(Y7,Y3)
the space of all base-preserving morphisms Y; — Y5. Given another pair Z; —
M and Zy — M of fibered manifolds, a morphism operator D is a map D: E C
CR(Y1,Ys) — C9(Z1, Z3). In the case Z; is a fibered manifold over Y7, i.e. we
have a surjective submersion ¢q: Z; — Y7, we also say that D is a base extending
operator.

In general, if we have four manifolds N1, No, N3, N4, a map w: N3 — N and
a subset E C C°°(Ny, Ns), an operator A: E — C°°(N3, N,) is called 7-local,
if the value As(x) depends only on the germ of s at w(z) for all s € E, x € Ns.
Such an operator is said to be of order k, 0 < k < oo, if jf(m)sl = j’;(x)SQ implies
Asy(z) = Asa(x) for all s1, s; € B, x € N3. We call A regular if smoothly pa-
rameterized families in E are transformed into smoothly parameterized families
in CVOO(ZV?)7 N4)
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Assume we have a surjective submersion ¢: Z; — Y;. Then we have defined
both local and k-th order operators C37(Y1,Y2) — C39(Z1, Z2) with respect to
q. Such a k-th order operator D determines the associated map

(1) D: J]’f/[(Yl,Yg) Xy, Z1 — Za, (j;js,z) — Ds(z), y=q(z),

where J¥(Y1,Y2) means the space of all k-jets of the maps of C$%(Y7,Ya). If
D is regular, then D is smooth. Conversely, every smooth map (1) defines a
regular operator C$9(Y1,Ya) — C$(Z1,22), s — D((j%s) o q, ): Z1 — Za,
s € CR (Y, Ys).

18.17. Natural morphism operators. Let F7, F5, G1, G2 be bundle functors
on an admissible category C. A natural operator D: (Fy, Fy) ~ (G1,G2) is a
system of regular operators D 4: C°,(F1 A, FoA) — C2,(G1A,G2A), A € ObC,
such that for all s, € C°,(F1 A, FoA), so € CXp(F1B,F>B) and f € C(A, B)
the right-hand diagram commutes whenever the left-hand one does.

D ys1
—ats

AL A G A GoA
Jsz JFlf JGlf Jsz
BB«—2 I B B -P8%, ¢

This implies the localization property

Dirau(sl(™) 7 (U)) = (Das)|(0°*) 71 (U)

for every A € ObC and every open subset U C mA. If ¢: G; — F} is a natural
transformation formed by surjective submersions g4 and if all operators D 4 are
ga-local, then we say that D is g-local.

In the special case F1 = m we have C°,(mA, F,A) = C®(FyA), so that Dy
transforms sections of F»A into base-preserving morphisms G1 A — G2 A; in this
case we write D: Fy ~ (G1,Gs). Then D is always p©i-local by definition. If
we have a natural surjective submersion g;: GoM — G1M and we require the
values of operator D to be sections of ¢, we write D: (Fy, F3) ~ (G — G1)
and D: F5 ~ (G3 — G1) in the special case F; = m. In particular, if G5 is
of the form G5 = H o G1, where H is a bundle functor on a suitable category,
and ¢ = p' is the bundle projection of H, we write D: (Fy, Fy) ~ HG and
D: Fy ~ HG, for Fi = m. In the case F; = m = (G4, we have an operator
D: Fy ~ G4 transforming sections of Fy A into sections of G2 A for all A € ObC.
The classical natural operators from 14.15 correspond to the case C = M f,,.

Example 1. The tangent functor 7" is defined on the whole category M f. The
Lie bracket of vector fields is a natural operator [, |: T @ T ~ T, see 3.10 for
the verification. Let us remark that the naturality of the bracket with respect to
local diffeomorphisms follows directly from the fact that its definition does not
depend on any coordinate construction.

Example 2. Let F' be a natural bundle over m-manifolds and X be a vector
field on an m-manifold M. If we apply F' to the flow of X, we obtain the flow
of a vector field ;X on F'M. This defines a natural operator F: T ~~ TF.
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18.18. Natural domains. This concept reflects the situation when the oper-
ators are defined on some morphisms only.

Definition. A system of subsets Ea C C50,(F14, FoA), A € ObC, is called a
natural domain, if

(i) the restriction of every s € E4 to L(A,U) belongs to Ep 4,y for every
open subset U C mA,

(ii) for every C-isomorphism f: A — B it holds f.(Fa) = Ep, where f.(s) =
Fyfoso(Fif)™! s€ Eq.

If we replace C°, (F1 A, F»A) by a natural domain E4 in 18.17, we obtain the
definition of a natural operator E ~» (G1,G2).

Example 1. For every admissible category m: C — M f we define the C-fields
on the C-objects as those vector fields on the underlying manifolds, the flows
of which are formed by local C-morphisms. For every regular bundle functor
on C there is the flow operator F: T ~» TF defined on all C-fields. Indeed,
if we apply F to the flow of a C-field X € X(mA), we get a flow of a vector
field FX on FA. The naturality of F follows from 3.14. In particular, if C is
the category of symplectic 2m-dimensional manifolds, then the C-fields are the
locally Hamiltonian vector fields. For the category C of Riemannian manifolds
and isometries, the C-fields are the Killing vector fields. If C = FM, we obtain
the projectable vector fields.

Example 2. The Frolicher-Nijenhuis bracket is a natural operator [, |: T ®
AT T @ A'T* — T ® AFHT* with respect to local diffeomorphisms by the
definition. The functors in question do not act on the whole category Mf.
However, we have proved more than this naturality in section 8. Let us consider
EY, = QF(M;TM) C C5(@FTM, TM). Then we can view the bracket as
an operator [, |: (*T @ ®'T, T & T) ~ (®*+'T,T) with the natural domain
(Exr = EX, < B4 ) mreobmy and its naturality follows from 8.15. We remark that
even the Schouten-Nijenhuis bracket satisfies such a kind of naturality, [Michor,
87b].

18.19. To deduce a result analogous to 14.17 for natural morphism operators,
we shall assume that all C-objects are of the same type and all C-morphisms
are local isomorphisms. Hence the r-th order skeleton of C is one Lie group
G" C G7,, where m is the dimension of the only object C' of a local skeleton of
C.

Consider four bundle functors Fy, Fs, G1, Go on C and a g-local natural
operator D: (Fy, Fy) ~ (G1,G2). Then the rule

A J;ZA(FlAaFZA) XpAGiA="HA

with its canonical extension to the C-morphisms defines a bundle functor H on
C. Using 18.16.(1), we deduce quite similarly to 14.15 the following assertion

Proposition. k-th order natural operators D: (Fy, Fy) ~ (G1,G3) are in bi-
jection with the natural transformations H — G5. 0O

By 18.15, these natural transformations are in bijective correspondence with
the G*®-equivariant maps Hy — (G2)o between the standard fibers, where s is
the maximum of the orders of G5 and H.
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If we pose some additional natural conditions on such an operator D, they
are reflected directly in our model. For example, in the case F}; = m assume
we have a natural surjective submersion p: Go — G and require every D4s
to be a section of ps. Then the k-order operators of this type are in bijection
with the G®-maps f: (J*F,)o x (G1)o — (G2)o satisfying po o f = pra, where
po: (G2)o — (G1)p is the map induced by p.

18.20. We are going to extend 18.19 to the case of a natural domain F C
(Fy, Fy). Such a domain will be called k-admissible, if

(i) the space E% C JF ,(F1 A, F2A) of all k-jets of the maps from F, is a
fibered submanifold of JﬁLA(FlA, FA) — FA,

(ii) for every smooth curve y(t): R — EE there is a smoothly parametrized
family s; € E¢ such that v(t) = jf(t)st, where ¢(t) is the source of ~(¢).

The second condition has a similar technical character as the smooth splitting
property in 18.9.

Then the rule

A E% xpaGilA=HA

with its canonical extension to the C-morphisms defines a bundle functor H on
C. Analogously to 18.19 we deduce

Proposition. If FE is a k-admissible natural domain, then k-th order natural
operators E ~» (G1,G3) are in bijection with the natural transformations H —
Gs.

19. Peetre-like theorems

We first present the well known Peetre theorem on the finiteness of the order
of linear support non-increasing operators. After sketching a non-traditional
proof of this theorem, we discuss the way to its generalization and the most of
this section is occupied by the proof and corollaries of a nonlinear version of the
Peetre theorem formulated in 19.7.

19.1. Let us recall that the support supps of a section s: M — L of a vector
bundle L over M is the closure of the set {z € M;s(z) # 0} and for every op-
erator D: C*°(Ly) — C°°(Ls) support non-increasing means supp Ds C supp s
for all sections s € C*°(Lq) .

Theorem, [Peetre, 60]. Consider vector bundles Ly — M and Ly — M over
the same base M and a linear support non-increasing operator D: C*(Ly) —
C*°(Lz). Then for every compact set X C M there is a natural number r such
that for all sections s, s € C°(Ly) and every point x € K the condition
j"s1(x) = j"sa(x) implies Dsy(x) = Dsa(x).

Briefly, for any compact set K C M, D is a differential operator of some finite
order r on K.

We shall see later that the theorem follows easily from more general results.
However the following direct (but rather sketched) proof based on lemma 19.2.
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contains the basic ideas of the forthcoming generalization. By the standard
compactness argument, we may restrict ourselves to M = R™, L; = R™ x R",
Ly = R™ x RP and to view D as a linear map D: C*°(R™,R") — C°(R™,RP).

19.2. Lemma. Let D: C*°(R™,R") — C*(R™,RP) be a support non increas-
ing linear operator. Then for every point x € R™ and every real constant C > 0,
there is a neighborhood V' of x and an order r € N, such that for ally € V\{z},
s € C*°(R™,R"™) the condition j"s(y) = 0 implies |Ds(y)| < C.

Proof. Let us assume the lemma is not true for some x and C. Then we can
construct sequences s, € C°(R™ R") and zy — =, 1), # = with j¥sp(z) =0
and |Dsg(x)| > C and we can even require |z — ;| > 4|z, — z| for all k > j.
Further, let us choose maps g € C*°(R™,R") in such a way that ¢x(y) = 0 for
ly — x| > S|z, — x|, germ si(z)) = germ gy, (x), and maxyerm [0%gr(y)| < 27F,
0 < |a| < k. This is possible since j*si(xx) = 0 for all K € N and we shall not
verify this in detail. Now one can show that the map

q(y) =D o a2k(y),  yeR™,

is well defined and smooth (note that the supports of the maps g, are disjoint). It
holds germ g(zop) = germ so (z2r) and germ g(xox+1) = 0. Since the operator D
is support non-increasing and linear, its values depend on germs only. Therefore

|Dg(z2k+1)| = 0 and |Dg(z2x)| = [Dsak(z21)| > C >0

which is a contradiction with z; — = and Dg € C*(R™,RP). O

Proof of theorem 19.1. Given a compact subset K we choose C' = 1 and apply
lemma 19.2. We get an open cover of K by neighborhoods V,., z € K, so we can
choose a finite cover V,,,...,V,,. Let r be the maximum of the corresponding
orders. Then the condition j"s(x) = 0 implies |Ds(z)] < 1 for all z € K,
s € C°°(R™,R"), with a possible exception of points z1,...,2; € K. But if
|Ds(z)] = & > 0, then |D(2s)(z)| = 2. Hence for all 2 € K \ {z1,... 24},
Ds(xz) = 0 whenever j"s(x) = 0. The linearity expressed in local coordinates
implies, that this is true for the points x1,... ,z as well. O

If we look carefully at the proof of lemma 19.2, we see that the result does
not essentially depend on the linearity of the operator. Dealing with a nonlinear
operator, the assertion can be formulated as follows. For all sections s, ¢, each
point x and real constant ¢ > 0, there is a neighborhood V' of the point x and
an order r € N such that the values Dq(y) and Ds(y) do not differ more then
by ¢ for all y € V'\ {z} with j7q(y) = j"s(y). At the same time, there are two
essential assumptions in the proof only. First, the operator D depends on germs,
and second, the domain of D is the whole C*°(R™,R™). Moreover, let us note
that we have used only the continuity of the values in the proof of 19.2. But the
next example shows, that having no additional assumptions on the values of the
operators, there is no reason for any finiteness of the order.
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19.3. Example. We define an operator D: C*°(R,R) — C°(R,R). For all
f € C=®(R,R) we put

o0 k
Df(x) = ZQ*k <arctgod f(a:)) ) z e R.

dz*
k=0

The value D f(x) depends essentially on j* f(x).

That is why in the rest of this section we shall deal with operators with smooth
values, only. The technique used in 19.2 can be applied to more general types of
operators. We will study the m-local operators D: E C C*(X,Y) — C*(Z,W)
with a continuous map 7: Z — X, see 18.19 for the definition.

In the nonlinear case we need a general tool for extending a sequence of germs
of sections to one globally defined section. In our considerations, this role will
be played by the Whitney extension theorem:

19.4. Theorem. Let K C R™ be a compact set and let f, be continuous
functions defined on K for all multi-indices «, 0 < |a| < oco. There exists a
function f € C°°(R™) satisfying 0° f|K = f, for all « if and only if for every
natural number m

(1) faB) = Xy A fasa(@)(b— ) +o (b~ a™)

holds uniformly for |b—a| — 0, b, a € K.

Let us recall that f(z) = o(]z|™) means lim,_,o f(2)z~™ = 0.

The proof is rather complicated and technical and can be found in [Whitney,
34], [Malgrange, 66] or [Tougeron, 72]. If K is a one-point set, we obtain the
classical Borel theorem. We shall work with a special case of this theorem where
the compact set K consists of a convergent sequence of points in R”. Therefore
we shall use the following assumptions on the domains of the operators.

19.5. Definition. A subset £ C C*°(X,Y) is said to be Whitney-extendible, or
briefly W-extendible, if for every map f € C*°(X,Y), every convergent sequence
zr — x in X and each sequence f € E and fy € E, satisfying germ f(zx) =
germ fi(zy), k € N, 7 fo(x) = j*° f(x), there exists a map g € F and a natural
number kg satisfying germ g(xy) = germ fi(zy) for all k > ko.

19.6. Examples.

1. By definition F = C*°(X,Y") is Whitney-extendible.

2. Let E C C*(R™,R™) be the subset of all local diffecomorphisms. Then F
is W-extendible. Indeed, we need to join given germs on some neighborhood of x
only, but the original map f itself has to be a local diffeomorphism around z, for
7 f(x) = 7 fo(x) and every germ of a locally defined diffeomorphism on R™
is a germ of a globally defined local diffeomorphism. So every bundle functor F'
on M f,, defines a map F': E — C°°(FR™, FR™) which is a pgm-local operator
with W-extendible domain.

3. Consider a fibered manifold p: Y — M. The set of all sections F = C>°(Y)
is W-extendible. Indeed, since we require the extension of given germs on an
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arbitrary neighborhood of the limit point x only, we may restrict ourselves to a
local chart R™ x R™ < Y. Now, we can work with the coordinate expressions
of the given germs of sections, i.e. with germs of functions. The existence of the
‘extension’ f of given germs implies that the germs of coordinate functions satisfy
condition 19.4.(1), and so there are functions joining these germs. But these
functions represent a coordinate expression of the required section. Therefore
the operators dealt with in 19.1 are idjs-local linear operators with W-extendible
domains.

19.7. Nonlinear Peetre theorem. Now we can formulate the main result of
this section. The last technical assumption is that for our m-local operators, the
map 7 should be locally non-constant, i.e. there are at least two different points
in the image 7(U) of any open set U.

Theorem. Let w: Z — R™ be a locally non-constant continuous map and
let D: E C C®(R™,R") — C*>(Z,W) be a w-local operator with a Whitney-
extendible domain. Then for every fixed map f € E and for every compact subset
K C Z there exist a natural number r and a smooth function e: w(K) — R which
is strictly positive, with a possible exception of a finite set of points in 7(K),
such that the following statement holds.

For every point z € K and all maps g1, g2 € E satisfying [0%(g; — f)(7(2))] <
e(n(z)), i =1,2,0 < |a| <r, the condition

3" 91(m(2)) = 7"g2(7(2))

implies
Dg1(z) = Dga(2).
Before going into details of the proof, we present some remarks and corollaries.

19.8. Corollary. Let X, Y, Z, W be manifolds, 7: Z — X a locally non-
constant continuous map and let D: E C C>*(X,Y) — C*(Z,W) be a w-local
operator with Whitney-extendible domain. Then for every fixed map f € E and
for every compact set K C Z, there exists r € N such that for every x € 7(K),
g € E the condition j" f(x) = j"g(x) implies

Df|(x="(z) N K) = Dg|(n~}(z) N K).

19.9. Multilinear version of Peetre theorem. Let us note that the classical
Peetre theorem 19.1 follows easily from 19.8. Indeed, idj;-locality is equivalent to
the condition on supports in 19.1, the sections of a fibration form a W-extendible
domain (see 19.6), so we can apply 19.8 to the zero section of the vector bundle
Ly — M. Hence for every compact set K C M there is an order r € N such that
Ds(z) = 0 whenever j"s(x) =0, v € K, s € C*°(L), and the classical Peetre
theorem follows.

But applying the full formulation of theorem 19.7, we can prove in a similar
way a ‘multilinear base-extending’ Peetre theorem.
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Theorem. Let Lq,...,L, be vector bundles over the same base M, L. — N
be another vector bundle and let m: N — M be continuous and locally non-
constant. If D: C*(Ly) x---x C*®(Ly) — C*(L) is a k-linear m-local operator,
then for every compact set K C N there is a natural number r such that for every
x € m(K') and all sections s, ¢ € C*°(Ly®- - -® Ly,) the condition j"s(x) = j"q(x)
implies

Ds|(n ! (z) N K) = Dq|(7~ ' (z) N K).

Proof. We may assume L; = R™ x R™ ¢ = 1,... k. Then all assumptions
of 19.7 are satisfied and so, chosen a compact set K C N and the zero section
of Ly & --- @ Ly, we get some order r and a function : 7(K) — R. Consider
arbitrary sections ¢, s € C°°(Ly @ --- @ L) and a point z € 7(K), e(x) > 0.
Using multiplication of sections by positive real constants, we can arrange that
all their derivatives up to order r at the point = are less then (z). Hence if
Jj"q(x) = j"s(x), then for a suitable ¢ > 0, ¢ € R, it holds

. Ds(z) = D(c-s)(z) = D(c-q)(z) = ¢ - Dq(z)

for all z € K N7~ !(x). According to 19.7, the function & can be chosen in such
a way that the set {z € m(K);e(x) = 0} is discrete. So the theorem follows from
the multilinearity of the operator and the continuity of its values, what is easily
checked looking at the coordinate description of the multilinear operators. [

19.10. One could certainly replace the Whitney extendibility by some other
property, but this cannot be completely omitted. To see this, consider the opera-
tor constructed in 19.3 and let us restrict its domain to the subset E C C*°(R,R)
of all polynomials. We get an operator D: E — C*°(R,R) essentially depending
on infinite jets. Also the requirement on 7 is essential because dropping it, any
action of the group of germs of maps f: (R™,0) — (R™,0) on a manifold should
factorize to an action of some jet group Gj,.

Let us notice that the assertion of our theorem is near to local finiteness of the
order with respect to the topology on Z and to the compact open C°°-topology
on C®(R™ R"™), see e.g. [Hirsch, 76] for definition. It would be sufficient if we
might always choose a strictly positive function ¢: 7(K) — R in the conclusion
of the theorem. However, example 19.15 shows that this need not be possible in
general. On the other hand, if we add a suitable regularity condition, then the
mentioned local finiteness can be proved. Regularity will mean that smoothly
parameterized families of maps in the domain are transformed into smoothly
parameterized families. The idea of the proof is to define a new operator D
with domain E formed by all one-parameter families of maps, then to perform
a similar construction as in the proof of 19.7 and to apply theorem 19.7 to D to
get a contradiction, see [Slovék, 88]. Therefore, beside the regularity, we need
that E is also W-extendible. This is not obvious in general, but it is evident if
E consists of all sections of a fibration. Since we shall mostly deal with regular
operators defined on all sections of a fibration, we present the full formulation.
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Theorem. Let Z, W be manifolds, Y — X a fibration, 7: Z — X a locally
non-constant map and let D: E = C*(Y — X) — C*(Z,W) be a regular
mw-local operator. Then for every fixed map f € E and for every compact set
K C Z, there exist an order r € N and a neighborhood V' of f in the compact
open C*®-topology such that for every x € w(K) and all g1, go € V N E the
condition

J"g1(x) = j"g2(x)
implies
Dgi|(z~ (z) N K) = Dgo|(n~*(z) N K).

Similar, but essentially weaker, results can also be deduced dealing with op-
erators with continuous values, see [Chrastina, 87|, [Slovak, 87 b].

Let us pass to the proof of 19.7. In the sequel, we fix manifolds Z, W, a
locally non-constant continuous map w: Z — R™, a Whitney-extendible subset
E Cc C*®(R™,R™) and a w-local operator D: E — C°(Z,W). The proof is
based on two lemmas.

19.11. Lemma. Let zy € Z be a point, xo := 7(20), [ € E, and let us define
a function e: R™ — R by e(z) = exp(—|z — zo|™!) if # # x¢ and e(zo) = 0.
Then there is a neighborhood V of the point zy € Z and a natural number
r such that for every z € V — n (o) and all maps g1, go € E satisfying
|0%(g; — [)(7(2)] < e(n(2)), i =1,2,0 < |a| < r, the condition j"gi(7(2)) =
j"ga(m(z)) implies Dgi(z) = Dgs(2).

Proof. We assume the lemma does not hold and we shall find a contradiction.

If the assertion is not true, then we can construct sequences zp — zg in Z,
xg = m(zk) — xo and maps fi, gr € F satisfying for all k € N

(1) 0%(fr — [)(wk)| < e(zg)  forall0<|a| <k
(2) 3* frlan) = 5% g (an)
(3) D fr(2x) # Dgr(zx)-

Since all x are different from z(, by passing to subsequences we can assume

1
(4) |21 = ol < 7 lan — ol

Let us fix Riemannian metrics pz or py on Z or W, respectively, and choose
further points zx € Z, Zr — 20, Tk := w(Zx) and neighborhoods Uy or Vj, of xy
or Ty, respectively, in such a way that for all £ € N the following six conditions
hold

(5) |z — 20| <2la—0b] foralla e Uy UV, beU; UV, k#j
(6) [0%(fi — [)(a)| <2e(xy) forallae Uy UV, 0<|a| <k
(7) |0%(gk — f)(a)] < 2e(zy) forallac Uy, UV, 0<|a] <k
(8) w(Dgi(zr), Dfr(Zk)) = kpz(2k, Zk)
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and for all m, k € N, and multi-indices a with |a|+2m < k, a € Uy, and b € V},
we require

[B]<m
1Bl<m

All these requirements can be satisfied. Indeed, the equalities (5), (6), (7) are
valid for all points a, b from some suitable neighborhoods W}, of the points xy.
By the Taylor formula, for any fixed k and |a| +m < k, (2) implies 0%gx(a) =
0% fr(a) + o(la — xk|™). Therefore, if we consider only points a, b € W} such
that

(11) |b — x| < 2[b—al, la — x| < 2|b—al,

then under the condition |a| + 2m < k we get ( note that o(la — zx|™) or
o(|b — 2x|™) now implies o(|a — b|™))

> ST ROE-0 = Y

|B|<m Al |B|<m Al
— 0°gi(a) +oflb— al™)
S Lot @p-af= 3 gaw’fk(a)(bfamo(mfb|m>
1Bl<m 18l<m "

= 0% £ (b) +oflb — a™).

P gr(b)(a —b)? + o(|a —b|™)

Hence also conditions (9), (10) are realizable if we take Uy, V}, in sufficiently small
neighborhoods W, of xj, in such a way that (11) holds for all a € Uy, b € V.. By
virtue of (3), there are also neighborhoods of the points zj in Z ensuring (8).
Finally, we are able to choose appropriate points Zj and neighborhoods Uy, Vj
using the fact that 7 is continuous and locally non-constant.

The aim of conditions (1), (4)—(7), (9), (10) is to guarantee the existence of
a map h € C°(R™ R") satisfying

(12) germ h(xy) = germ gi(zx) and  germ h(Zy) = germ fi(Ty).

Then, by virtue of our requirements on F, we may assume h € F, provided we
use (12) for large indices k, only. But applying D to h, the w-locality and (8)

imply

pw (Dh(zr), Dh(2)) = kpz(zk, 2k)
for large k’s, and this is a contradiction with Dh € C*°(Z, W) and (zy, Zx) —
(20, 20)-
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So it remains to verify condition 19.4.(1) in the Whitney extension theorem
with K = J, (U U Vi) U{xo} and fo(z) = 0% (z) if 2 € Uy, folx) = 0 fi(x)
if v € Vi and fo(z9) = 0°f(x0). This follows by our construction for all couples
(a,b) € Uy (Ug x Vi), see (9), (10). In all other cases and for all m € N we have
to use (6) and (7), (5), the Taylor formula, (6) and (7), and (5) to get

S a1 Aifars(@)(b — a)® = X510 & (0P f (@) + oll(a) — wol™) (b — a)
=Y 51<m 50T F(@) (b —a)? +o(]b—al™)
= 0%f(b) + o(|b — a|™)
= fa(b) + o(|zk@p) — o|™) + o(]b—a|™)
= fa(b) +o(|b —a|™). O

19.12. Lemma. Let zg € Z be a point, © = 7(z9) and f € E. Then there is
a neighborhood V of zy in 7~%(x) and a natural number r such that for every
z € V and all maps g € E the condition j"g(x) = j" f(x) implies Dg(z) = Df(z).

Proof. The proof is quite similar to that of 19.11, but we first have to prove the
dependence on infinite jets. Consider g1, g2 € E with j®g1(x) = j>®g2(x) and
a point y € 7~ 1(x). Let us choose a sequence y, — y in Z, w(yx) =: xp # @
and neighborhoods Uy, of x, satisfying |a — x| > 2|a — b| for all a € Uy, b € Uj,
k # j. Using the Whitney extension theorem 19.4, the Taylor formula, and our
assumptions on E we find a map h € E satisfying for all large k’s

germ h(zgy) = germ gy (xor) and germ h(zopy1) = germ go(Tag11)-

This implies Dh(yor) = Dg1(yor), Dh(yak+1) = Dga(yar+1) and consequently

Dyg1(y) = Dg2(y)-
Now, we assume the assertion of the lemma is not true. So we can construct
a sequence z — zp, 7(2x) = « and maps g, € F satisfying for all k € N

(1) ¥ f(x) = j*gn(x)
(2) ng(Zk) 7é Df(Zk)

We choose further points zx — 29 in Z, Ty, := w(2x), Tx # 2, and neighborhoods
V. of Zj, in such a way that

(3) pw (Dgr(2k), D f(21)) = kpz(Zk, 2k) for all k € N
(4) la — x| > 2|a — b forallae Vi, beV;, k#j

o — 1
(5) MS— for all @ € Vi, |a| + m < k.

la — x|™m

This is possible by virtue of (1), (2) and the Taylor formula analogously to 19.11.
Finally, using (4), (5), the Whitney extension theorem and our assumptions, we
get a map h € E satisfying

germ h(Zy) = germ g, (Zx) and j>h(x) = j°° f(x)



184 Chapter V. Finite order theorems

for large k’s. Hence (3) and the first part of this proof imply

pw (Dh(Zr), Dh(zr)) = pw (Dg(zk), Df (2x)) > kpz(Zk, 21.)

which is a contradiction with Dh € C>*(Z,W). O

Proof of theorem 19.7. According to lemmas 19.11 and 19.12, for every point
z € K we find a neighborhood V, of z, an order r, and a smooth function
e,: m(V,) — R which is strictly positive with a possible exception of the point
m(z), such that the conclusion of 19.7 is true for these data. The proof is then
completed by the standard compactness argument. [l

19.13. Let us note that our definition of Whitney-extendibility was not fully
exploited in the proof of lemma 19.12. Namely, we dealt with ‘fast converging’
sequences only. However, we might be unable to verify the W-extendibility for
certain domains E C C*°(X,Y’) while the proof of lemma 19.12 might still go
through. So we find it profitable to present explicit formulations. For technical
reasons, we consider the case X = R™.

Definition. A subset E C C*°(R™,Y) is said to be almost Whitney-extendible
if for every map f € C°(R™,Y), sequence fi, € E, fo € E and every convergent
sequence x, — x satisfying for all k € N, |z — x| > 2|zpp1 — 2, germ f(xx) =
germ fi(xy), j°° f(x) = 7 fo(z), there is a map g € F and a natural number kg
satisfying germ g(xy) = germ fi(x) for all k > k.

19.14. Proposition. Let 7: Z — R™ be a locally non-constant continuous
map, E C C*°(R™,Y) be an almost Whitney-extendible subset and let D: E —
C°(Z,W) be a w-local operator. Then for every fixed map f € E, point x € R™,
and for every compact subset K C 7~ !(x), there exists a natural number r such
that for all maps g € E the condition j"g(z) = j" f(x) implies Dg|K = Df|K.

Proof. The proposition is implied by lemma 19.12 and by the standard com-
pactness argument. [J

At the end of this section, we present an example showing that the results in
19.7 are the best possible ones in our general setting.

19.15. Example. We shall construct a simple idg-local operator
D: C*(R,R) — C*(R,R)

such that if we take f = idg, then for any order r and any compact neighborhood
K of 0 € R, every function e: R — R from 19.7 satisfies £(0) = 0.
Let g: R? — R be a function with the following three properties

(1) g is smooth in all points z € R?\ {(0,1)}

(2) limsup,_,; 9(0,z) = 0

(3) g is identically zero on the closed unit discs centered in (—1,1) and (1, 1).
Further, let a: R? — R be a smooth function satisfying a(t, z) # 0 if and only if
|z] >t > 0.
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Given f € C*°(R,R), z € R, we define

oo

psw) =3 (((atv 1050 x L) L),

k=0

The sum is locally finite if g o (f x %) is locally bounded. Hence Df is well
defined and smooth if go (f x %) is smooth. The only difficulty may happen if
we deal with some f € C*(R,R) and z € R with f(z) =0, %(m) = 1. However,

in this case it holds ot
Gy —1 &2

lim 4=22 W) = —f(x)

Iy T @
and the property (3) of g implies g o (f x %) = 0 on some neighborhood of z.

On the other hand, for f = idg, arbitrary ¢ > 0 and order r € N, there are

functions A1, hy € C*°(R,R) such that 571 (0) = j"ha(0), |- (h1 —idg)(0)] < &
for all 0 < k <r, and Dh;(0) # Dho(0). This is caused by property (2) of g.

20. The regularity of bundle functors

20.1. Definition. A category C over manifolds is called locally flat if C admits
a local pointed skeleton (Cy, 0,) where each C-object C,, is over some R™(®) and
if all translations t, on R"(®) are C-morphisms.

Each local pointed skeleton of a locally flat category will be assumed to have
this property.

Every bundle functor F': C — M f on a locally flat category C determines the
induced action 7 of the abelian subgroup R™® < C(C,,C,) on the manifold
FC,, 7» = F(t;). In section 14 we used this action and the regularity of the
natural bundles to find canonical diffeomorphisms FR™ 2 R™ x pz. (0). The
same consideration applies also in our general case, but we have first to prove
the smoothness of 7. The most difficult and rather technical job is to prove that
7 is continuous. Therefore we first formulate this result, then we deduce some of
its consequences including the regularity of bundle functors and only at the very
end of this section we present the proof consisting of several analytical lemmas.

20.2. Proposition. Let C be an admissible locally flat category over manifolds
with almost Whitney-extendible sets of morphisms and with the faithful functor
m: C — Mf. Let (Cq,0,) be its local pointed skeleton. Let F': C — M [ be a
functor endowed with a natural transformation p: F' — m such that the locality
condition 18.3.(i) holds. Then the induced actions of the abelian groups R™(<)
on F'C\, are continuous.

The proof will be given in 20.9-20.12.

20.3. Theorem. Let C be an admissible locally flat category over manifolds
with almost Whitney-extendible sets of morphisms, (Cy,0,) its local pointed
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skeleton, and m: C — M the faithful functor. Let F': C — Mf be a func-
tor endowed with a natural transformation p: F© — m such that the locality
condition 18.3.(1) holds. Then there are canonical diffeomorphisms

(1) mCly X pgi (0n) 2 FC,, (x,2)+— Fty(z)

and for every A € ObC of type « the map pa: FA — A is a locally trivial fiber
bundle with standard fiber pai (0). In particular F' is a bundle functor on C.

Proof. Let us fix a type a and write R™ for mC,,. By proposition 20.2, the action
7: R™ x FC, — FC, is a continuous action and each map 7,.: FC, — FC, is
a diffeomorphism. But then a general theorem, see 5.10, implies that this action
is smooth. It follows that for every z € pai (0n) the map s: R™ — FC,, s(z) =
T, (2) is smooth and pc, o s = idgm. Therefore pc, is a submersion and pai (04)
is a manifold. Since both the maps (z,z) — 7(x,2) and y — 7(—pc,, (v),y) are
smooth, (1) is a diffecomorphism. The rest of the theorem follows now from the
locality of functor F. [

20.4. Consider a bundle functor F' on an admissible category C. Since for every
C-object A the action of C(A4, A) on F'A determined by F' can be viewed as a
pa-local operator, a simple application of our results from section 19 will enable
us to get near to the finiteness of the order of bundle functors.

Consider a point z € A and a compact set K C p}l(x) C FA. We define

QK = Ugscinve(a,a) F f(K).

Lemma. If C(A,A) C C*®°(mA, mA) is almost Whitney-extendible, then for
every compact K as above there is an order r € N such that for all invertible
C-morphisms f, g and for every point y € A the equality j; f = j, g implies

Ffl(Qx Npa'(w) = Fgl(Qx Npa' ().

Proof. Let us fix the map ids € C(A, A) and let us apply proposition 19.14 to
F:C(A A) - C*(FA,FA), m =ps and K. We denote by r the resulting order.
For every z € Qi there are y € K and g € invC(A4, A) with Fg(y) = z. Consider
f1, f2 € invC(A, A) such that j" f1(7(2)) = j" fa(7(2)). Then j7(f109)(n(y)) =
§"(f2 0 g)(m(y)) and therefore j" (g~ o f o f20g)(n(y)) = 57ida(n(y)). Hence
Ffi(z) =FfioFg(y) = FfaoFg(y) = Ffa(z). O

20.5. Theorem. Let C be an admissible locally flat category over manifolds
with almost Whitney-extendible sets of morphisms. If all C-morphisms are lo-
cally invertible, then every bundle functor F' on C is regular.

Proof. Since all morphisms are locally invertible and the functors are local, we
may restrict ourselves to objects of one fixed type, say a. We shall write (C, 0) for
(Cq,04), mC =R™, p = peo. Let us consider a smoothly parameterized family
gs € C(C,C) with parameters in a manifold P. For any z € FC, z = p(z),
fecC(C,C) we have

(1) Ff(z) =Tp@) 0o F(t_g@yo foty)oT 4(2)
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and the mapping in the brackets transforms 0 into 0. Since 7 is a smooth action
by theorem 20.3, the regularity will follow from (1) if we show that for families
with gs(0) = 0 the restrictions of Fg, to the standard fiber S = p~1(0) are
smoothly parameterized. Since the case m = 0 is trivial, we may assume m > 0.
By lemma 20.4 F' is of order co. We first show that the induced action of the
group of infinite jets G = invJ§°(C, C)o on S is continuous with respect to the
inverse limit topology.

Consider converging sequences z, — z in S and j3°fn — j5°fo in G2°. We
shall show that any subsequence of F'f,,(z,) contains a further subsequence con-
verging to the point Ffy(z). On replacing f, by f. o fy ', we may assume
fo = id¢. By passing to subsequences, we may assume that all absolute values
of the derivatives of (f,, —id¢) at 0 up to order 2n are less then e~". Let us
choose positive reals €, < e~™ in such a way that on the open balls B(0,¢,,)
centered at 0 with diameters ¢,, all the derivatives in question vary at most by
e ™. Let z, :=(27",0,...,0) € R™. By the Whitney extension theorem there
is a local diffeomorphism f : R”™ — R™ such that

f|B(x2n+17 52n+1) - ldC and f‘B(xQna 52n) - tzgn o f2n o t—ZEQ”

for large n’s. Since the sets of C-morphisms are almost Whitney extendible,
there is a C-morphism A satisfying the same equalities for large n’s. Now

Ty, © Fhot,, (2n) = F[fn(2zn) if n is even

Tz, o Fhot, (2n) = 2n if n is odd.

Hence, by virtue of proposition 20.2, F'fs,(22,) converges to z and we have
proved the continuity of the action of GS° on S as required.

Now, let us choose a relatively compact open neighborhood V' of z and define
Qv = (Useinvec,oyF f(V)) N'S. This is an open submanifold in S and the
functor F' defines an action of the group G5° on Qv . According to lemma 20.4
this action factorizes to an action of a jet group G7, on )y which is continuous
by the above part of the proof. Hence this action has to be smooth for the reason
discussed in the proof of theorem 20.3 and since smoothness is a local property
and all C-morphisms are locally invertible this concludes the proof. [

20.6. Corollary. Every bundle functor on F M,, ,, is regular.

We can also deduce the regularity for bundle functors on FM,, using theo-
rems 20.3 and 20.5.

20.7. Corollary. Every bundle functor on F.M,, is regular.

Proof. The system (R™T" — R™ 0), n € N, is a local pointed skeleton of
FM,,. Every morphism f: R™+" — R™*+F is locally of the form f = hog
where g = gy X idgn : R™*T" — R™T7 and h is a morphism over identity on R™
(g0 = fo, ha(z,y) = f1(f5'(x),y)). So we can deal separately with this two
special types of morphisms.
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The restriction F,, of functor F' to subcategory FM,, ,, is a regular bundle
functor according to 20.6 and the morphisms of the type gy x idg» are F M, -
morphisms.

Hence it remains to discuss the latter type of morphisms. We may restrict
ourselves to families h,: R™T" — R™** parameterized by p € RY, for some
q € N. Let us consider i: R™T" — R™T" x RY, (z,y) — (z,y,0), h: RMT7Te
R™HE h(—, —,p) = hy. Since all the maps h,, are over the identity, h is a fibered
morphism. We have h, = hotqg,) o1, so that Fh, = Fho Ftygg,) o Fi.
According to theorem 20.3 F'h,, is smoothly parameterized. [

20.8. Remarks. Since every bundle functor is completely determined by its
restriction to a local pointed skeleton, there must be a bijective correspondence
between bundle functors on categories with a common local pointed skeleton.
Hence, although the category FM,, o does not coincide with M f,,, (in the former
category, there are coverings of m-dimensional manifolds), the bundle functors
on Mf,, and FM,, o are in fact the same ones. Analogously, the usual local
skeleton of F M coincides with that of M f. So corollary 20.6 reproves the clas-
sical result on natural bundles due to [Epstein, Thurston, 79] while 20.7 implies
that every bundle functor defined on the whole category of manifolds is regular.
For the same reason our results also apply to the category of (m-n)-dimensional
manifolds with a foliation of codimension m and morphisms transforming leafs
into leafs.

The rest of this section is devoted to the proof of proposition 20.2. Let us fix
a bundle functor F' on an admissible locally flat category C over manifolds with
almost W-extendible sets of morphisms and an object (R™,0) in a local pointed
skeleton. We shall briefly write p instead of pgm, 7 for the action of R™ on FR™
and we denote by B(z,¢) the open ball {y € R™; |y — x| < e} C R™.

First the technique used in section 19 will help us to get a lemma that seems
to be near to the continuity of 7 claimed in proposition 20.2. However, the
complete proof of 20.2 will require a lot of other analytical considerations.

20.9. Lemma. Let z; € FR™, 1 =1, 2,..., be a sequence of points converging
to z € FR™ such that p(z;) # p(z). Then there is a sequence of real constants
g; > 0 such that for any point a € R™ and any neighborhood W of 7,(z) the
inclusion 7(B(a,&;) x {z;}) C W holds for all large i’s.

Proof. Let us assume that the lemma is not true for some sequence z; — z.
Then for any sequence ¢; of positive real numbers there are a point a € R™ | a
neighborhood W of 7,(z) and a sequence a; € B(a,¢;) such that 7(a;, z;) ¢ W
for an infinite set of indices ¢ € Iy C N. Let us denote z; := p(z), = := p(z).
Passing to a further subset of indices we can arrange that 2|x; — x;| > |z; — |
for all 4, j € Iy, i # j. If we construct a smooth map f: R™ — R™ such that

(1) germ f(x;) = germtg, (x;)
for an infinite subset of indices i € I C I and

(2) germ f(z;) = germt,(z;)
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for an infinite subset of indices j € J C Iy, then using the almost W-extendibility
of C-morphisms we find some g € C(R™,R™) satisfying Fg(z;) = Ftq,(z;) =
T(ai, z;) for large ¢ € I and Fg(z;) = 7(a, z;) for large j € J. Hence F(t_,) o
Fg(z) = 7(a;—a, z;) for large i € I while F((t_,)oF¢(z;) = z; for large j € J and
this implies F'g(z) = 74(%) which is in contradiction with Fg(z;) = 7(a;, 2z;) ¢ W
for large i € I.

The existence of a smooth map f : R™ — R™ satisfying (1), (2) is ensured
by the Whitney extension theorem (see 19.4) if we choose the numbers ¢; small
enough. To see this, let us view (1) and (2) as a prescription of all derivatives
of f on some small neighborhoods of the points x;, i € I. Then the condition
19.4.(1) reads
|ai — aj|

la — a;] la — a;]

lim % 0, lim 7 —0 lim - 0
J,i—00 |:177 — I’j| z~>oo |:Z?7 — QZ| J,i—00 |:Z?7 — I’j|
Jiel iel,jeJ

for all k € N.

Let us choose 0 < &; < e~ Y/(#i=2D) Now, if i < j then |a; — a;| < 2e; and
|zi — x;] > %|o; — | and the first estimate follows. Analogously we get the
remaining ones. [J

The next lemma is necessary to overcome difficulties with constant sequences
in FIR™.

20.10. Lemma. Let z; € FR™, j =1, 2,..., be a sequence of points converg-
ing to z € FR™. Then there is a sequence of points a; € R™, a; # 0, i = 1,
2,..., converging to 0 € R™ and a subsequence z;, such that Ft,, (z;,) — z if
1 — 00.

Proof. Let us recall that F'R™ has a countable basis of open sets and let Uy,

j € N, form a basis of open neighborhoods of the point z satisfying U; 1 C Uj.
For each number j € N, there is a sequence of points a(j, k) € R™, k € N, such

that
U Flta)U) = U Fltag0)(0;).

a€R™ keN

Let b; € R™ be such a sequence that for all k& € N, b; # a(j, k). Passing
to subsequences, we may assume z; € U; for all j and consequently we get
F(ty,)(25) € Ugen F(tagiry)(U;) for all j € N. Let us choose a sequence k; € N,
such that

F(ty;)(2;) € Ftagr))(Uj)

for all j € N, and denote a; := b; — a(j,k;). Then a; # 0 and F(t4;)(z;) € U,
for all j € N. Therefore F(t4,)(z;) — 2 and since a; = p(F(ta;)(25)) —p(25), we
also have a; — 0 [

A further step we need is to exclude the dependence of the balls B(a,¢;) on
the indices ¢ in the formulation of 20.9.
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20.11. Lemma. Let z; — z be a convergent sequence in FR™, p(z;) # p(z),
and let W be an open neighborhood of z. Then there exist b € R™ and € > 0
such that

7(B(b,e) x {z}) C W, 7(B(be) x {z}) CW

for large i’s.

Proof. We first deduce that there is some open ball B(y,n) C R™ satisfying
(1) B(y,n) C{a € R™; F(ta)(z) € W}

Let us apply lemma 20.10 to a constant sequence y; := z. So there is a sequence
a; € R™, a; #0, a; — 0 such that 7,,(z) — z. Now we apply lemma 20.9 to the
sequence w; := T4, (2). Since for a = 0 we have 7,(z) € W, there is a sequence
of positive constants n; such that 7(B(0,n;) x {w;}) C W for large i’s. Let us
choose one of these indices, say ip, and put y := a;,, n := 7;,. Now for any
b € B(y,n) we have 7,(2) = Tp—y © 7y(2) = Tp—y(w;) C W, so that (1) holds.

Further, let us apply lemma 20.9 to the sequence z; — z and let us fix a
neighborhood W of z. Then the conclusion of 20.9 reads as follows. There is
a sequence of positive real constants ; such that for any a € R™ the condition
7a(z) € W implies 7(B(a,&;) x {z;}) C W for all large i’s. Therefore

B(y,m)  |J [{a € R™7(B(a,e:) x {zi}) ¢ W}

keNi>k

For any natural number k we define

By := ﬂ{a € B(y,n);7(B(a,&;) x {z}) c W}.

i>k

Since UgenBr = B(y,n), the Baire category theorem implies that there is a
natural number kg such that int(By,) N B(y,n) # 0.

Now, let us choose b € R™ and ¢ > 0 such that B(b,e) C int(By,) N B(y,n).
If © € B(b,e) and i > kg, then there is T € By, with € B(Z,¢;) so that we
have 7,(z;) € W and (1) implies 7,,(z) e W. O

20.12. Proof of proposition 20.2. Let z; — 2z be a convergent sequence in
FR™, x; — x a convergent sequence in R”. We have to show

(1) Toi(2i) = Ftz,)(2:) = F(t)(2) = 7a(2).

Since we can apply the isomorphism F'(¢_,), we may assume x = 0. More-
over, it is sufficient to show that any subsequence of (z;, z;) contains a further
subsequence satisfying (1). That is why we may assume either p(z;) # p(z) or
p(zi) = p(z) for all i € N.

Let us first deal with the latter case. According to lemma 20.10 there is a
sequence y; € R™ and subsequence z;; such that 7,, (z”) — z and y; — 0,
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yj # 0. But 7 (2i;) — z if and only if Tas,—y; © Ty, (zi;) — 2, so that if we
consider z; := 7, (2i;), 2 := z and Z; := x;; — y;, we transform the problem to
the former case.

So we assume p(z;) # p(z) for all i« € N and z; — 0. Let us moreover assume
that 7,,(z;) does not converge to z. Then, for each x € R™, 7,4, (%;) does not
converge to 7,(z) as well. Therefore, if we set

A:={z € R™; 7y, (2;) does not converge to 7,(z)}

we find A = R™. Now we use the separability of FR™. Let V;, s € N, be a basis
of open sets in FR™ and let

L :={x € R™; Tp14,(2;) € V5 for large i’s}

Qs ={z eR™;7,(2) € Vs and = ¢ L,}.

We know A C Usen@s and consequently Usen@s = R™. By virtue of the Baire
category theorem there is a natural number k such that int(Qy) # 0.
Let us choose a point a € Qf Nint(Qr). Then z € 7_, (V%) and so

W .= p_l (tp(z),a (mt(@))) mT,a(V]Q

is an open neighborhood of z. According to lemma 20.11 there is an open ball
B(b,e) C R™ such that

(2) T(B(b,e) x {2}) C P (tp(e)—a (nt(Qr)))

3) T(B(b,€) x {zi}) € 7—a(Vi)

for all large i’s. Inclusion (2) implies p(z) + B(b,e) C p(z) — a + int(Qy,) or,
equivalently,

(4) B(b+a,e) C int(Qx).
Formula (3) is equivalent to
T(B(bJra,s) X {zl}) C Vi
for large 4’s. Since x; — 0, we know that for any = € B(b+ a,¢) also (x + x;) €
B(b+ a,¢e) for large i’s and we get the inclusion B(b + a,e) C Lj. Finally, (4)

implies
B(b+a,e) C Ly Nint(Qr) C (R™\ Q) Nint(Qy).

This is a contradiction. [
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21. Actions of jet groups

T

Let us recall the jet group Gy, ,, of the only type in the category FM,,
which we mentioned in 18.8. In this section, we derive estimates on the possible
order of this jet group acting on a manifold S depending only on dimS. In view
of lemma 20.4, these estimates will imply the finiteness of the order of bundle
functors on F M, .

21.1. The whole procedure leading to our estimates is rather technical but the
main idea is very simple and can be applied to other categories as well. Consider
a jet group G, of an admissible category C over manifolds acting on a manifold S
and write By, for the kernel of the jet projection 7 : G- — GX. For every point
y € S, let H, be the isotropy subgroup at the point y. The action factorizes to
an action of a group G¥ on S if and only if B} C H, for all points y € S. So
if we assume that the order r is essential, i.e. the action does not factorize to
G"~!, then there is a point y € S such that H, does not contain Bj ;. If the
action is continuous, then H, is closed and the homogeneous space G7,/H, is
mapped injectively and continuously into S. Hence we have

(1) dim S > dim(G,,/Hy)

and we see that dim S is bounded from below by the smallest possible codimen-
sion of Lie subgroups in G, which do not contain Bj.

A proof of such a bound in the special case C = FM,, ,, will occupy the rest
of this section.

21.2. Theorem. Let a jet group Gy, ,,, m > 1, n > 0, act continuously on a
manifold S, dim S = s, s > 0, and assume that r is essential, i.e. the action does
not factorize to an action of an’n, k <r. Then

r<2s+1.

Moreover, if m, n > 1, then

s
r < max{
m

s s
—+1 —+1
—1’m+’n +1

-1 n
and if m > 1, n = 0, then

r < max{

s
— + 1}
m—l’m+}

All these estimates are sharp for allm > 1, n >0, s > 0.

21.3. Proof of the estimate r < 2s 4+ 1. Let us first assume s > 0. By the
general arguments discussed in 21.1, there is a point y € S such that its isotropy
group H, does not contain the normal closed subgroup B;_;. We shall denote
Orm.n» br_1 and b the Lie algebras of G7, ,,, By_; and H,, respectively. Since
T

T_, is a connected and simply connected nilpotent Lie group, its exponential
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map is a global diffeomorphism of b]._; onto B]_;, cf. 13.16 and 13.4. Therefore
h does not contain b]._;. In this way, our problem reduces to the determination
of a lower bound of the codimensions of subalgebras of gy, ,, that do not contain
the whole b} _;.

Since gy, ,, is a Lie subalgebra in g7, ,,, there is the induced grading

On = 00D - D gr1

where homogeneous components g, are formed by jets of homogeneous pro-
jectable vector fields of degrees p + 1, cf. 13.16.

If we consider the intersections of h with the filtration defining the grading
G, = DPgp, then we get the filtration

h=h">p'>...0p" >0

and the quotient spaces b, = h?/hPT! are subalgebras in g,. Therefore we can
construct a new algebra h = ho @ --- ® h,_; with grading and since

dimb = dimb/p* + dimph'/h% 4+ .- + dim h" "' = dim b,

both the algebras h and 6 have the same codimension. By the construction,
b _, ¢ hifand only if h,_1 # g,_1, so that h does not contain b;_; as well. That
is why in the proof of theorem 21.2 we may restrict ourselves to Lie subalgebras
b C g5, With grading h = ho&--- @b,y satistying h; C g; for all 0 <7 <r—1,
and b,_1 # gr—1.

Now the proof of the estimate r < 2s 4+ 1 becomes rather easy. To see this,
let us fix two degrees p # ¢ with p + ¢ = r — 1 and recall [g,,8,] = gr—1,
see 13.16. Hence there is either a € g, or a € g, with a ¢ b, for if not then
[9p,8q) = gr—1 C br—1. It follows

1
codim b > i(r - 1.

According to 21.1.(1) we get s > 1 (r — 1) and consequently r < 2s + 1.

The remaining case s = 0 follows immediately from the fact that given an
action p: Gy, , — Diff(S) on a zero-dimensional manifold S, then its kernel
ker p contains the whole connected component of the unit. Since Gy, , has two
components and these can be distinguished by the first order jet projection, we
see that the order can be at most one. O

Let us notice, that the only special property of gy, ,, among the general jet
groups which we used in 21.3 was the equality [g,, 4] = gp+4- Hence the first
estimate from theorem 21.2 can be easily generalized to some other categories.

The proof of the better estimates for higher dimensions is based on the same
ideas but supported by some considerations from linear algebra. We choose some
non-zero linear form C' on g,_; with ker C' D b,._1. Then given p, ¢, p+qg=7r—1,
we define a bilinear form f : g, X g, — R by f(a,b) = C([a,b]) and we study
the dimensions of the annihilators.
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21.4. Lemma. Let V, W, be finite dimensional real vector spaces and let
f:V x W — R be a bilinear form. Denote by V° or W° the annihilators of V'
or W related to f, respectively. Let M C V, N C W be subspaces satisfying
fI(M x N)=0. Then

codim M + codim N > codim V°.

Proof. Consider the associated form f* : V/W9 x W/V? — R and let [M], [N]
be the images of M, N in the projections onto quotient spaces. Since f* is not
degenerated, we have

(1) dim[M] + dim[M]° = codim W°.

Note that codim V? = codim W°. We know dim[M] = dim(M/M N W°) =
dim(M + W?) — dim W° and similarly for N. Therefore

dim[M] + dim[N] =
= dim(M + W°) — dim W° + dim(N + V) — dim V°
= codim W° — codim(M + W) + codim V° — codim(N + V?)
> codim W + (codim V° — codim M — codim N).

According to our assumptions N C MY, so that dim[N] < dim[M]°. But then
(1) implies
dim[M] + dim[N] < codim W°

and therefore the term in the last bracket in (2) must be less then zero. O

If we fix a basis of the vector space R™ then there is the induced basis on
the vector space g,_1 and the induced coordinate expressions of linear forms
C on g,_1. By naturality of the Lie bracket, using arbitrary coordinates on
R™ the coordinate formula for the Lie bracket does not change. Since fiber
respecting linear transformations of R™*" — R™ preserve the projectability of
vector fields, we can use arbitrary affine coordinates on the fibration R™+" — R™
in our discussion on possible codimensions of the subalgebras, which is based on
formula 13.2.(5).

The coordinate expression of C' will be written like C' = (C?), i =1,... ,m+
n, la| = r. This means C(X) = Y, Cfal,, if X = D agxo‘aiz € gr—1,
where we sum also over repeated indices. For technical reasons we set Cf* = 0
whenever i < m and a; > 0 for some j > m.

If suitable, we also write a = (@, ... Qup4p) in the form « = 4y - - - i,., where
r=lal, 1 <i; < m+n,so that a; is the number of indices i that equal j.
Further we shall use the symbol (j) for a multiindex o with a; = 0 for all i # j,
and its length will be clear from the context. As before, the symbol 1; denotes
a multiindex o with «; = 5;
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21.5. Lemma. Let C be a non-zero form on g,_1, m > 1, n > 0. Then in
suitable affine coordinates on the fibration R™*" — R™, the induced coordinate
expression of C satisfies one of the following conditions:
(1) iy #0 and m > 1.
(ii) Cfl) # 0; C = 0 whenever a; =0 and 1 < j < m; oot — C;‘Hi (no
summation) for all o] =r—1,1<j <m.
(iii) clm+b) #0,n > 1, and Cj =0 whenever j < m.

m—+n
(iv) Cﬁ:ﬁl) #0; C¢ =0if j <m or a; = 0; and C:@ilfnﬂ = C;H_lj (no

summation) for all |a| =7 —1,j>m+ 1.

Proof. Let C' be a non-zero form on g,_; with coordinates C§* in the canonical
basis of R™™" — R™. Let us consider a matrix A € GL(m + n) whose first row
consists of arbitrary real parameters aj =t # 0, a3 = ta, ... , a5, = ty, a; =0
for j > m, and let all the other elements be like in the unit matrix. Let a} be the
elements of the inverse matrix A~'. If we perform this linear transformation,
we get a new coordinate expression of C, in particular

(1) C'(l) = a:!' . alrcil"'i'r'ds, .

Hence we get

_ |
(2) CM =t -1, Clir =
ty
A1) iveir _ U prinein .
(3) C; tiy ot | C; 1 for1 <j<m.
ty

Formula (2) implies that either we can obtain C’fl) # 0 or Cf = 0 for all multi
indices a, |a| = r. Let us assume m > 1 and try to get condition (i). According
to (3), if (i) does not hold after performing any of our transformations, then
the expression on the right hand side of (3) has to be identically zero for all
values of the parameters and this implies C* = 0 whenever a; = 0, la] = r,
and COT1 = C’;Hlj for all |o] =r —1,1 < j < m. Hence we can summarize:
either (i) can be obtained, or (i) holds, or C§ = 0 for all 1 < j <m, |a| =, in
suitable affine coordinates.

Analogously, let us take a matrix A € GL(m + n) whose (m + 1)-st row

consists of real parameters t1, ... ,tmin, tmt+1 # 0 and let the other elements be
like in the unit matrix. The new coordinates of C are obtained as above

= 1 iy L
(4) OOt =ty -ty Ol ;

m+1

_ o t L

(5) Oyt =ty ooty (Ot = O )
J J tm+1

Now we may assume C* = 0 whenever 1 < j < m, for if not then (i) or (ii) could
be obtained. As before, either there is a basis relative to which C’(nfll) # 0 or

m
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C3 1 = 0 for all |of = r. Further, according to (5) either we can get (iii) or
Cs = 0 whenever a; = 0, and CO‘H"‘+1 = C;H_l’ forall jo|=r—1,j >m+1.
Therefore if both (iii) and (iv) do not hold after arbitrary transformations, then

all 3" have to be zero, but this is contradictory to the fact that C'is non-zero. U

21.6. Lemma. Let p, g be two degrees withp+qg=r—1>0andp > q > 0.
Letm > 1 andn > 1 orn =0, and let b,, b, be subspaces of g,, g,. Let C be a
non-zero linear form on g,_1 and suppose [h,,hy] Cker C. IfCf, 1 <i < m+n,
|a| = r, is a coordinate expression of C satisfying one of the conditions 21.5.(i)-
(iv), then

2m — 2, if 21.5.(i) holds
2m, if 21.5.(ii) holds and ¢ > 0
] ] m, if 21.5.(ii) holds and ¢ =0
codim hj, + codim b, > ]
2n — 2, if 21.5.(iii) holds
2n, if 21.5.(iv) holds and ¢ > 0
n, if 21.5.(iv) holds and ¢ = 0.

Proof. Define a bilinear form

f:nggq_)[R f(a7b):C([a7b])'

By our assumptions f(h,,h,) = {0}. Hence by lemma 21.4 it suffices to prove
that the codimension of the f-annihilator of g, in g, has the above lower bounds.
Let by be this annihilator and consider elements a € bg, b € g,. We get

Clla,t) = > Cf([a,b)i =0
1<i<m+n
|a|=r

Using formula for the bracket 13.2.(5) we obtain

0= > Y (bl - uady,)
1<i,j<m+n
|| =g+1
[A=p+1
+A—1; A—1; L 1.7
I G LU
1<i,j<m+n
||=q+1
[Al=p+1
Since b € g, is arbitrary, we have got a system of linear equations for the
annihilator b containing one equation for each couple (j,u), where 1 < j <
m+n, |u| = ¢+ 1 and pu; = 0 whenever ¢ > m and j < m. The (j, )-equation
reads

A—1; —1; ;
(1) S (e - e ) a0
1<i<m+n
[Al=p+1
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A lower bound of the codimension of by is given by any number of linearly
independent (j, pt)-equations and we have to discuss this separately for the cases
21.5.(1)—(iv).

Let us first assume that 21.5.(i) holds, i.e. CT(,}) # 0, m > 1. We denote by F;
the (s, (1))-equation, 1 < s < m and by Fy, the (m, (1)+1x)-equation, 1 < k <m
(note that if ¢ = 0 then (1) + 15 = 1x). We claim that this subsystem is of full
rank. In order to verify this, consider a linear combination

m—1 m—1
Y @B+ Y V=0 a0 eR
s=1 k=1

From (1) we get

m—1
(2) Z (Z (Ci(l)+)\715/\s _ Ogl)+A71i5i1(q + 1))as+

1<i<m—+n
[Al=p+1

s=1

m—1
N (& D W (O (e 55))5’6) ai = 0.
k=1

Hence all the coefficients at the variables aé\ withl1 <i<m+n, A=p+1, and
Aj = 0 whenever j > m and ¢ < m, have to vanish. Therefore, we get equations
on reals a®, b*, whenever we choose i and A. We have to show that all these
reals are zero.

First, let us substitute A = (1) and ¢ = m. Then (2) implies C\2) (p+1)al =0
and consequently a' = 0. Now we choose A = (1) + 1,,, i = m, with 1 < v < m,
and we get C,Si)a” = 0 so that a® =0 for 1 < s < m — 1. Further, take A = (1)
and 1 < 7 < m to obtain —CT(,})bi = 0. Finally, the choice i = 1 and A = (1)
leads to —C,%)(q +1)bt = 0. In this way, we have proved that the chosen 2m — 2
equations Fs and Fj, are independent and this implies the first lower bound in
21.6.

Now suppose 21.5.(ii) takes place and let us denote Ey the (s, (1))-equation,
1 < s <m,and if ¢ > 0, then Fy will be the (m, (1) + 1,, + 1x)-equation,
1 <k < m. As before, we assume Y .-, a*Es + > " b*F, = 0 for some reals
a® and b* and we compare the coefficients at af\ to show that all these reals are
zero. But before doing this, we can simplify all (j, u)-equations with 1 < j <m
using the relations from 21.5.(ii). Indeed, (1) reduces to

Y TN = pi)al + R=0.
1<i<m
[Al=p+1

where R involves all terms with indices ¢ > m. Consequently E, and Fj have
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the forms

> CTAT(N — 5 (g +1))ay + R=0

1<i<m
|A]=p+1
> eI AT (A 5l (g — 1) = 6F — 67")al, + R =0.
1<i<m
[X[=p+1

Assume first ¢ > 0. If we choose 1 < i < m, A = (1), then the variables a} do
not appear in the equations E; at all. Hence the choice i = m, A = (1) gives
(see 21.5.(i1)) 0 = o mym — —QCfl)bm; and 1 < i < m, A = (1) now
yields —C\V T pi = 0. Hence b = 0 for all 1 < i < m. Further, we take i = m,
A= (1)+1,+ 1, v # m (note p > q > 0), so that all the coefficients in F; are
zero. In particular, v = 1 implies C%l)al =0 so that a' = 0. Now, if 1 < v < m,
then C{M gy = C’%l)a” = 0 and what remains are ™ and b', only. Taken
A=(1),i=1, wesee 0 = —(¢+ 1)C$)am — quﬁ)Hmbl = C{l)b1 and, finally,
the choice ¢ = m and A\ = (1) 4+ 1,,, + 1,,, gives C’y(,%)JrlmQam = 0. This completes
the proof of the second lower bound in 21.6.

But if ¢ = 0 and 21.5.(ii) holds, we can perform the above procedure after
forgetting all the equations Fj, which are not defined. We have only to notice
p+g=r—1>0,s0that |\ =p+1=r>2.

If n > 1, then the remaining three parts of the proof are complete recapitu-
lations of the above ones. This becomes clear if we notice, that we have used
neither any information on C¥, j > m, nor the fact that C§* = 0 if j < m and
a; # 0 for some ¢ > m. That is why we can go step by step through the above
proof on replacing 1 or m by m + 1 or m + n, respectively.

If n = 0, then neither 21.5.(iii) nor 21.5.(iv) can hold. O

21.7. Proposition. Let h be a subalgebra of g;,, ,,, m > 1, n >0, r > 2, which
does not contain b]_;. Then

(1) codim b > %(r -1).

Moreover, if m > 1, n > 1, then

(2) codimbh > min{r(m — 1), (r — )m, r(n —1), (r — 1)n}
and if m > 1, n =0, then

(3) codimh > min{r(m — 1), (r — 1)m}.

Proof. In 21.3 we deduced that we may suppose b is a subalgebra with grading
hb=bo® ---Db_1, by C gi, br—1 # gr-1, and we proved the lower bound
(1). Let us assume m > 1, n = 0 and choose a non-zero form C' on g,_; with
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kerC' O h,_1. Then we know [h;,b,—;_1] C h.—1 C kerC' and by lemma 21.5
there is a suitable coordinate expression of C' satisfying one of the conditions
21.5.(i), 21.5.(ii). Therefore we can apply lemma 21.6.

Assume first C¢ satisfies 21.5.(i). Then for all j

codim b; + codim b,_;_1 > 2m — 2

and consequently
r—1

codimb = Zcodim hj > r(m—1).

=0

If 21.5.(ii) holds, then

codim by + codimb,_1; > m

codim b; + codim b,_;_1 > 2m

for 1 < j <r—2, so that codimbh > m + (r — 2)m = (r — 1)m. This completes
the proof of (3) and analogous considerations lead to the estimate (2) if n > 1
and the coordinate expression of C' satisfies 21.5.(iii) or 21.5.(iv). O

21.8. Examples.
1. Let by C g),, m > 1, be defined by

i 0
by = {aia? D2

7a‘zl):0f0rj:277m71§|(1)|§’r}

One sees immediately that the linear subspace h; consists just of polynomial
vector fields of degree r tangent to the line zo = x3 = --- = z,,, = 0, so that
b clearly is a Lie subalgebra in g}, of codimension r(m — 1). Consider now the
subalgebra b C gy, ,, consisting of projectable polynomial vector fields of degree
r over polynomial vector fields from bh;. This is a subalgebra of codimension
r(m—1)in O

2. Consider the algebra by C g7, ,,,, n > 1, defined analogously to the subal-
gebra b

i A0 , .
bgz{a)\x)‘a—xi;azmﬂ)=Of0r1§j§m+n,j7ém+l,1§|(m—|—1)|§r}

and define h = ha N gy, ,,. Since every polynomial vector field in g;, ,, is tangent
to the fiber over zero, this clearly is a Lie subalgebra with coordinate description

i a0 .
[):{ak;z;)‘aixi;aznﬂ_l):Oform+1<j§m+n,1§\(m+1)|§r}

and codimension r(n — 1).
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3. Let us recall that the divergence div X of a polynomial vector field X € g/,

can be viewed as the jet jgil(div X), see 13.6. So for an element a = a&x*%

we have ‘
diva = Z Njah a1t
1<i<m
<A<
Let M be the line in R™, m > 1, defined by 29 = 23 = --- = 2, = 0 and

denote by b3 the linear subspace in gy @ - @ g,—1 (note go is missing!)

bs = {aja?

, 0
EGD - Dgr_1; (div(af\m)‘ ))|M = 0}.

Of course, b3 is not a Lie subalgebra in g;,. Let us further consider the Lie
subalgebra b, C gl ! consisting of all polynomial vector fields without absolute
terms and tangent to M, cf. example 1. Let b5 = (W:_l)_l hs C g, and let us
define a linear subspace

he = (h5 Ngo) & (hs N bs).

First we claim that h3 N b5 is a subalgebra. Indeed, if X, Y € h3 N b5, then
either the degree of both of them is less then r or their bracket is zero. But in
the first case, X and Y are tangent to M and their divergences are zero on M,
so that 13.6.(1) implies div([X,Y])|sr = 0.

Now, consider a polynomial vector field X from the subalgebra hs N gy and a
field Y € h3 N bhs. Since every field from gy has constant divergence everywhere
and X is tangent to M, 13.6.(1) implies div([X,Y])|as = 0. So we have proved
that bhg is a subalgebra. In coordinates, we have

i 0 g o
be = {axa?AT € 0 a1y =0, Y ajryer, (1+6[()]) =0

L °
i=1
forj=2,...,m, 1 <|(1)] <r—1}.

Now, we take the subalgebra b in gy, ,, consisting of polynomial vector fields
over the fields from hg. The codimension of  is (r — 1)m.

4. Analogously to example 2, let us consider the subalgebra b7 in g, .,
n>1,

7 0 r j m§+n i m
b7 = {a’)\x/\ 6$Z € gm+n7 agm+1) = 07 a’(m+1)+1i(1 + 51 +1|(m + 1)|) =0
i=1

forj=1,....m+n,j#m+11<|[m+1)]<r—1}

and let us define h = b7 N gy, ,. Then

% 0 r j = i
b - {0,)\1‘)\% € gm,n; a€m+1) = 07 Z a(m—&-l)-&-li(l + 5zm+1|(m + 1)|) =0
¢ i=m+1

forj=m+2,... m+n 1<|m+1)|<r—-1}
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and we have found a Lie subalgebra in g}, ,, of codimension (r — 1)n.

Let us look at the subgroups corresponding to the above subalgebras. In
the first and the second examples, the groups consist of polynomial fibered iso-
morphisms keeping invariant the given lines. These are closed subgroups. In
the remaining two examples, we have to consider analogous subgroups in G:nf}”
then to take their preimages in the group homomorphism 7] _;. Further we con-
sider the subgroups of polynomial local isomorphisms at the origin identical in
linear terms and without the absolute ones. Their subsets consisting of maps
keeping the volume form along the given lines are subgroups. Finally, we take
the intersections of the above constructed subgroups. All these subgroups are
closed.

21.9. Proof of 21.2. The idea of the proof was explained in 21.1 and 21.3. In
particular, we deduced that the dimension of every manifold with an action of
G, ny 7 > 2, which does not factorize to an action of GJ,}, is bounded from
below by the smallest possible codimension of Lie subalgebras h = ho®- - -Bbh,_1,
b: C @i, bro1 # gr—1, with grading. We also got the lower bound %(7" —1) for
the codimensions and this implied the estimate » < 2dim S + 1. But now, we
can use proposition 21.7 to get a better lower bound for every m > 1 and n > 1.

Indeed,
s =dim S > min{r(m —1),(r — )m,r(n — 1), (r — 1)n}

and consequently

s
17
+’n—1

s s
< — — 4+ 1}.
r_max{m_l,m ’n+}
If n =0 we get
s > min{r(m — 1), (r — 1)m},

so that

r < max{

S
— + 1}
m—1m " }
Since all the groups determined by the subalgebras we have constructed in 21.8
are closed, the corresponding homogeneous spaces are examples of manifolds

with actions of Gy, , with the extreme values of 7.

If m =1, let us consider ) = go B gs P gs41 B - B g2s—1 C g%‘“‘l. Since

[gs,9s] = 0 in dimension one, this is a Lie subalgebra and one can see that the
corresponding subgroup H in GfSH is closed (in general, every connected Lie
subgroup in a simply connected Lie group is closed, see e.g. [Hochschild, 68, p.
137]). The homogeneous space G>**1/H has dimension s and G3°™! acts non
trivially. Since there are group homomorphisms Gy, ,, — G7, and G}, ,, — G},
(the latter one is the restriction of the polynomial maps to the fiber over zero),
we have found the two remaining examples. [
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22. The order of bundle functors

Now we will collect the results from the previous sections to get a description
of bundle functors on fibered manifolds. Let us remark that the bundle functors
on categories with the same local skeletons in fact coincide. So we also describe
bundle functors on M f,, and Mf in this way, cf. remark 20.8. In view of
the general description of finite order regular bundle functors on admissible
categories and natural transformations between them deduced in theorems 18.14
and 18.15, the next theorem presents a rather detailed information. As usual
m: F M, — Mf is the faithful functor forgetting the fibrations.

22.1. Theorem. Let F : FM,, , = Mf, m >1,n >0, be a functor endowed
with a natural transformation p: F' — m and satisfying the localization property
18.3.(1). Then S := pﬂg},ﬂ, (0) is a manifold of dimension s > 0 and for every
(Y - M) in ObFM,,,, the mapping py : FY — Y is a locally trivial fiber
bundle with standard fiber S, i.e. F: FM,,,, — FM. The functor F is a
regular bundle functor of a finite order » < 2s + 1. If moreover m > 1, n = 0,
then

s
< —+1
r_max{mil,m—i— },

and if m > 1, n > 1, then
S s S
< —+1, —, —+1}L
Tﬁmax{m—l’m+7n—l’n+}

All these estimates are sharp.

Proof. Since FM,, ,, is a locally flat category with Whitney-extendible sets of
morphisms, we have only to prove the assertion concerning the order. The rest
of the theorem follows from theorems 20.3 and 20.5. By definition of bundle
functors, it suffices to prove that the action of the group G of germs of fibered
morphisms f: R™T" — R™*" with f(0) = 0 on the standard fiber S factorizes
to an action of Gy, ,, with the above bounds of  depending on s, m, n.

As in the proof of theorem 20.5, let V' C S be a relatively compact open set
and Qy C S be the open submanifold invariant with respect to the action of G,
as defined in 20.4. By virtue of lemma 20.4 the action of G on Qy factorizes to
an action of Gf,m for some k € N. But then theorem 21.2 yields the necessary
estimates. Moreover, if we consider the G7, ,-spaces with the extreme orders
from theorem 21.2; then the general construction of a bundle functor from an
action of the r-th skeleton yields bundle functors with the extreme orders, cf.
18.14. O

22.2. Example. All objects in the category F.M,, ,, are of the same type. Now
we will show that the order of bundle functors may vary on objects of different
types. We shall construct a bundle functor on M f of infinite order.

Consider the sequence of the r-th order tangent functors 7) from 12.14.
These are bundle functors of orders € N with values in the category VB of
vector bundles. Let us denote dj the dimension of the standard fiber of TF)RF
and define a functor F': M f — FM as follows.
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Consider the functors A¥ operating on category VB of vector bundles. For
every manifold M the value F'M is defined as the Whitney sum over M

FM= @ A*T®M

1<k<o0

and for every smooth map f: M — N we set

Ff= @ A*T®f: FM — FN.
1<k<oo

Since AT M = M x {0} whenever k > dim M, the value FM is a well
defined finite dimensional smooth manifold and F'f is a smooth map. The fiber
projections on T M yield a fibration of FM and all the axioms of bundle
functors are easily verified. Since the order of A*T*) is at least k the functor
F is of infinite order.

22.3. The order of bundle functors on FM,,. Consider a bundle functor
F: FM,, — FM and let F,, be its restriction to the subcategory FM,,,, C
FM,,. Write S,, for the standard fibers of functors F;, and s, := dim S,,. We
have proved that functors F;, have finite orders r, bounded by the estimates
given in theorem 22.1.

Theorem. Let F': FM,, — FM be a bundle functor. Then for all fibered
manifolds Y with n-dimensional fibers and for all fibered maps f, g: Y — Y,
the condition j;"*' f = j,"*'g implies Ff|F,Y = Fg|F,Y. If dimY < dimY,
then even the equality of r,-jets implies that the values on the corresponding
fibers coincide.

Proof. We may restrict ourselves to the case f, g: R™+" — R™+F £(0) = g(0) =
0 € Rmtk,

(a) First we discuss the case n = k. Let us assume jjf = jlg, r = r, and
consider families f; = f+tidgm+n, g¢ = g+tidgm+n, t € R. The Jacobians at zero
are certain polynomials in ¢, so that the maps f; and g; are local diffeomorphisms
at zero except a finite number of values of ¢. Since jj f: = jj g for all ¢, we have
Ff|S, = F¢¢|S, except a finite number of values of t. Hence the regularity of
F implies F'f|S,, = Fg|Sy.

Every fibered map f € FM,,(R™*T" R™F) over fo: R™ — R™ locally de-
composes as f = ho g where g = fy X idgn: R™*" — R and h = fog~!is
over the identity on R™. Hence in the rest of the proof we will restrict ourselves
to morphisms over the identity.

(b) Next we assume n = k +q, ¢ > 0, f, g: Rmtkta  Rm+E - and et
jof = jog with r = r,,. Consider f = (f,pry), § = (g,pry): R™T" — R™+n,
where pr,: R™T++4 — R is the projection onto the last factor. Since jgf =700,
f =pr,of and g = pr, og, the functoriality and (a) imply Ff|S,, = Fg|S,.

(c) If k = n+ 1 and if j5f = jog with r = 7,1, then we consider f,
g: Rmtntl  RmAn+l defined by f = fopry, § = gopr;. Let us write
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i: Rm*T — R™nFL for the inclusion x +— (z,0). For every y € R™™"F! with

pr; (y) = 0 we have j;f = j, g and since f = foi, g = goi, we get F f|S,, = Fg|Sy.
(d) Let k =n+gq, ¢ > 0, and i: R™*t" — R™T" 4 — (z,0). Analogously
to (a) we may assume that f and g have maximal rank at 0. Hence according
to the canonical local form of maps of maximal rank we may assume g = i.
(e) Let us write f = (idgm, f1,..., f*): R™*+" — R™** k> n, and assume
Jof = jbi with r = 7, 1. We define h: Rm+n+l  Rm+k
B, y) = (dum, f1@), ., ()5, (@), FH (@),
Then we have
ho (idgm,idgn, f*) = f
hoi= (idgm, f1, ..., f™0,f" 2 ..., f5).
Since 55 (idgm , idgn, f**1) = j&i, part (c) of this proof implies
F(idgm+n, f"1)[S, = Fi|S,
and we get for every z € S,
Ff(z) = Fho Fi(z) = F(idgm, f1, ..., f™0, f"*2 ..., %) (2).
Now, we shall proceed by induction. Let us assume
Ff(z) = F(idgm, f', ..., f™0,...,0, " ..., f")(2), s> 1,
for every z € S, and jo" ' f = jo""i. Let o: Rtk — RmAntk he the map
which exchanges the coordinates ™! and z"**, i.e.
o(z,zt,. .. a™ a"t  ante ek =
= (x,2! mogtte ot ab).
We get
Fidgm,fY, ..., f™0,...,0, " . ) (2) =
= F(oo (idgm, f'y. o, f" f"5,0,0.0,0, f75F 0 f9) ()
= Foo F(idgm, fY, ..., f™,0,...,0, " ()
= Fidgm, 'y o f™,0,...,0, f75F 0 ) ().

So the induction yields Ff(z) = F(idgm, f1,..., f™,0,...,0). Since we always
have 7,41 > 1, (a) implies

F(idgm, f*, ..., f")|Sn = Fidgmin |Sp.
Finally, we get
Ff|S, = F(idgm, f*,..., f",0,...,0)|S,
= F(io (idgm, f*,..., f")|S, = Fi|S,. O

Theorem 22.3 reads that every bundle functor on FM,, is of locally finite
order and we also have estimates on these ‘local orders’. But there still remains
an open question. Namely, all values on morphisms with an m-dimensional
source manifold depend on r,,1-jets. It is not clear whether one could get a
better estimate.
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23. The order of natural operators

In this section, we shall continue the general discussion on natural operators
started in 18.16-18.20. Let us fix an admissible category C over manifolds, its
local pointed skeleton (Cy,0,), « € I, and consider bundle functors on C.

23.1. The local order. We call a natural domain F of a natural operator
D: E ~ (G1,G2) W-extendible (or Whitney-extendible) if all the domains E4 C
CX,(F1A F,A), A € ObC, are W-extendible. We recall that the set of all
sections of any fibration is W-extendible, so that the classical natural operators
between natural bundles always have W-extendible domains.

Let us recall that we can apply corollary 19.8 to each g-local operator D: E C
C>*(Y1,Ys) — C°°(Z1, Z3), where Y1, Ya, Z1, Z are smooth manifolds, ¢: Z; —
Y1 is a surjective submersion and F is Whitney-extendible. In particular, D is
of some order k, 0 < k < oo. Let us consider a mapping s € E, z € Z;
and the compact set K = {z} C Z;. According to 19.8 applied to K and s,
there is the smallest possible order r =: x(7°°s(¢(z)),2) € N such that for all
5 € E the condition j"s(q(z)) = j"5(q(z)) implies Ds(z) = D5(z). Let us write
Ek C J¥(Y1,Y3) for the set of all k-jets of mappings from the domain E. The
just defined mapping x: E* Xy, Z1 — N is called the local order of D.

For every m-local natural operator D: E ~» (G1,G2) with a natural W-
extendible domain FE, the operators

Dy: Ey C C::A(FlA,FQA) — sz(GlA’ GQA)

are ma-local. The system of local orders (xa)acobc is called the local order of
the natural m-local operator D.
Every locally invertible C-morphism f: A — B acts on E® Xp, 4 G1A by

fH(4s,z) = (j°(Faf o so Fif ) (Fif(2)), G1f(2)).

Lemma. Let D: E ~ (G1,G2) be a natural operator with a natural Whitney-
extendible domain E. For every locally invertible C-morphism f: A — B and
every (j°s,z) € EX xp,a G1A we have

XB<f*(j§oS,Z)) = XA(j;osvz)'

Proof. Since C is admissible and the domain E is natural, we may restrict
ourselves to A = B = C,, for some a € I. Assume x4(js,z) = r and
Jrq(Fif(x)) = j"(Faf o so Fyf~1)(F1f(z)) for some x € F1C, and s,q € Ec,.
Then j"((Fof)~togoF1 f)(xz) = j"s(x) and therefore Dc, ((Fof)~'ogoFi f)(2) =
D¢, s(z). We have locally for each s € E¢,

soF fT' =Ff o (FyfosoFif)
De, s =Gaof ' oD, (Faf oso Fif ') oGif.

Hence D¢, q(G1f(2)) = Gof o D¢, s(z) and we have proved xp o f* < xa.
Applying the action of the inverse f~! we get the converse inequality. O
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23.2. Consider the associated maps
Dca : Egi X Cq GlCa — GQCa

determined by a natural 7-local operator D with a natural W-extendible domain
E. We shall write briefly Ef, C E¢, for the subset of jets with sources in the
fiber S, over 0, in F}Cy, and Z, := wai (S¢) € G1C,. By naturality, the whole
operator D is determined by the restrictions

Da: E((;o X Sa Za — GQCa

of the maps D¢, . Let us write xo: ES° Xg, Zo — N for the restrictions of xc, .

Lemma. The maps x, are GX°-invariant and if x, < r, then the operator D is
of order r on all objects of type «.

Proof. The lemma follows immediately from the definition of naturality, the
homogeneity of category C and lemma 23.1. O

23.3. The above lemma suggests how to prove finiteness of the order in concrete
situations. Namely, theorem 19.7 implies that ‘locally’ . is bounded and so it
must be bounded on each orbit under the action of G°. Assume now F; = Idc,
i.e. we deal with a natural p©t-local operator D: E ~ (G1,Gs) with a natural
W-extendible domain (E4 C C*°(FA)). Then E° C T°Qq, where Qn = FoCy
is the standard fiber and n = dim(mC,). Further assume that the category
C is locally flat and that the bundle functors F' and G; have the properties
asserted in theorem 20.3 (so this always holds if C has almost W-extendible sets
of morphisms). Consider a section s € E¢, C C*°(FC,) invariant with respect
to all translations, i.e. F((t;)osot_,(y) = s(y) for all z € mCy, =R"™, y € C,
and denote Z the standard fiber (G1)oCa.

Lemma. For every compact set K C Z there is an order r € N and a neigh-
borhood V' C Eg° C T;°Qa of jgos in the C"-topology such that x, < r on
V x K.

Proof. Let us apply theorem 19.7 to the translation invariant section s and a
compact set K/ x K ¢ C, x Z = G1C,, where K’ is a compact neighborhood
of 0, € R™. We get an order r and a smooth function € > 0 except for finitely
many points y € K’ where £(y) = 0. Let us fix x in the interior of K’ with
g(x) > 0. Hence there is a neighborhood V of s in the C"-topology on FE¢,
and a neighborhood U C C,, of z in K’ such that xv (j;°q, (y, 2)) < 7 whenever
(y,2) € Ux K and ¢ € V. Now, let W be a neighborhood of j&§°s in C"-topology
on EZ° such that ¢,*W is contained in the set of all infinite jets of sections from
V. Since we might assume that ¢, acts on G1C, = R" x Z by Git, =t, x idy
and we have assumed ¢,*s = s, the lemma follows from lemma 23.2. [

Under the assumptions of 23.3 we get
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23.4. Corollary. Let s € Ec,, be a translation invariant section and K C Z a
compact set. Assume that for every order r € N, every neighborhood V' of jj s
in E!, C T Q,, every relatively compact neighborhood K' of K and every couple
(6.9, 2) € By, X Z there is an element g € G7° such that g*(j5_q,2) € V x K'.
Then every natural operator in question has finite order on all objects of type
a.

Proof. For every relatively compact neighborhood K’ of K, there is an r € N
and a neighborhood of j§¢s in the C"-topology such that x, < r on V x K'.
But the assumptions of the corollary ensure that the orbit of V' x K’ coincides
with the whole space E5° x Z,. O

Next we deduce several simple applications of this procedure.

23.5. Proposition. Let F': Mf,, — FM be a bundle functor of order r such
that its standard fiber Q together with the induced action of G, C G, can be
identified with a linear subspace in a finite direct sum

D@ o @E™)

and b; > a; for all i. Let G1: Mf,, — FM be a bundle functor such that either
its standard fiber Z together with the induced G}, -action can be identified with
a linear subspace in a finite direct sum

é(@Rm ® ®Rm*)

and b; > a’; for all j, or Z is compact.
Then every natural operator D: F ~~ (G1,G2) defined on all sections of the
bundles FM has finite order.

Proof. Write p;: R™ — R™, t € R, for the homotheties x — tz. Let us consider
the canonical identification FR™ = R"™ x ) and the zero section s = (idgm,0)
in C*°(FR™). Further, consider an arbitrary section ¢: R™ — FR™ and let us
denote q; = Fip; 0qo ;' and ¢i(z) = (x,qi(x)). Under our identification, s is
translation invariant and we can use formula 14.18.(2) to study the derivatives
of the maps ¢! at the origin. For all partial derivatives 0%¢! we get

&) 0°4i(0) = 11l (o).

If the standard fiber Z is compact, then we can use lemma 23.4 with K = Z
and the zero section s. Indeed, if we choose an order r and a neighborhood V' of
Jos in 17, @), then taking t large enough we obtain jjg; € V, so that the bound
r is valid everywhere. But if Z is not compact, then an analogous equality to
(1) holds for the sections of G1R™ with a; —b; replaced by a); — b’ and these are
also negative. Hence we can apply the same procedure taking K = {0}, where
0 is the zero element in the tensor space Z. [J
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23.6. Examples. The assumptions of the proposition are satisfied by all tensor
bundles with more covariant then contravariant components. But clearly, these
are also satisfied for all affine natural bundles with associated natural vector
bundles formed by the above tensor bundles. So in particular, F' can equal to
QP': Mf,, — FM, the bundle functor of elements of linear connections, cf.
17.7, or to the bundle functors of elements of exterior forms. If G; = Id¢ then Z
is a one-point-manifold, i.e. a compact. Hence we have proved that all natural
operators on connections or on exterior forms that do not extend the bases have
finite order.

23.7. Let us apply corollary 23.4 to the natural operators on the bundle func-
tor J': FMp — FM, ie. we want to derive the finiteness of the order for
geometric operations with general connections. For this purpose, consider the
maps @gp: R™" — R™" o(z,y) = (az,by). In words, we will use the in-
clusion G}, x G}, — G, and the jets of homotheties in the jet groups G},

m,n )
and G”. In canonical coordinates (z*,y?,y") on JL(R™™™ — R™), i=1,...,m,
j =1,...,n, we get for every section s = y”(z’,y?) and every local fibered

isomorphism ¢ = (¢, ©P)

1 (97 1\ dwgt (0P N
1 1 _ 1 0 1 q 1 0
Jposogp _(8xjo<p ) pre + ayqogp (yjo<p )&ri .

In particular, for ¢ = ¢, we obtain
Gap s(z' yP) =ba 1yl o o).

Hence for every multi index o = a; + a2, where a4 includes all the derivatives
with respect to the indices ¢ while aip those with respect to p’s, it holds

(1) §orten (Pap*s)(0) = aflf\alIblflazlaawazs(o)_

Proposition. Let H: FM,,,, — FM be an arbitrary bundle functor while
G: FM,, n — FM is either the identity functor or the functor J1 or the vertical
tangent bundle V. Then every natural operator D: J' ~~ (G, H) defined on all
sections of the first jet prolongations has finite order.

Proof. If G = Idrn,,,, then we can take b = 1, a > 0 and corollary 23.4
together with (1) imply the assertion. The same choice of a and b leads also to
the case G = J*, for J'p,,(y?) = a='y? on the standard fiber over 0 € R™ ™.

In the third case we have to be more careful. On the standard fiber R™ of
VR™*™ we have Vi, ,(EP) = (b€P). Let us fix some r € N and choose a = b™",
0 < b < 1 arbitrary. Then

‘aOtlJrOtz (@a,b*s)(oﬂ _ br(1+|a1|)+1*‘0‘2||80¢1+(¥25(0)‘
and so for all |a| < r we get

|0%(a,p™s)(0)] < 0]0%s(0)].
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Hence also in this case corollary 23.4 implies our assertion. [J

At the end of this section, we illustrate on two examples how bad things
may be. First we construct a natural operator which essentially depends on
infinite jets and the next example presents a non-regular natural operator. This
contrasts the results on bundle functors where the regularity follows from the
other axioms.

23.8. Example. Consider the bundle functor FF =T & T*: M f,, — Mf and
let G be the bundle functor defined by GM = M x R, Gf = f x idg, for all
m-~dimensional manifolds M and local diffeomorphisms f, i.e. ‘the bundle of real
functions’. The contraction defines a natural function, i.e. a natural operator
F ~ @G, of order zero. The composition with any fixed real function R — R
is a natural transformation G — G and also the addition G & G -& G and
multiplication G @ G — G are natural transformations. Moreover, there is the
exterior differential d: G ~» T, a natural operator of order 1.
By induction, let us define operators Dy: T @ T* — G. We set

(Do)M(X,w) = in and (Dk+1)M(X,w) = Zx(d((Dk)M(X,w)))

for k = 0,1,.... Further, consider a smooth function a: R? — R satisfying
a(t,z) # 0 if and only if |z| > ¢t > 0. We define

Dy(X,w) = (a(k, =) o (ixw)). (D) (X,w)).
k=0

Since the sum is locally finite for every (X,w) € C°°(FM), this is a natural
operator of infinite order.

23.9. Example. Consider once more the bundle functors F', G and operators
Dy, from example 23.8. Let a and g: R? — R be the functions used in 19.15.
We shall modify operator D from example 19.15 to get a non-regular natural
operator. Let us define operators Dy, : C°(FM) ~~ C®(GM) by

o0

Dy(X,w) =Y (a(k,—)ogo ((ixw) x (ixd(ixw)))).(Dr)a(X,w))
k=0

for all (X,w) € C®°(T & T*M). We have used only natural operators in our
construction, but, unfortunately, the values Dy (X,w) need not be smooth (or
even defined) if dimension m is greater then one. This is caused by the infinite
value of limsup,_, o 1y g(z). But if m = 1, then all values are smooth and the
system D), satisfies all axioms of natural operators except the regularity. Indeed,
it suffices to verify the smoothness of the values of Dg. But if (ixw)(tg) = 0
and (ixd(ixw))(to) = 1, ie. X(to)-L(Xw)(ty) = 1, then L (Xw)(ty) # 0 and
therefore the curve d
e ((X) (1), X (Xw)(1)
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lies on a neighborhood of ¢ inside the unit circles centered in (—1,1) and (1, 1).
Hence Dg(X,w) = 0 on some neighborhood of tg.

Let us note that our operator D is not only non-regular, but also of infinite
order and it shows that the assertion of lemma 23.3 does not hold for all maps
s € D¢, in general. A non-regular natural operator of order 4 on Riemannian
metrics for dimension m = 2 can be found in [Epstein, 75].

23.10. If we consider natural operators D: F ~» (G, Gs) with domains formed
by all sections of the bundles FM — M, then we can use the regularity of
D and apply the stronger version of nonlinear Peetre theorem 19.10 instead of
19.7 in the proof of 23.3. Hence we do not need the invariance of the section s.
Consequently, the assertion of lemma 23.3 holds for all sections s € E¢_. That
is why, under the assumptions of corollary 23.4 we can strengthen its assertion.

Corollary. Let s € C>®(FC,) be a section and K C Z be a compact set.
Assume that for every order r € N, every neighborhood V of j§_s in By, C T} Q.,
every relatively compact neighborhood K’ of K and every couple (j; q,z) €
E}, X Z, there is an element g € G such that g*(jg q,z) € V x K'. Then every
natural operator D: F ~ (G1,G2) has a finite order on all objects of type c.

Remarks

The general setting for bundle functors and natural operators extends the
original categorical approach to geometric objects and operators due to [Nijen-
huis, 72] and we follow mainly [Kolaf, 90] and partially [Slovédk, 91].

The multilinear version of Peetre theorem, proved in [Cahen, De Wilde, Gutt,
80], seems to be the first non-linear generalization of the famous Peetre theorem,
[Peetre, 60]. The study of general nonlinear operators started in [Chrastina, 87]
and [Slovak, 87b]. The original aim of the nonlinear version 19.7, first proved in
[Slovék, 87b], was the reduction of the problem of finding natural operators to a
finite order. The pure analytical results were further generalized and completed
in a setting of Holder-continuous maps and metric spaces in [Slovdk, 88] and
it became clear that they should help to unify the approach to the finiteness
of the orders of both natural operators and bundle functors and to avoid the
original manipulation with infinite dimensional Lie algebras, see [Palais, Terng,
77]. Let us remark that nearly all categories over manifolds used in differential
geometry are admissible and locally flat, however the verification of the Whitney
extendibility might present a serious analytical problem in concrete examples.
In the most technical part of the description of bundle functors, i.e. in the proof
of the regularity, we mainly follow [Mikulski, 85] which generalizes the original
proof due to [Epstein, Thurston, 79] to natural bundles with infinite dimensional
values. Let us point out that our proof also applies to continuous regularity of
bundle functors on the categories in question with values in infinite dimensional
manifolds.

Our sharp estimate on the orders of jet groups acting on manifolds is a gener-
alization of [Zajtz, 87], where similar results are obtained for the full group G7,.
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The results on the order of bundle functors on FM,, follow some ideas from
[Kolar, Slovak, 89] and [Mikulski, 89 a, b]. The methods used in our discussion
on the order of natural operators never exploit the regularity of the natural op-
erators which we have incorporated into our definition. So the results of section
23 can be applied to non-regular natural operators which can also be classified
in some concrete situations.
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CHAPTER VI
METHODS FOR FINDING
NATURAL OPERATORS

We present certain general procedures useful for finding some equivariant
maps and we clarify their application by solving concrete geometric problems.
The equivariance with respect to the homotheties in GL(m) gives frequently a
homogeneity condition. The homogeneous function theorem reads that under
certain assumptions a globally defined smooth homogeneous function must be
polynomial. In such a case the use of the invariant tensor theorem and the
polarization technique can specify the form of the polynomial equivariant map
up to such an extend, that all equivariant maps can then be determined by
direct evaluation of the equivariance condition with respect to the kernel of
the jet projection G7, — GL,. We first deduce in such a way that all natural
operators transforming linear connections into linear connections form a simple
3-parameter family. Then we strengthen a classical result by Palais, who deduced
that all linear natural operators APT* — APY1T* are the constant multiples of
the exterior derivative. We prove that for p > 0 even linearity follows from
naturality. We underline, as a typical feature of our procedures, that in both
cases we first have guaranteed by the results from chapter V that the natural
operators in question have finite order. Then the homogeneous function theorem
implies that the natural operators have zero order in the first case and first
order in the second case. In section 26 we develop the smooth version of the
tensor evaluation theorem. As the first application we determine all natural
transformations TT* — T*T. The result implies that, unlike to the case of
cotangent bundle, there is no natural symplectic structure on the tangent bundle.

As an example of a natural operator related with fibered manifolds we discuss
the curvature of a general connection. An important tool here is the generalized
invariant tensor theorem, which describes all GL(m) x GL(n)-invariant tensors.
We deduce that all natural operators of the curvature type are the constant
multiples of the curvature and that all such operators on a pair of connections
are linear combinations of the curvatures of the individual connections and of
the so-called mixed curvature of both connections. The next section is devoted
to the orbit reduction. We develop a complete version of the classical reduction
theorem for linear symmetric connections and Riemannian metrics, in which
the factorization procedure is described in terms of the curvature spaces and
the Ricci spaces. The so-called method of differential equations is based on the
simple fact that on the Lie algebra level the equivariance condition represents
a system of partial differential equations. As an example we deduce that the
only first order natural operator transforming Riemannian metrics into linear
connections is the Levi-Civita operator. But we apply the method of differential
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equations only in the first part of the proof, while in the final step a direct
geometric consideration is used.

24. Polynomial GL(V)-equivariant maps

24.1. We first deduce a result on the globally defined smooth homogeneous
functions, which is useful in the theory of natural operators.

Consider a product V; x ... x V,, of finite dimensional vector spaces. Write
z, €Vi,i=1,...,n.

Homogeneous function theorem. Let f(z1,...,x,) be a smooth function
defined on Vi x ... x V,, and let a; > 0, b be real numbers such that

(1) @, ma) = R, k)

holds for every real number k > 0. Then f is a sum of the polynomials of degree
d; in x; satisfying the relation

(2) ardy +---+apd, =0.

If there are no non-negative integers dy, ... ,d, with the property (2), then f is
the zero function.

Proof. First we remark that if f satisfies (1) with b < 0, then f is the zero
function. Indeed, if there were f(x1,...,x,) # 0, then the limit of the right-
hand side of (1) for k¥ — 04 would be f(0, ... ,0), while the limit of the left-hand
side would be improper.

In the case b > 0 we write a = min(ay,... ,a,) and r = [2](=the integer
part of the ratio 2) Consider some linear coordinates x%i on each V;. We claim
that all partial derivatives of the order r + 1 of every function f satisfying (1)
vanish identically. Differentiating (1) with respect to z7¢, we obtain

b Of (x1,...,zp) _ of (k" xq,... k% x,)

Hence for (,zf-i we have (1) with b replaced by b — a;. This implies that every

partial derivative of the order r + 1 of f satisfies (1) with a negative exponent
on the left-hand side, so that it is the zero function by the above remark.

Since all the partial derivatives of f of order r + 1 vanish identically, the
remainder in the r-th order Taylor expansion of f at the origin vanishes identi-
cally as well, so that f is a polynomial of order at most r. For every monomial
.. a8 of degree |a;| in x;, we have

(k9 20)2 . (ko) = forloalttanlanlgon | gan

Since k is an arbitrary positive real number, a non-zero polynomial satisfies (1)
if and only if (2) holds. O



214 Chapter VI. Methods for finding natural operators

24.2. Remark. The assumption a; > 0, ¢ = 1,... ,n in the homogeneous
function theorem is essential. We shall see in section 26 that e.g. all smooth
functions f(z,y) of two independent variables satisfying f(kz,k~'y) = f(x,v)
for all k¥ # 0 are of the form ¢(xy), where p(t) is any smooth function of one
variable. In this case we have a; = 1, ap = —1, b= 0.

24.3. Invariant tensors. Consider a finite dimensional vector space V with
a linear action of a group GG. The induced action of G on the dual space V* is
given by

(av*,v) = (v*,a )

forall v € V, v* € V* a € G. In any linear coordinates, if av = (a v7), then

av* = (a v¥), where @ denotes the inverse matrix to a%. Moreover, if we have
some linear actions of G on vector spaces V7, ..., V,,, then there is a unique linear
action of G on the tensor product V; ® --- ® V,, satisfying g(v1 ® - ®@ v,,) =
(gv1)®---® (gvp) for all vy € Vi, ..., v, € V;,, g € G. The latter action is called
the tensor product of the original actions.

In particular, every tensor product @V ® ®4V* is considered as a GL(V)-
space with respect to the tensor product of the canonical action of GL(V') on V

and the induced action of GL(V) on V*.

Definition. A tensor B € ®"V ® ®?V* is said to be invariant, if aB = B for
all a € GL(V).

The invariance of B with respect to the homotheties in GL(V) yields k" 1B =
B for all k € R\ {0}. This implies that for r # ¢ the only invariant tensor is the
zero tensor. An invariant tensor from ®"V @ ®"V* will be called an invariant
tensor of degree r. For every s from the group S, of all permutations of r
letters we define I* € @V ® ®" V™ to be the result of the permutation s of the
superscripts of

(1) ' =idy ®-- ®idy.
r-times
In coordinates, I® = ((5;-‘;(” . 5;”) The tensors I*, which are clearly invariant,

are called the elementary invariant tensors of degree r. Obviously, if we replace
the permutation of superscripts in (1) by the permutation of subscripts, we
obtain the same collection of the elementary invariant tensors of degree r.

24.4. Invariant tensor theorem. Every invariant tensor B of degree r is a
linear combination of the elementary invariant tensors of degree r.

Proof. The condition for B = (bl1 7)€ @R™ @@ R™* to be invariant reads

71 [N TR Z1 Jr
(1) ag. .. 'ak,,,bll...l,, = b al1 coay”

for all a’ € GL(m). To delete the a’s, we rewrite (1) as

J1 jr si1 ik ke _ pinir sk Ky Jr
M A S O i A ak1 sy

-
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Comparing the coefficients by the individual monomials in a%, we obtain the

following equivalent form of (1)

i1 lr ks@y-Fsery 5(1) S(T) 21
(2) Z 5] 1 " Js(r)bll Z 5 lr ]s(l) Js('r‘).

VR

SES, SES,

The case r < m is very simple. Set ¢ = b;'('i)r...s(r)' Ifweputi; =1,...,4. =7,
j1 =1,...,j, = r in (2), then the only non-zero term on the left-hand side
corresponds to s = id. This yields

ks Es(r
(3) b =D el 8y
SES,

which is the coordinate form of our theorem.

For r > m we have to use a more complicated procedure (due to [Gurevich,
48]). In this case, the coefficients ¢4 in (3) are not uniquely determined. This
follows from the fact that for » > m the system of m?” equations in r! variables
Zs

(4) Z 5J1(1) : 5j:(r) zs =0
sES,

has non-zero solutions. Indeed, in this case e.g. every tensor

(5) N i M ST 1y

1 "gmr] Tma2 T

(where the square bracket denotes alternation) is the zero tensor, since among

every ji,...,Jm+1 at least two indices coincide. Hence (5) expresses the zero
tensor as a non-trivial linear combination of the elementary invariant tensors.
Let z&, o = 1,...,q be a basis of the solutions of (4). Consider the linear
equations
(6) ZZ?ZSZO a=1,...,q
sES,

To deduce that the rank of the system (4) and (6) is !, it suffices to prove that
this system has the zero solution only. Let 20 be a solution of (4) and (6). Since
29 satisfy (4), there are k, € R such that

q
(7) 2= kazl.
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By (7) the latter relation means Y~ g (2)? = 0, so that all 2 vanish.

In this situation, we can formulate a lemma:
Let r! tensors X € " R™ @ Q"R™* | s € S,., satisfy the equations

8 DR L S s
() Js(1) Js(m)*7S Js(1)--Js(r)

SES, SES,
with some real coefficients czlm“ Jon and
(9) E 29X =0 a=1,....q
SEST

Then every X, is a linear combination of the elementary invariant tensors.

Indeed, since the system (4) and (6) has rank r! and the equations (6) are
linearly independent, there is a subsystem (4’) in (4) such that the system (4)
and (6) has non-zero determinant. Let (8’) be the subsystem in (8) corresponding
to (4’). Then we can apply the Cramer rule for modules to the system (8’) and
(9). This yields that every X is a linear combination of the right-hand sides,
which are linearly generated by the elementary invariant tensors.

Now we can complete the proof of our theorem. Let B be an invariant tensor
and B?® be the result of permutation s on its superscripts. Then (2) can be
rewritten as

(10) Z 5j1(1) "’5j:(r) B = Z bjls(lv)i-js(T) .

SES, sES,
Contract the zero tensor ) g (5;-1(1) ...(5;-:“),23, a = 1,...,q, with undeter-

mined x;, ;.. This yields the algebraic relations

(11) Z Z?xis(l)“'is(r) =0.

SES,
In particular, for z;, ;. = b;llzjz with parameters ji,... ,J, we obtain
(12) Y B=0 a=1,...,q

SES,

Applying the above lemma to (10) and (12) we deduce that B is a linear com-
bination of the elementary invariant tensors. [

24.5. Remark. The invariant tensor theorem follows directly from the classifi-
cation of all relative invariants of GL(m, Q) with p vectors in Q™ and ¢ covectors
in ™* given in section 2.7 of [Dieudonné, Carrell, 71], p. 29. But  is assumed
to be an algebraically closed field there and the complexification procedure is
rather technical in this case. That is why we decided to present a more elemen-
tary proof, which fits better to the main line of our book.
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24.6. Having two vector spaces V and W, there is a canonical bijection between
the linear maps f: V — W and the elements f©® € W @ V* given by f(v) =
(f®,v) for all v € V. The following assertion is a direct consequence of the
definition.

Proposition. A linear map f: @V ® @I1V* — @'V @ @'V* is GL(V)-
equivariant if and only if f® € @ T4V ® PTV* is an invariant tensor.

24.7. In several cases we can combine the use of the homogeneous function the-
orem and the invariant tensor theorem to deduce all smooth GL(V)-equivariant
maps of certain types. As an example we determine all smooth GL(V')-equivar-
iant maps of ®”V into itself. Having such a map f: ®" V — ®"V, the equivari-
ance with respect to the homotheties in GL(V) gives k" f(z) = f(k"x). Since the
only solution of 7d = r is d = 1, the homogeneous function theorem implies f is
linear. Then the invariant tensor theorem and 24.6 yield that all smooth GL(V)-
equivariant maps ®"V — ®"V are the linear combinations of the permutations
of indices.

24.8. If we study the symmetric and antisymmetric tensor powers, we can ap-
ply the invariant tensor theorem when taking into account that the tensor sym-
metrization Sym: ®"V — S™V and alternation Alt: ®"V — A"V as well as the
inclusions S"V — ®"V and A"V — ®"V are equivariant maps. We determine
in such a way all smooth GL(V)-equivariant maps SV — S"V. Consider the
diagram

f

SV ———5"V

Sym[ [2 zl [Sym
"V —L eV

Then ¢ =io0 foSym: ® V — ®"V is an equivariant map and it holds f =
Sym o ¢ o 4. Using 24.7, we deduce

(1) all smooth GL(V)-maps S™V — S"V are the constant multiples of the
identity.

Quite similarly one obtains the following simple assertions.

All smooth GL(V)-maps

(2) A"V — A"V are the constant multiples of the identity,

(3) "V — S™V are the constant multiples of the symmetrization,

(4) "V — A"V are the constant multiples of the alternation,

(5)S"V — @"V and A"V — ®"V are the constant multiples of the inclusion.

24.9. In the next section we shall need all smooth GL(m)-equivariant maps
of R™ @ R™ @ R™* into itself. Let f;k(xﬁm) be the components of such a
map f. Consider first the homotheties %5; in GL(m). The equivariance of f
with respect to these homotheties yields kf(z) = f(kz). By the homogeneous
function theorem, f is a linear map. The corresponding tensor f® is invariant
in ®R™ ® @3R™*. Hence f® is a linear combination of all six permutations of
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the tensor products of the identity maps, i.e.
f;k = (a15;62”51” + agé;élmég + 0435;.6(5;71(5?
+ aq6},07" 87 + as6]07" S + agb[p S} ) Thyy,
ai,...,as € R. Thus, all smooth GL(m)-maps of R™ @ R™* @ R™* into itself
form the following 6-parameter family
f;k = aléj»a?écl + agé;acfk + agé,’;xél + a46,ix§j + a5xj~k + aG:vfcj.

24.10. The invariant tensor theorem can be used for finding the polynomial
equivariant maps, if we add the standard polarization technique. We present
the basic general facts according to [Dieudonné, Carrell, 71].

Let V and W be two finite dimensional vector spaces. A map f: V — W is
called polynomial, if in its coordinate expression

f(xlvz) = fp(xi)wp

in a basis (v;) of V and a basis (w,) of W the functions fP(z?) are polynomial.
One sees directly that such a definition does not depend on the choice of both
bases.

We recall that for a multi index a = (aq,... ,ay,) of range m = dimV we
write

@ = (xh)M . (™),

The degree of monomial x® is |«|. A linear combination of the monomials of the
same degree r is called a homogeneous polynomial of degree . Every polynomial
map f: V — W is uniquely decomposed into the homogeneous components

f=fo+fi+-+ [
Consider a group G acting linearly on both V and W.

Proposition. Each homogeneous component of an equivariant polynomial map
f:V — W is also equivariant.

Proof. This follows directly from the fact that the actions of G on both V' and
W are linear. [J

24.11. In the same way one introduces the notion of a polynomial map
fVix...xV,—=W

of a finite product of finite dimensional vector spaces into W. Let x; € V; and

«; be a multi index of range m; =dimV;, i = 1,...,n. A monomial
N
is said to be of degree (|a1], ..., |ay]). The multihomogeneous component
farv,... ) of degree (r1,...,7,) of a polynomial map f: Vi x ... xV, — W
consists of all monomials of this degree in f.
Having a group G acting linearly on all Vi, ... ,V,, and W, one deduces quite

similarly to 24.10
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Proposition. FEach multihomogeneous component of an equivariant polynomial
map f: V) x...xV, — W is also equivariant.

24.12. Let f: V — R be a homogeneous polynomial of degree r. Its first
polarization P f: V xV — R is defined as the coefficient by ¢ in Taylor’s formula

(1) fl@+ty) = f(x) +tPLf(,y) + -

The coordinate expression of P f(z,y) is g { y'. Since f is homogeneous of
degree r, Euler’s theorem implies

Py f(z,z) =rf(x).

The second polarization Py f(z,y1,y2): V x V x V — R is defined as the first
polarization of P f(z,y;) with fixed values of y;. By induction, the i-th polar-
ization P;f(x,y1,...,y;) of f is the first polarization of P;_1 f(z,y1,... ,¥i—1)
with fixed values of y1,... ,y;—1. Obviously, the r-th polarization P, f is inde-
pendent on x and is linear and symmetric in y1, ... ,y,. The induced linear map
Pf:S"V — R is called the total polarization of f. An iterated application of
the Euler formula gives

rlflr)=Pf(z® - - ®x).
f(z) =Pf( )
r-times
The concept of polarization is extended to a homogeneous polynomial map
f:V — W of degree r by applying this procedure to each component of f with

+1
respect to a basis of W. Thus, the i-th polarization of f is a map P; f: % V-W
and the total polarization of f is a linear map Pf: SV — W. Let a group G
act linearly on both V and W.

Proposition. If f: V — W is an equivariant homogeneous polynomial map of

i+1
degree r, then every polarization P; f: x V — W as well as the total polarization
Pf are also equivariant.

Proof. The first polarization is given by formula 24.12.(1). Since f is equivari-
ant, we have f(gx + tgy) = gf(xz + ty) for all ¢ € G. Then 24.12.(1) implies
g Pif(z,y) = P1f(gx, gy). By iteration we deduce the same result for the i-th
polarization. The equivariance of the r-th polarization implies the equivariance
of the total polarization. [J

24.13. The same construction can be applied to a multihomogeneous polyno-
mial map f: Vi x...xV,, — W of degree (r1,...,ry,). For any (i1,... i), i1 <
T1y. .., i < 7y, we define the multipolarization P, . ;.)f of type (i1, ... ,in) by
constructing the corresponding polarization of f in each component separately.

Hence
ip+1 int+1
Pi, i x Vixooox x V=W

The multipolarization P, . ,.)f induces a linear map
Pf:S"Vi® -8V, - W

called the total polarization of f.
Given a linear action of a group on Vi,...,V,, W, the following assertion is
a direct analogy of proposition 24.12.
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Proposition. If f: Vi x...xV,, — W is an equivariant multihomogeneous poly-
nomial map, then all its multipolarizations P, .. ;.)f and its total polarization
Pf are also equivariant.

24.14. Example. The simplest example for the polarization technique is the
problem of finding all smooth GL(V)-equivariant maps f: V — ®"V. Using
the homotheties in GL(V), we obtain k" f(z) = f(kx). By the homogeneous
function theorem, f is a homogeneous polynomial map of degree r. Its total
polarization is an equivariant map Pf: S"V — ®"V. By 24.8.(5), Pf is a
constant multiple of the inclusion §"V — ®"V. Hence all smooth GL(V)-
equivariant maps V' — ®"V are of the form z — k(z ® --- ®@ x), k € R.

25. Natural operators on linear connections,
the exterior differential

25.1. Our first geometrical application of the general methods deals with the
natural operators transforming the linear connections on an m-dimensional man-
ifold M into themselves. In 17.7 we denoted by QP'M the connection bundle
of the first order frame bundle P'M of M. This is an affine bundle modelled on
vector bundle TM @ T*M @ T*M. The linear connections on M coincide with
the sections of QP! M. Obviously, QP! is a second order bundle functor on the
category M f,,, of all m-dimensional manifolds and their local diffeomorphisms.

25.2. We determine all natural operators QP! ~ QP'. Let S be the torsion
tensor of a linear connection I' € C*°(QP* M), see 16.2, let S be the contracted
torsion tensor and let I be the identity tensor of TM @ T*M. Then S, I ® S
and S ® I are three sections of TM @ T*M @ T* M.

Proposition. All natural operators QP! ~» QP' form the following 3-para-
meter family

(1) T4+ kiS+kl®S+ksS®I, ki, ko, ks € R.

Proof. In the canonical coordinates z, xé on P'R™, the equations of a principal
connection I' are

(2) dxg = ka(x)médxk

where 1";-  are any smooth functions on R™. From (2) we obtain the action of
G2, on the standard fiber Fy = (QP'R™),

e il ~man i~
(3) Ui = ol al ay + apy,a

see 17.7. The proof will be performed in 3 steps, which are typical for a wider
class of naturality problems.
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Step I. The zero order operators correspond to the G2 -equivariant maps
f: Fy — Fy. The group G2, is a semidirect product of the kernel K of the
jet projection G2, — G, the elements of which satisfy a’ = 4%, and of the
subgroup i(GY,), the elements of which are characterized by af, = 0. By (3),
Fy with the action of i(G},) coincides with R™ ® R™* @ R™* with the canonical
action of GL(m). We have deduced in 24.9 that all GL(m)-equivariant maps of
R™ @ R™* @ R™* into itself form the 6-parameter family

(4) f;k = aléj»xfd + agéj»xfk + agéixél + a46,ia:fj + a5l';k + a()‘x;-gj-
The equivariance of (4) with respect to K then yields
(5) aly = (a1 + az)0%ay, + (as + as)djai; + (as + ag)aly,.

This is a polynomial identity in aék. For m > 2, (5) is equivalent to a; +as = 0,
az +ay =0, a5 + ag = 1. From 16.2 we find easily S = (I}, —T};) =: (S};), so
that T ® S = ((5;-ka) and S® T = (é,iCSllj). Hence (5) implies (1). For m =1, we
have only one quantity al,, so that (5) gives 1 = ay + as + az + a4 + as + ag.
But it is easy to check this leads to the same geometrical result (1).

Step II. The r-th order natural operators QP! ~» QP correspond to the
GT 2 equivariant maps from (J"QPIR™)g into Fy. Denote by I'y the collection
of all s-th order partial derivatives Féml,... Los=L...r According to 14.20,
the action of i(GL,) C G2 on every Iy is tensorial. Using the equivariance
with respect to the homotheties in G, we obtain a homogeneity condition

Ef(,Ty,...,Ty) = f(kT, KTy, ... ,k"T'T,).

By the homogeneous function theorem, f is a polynomial of degree dy in I" and
ds in I'g such that

1:d0+2d1+~-~+(7“+1)dr.

Obviously, the only possibility is dg = 1, d; = --- = d,, = 0. This implies that f
is independent of I'y,... , T, so that we get the case I.

Step I1L. In example 23.6 we deduced that every natural operator QP! ~» QP!
has finite order. This completes the proof. O

25.3. Rigidity of the torsion-free connections. Let Q,.P'M — M be the
bundle of all torsion-free (in other words: symmetric) linear connections on M.
The symmetrization I' — I'— %S of linear connections is a natural transformation
o: QP' — Q.P' satisfying o o i = idg, p1, where i: Q,P' — QP! is the
inclusion. Hence for every natural operator A: QP ~ Q,P!, B=i0Aoo
is a natural operator QP! ~ QP!, i.e. one of the list 25.2.(1). By this list,
B(T') =T for every symmetric connection. This implies that the only natural
operator Q,P' ~» QP! is the identity.
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25.4. The exterior differential of p-forms is a natural operator d: APT™* ~~
APTIT* The oldest result on natural operators is a theorem by Palais, who
deduced that all linear natural operators APT* ~» APTL1T* are the constant mul-
tiples of the exterior differential only, [Palais, 59]. Using a similar procedure as
in the proof of proposition 25.2, we deduce that for p > 0 even linearity follows
from naturality.

Proposition. Forp > 0, all natural operators APT* ~» APY1T* are the constant
multiples kd of the exterior differential d, k € R.

Proof. The canonical coordinates on APR"™* are b;, . ;, =: b antisymmetric in all
subscripts and the action of GL(m) is

b . o—=b. @it gl
(1) bll--lp - bjl"‘JPail s Gy
. : —_ JlApT*RPM . L
The induced coordinates on Fy = JyAPT*R™ are by, i, i,.,

easily that the action of G2, on F} is given by (1) and

=: b1. One evaluates

L —p. . o.zh =Jp =] =0 ~Jp
biy..ipsi = bjr.gp,i @iy - g a; + bjy g @iy - - - a;,+

(2)

s bjl...jpdﬁ c af}’:i.
The action of GL(m) on APTIR™* is

= _ .. =0 ~Jp+1
(3) C7'1-~~1p+1 - CJl---Jp+1ai1 e aip+1 :

Step I. The first order natural operators are in bijection with G2 -maps
f: Fy — APTIR™* Consider first the equivariance of f with respect to the
homotheties in i(G}L,). This gives a homogeneity condition
(4) KPHLF(b,by) = F(KPb, k2T 0y).

For p > 0, f must be a polynomial of degrees dy in b and d; in b; such that
p+1=npdy+ (p+1)d;. For p > 1 the only possibility is dy =0, d; =1, i.e. f is
linear in by. By 24.8.(4), the equivariance of f with respect to the whole group
i(GL)) implies

(5) Ciy iy = KOy iy i) ke R.

For p = 1, there is another possibility dy = 2, d; = 0. But 24.8 and the
polarization technique yield that the only smooth GL(m)-map of S*R™* into
A?R™* is the zero map. Thus all first order natural operators are of the form
(5), which is the coordinate expression of kd.

Step II. Every r-th order natural operator is determined by a G7.!'-map
fi En = JJAPT*R™ — APTIR™*. Denote by bs the collection of all s-th order
coordinates by, .. i, j,..5, induced on F., s = 1,...,7. According to 14.20 the
action of i(GL,) C G7F! on every by is tensorial. Using the equivariance with
respect to the homotheties in G},, we obtain

EPFLF(b, by, ... b)) = f(EPD KPT 0y, . KPT7D,.).
This implies that f is independent of b, ... ,b.. Hence the r-th order natural
operators are reduced to the case I for every r > 1.

Step III. In example 23.6 we deduced that every natural operator APT™ ~~
APTIT* has finite order. [J
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25.5. Remark. For p = 0 the homogeneity condition 25.4.(4) yields f =
o(b)by, b, by € R, where ¢ is any smooth function of one variable. Hence all
natural operators A°T* ~ AT* are of the form g — ¢(g)dg with an arbitrary
smooth function p: R — R.

26. The tensor evaluation theorem

26.1. We first formulate an important special case. Consider the product
k-times l-times
— —
Vg =Vx. .. xVxVix. ... xV*
of k copies of a vector space V and of [ copies of its dual V*. Let (, ): VxV* = R
be the evaluation map (z,y) = y(x). The following assertion gives a very useful
description of all smooth GL(V)-invariant functions
f(@asyn): Vg — R, a=1,....k A=1,...,1

Proposition. For every smooth GL(V)-invariant function f: Vi, — R there
exists a smooth function g(z,y): R¥ — R such that

(1) f(mowyk) :g(<mo¢ay>\>)'
We remark that this result can easily be proved in the case k < m = dimV (or
I <'m by duality). Consider first the case k = m. Let ey,... e, be a basis of

V and €', ..., e™ be the dual basis of V*. Write Z) = z1nel + - -+ zpneb € V*
and define
9(211, ey Zkl) = f(61, ce. 5 €k, Zl, .. ,Zl).
Assume x1,...,x,, are linearly independent vectors. Hence there is a linear
isomorphism transforming eq,... e, into z1,... ,z,. Since we have
Yx = <€1, y>\>€1 +o <€m7y)\>em7

f(xi,yn) = g({zi,yx)) follows from the invariance of f. But the subset with lin-
early independent 1, ..., z,, is dense in V;,, ; and f and g are smooth functions,
so that the latter relation holds everywhere. In the case £ < m, f: Vi; — R
can be interpreted as a function V,,,; — R independent of (k + 1)-st up to m-
th vector components. This function is also GL(V)-invariant. Hence there is
a smooth function G(z;,): R™ — R satisfying f(z;,yx) = G({(w;,yx)). Put
g(zin) = G(zix,0). Since f is independent of Zjy1,... , Ty, we can set xppq =
0,...,%, = 0. This implies (1).

However, in the case m < min(k,1), the function g need not to be uniquely
determined. For example, in the extreme case m = 1 our proposition asserts

that for every smooth function f(x1,...,zg,y1,...,y;) of k+ [ scalar variables
satisfying

f(xl,“' yLhes Y1+ -+ 7yl) = f(CQCl,... 7cxk,%y17'~' a%yl)
for all 0 # ¢ € R, there exists a smooth function g: R¥ — R such that
flxr,.. o zky1s - u) = g(xiya, ..., zky). Even this is a non-trivial ana-

lytical problem.
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26.2. In general, consider k copies of V and a finite number of tensor products
®PV*, ..., @1V* of V*. (Proposition 26.1 corresponds to the case p=1,...,q =
1.) Write x; for the elements of the i-th copy of V and a € ®PV* ... )b €

®7V*. Denote by a(x;,,... ,x;,) or ... or b(zj,,... ;) the full contraction of
a with x;,,... ,z;, or ... or of b with z;,,...,z; , respectively. Let y;, ., €
Rky, cey Z4yge € R* be the canonical coordinates.

Tensor evaluation theorem. For every smooth GL(V)-invariant function
fr @PV*x ... x®I1V* x xk¥V — R there exists a smooth function

GWir iy s Zjrje) RF x ... xR = R
such that

(1) f(a,...,b,$1,... ,I’k) :g(a(:ril,... 7931',]);- ..,b(:cjl,... ,qu)).
To prove this, we shall use a general result by D. Luna.

26.3. Luna’s theorem. Consider a completely reducible action of a group G
on R", see 13.5. Let P(R") be the ring of all polynomials on R” and P(R")“
be the subring of all G-invariant polynomials. By the classical Hilbert theorem,
P(R™ is finitely generated. Consider a system pq,...,ps of its generators
(called the Hilbert generators) and denote by p: R™ — R® the mapping with
components pi, ... ,ps. Luna deduced the following theorem, [Luna, 76], which
we present without proof.

Theorem. For every smooth function f: R™ — R which is constant on the
fibers of p there exists a smooth function g: R® — R satisfying f = g o p.

We remark that in the category of sets it is trivial that constant values of f
on the pre-images of p form a necessary and sufficient condition for the existence
of a map ¢ such that f = g o p. If some pre-images are empty, then ¢ is not
uniquely determined. The proper meaning of the above result by Luna is that
smoothness of f implies the existence of a smooth g.

26.4. Remark. In the real analytic case [Luna, 76] deduced an essentially
stronger result: If f is a real analytic G-invariant function on R"™, then there
exists a real analytic function g defined on a neighborhood of p(R™) C R® such
that f = g o p. But the following example shows that the smooth case is really
different from the analytic one.

Example. The connected component of unity in GL(1) coincides with the mul-
tiplicative group RT of all positive real numbers. The formula (cz, %y), cc R,
(r,y) € R? defines a linear action of R* on R%. The rule (z,y) — sgnz is a
non-smooth R*-invariant function on R?. Take a smooth function ¢(¢) of one
variable with infinite order zero at ¢ = 0. Then (sgnz)p(ry) is a smooth RT-
invariant function on R?. Using homogeneity one finds directly that the ring of
R*-invariant polynomials on R? is generated by zy. But (sgnz)e(zy) cannot
be expressed as a function of 2y, since it changes sign when replacing (z,y) by

(—I, _y)'
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26.5. Theorem 26.2 can easily be proved in the case kK < m. Assume first

k = m. Let a; .i,,...,bj . j, be the coordinates of a,...,b. Hence f =
i J
f(ail__ip, .. .,bjl___jq,lill, RN ,Z‘k) and we define
IWis gy -5 Zjrgg) = FWir iy s Ziy s €15+ -+ 5 k)

Obviously, g is a smooth function. Then 26.2.(1) holds on the set of all linearly
independent vector k-tuples of V' by invariance of f. But the latter set is dense,
so that 26.2.(1) holds everywhere by the continuity. In the case k < m we
interpret f as a function @PV* x ... x ®I1V* x x™V — R independent of the
(k + 1)-st up to m-th vector component and we proceed in the same way as in
26.1.

26.6. In the case m < k we have to apply Luna’s theorem. First we claim that
the set of all contractions a(z;,,...,x;i,),...,0(x;,... ,z;, ) form the Hilbert
generators on ®PV* x ... x @1V* x x*V. Indeed, let h be a GL(V)-invariant
polynomial and H;‘lg be its component linearly generated by all monomials of
degree A in the components of a, . .., of degree B in the components of b and with
simple entries of the components of z;,, ... ,z;, (repeated indices being allowed).
Since h is GL(V)-invariant, the total polarization of each HX}; corresponds to
an invariant tensor. By the invariant tensor theorem, the latter tensor is a linear
combination of the elementary invariant tensors in the case Ap+---+ Bq = s
and vanishes otherwise. But the elementary invariant tensors induce just the
contractions we mentioned in our claim.
Then we have to prove that

(1) a(@ey,...,2,) =alxi,...,2i,), ., 0(T4, ..., 25, ) = bxj,...,25,)
implies

(2) f@....b,zy,...,73,) = f(a,...,b,x1,... 7).

Consider first the case that both m—tuples Ti,y...,Tmand Zq,... ,T,, are linearly
independent. Hence x) = c\x;, Tx = &\Zs, i =1,...,m, A\=m-+1,..., k. Then

the first collection from (1) yields, for each A=m+1,... k,

Z(c@\ —é\a(zg,xq,. .. 21) =0
i=1

3)
Z(c@\ —é\a(xy, ... x1,2) = 0.
i=1

We restrict ourselves to the subset, on which the determinant of linear system (3)
does not vanish. (This determinant does not vanish identically, as for z; = e; it



226 Chapter VI. Methods for finding natural operators

is a polynomial in the components of the tensor a, whose coefficient by (a1, 1)™
is 1.) Then (3) yields ¢ = &,. Consider now the functions

(4) flay....b,x1,. .. xm) = flay. .. b1, ... T, CAT).

By the first part of the proof, f can be expressed in the form 26.2.(1). This
implies (2).

Thus, we have deduced that a dense subset of the solutions of (1) is formed
by the solutions of (2). Since both solution sets are closed, this completes the
proof of the tensor evaluation theorem.

26.7. Remark. We remark that there are some obstructions to obtain a general
result of such a type if we replace the product x*V by a product of some tensorial
powers of V. Consider the simpliest case of the smooth G L(1)-invariant functions
on ®2R x ®?R*. Let z or y be the canonical coordinate on ®2R or ®2R*,
respectively. The action of GL(1) is (z,y) — (k®z, 75y), 0 # k € R. But this is
the situation of example 26.4, so that e.g. (sgnz)p(zy), where ¢(t) is a smooth
function on R with infinite zero at ¢t = 0, is a smooth G'L(1)-invariant function
on @?R x @2R*. Here the smooth case is essentially different from the analytic
one.

26.8. Tensor evaluation theorem with parameters. Analyzing the proof
of theorem 26.2, one can see that the result depends smoothly on ‘constant’
parameters in the following sense. Let W be another vector space endowed with
the identity action of GL(V).

Theorem. For every smooth GL(V)-invariant function f : @PV* x ... x®IV* x
xkV x W — R there exists a smooth function G(Wiy.ips s Zjrjgr 1) RF x...x
R¥* x W — R such that

fla,....;b,xy, . oo g, t) = gla(zsy, oo xi,), . (2, ... 25,),t), teW.
The proof is left to the reader.

26.9. Smooth GL(V)-equivariant maps Vj,; — V. As the first application
of the tensor evaluation theorem we determine all smooth GL(V)-equivariant
maps f: Vi; — V. Let us construct a function F': V4 ; x V* — R by

F(za,yn, w) = (f(za,yn),w), weV™
This is a GL(V)-invariant function, so that there is a smooth function
g(za)\y Za): RFD — R
such that
F(xou Yxs w) = g(<xou y)\>7 <xa7 ’LU>)
Taking the partial differential with respect to w and setting w = 0, we obtain

f(aryy) = 3 20UT:92).0)

, =1,...,k
3 825 o ﬂ

This proves
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Proposition. All GL(V)-equivariant maps Vj,; — V are of the form

k
> g5((aryr))zs
B=1

with arbitrary smooth functions gz: RF — R.
If we replace vectors and covectors, we obtain

26.10. Proposition. All GL(V)-equivariant maps Vi, ; — V* are of the form

l
> 9 (e yr))u

with arbitrary smooth functions g,,: RF — R.

Next we present a simple application of this result in the theory of natural
operations.

26.11. Natural transformations 77" — T*T. Starting from some problems
in analytical mechanics, Modugno and Stefani introduced a geometrical isomor-
phism between the bundles TT*M = T(T*M) and T*TM = T*(T M) for every
manifold M, [Tulczyjew, 74], [Modugno, Stefani, 78]. From the categorical point
of view this is a natural equivalence between bundle functors TT* and T*T de-
fined on the category M f,,,. Our aim is to determine all natural transformations
TT* — T*T.

We first give a simple construction of the isomorphism sy;: TT*M — T*TM
by Modugno and Stefani. Let ¢q: T*M — M be the bundle projection and
k: TTM — TTM be the canonical involution. Every A € TT*M is a vector tan-
gent to a curve y(t): R — T*M at t = 0. If B is any vector of Tpg4)T M, then
kB is tangent to the curve 6(t): R — T'M over the curve g(y(t)) on M. Hence we
can evaluate (y(t),d(t)) for every t and the derivative £ ’0 (v(t),0(t)) =: 0(A,B)
depends on A and B only. This determines a linear map Trq)TM — R,
B+ o(A, B), i.e. an element sy (A) € T*TM.

In general, for every vector bundle p: E — M, the tangent map Tp: TE —

TM defines another vector bundle structure on TE. Even on the cotangent
bundle T*E — E there is another vector bundle structure p: T*E — E* defined
by the restriction of a linear map 7y — R to the vertical tangent space, which
is identified with E,,). This enables us to introduce a sum Y 4 Z for every
Y € TyTM and Z € T )M as follows. We have (p(Y),Z) € T*M xp T*M =
VT*M — TT*M and we can apply sy : TT*M — T*TM. Then Y + Z is
defined as the sum Y + 55, (p(Y), Z) with respect to the vector bundle structure
p.
26.12. For every X € TT*M we write p € T*M for its point of contact and
& =Tq(X) € TM. Taking into account both vector bundle structures on T*T' M,
we denote by Y — (k)1Y or Y — (k)2Y, k € R, the scalar multiplication with
respect to the first or second one, respectively.
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Proposition. All natural transformations TT* — T*T are of the form

(1) (F((p.€), (G(p, €))) 50 (X) + H((p,§))p

where F(t), G(t), H(t) are three arbitrary smooth functions of one variable.

Proof. Since TT* and T*T are second order bundle functors on M f,,, we have
to determine all G2 -equivariant maps of S := TT{R™ into Z := T*ToR™. The
canonical coordinates z’ on R™ induce the additional coordinates p; on T*R™
and &' = dz?, m; = dp; on TT*R™. If we evaluate the effect of a diffeomorphism
on R™ and pass to 2-jets, we find easily that the equations of the action of G2,
on S are

L _ T > ! e i
(2) pi:agpjv 5120;'5], Wizafﬂj—ajka}nafpmf~

Further, if n* are the induced coordinates on TR™, then the expression p;dz® +
0'7;d77i determines the additional coordinates p;, o; on T*TR™. Similarly to (2)
we obtain the following action of G2, on Z

(3) i =dy, o= aloj, pi=alp; — aék&}”&zamnk.
Any map ¢: S — Z has the form
n' = f'(p,&m), oi=gi(p,&m),  pi=hi(p,& ).
The equivariance of f? is expressed by
(4) a5 f7(p,&,m) = f(@lp;, a;€ almj — alyaf @l pme").
Setting a} = 0%, we obtain f*(p,&,7) = f*(p,&,7j — aékplﬁk). This implies that
the f* are independent of 7;. Then (4) shows that fi(p, ) is a GL(m)-equivariant
map R™ x R™ — R™. By proposition 26.9,
(5) fr=F((p,&)E

where F' is an arbitrary smooth function of one variable. Using the same pro-
cedure we obtain that the g; are independent of 7;. Then proposition 26.10
yields

(6) gi = G((p,€))pi

where G is another smooth function of one variable.
Consider further the difference k; = h; — F({p,&))G({(p,&))m;. Using the fact
that (p, ) is invariant, we express the equivariance of k; in the form

alkj(p,&,m) = ki(alp;, ai¢? alm; — alyapal pnch).
Quite similarly to (4) and (6) we then deduce k; = H({p,§))p;, i.e.

(7) hi = F((p, £))G({p, £))mi + H((p,&))pi-
One verifies easily that (5), (6) and (7) is the coordinate form of (1). O
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26.13. To interpret all natural transformations of proposition 26.12 geometri-
cally, we first show that for any constant values F = f, G = g, H = h, 26.12.(1)
can be determined by a simple modification of the above mentioned construction
of s (s corresponds to the case f =1, g=1, h=0). If A € TT*M is tangent
to a curve (t), then fA is tangent to y(ft). For every vector B € Typqa)TM,
kB is tangent to a curve §(t): R — TM over the curve q(y(ft)) on M. Then
we define an element sy 4 )4 € T*T'M by

(1) (s(f.0m A B) = &, (7(f1), g6(t)) + h{7(0),5(0)).

The coordinate expression of (1) is (fgm; +hp;)dx' + gp;dn® and our construction
implies n° = f¢'. This gives 26.12.(1) with constant coefficients. Moreover, the
general case can also be interpreted in such a way. Let w: TT*M — T*M
be the bundle projection. Every A € TT*M determines Tq(A) € TM and
m(A) € T*M over the same base point in M. Then we take the values of F'; G
and H at (m(A), Tq(A)) and apply the latter construction.

We remark that the natural transformation s by Modugno and Stefani can be
distinguished among all natural transformations 7T7* — T*T by an interesting
geometric construction explained in [KoldF, Radziszewski, 88].

26.14. The functor T*T*. The iterated cotangent functor T#7T™ is also a
second order bundle functor on Mf,,,. The problem of finding of all natural
transformations between any two of the functors TT*, T*T and T*T™* can be
reduced to proposition 26.12, if we take into account a classical geometrical con-
struction of a natural equivalence between TT™ and T*T™. Consider the Liouville
1-form w: TT*M — R defined by w(A) = (n(A),Tq(A)). The exterior differ-
ential dw = Q endows T*M with a natural symplectic structure. This defines
a bijection between the tangent and cotangent bundles of T*M transforming
X € TT*M into its inner product with €). Hence the natural transformations
between any two of the functors TT™*, T*T and T*T* depend on three arbitrary
smooth functions of one variable. Their coordinate expressions can be found in
[Kolar, Radziszewski, 88].

26.15. Non-existence of natural symplectic structure on the tangent
bundles. We shall see in 37.4 that the natural transformations of the iterated
tangent functor into itself depend on four real parameters. This is related with
the fact that T'T" is defined on the whole category M f and is product preserving.
Since the natural transformations of T'T into itself are essentially different from
the natural transformations of T*T into itself, there is no natural equivalence
between TT and T*T. This implies that there is no natural symplectic structure
on the tangent bundles.

26.16. Remark. Taking into account the natural isomorphism s: T7T* — T*T
and the canonical symplectic structure on the cotangent bundles, one sees easily
that any two of the third order functors TTT*, TT*T, TT*T*, T*TT, T*TT*,
T*T*T and T*T*T* are naturally equivalent, but TT'T is naturally equivalent
to none of them. All natural transformations TTT* — TT*T for manifolds of
dimension at least two are determined in [Doupovec, 93].
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27. Generalized invariant tensors

To study the natural operators on FM,, ,, we need a modification of the
Invariant tensor theorem.

27.1. Consider two vector spaces V and W. The tensor product of the standard
actions of GL(V) on ®PV @ @4V* and of GL(W) on @ W ® ®@*W™* defines the
standard action of GL(V) x GL(W) on @V @ Q1V* @ "W @ @ W*. A tensor
B of the latter space is said to be a generalized invariant tensor, if aB = B for
all a € GL(V) x GL(W). The invariance of B with respect to the homotheties
in GL(V) or GL(W) gives k*~9B = B or k" *B = B, respectively. This implies
that for p # q or r # s the only generalized invariant tensor is the zero tensor.

Generalized invariant tensor theorem. Every generalized invariant tensor
Be®IVeIV*QR "W ® "W* is a linear combination of the tensor products
I® J, where I is an elementary GL(V')-invariant tensor of degree ¢ and J is an
elementary GL(W)-invariant tensor of degree r.

Proof. Contracting B with g vectors of V' and ¢ covectors of V* we obtain a
GL(W)-invariant tensor. By the invariant tensor theorem 24.4 and by multilin-
earity, B is of the form

(1) B=)Y B,®J° with B, €@V ® V",

s€S,
where J® are the elementary GL(WW)-invariant tensors of degree r. If we con-
struct the total contraction of (1) with one tensor J7, o € S,, we obtain B,-1.
Hence every By is a GL(V')-invariant tensor. Using theorem 24.4 once again, we
prove our assertion. [J

27.2. Example. We determine all smooth equivariant maps W @ V* x W ®
W Vs —=WeV*@V*. Let fi(x{,ys) be the coordinate expression of such
a map. The equivariance of f with respect to the homotheties %5; in GL(V)
gives
k? Z‘(xzvy;l) = 5(/€1‘Z,ky£l).

By the homogeneous function theorem, we have to discuss the condition 2
dy + dy. There are three possibilities: a) d; =2, de =0, b) dy =1, dy = 1,
di =0, da = 2. In each case f is a polynomial map. The homotheties k¥ in
GL(W) yield

o
~

k ij(xZ7y;l) = f;(kxg,y;l)
This condition is compatible with the case b) only, so that f is bilinear in z}

and y7,. Its total polarization corresponds to a generalized invariant tensor in
@2V ® @2V* @ @2W* @ ®@2W*. By theorem 27.1, the coordinate form of f is

P = (adh6707 0% + b6L6; 670" + cob 6565 6] + ALy 85 ) xhys,

a, b, ¢, d € R. Hence all smooth equivariant maps W @ V* x W @ W* @ V* —
W ® V* @ V* form the following 4-parameter family

aa:fygj + bxgygj + cx?ygi + dl‘?yqpi-
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27.3. Curvature like operators. Consider a general connectionI': ¥ — J'Y
on an arbitrary fibered manifold ¥ — BY, where B: FM — Mf denotes
the base functor. In 17.1 we have deduced that the curvature of I' is a map
Cyl': Y — VY ® A2T*BY. The geometrical definition of curvature implies
that C' is a natural operator between two bundle functors J' and V @ A2T*B
defined on the category FM,, . In the following assertion we may replace the
second exterior power by the second tensor power (so that the antisymmetry of
the curvature operator is a consequence of its naturality).

Proposition. All natural operators J! ~ V @ @*T*B are the constant multi-
ples kC' of the curvature operator, k € R.

Proof. We shall proceed in three steps as in the proof of proposition 25.2.

Step I. We first determine the first order operators. The canonical coordinates
on the standard fiber S; = J§(JHR"T™ — R™) — R"™™) of JLJ! are y?,
yy; = Oy /0x), yp, = dyi /Oy?. Evaluating the effect of the isomorphisms in
F M, »n and passing to 2-jets, we obtain the following action of G,%%n on S

(1) 7 = abylal + aal
(2) gzpq = a’ yjsa a' + aﬁsy;ésa’j + a’p Zaz
(3) gfj = qykla a +aqyk7a "k +a yia f +ap7ny a; ar

alak P~k
+apykam Jrakla +akq 5@ + apa;;.

On the other hand, the standard fiber of V ® ®2T*B is R" @ ®2R™* with
canonical coordinates z - and the following action

P R ~k~1
Z] azklaa

We have to determine all G2, .- equivariant maps S; — R" ® ®*R™*. Let
P

2t = 15 (Y Yigs yt.n) be the coordinate expression of such a map. Consider the
canonical injection of GL(m)x GL(n) into GZ, ,, defined by 2-jets of the products
of linear transformations of R™ and R™. The equivariance with respect to the

homotheties in GL(m) gives a homogeneity condition

kz i (yk7 y/s? ymn) - (kyka ky[s’ kzymn)

When applying the homogeneous function theorem, we have to discuss the equa-
tion 2 = dy + ds + 2d3. Hence i‘ is a sum gU + hp where gfj is a linear map
of R ® R™* @ R™ into itself and hfj is a polynomlal map R” @ R™ x R" ®
R™ @ R™ — R" @ R™* @ R™*. Then we see directly that both gj; and hj; are
GL(m) x GL(n)-equivariant. For h}; we have deduced in example 27.2

hiy = ayi Yjq + bYiy5, + cyiYig + dYjYig

while for gfj a direct use of theorem 27.1 yields

95 = ey + fys
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Moreover, the equivariance with respect to the subgroup K C Gg%n character-
ized by a} = &%, ab = 6 leads to the relations a =0 =¢, e = —f = —b = d.
Hence f}; = e(yi; — y5 — yive; + yjys;), which is the coordinate expression of
eC,ecR.

Step II. Assume we have an r-th order natural operator A: J' ~ V@ ®2T*B.
It corresponds to a G;j:,ll—equivariant map from the standard fiber S, of J"J*
into R"®@R™* ®@R™*. Denote by y;, ; the partial derivative of y; with respect to a
multi index o in * and 8 in y?. Any map f: S, — R*@R™* @R™* is of the form
f(Yinp)s @+ B < r. Similarly to the first part of the proof, GL(m) x GL(n) can
be considered as a subgroup of G:,ﬂl One verifies easily that the transformation
law of y}, 5 with respect to GL(m) x GL(n) is tensorial. Using the homotheties
in GL(m), we obtain a homogeneity condition k*f(y},, ) = f(k'o“ﬂyfaﬁ). This
implies that f is a polynomial linear in the coordinates with || = 1 and bilinear
in the coordinates with |a] = 0. Using the homotheties in GL(n), we find
kf(ying) = f(k1*|5|yfaﬁ). This yields that f is independent of all coordinates
with |a| + |8] > 1. Hence A is a first order operator.

Step III. Using 23.7 we conclude that every natural operator J' ~ V®®2?T*B
has finite order. This completes the proof. [

27.4. Curvature-like operators on pairs of connections. The Frolicher-
Nijenhuis bracket [I'; A] =: k(I", A) of two general connections I' and A on Y is
a section Y — VY ® A?2T*BY, which may be called the mized curvature of T
and A. Since the pair I', A can be interpreted as a section Y — J'Y xy JY,
k is a natural operator x: J' @ J! ~ V @ A2T* B between two bundle functors
on FMpy, . Let C1: J' @ JY ~» V@ A2T*B or Cy: J' @ J' ~ V @ A’2T*B
denote the curvature operator of the first or the second connection, respectively.
The following assertion can be deduced in the same way as proposition 27.3, see
[Kolér, 87al.

Proposition. All natural operators J* @ J* ~ V @ ®@?T* B form the following
3-parameter family

k1C1 4 koCo + k3r, ki, ko, k3 € R.

From a general point of view, this result enlightens us on the fact that the
mixed curvature of two general connections can be defined in an ‘essentially
unique’ way, i.e. the possibility of defining the mixed curvature is limited by the
above 3-parameter family with trivial terms C7 and Cs.

27.5. Remark. [Kurek, 91] deduced that the only natural operator J! ~
V ® A3T*B is the zero operator. This result presents an interesting point of
view to the Bianchi identity for general connections.
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28. The orbit reduction

We are going to explain another general procedure used in the theory of nat-
ural operators. From the computational point of view, the orbit reduction is an
almost self-evident assertion about independence of the maps in question on some
variables. This was already used e.g. for the simplification of (4) in 26.12. But
the explicit formulation of such a procedure presented below is useful in several
problems. First we discuss a concrete example, in which we obtain a Utiyama-
like theorem for general connections. Then we present a complete treatment of
the ‘classical’ reduction theorems from the theory of linear connections and from
Riemannian geometry.

28.1. Let p: G — H be a Lie group homomorphism with kernel K, M be a G-
space, (Q be an H-space and w: M — (@ be a p-equivariant surjective submersion,
ie. w(gz) = p(g)m(x) for all x € M, g € G. Having p, we can consider every
H-space N as a G-space by gy = p(g)y, g € G, y € N.

Proposition. If each 771(q), ¢ € Q is a K-orbit in M, then there is a bijection
between the G-maps f: M — N and the H-maps ¢: Q — N given by f = pom.

Proof. Clearly, ¢ o is a G-map M — N for every H-map ¢: Q — N. Con-
versely, let f: M — N be a G-map. Then we define p: Q@ — N by p(n(z)) =
f(z). This is a correct definition, since 7(Z) = m(z) implies = kz with k € K
by the orbit condition, so that (7 (Z)) = f(kx) = p(k)f(x) = ef(x). We have
f = pom by definition and ¢ is smooth, since 7 is a surjective submersion. [J

28.2. Example. We continue in our study of the standard fiber
Sl JO (Jl (Rern N Rm) Rm+n)

corresponding to the first order operators on general connections from 27.3. If
we replace the coordinates yfj by

P _
(1) Vi =yl +viyis
we find easily that the action of G}, ,, on Sy is given by 27.3.(1), 27.3.(2) and

P _ q~k~l p,a~l~k P, d~k~
Yij = apY 105 G + al yryla; a; Jraqukaiaj +aqukaia

k
ij

(2)

+ abylay; + abjaral + aba
Define further

1
®) =300V, R =507

Since the right-hand side of (2) except the first term is symmetric in i and j, we
obtain the action formula for S¥; by replacing Y} by S, on the right-hand side
of (2). On the other hand,

PP _ ppd ~kxl
Rij = aquz% a;
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The map 7: S1 — R" @ A2R™, v(yF, yhss Yhun) = R, will be called the formal
curvature map.

Let Z be any (G7, x G} )-space. The canonical projection G, ,, — G, and
the group homomorphism G7,,, — G} determined by the restriction of local
isomorphisms of R™*" — R™ to {0} x R™ C R™*" define a map p: G2, ,, —
G2, x G7. The kernel K of p is characterized by a} = 4}, aék =0, ab = 0¥,
al, = 0. The group Gg%n acts on R"®@A2R™* by means of the jet homomorphism
77 into G, x GL. One sees directly, that the curvature map + satisfies the orbit

condition with respect to K. Indeed, on K we have
) W=l ral =iy, S) =S+l +
q

Using af, af,, aj,, we can transform every (y;,y,,S;,) into (0,0,0). In this
situation, proposition 28.1 yields directly the following assertion.

Proposition. Every Gfmn—map S1 — Z factorizes through the formal curvature
map v: S; — R® @ A2R™*,

28.3. The Utiyama theorem and general connections. In general, an r-th
order Lagrangian on a fibered manifold Y — M is defined as a base-preserving
morphism J"Y — A"™T*M, m = dim M. Roughly speaking, the Utiyama theo-
rem reads that every invariant first order Lagrangian on the connection bundle
QP — M of an arbitrary principal fiber bundle P — M factorizes through the
curvature map. This assertion will be formulated in a precise way in the frame-
work of the theory of gauge natural operators in chapter XII. At this moment we
shall apply proposition 28.2 to deduce similar results for the general connections
on an arbitrary fibered manifold Y — M.

Since the action 28.2.(5) is simply transitive, proposition 28.2 reflects exactly
the possibilities for formulating Utiyama-like theorems for general connections.
But the general interpretation of proposition 28.2 in terms of natural operators
is beyond the scope of this example and we restrict ourselves to one special case
only.

If we let the group G2, x G2 act on a manifold S by means of the first product
projection, we obtain a G2 -space, which corresponds to a second order bundle
functor F on M f,,. (In the classical Utiyama theorem we have the first order
bundle functor A™T*, which is allowed to be viewed as a second order functor
as well.) Obviously, F' can be interpreted as a bundle functor on FM,, ,, if
we compose it with the base functor B: FM — M f and apply the pullback
construction. If we interpret proposition 28.2 in terms of natural operators
between bundle functors on FM,, ,, we obtain immediately

Proposition. There is a bijection between the first order natural operators
A: J' ~» F and the zero order natural operators Ag: V @ A°T*B ~ F given by
A= AgoC, where C: J' ~ V ® A>T*B is the curvature operator.

28.4. The general Ricci identity. Before treating the classical tensor fields
on manifolds, we deduce a general result for arbitrary vector bundles. Consider a
linear connection I' on a vector bundle ¥ — M and a classical linear connection
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A on M, i.e. a linear connection on M — M. The absolute differential Vs of
a section s: M — F is a section M — E ® T* M. Hence we can use the tensor
product I' ® A* of connection I" and the dual connection A* of A, see 47.14, to
construct the absolute differential of Vs. This is a section Vis: EQT*M@T*M
called the second absolute differential of s with respect to I' and A. We describe
the alternation Alt(V3s): M — E®@ A*T*M. Let R: M — E® E* @ A°T*M
be the curvature of T' and S: M — TM ® A?T*M be the torsion of A. Then
the contractions (R, s) and (S, Vs) are sections of E @ A>T*M.

Proposition. It holds

(1) Alt(V3is) = —(R,s) + (S, Vs).
Proof. This follows directly from the coordinate formula for V3 s
0 ,0s? 0s" - &

The coordinate form of (1) will be called the general Ricci identity of E. If
E is a vector bundle associated to P'M and T is induced from a principal con-
nection on P'M, we take for A the connection induced from the same principal
connection. In this case we write V2s only. For the classical tensor fields on M
our proposition gives the classical Ricci identity, see e.g. [Lichnerowicz, 76, p.

69].

28.5. Curvature subspaces. We are going to describe some properties of
the absolute derivatives of curvature tensors of linear symmetric connections on
m-manifolds. Let Q = (Q,P'R™)y denote the standard fiber of the connection
bundle in question, see 25.3, let W = R™ @ R™* @ A’2R™*, W, = W ® @ R™*,
W' = W x Wy x ... x W,. The formal curvature is a map C: TLQ — W,
its formal r-th absolute differential is C, = V"C': T,’;LHQ — W,. We write
Cr=(C,Cy,...,C.): TPHLQ — W™, where the jet projections T/ 71Q — T3 Q,
s <1+ 1, are not indicated explicitly. (Such a slight simplification of notation
will be used even later in this section.)

We define the r-th order curvature equations E,. on W' as follows.

i) Ey are the first Bianchi identity

(1) W;kl + Wlilj + Wlijk =0
ii) E are the absolute derivatives of (1)

(2) W;klm + Wliljm + Wlijkm =0

and the second Bianchi identity

(3) W;km + W;lmk + W;mkl =0

iii) Fs, s > 1, are the absolute derivatives of E,_; and the formal Ricci
identity of the product vector bundle W,_s x R™. By 28.4, the latter equations
are of the form

(4) 4%

jklmy--[ms_1m

where the right-hand sides are some bilinear functions on W x Wy_s.
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Definition. The r-th order curvature subspace K™ C W' is defined by
Ey=0,...,E,=0.
We write K = K° ¢ W. For r = 1 we denote by K; C W, the subspace
defined by E; = 0. Hence K' = K x K.

Lemma. K" is a submanifold of W", it holds K" = C"(TQ) and the re-
stricted map C": T'*1Q — K™ is a submersion.

Proof. To prove K" is a submanifold we proceed by induction. For r = 0 we
have a linear subspace. Assume K"~! C W"! is a submanifold. Consider the
product bundle K"~! x W,. Equations F, consist of the following 3 systems

(5) W{ijkl}mlu.mr =0
(6) W;{klml}mz...mr =0
(7) ;klml...[ms,lms]..,mT + polyn(W"=2) =0

where {...} denotes the cyclic permutation and polyn(W”~2) are some poly-
nomials on W7=2. The map defined by the left-hand sides of (5)—(7) repre-
sents an affine bundle morphism K™™' x W, — K"~! x RY of constant rank,
N = the number of equations (5)—(7). Analogously to 6.6 we find that its kernel
K7 is a subbundle of K"~ x W,..

To prove K" = C"(T*1Q) we also proceed by induction.

Sublemma. It holds K = C(T},Q) and K, = C1(T2Q).

Proof. The coordinate form of C' is

(8) Wi = Ty = Do + DU — DI
This is an affine bundle morphism of affine bundle 77}, Q — @ into W of constant
rank. We know that the values of C' lie in K, so that it suffices to prove that the
image is the whole K at one point 0 € . The restricted map C': R™ @ S?R™* ®
R™* — W is of the form

(9) W;kl = F;‘k,l - F;‘l,k'

Denote by dimFEj the number of independent equations in Ep, so that dimK =
dimW — dimFEy. From linear algebra we know that K is the image of C' if

(10) dimW — dimFEy = dimR™ @ S?R™ @ R™* — dim KerC'.

Clearly, dimW = m3(m — 1)/2 and dimR™ @ S?R™* @ R™* = m3(m +1)/2. By
(9) we have KerC' = R™ ® S3R™*, so that dim KerC' = m?(m + 1)(m + 2)/6.
One finds easily that (1) represents one equation on W for any ¢ and mutually
different j, k, I, while (1) holds identically if at least two subscripts coincide.
Hence dimEy = m?(m — 1)(m —2)/6. Now (10) is verified by simple evaluation.
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The absolute differentiation of (8) yields that C; is an affine morphism of
affine bundle 72,Q — T1Q into W; of constant rank. We know that the values
of C lie in K; so that it suffices to prove that the image is the whole K7 at one
point 0 € TL Q. The restricted map C;: R™ ®@ S?R™* @ SZR™* — W is

(11) W;klm = F;"kﬁlm - F;’l,km'

Analogously to (10) we shall verify the dimension condition
(12) dimW; — dimE; = dimR™ ® S*R™ @ S?R™ — dim KerC}.

Clearly, dimW; = m*(m —1)/2, dimR™ ® ®2S?*R™* = m3(m + 1)?/4. We have
KerC; = R™ ® S*R™*, so that dim KerC; = m?(m + 1)(m + 2)(m + 3)/24.
For any 7 and mutually different j, k, I, m, (2) and (3) represent 8 equations,
but one finds easily that only 7 of them are linearly independent. This yields
7m?(m — 1)(m — 2)(m — 3)/24 independent equations. If exactly two subscripts
coincide, (2) and (3) represent 2 independent equations. This yields another
m?2(m—1)(m —2) equations. In the remaining cases (2) and (3) hold identically.
Now a direct evaluation proves our sublemma. []

Assume by induction C"!: T" @ — K"~ ! is a surjective submersion. The
iterated absolute differentiation of (8) yields the following coordinate form of C

(13) W;klml...mr = F;’[k,l]ml...mr + polyn(T;lQ)

where polyn (7, Q) are some polynomials on T, Q. This implies C" is an affine
bundle morphism
r+1 cr r
T ———K

I

r—1
T;LQ v Kr—l
of constant rank. Hence it suffices to prove at one point 0 € 77 Q) that the
image is the whole fiber of K™ — K"~!. The restricted map C,: R™ @ S?R™* ®
STHIR™* — W, is of the form

(14) 4% :

. att
jklmy..m,. — ij:,lml...m,. - Fjl,k:n"bl...ﬂ%.'

By (7) the values of C, lie in W ® S"R™*. Then (5) and (6) characterize
(K®S"R™)N (K; ®S™"'R™*). Consider an element X = (X]Z:klml...mr) of the
latter space. Since C;(R™® S?R™* ® S?R™*) = K by the sublemma, the tensor
product € ® idgr—1gm« : R™ ® SZR™ ® SZR™ @ S"'R™ — K; ® ST~ 'R™* is
a surjective map. Hence there is a Y € R™ ® S2R™* ® S?R™* @ S"~!R™* such
that

(15) X!

jklmy...m, — Y,

jzklml...mr - jllkml...mr'
Consider the symmetrization ¥ = (Yrjikl(mlmQ)---mr) €R™ ® SZR™ @ STTIR™*,
The second condition X € K @ S"R™* implies X is symmetric in m; and ma,
so that Cp(Y) = X.
Finally, since C"~1: T/ Q — K"~! is a submersion and C": T/ 1Q — K" is

an affine bundle morphism surjective on each fiber, C" is also a submersion. [J
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28.6. Linear symmetric connections. A fundamental result on the r-th
order natural operators on linear symmetric connections with values in a first
order natural bundle is that they factorize through the curvature operator and
its absolute derivatives up to order r — 1. We present a formal version of this
result, which involves a precise description of the factorization.

Let F be a G -space, which is considered as a G7?-space by means of the
jet homomorphism G772 — G .

Theorem. For every GIt?-map f: T"Q — F there exists a unique G} -map
g: K"=! — F satisfying f = go C" L.

Proof. We use a recurrence procedure, in the first step of which we apply the

orbit reduction with respect to the kernel B/} of the jet projection G772 —

Grit. Let Sp: Tr,Q — R™ @ S™2R™* =: S!., be the symmetrization
(1) Shycirsr = Llissass-virsa)
and 77_;: T/ Q — Tr~1Q be the jet projection. Define

Or = (Sp, 1, Cro1): T Q — Shyo X T ' Q x Wiy
The map C,._; is of the form

(2) W;kllmzr = F;‘k,ll...lr - F;‘ll,klg.“lr + polyn (T}, Q).

One sees easily that in the formula

i _ qi i i
(3) Sende = Siktnety Y ke r = Tkn))
the expression in brackets can be rewritten as a linear combination of terms of
i T 4 _
the form I'},,, . =T nps..p.- 1T we replace each of them by Wy,

polyn(7-1Q) according to (2), we obtain a map (not uniquely determined)
Ur: Spo x Tt Q x Wiy — T0,Q over idpr-1,, satisfying

T

(4) wr O Pr = idTT Q-

m

Consider the canonical action of Abelian group B:_ﬁ = S}, on itself, which

is simply transitive. From the transformation laws of F;k it follows that ), is
a B:j_%—map. Thus the composed map f o ,: S’iﬁ xTr=1Q x W,_y — F
satisfies the orbit condition for B:Lz with respect to the product projection
pri Sty x Th7tQ x Wiy — T tQ x Wiy By 28.1 there is a G, "'-map
gr: Th71Q x W, — F satisfying f o4, = g, o p,. Composing both sides with
©r, we obtain f=gro (7T7T"717 Crfl)'

In the second step we define analogously

Pr—1 = (Srflyﬂ',r-:icrfﬂ: qu_lQ - ST1+1 X TZ’L_ZQ X Wy_o



28. The orbit reduction 239

and construct ¥, _1: S},H X Tgsz X Wp_9g — T;L_IQ satisfying 1, 1 0 @1 =
idpr1. The composed map g, o (¢r—1 X idw, ,): Spyq X T ?Q x Wy X
W,_1 — F is equivariant with respect to the kernel BZ*! of the jet pro-
jection G7t1 — Gr. The product projection of S!,; x T/ 2Q x W,_o x
W,_1 omitting the first factor satisfies the orbit condition for Br*!l. This
yields a G7 -map g,_1: T"2Q x W,_o x W,_1 — F such that g, = g,_1 o
(7123, Cr2) x idw,_, ) ie. f = gr—1 0 (7h_y, Croz, Cry).

In the last but one step we construct a G2, -map g1: Q x W x...xW,_; — F
such that f = g1 0(nf,C,...,Cr_1). The product projection p; of @ X W x...x
W,._1 omitting the first factor satisfies the orbit condition for the kernel B? of the
jet projection G2, — GL . By 28.1 there is a GL,-map go: W x ... x W,,_; — F
satisfying g1 = go o p1. Hence f = go o C""1. Since K"~! = C""1(T".Q), the
restriction g = go| K"~ is uniquely determined.

-
TQ
f
1 r—1 Pr r—1 gr
Sy XTI QX Wiy P T X Wy oS P
w3 xCr_aXidw, _,
Sl Tr72 W, W, Pr—1 TT,Q W, W gr—1 F
r4+1 X L Q X r—2 X r—1 4,y Q X r—o X ] m————- :A
! e
- I
P |
: e 9o
. - !
L s |
// '
Qxwr—t—” Lyt

O
28.7. Example. We determine all natural operators Q,P! ~» T* ® T*. By
23.5, every such operator has a finite order r. Let

u = f(FO,Fl,...,F,)

', € R™ ® S?R™* ® S*R™*, be its associated map. The equivariance of f with
respect to the homotheties in G}, C G712 yields

k2 f(To,T1,...,T,) = f(kDo, k*Tq,...,k""'T,).

By the homogeneous function theorem, f is a first order operator. According to
28.6, the first order operators are in bijection with G -maps K — R™* @ R™*.
Let u = g(W) be such a map. The equivariance with respect to the homotheties
yields k?g(W) = g(k*W), so that g is linear. Consider the injection i: K —
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R™ @ @3R™*. Since R™ @ ®@3R™* is a completely reducible GL(m)-module,
there is an equivariant projection p: R™ ® ®3R™ — K satisfying p o i = idg.
Hence we can proceed analogously to 24.8. By the invariant tensor theorem, all
linear GL,-maps R™ @ @3R™* — R™* @ R™ form a 6-parameter family. Its
restriction to K gives the following 2-parameter family

k k
lekij + k2W7,k:]
Let R; and Rs be the corresponding contractions of the curvature tensor. By

theorem 28.6, all natural operators Q. P' ~» T*®T* form a two parameter family
linearly generated by two contractions Ry and Ry of the curvature tensor.

28.8. Ricci subspaces. Let V = R” be a GL(m)-module and V denote
the corresponding first order natural vector bundle over m-manifolds. Write
V, = V@R™, VI =V x Vi x...xV,.. The formal r-th order absolute
differentiation defines a map DY = V": T/71Q x ThV — V,, DY =idy. If vP,

(S ’Ufl...ir are the jet coordinates on 7,V (symmetric in all subscripts) and
VP, are the canonical coordinates on V., then DY is of the form
(1) Vizl)...qzr = Ufl...ir + polyn(T;l_lQ X T;z_lv)

Set Dy, = (DY,DY,...,DY): Tr=1Q x TrV — V.
We define the r-th order Ricci equations EY, r > 2, as follows. For r = 2,

EY are the formal Ricci identities of V/(R™). By 28.4, they are of the form

(2) V[fj] — bilin(W, V) = 0.

For 7 > 2, EY are the absolute derivatives of EY_; and the formal Ricci identities
of V(R™) @ @ ~2T*R™. These equations are of the form

(3) %4 — bilin(W"2,V""2) = 0.

i1 [is—1is]in
Definition. The r-th order Ricci subspace Z3, C K"~2x V" is defined by Fy =
0,...,BY =0,7>2. Forr=0,1weset Z) =V and Z{, = V™.

Lemma. ZI, is a submanifold of K"=2x V" it holds Z}, = (C™=2 DL ) (T Q
T V) and the restricted map (C™=2,D%,): T 1Qx TV — Z7, is a submersion.

m m
Proof. For r =0 we have Z0 =V and DY, =idy. Forr =1, D},: Q x TLV —
V= Z‘l/ is of the form

VP =P VP =o? + bilin(Q, V)

so that our claim is trivial. Assume by induction Z(fl is a submanifold and the
restriction of the first product projection of K™ 3 x V"1 to Z‘Tfl is a surjective
submersion. Consider the fiber product K" 2 x jr—3 Z‘T,_1 and the product vector
bundle (K"~2 x ger—s Z{; ') x V;.. By (3) Z}, is characterized by affine equations
of constant rank. This proves Z1; is a subbundle and Z{, — K"~ is a surjective
submersion.

Assume by induction (C7=3,Dy71): Th=2Q x TV — Z{7' is a surjec-
tive submersion. We have TV = TV x V @ STR™*. By (1) and (3),
(CT2,D%): (T57'Q x Th7V)y x V@ STR™ — (Z7, — K™% X3 Z{",_l) is
bijective on each fiber. This proves our lemma. [
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28.9. The following result is of technical character, but it covers the core of
several applications. Let F be a G -space.

Proposition. For every G'-Fl-map f: Th=1Q x TV — F there exists a unique
G} -map g: Z}, — F satisfying f = go (C""2,D},).

Proof. First we deduce a lemma.

Lemma. Ify, j € T/ 1Q satisfy C"~2(y) = C"~%(y), then there is an element
h € B]*! of the kernel B} ™" of the jet projection GT;' — G, such that h(y) = y.

Indeed, consider the orbit set T/ 'Q/B ™. (We shall not need a manifold
structure on it, as one checks easily that 28.1 and 28.6 work at the set-theoretical
level as well.) This is a G} -set under the action a(B™'y) = aB ' (y), v €
Tr=1Q, a € GL, C GrHL. Clearly, the factor projection

p: T7'Q = T, Q/BrT!

is a Grl-map. By 28.6 there is a map g: K"2 — TI/-1'Q/B]™" satisfying
p=goC 2 If C"2(y) = C"%(y) = x, then p(y) = p(y) = g(x). This proves
our lemma.

Consider the map (idzr—14, Dy): Tr1Q x ThV — Tr=1Q x V" and denote
by V" C Tr=1Q x V' its image. By 28.8.(1), the restricted map D}, : T/~ 1Q x
"V — V" is bijective for every y € T 7=1Q, so that Dj, is an equivariant diffeo-
morphism. Define C"2: V"' — Zi,, C"2(y,2) = (C"2(y),2), y € Ti7'Q,
z € V'. By lemma 28.5, C2is a surjective submersion. By definition,
C™2(y,z) = C""2(j, %) means C"2(y) = C"~2(7) and z = z. Thus, the above
lemma implies C"~2 satisfies the orbit condition for BIH. By 28.1 there is a
Gl -map g: Zi, — F satisfying f o (D},)~" = g o C"~2. Composing both sides
with D, we find f = go (C"™2,D}). O

28.10. Remark. The idea of the proof of proposition 28.9 can be applied
to suitable invariant subspaces of V as well. We shall need the case P =
RegS?R™* C S2R™* of the standard fiber of the bundle of pseudoriemannian
metrics over m-manifolds. In this case we only have to modify the definition
of P, to P, = S?R™ ® @"R™*, but the rest of 28.8 and 28.9 remains to be
unchanged. Thus, for every GTfl-map f: T"1Q x T P — F there exists a
unique GL,-map g: Z%, — F satisfying f = go (C"=2,D%).

28.11. Linear symmetric connection and a general vector field. Let F
denote the first order natural bundle over m-manifolds determined by G -space
F. Consider an r-th order natural operator Q,P! &V ~ F with associated
Gri2map f: ThQ x ThV — F. Let Zj, C K™! x V" be the pre-image of
71, C K™2? x V" with respect to the canonical projection K"~! — K"=2.

Take the map t,: S}y x T071Q x W,y — T7,Q from 28.6 and construct
VYp X idpry: Sty x Th7PQ x Wey x TV — T7Q x T V. If we apply the
orbit reduction to f o (¢, x idrrv) in the previous way, we obtain a GrHi
map h: T57'Q x W,y x T}, V — F such that f = ho ((77_y,Cr_1) X idgrv).
Applying proposition 28.9 (with ‘parameters’ from W,._1) to h, we obtain
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Proposition. For every G 2-map f: T"Q x TV — F there exists a unique
Gl -map g: Zi, — F satisfying f = go (C"™1, D%,).

Roughly speaking, every r-th order natural operator Q, P&V ~- F factorizes
through the curvature operator and its absolute derivatives up to order r — 1
and through the absolute derivatives on vector bundle V' up to order r.

28.12. Linear non-symmetric connections. An arbitrary linear connection
on T'M can be uniquely decomposed into its symmetrization and its torsion
tensor. In other words, QP'M = Q,P'M © TM ® A’2T*M. Hence we have
the situation of 28.11, in which the role of standard fiber V is played by R™ &
A?R™* =: H . This proves

Corollary. For every G 2-map f: J5(QP'R™) — F there exists a unique
Gl -map g: Z%, — F satisfying f = go (C"~', D%,).

28.13. Example. We determine all natural operators QP! ~» T* @ T*. In
the same way as in 28.7 we deduce that such operators are of the first order.

By 28.12 we have to find all G. -maps f: K x H x H; — R™ @ R™*. The
equivariance with respect to the homotheties yields the homogeneity condition

K*f(W,H, Hy) = f(k*W,kH, k*H,).

Hence f is linear in W and H; and quadratic in H. The term linear in W was
determined in 28.7. By the invariant tensor theorem, the term quadratic in H
is generated by the permutations of m, n, p, ¢ in

msn k l
;" 0; 5£(5mean¢1.
This yields the 3 different double contractions kaSé-l, Sfj S,ld, Sikl S;k of the tensor

product S ® S of the torsion tensor with itself. Finally, the term linear in H;
corresponds to the permutations of [, m, n in

6f 5;71 5; Hll’cmn .
This gives 3 generators
(1) Hz'kjka kaja H]kkz

Thus, all natural operators QP' — T*®T* form an 8-parameter family linearly
generated by 2 different contractions of the curvature tensor of the symmetrized
connection, by 3 different double contractions of S ® S and by 3 operators
constructed from the covariant derivatives of the torsion tensor with respect
to the symmetrized connection according to (1).

We remark that the first author determined all natural operators QP! — T*®
T* by direct evaluation in [Kolar, 87b]. Some of his generators are geometrically
different of our present result, but both 8-parameter families are, of course,
linearly equivalent.
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28.14. Pseudoriemannian metrics. Using the notation of 28.10, we deduce
a reduction theorem for natural operators on pseudoriemannian metrics. Let
Pr =750 (K""2x P x {0} x...x {0}) be the subspace determined by 0 €
P,...,0€P,.

Lemma. P’ is a submanifold of Zp.

Proof. By [Lichnerowicz, 76, p. 69], the Ricci identity in the case of the bundle
of pseudoriemannian metrics has the form

(1) Pijiey + Wik Pmj + Wik Pim = 0.

Thus, for r = 2, P2 C W x P? is characterized by the curvature equations Es,
by Pijk = 0, -Pz'jkl =0 and by

(2) Wﬁzlpmj + WJ?ZZPim =0.

Equations (2) are G1 -equivariant. We know that P is divided into m+1 compo-
nents P, according to the signature o of the metric in question. Every element
in each component can be transformed by a linear isomorphism into a canonical
form 4-0;;. This implies that P2 is characterized by linear equations of constant
rank over each component P,. Assume by induction P"~' ¢ W" 3 x P""lis a

submanifold. Then P™ C P"~1 x {0} x W, _5 is characterized by the curvature
equations E, and by

n n —
(3) iktmy...mr—sPrni T Wikimy . m,. o Pin = 0.

By the above argument we deduce that this is a system of affine equations of
constant rank over each P,. [J

Consider a GTfl-map f: T" P — F. Applying 28.10 to fopy = Th1Q x
Tr P — F, where py is the second product projection, we obtain a G} -map
h: Z}, — F satisfying

(4) fopa=ho(C""2 Dp).

Let \.: T P — T7=1Q be the map determined by constructing the r-jets of the

Levi-Civita connection. Composing (4) with (\.,id): T P — T7='Q x T P,
we find

(5) f:ho(crizaD}')o()‘raid)'

Let g be the restriction of h to P". Since the Levi-Civita connection is char-
acterized by the fact that the absolute differential of the metric tensor van-
ishes, the values of (C"=2,D%) o (\,id) lie in P". Write L" =2 = (C"~2,D%,) o
(A, id): T7 P — P". Then we can summarize by



244 Chapter VI. Methods for finding natural operators

Proposition. For every G l-map f: T! P — F there exists a G -map
g: P — F satisfying f =go L""2. [

This is the classical assertion that every r-th order natural operator on pseu-
doriemannian metrics with values in an arbitrary first order natural bundle fac-
torizes through the metric itself and through the absolute derivatives of the
curvature tensor of the Levi-Civita connection up to order r — 2.

We remark that each component P, of P can be treated separately in course
of the proof of the above proposition. Hence the result holds for any kind of
pseudoriemannian metrics (in particular for the proper Riemannian metrics).

28.15. Pseudoriemannian metric and a general vector field. A simple
modification of 28.11 and 28.14 leads to a reduction theorem for the r-th order
natural operators transforming a pseudoriemannian metric and a general vector
field into a section of a first order natural bundle. In the notation from 28.11 and
28.14, let f: T/ PxT"V — F be a GIt1-map. Consider the product projection
p: To7tQ x T PxThV — Th P x T V. Then we can apply 28.9 and 28.10 to

the product P x V. Hence there exists a G),-map h: Z§, , — F satisfying

(1) fop:ho(C'r_Z,Dngv).

Denote by ]5{, C ZLP xV C K"=2 x P" x V" the subspace determined by
0 € P,...,0 € P.. Analogously to 28.14 we deduce that Py, is a submani-
fold. Write Lj; > = (A, idgr p) x idgr v TP x TV — Py, ie. L2 (u,v) =
(C™2(A\r(w)),u0,0,...,0, D} (A-(u),v)),u € ThP,veThV, uy =nh(u). Then

(1) implies f = ho L‘T/_Q. If we denote by g the restriction of h to P{;, we obtain
the following assertion.

Proposition. For every Grtl-map f: Th Px TV — F there exists a G -map
g: P, — F satisfying f =go L:,_z.

Hence every r-th order natural operator transforming a pseudoriemannian
metric and a general vector field into a section of a first order natural bundle
factorizes through the metric itself, through the absolute derivatives of the cur-
vature tensor of the Levi-Civita connection up to the order r — 2 and through
the absolute derivatives with respect to the Levi-Civita connection of the general
vector field up to the order r.

28.16. Remark. Since Q,P'M — M is an affine bundle, the standard fiber
T} @ of its r-th jet prolongation is an affine space by 12.17. In other words,
G"+2 acts on 1", Q) by affine isomorphisms. Consider an affine action of G},
of F' (with the linear action as a special case). Then we can introduce the
concept of a polynomial map 7T ) — F analogously to 24.10. Analyzing the
proof of theorem 28.6, we observe that all the maps 1, and ¢, are polynomial.
This implies that for every polynomial G, % equivariant map f: T"Q — F,
the unique G -equivariant map g: K"™~! — F from the theorem 28.6 is the
restriction of a polynomial map g: W"~! — F.

Consider further a G},-module V as in 28.8 or an invariant open subset of such
a module as in 28.10. Then we also have defined the concept of a polynomial
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map of T"1Q x T/ V into an affine G} -space F. Quite similarly to the first
part of this remark we deduce that for every polynomial G *'-equivariant map
[:Tr7'Q x ThV — F the unique G}, -equivariant map g: Zi, — F from the
proposition 28.9 is the restriction of a polynomial map g: W2 x V" — F.

29. The method of differential equations

29.1. In chapter IV we have clarified that the finite order natural operators
between any two bundle functors are in a canonical bijection with the equivariant
maps between certain G-spaces. We recall that in 5.15 we deduced the following
infinitesimal characterization of G-equivariance. Given a connected Lie group G
and two G-spaces S and Z we construct the induced fundamental vector field
¢3 and ¢4 on S and Z for every element A € g of the Lie algebra of G. Then
f: S — Z is a G-equivariant map if and only if vector fields C;f and Cg are
f-related for every A € g, i.e.

(1) Tfoli=C%of forall Acg.

The coordinate expression of (1) is a system of partial differential equations
for the coordinate components of f. If we can find the general solution of this
system, we obtain all G-equivariant maps. This procedure is sometimes called
the method of differential equations.

29.2. Remark. If G is not connected and G denotes its connected component
of unity, then the solutions of 29.1.(1) determine all GT-equivariant maps S — Z.
Obviously, there is an algebraic procedure how to decide which of these maps
are G-equivariant. We select one element g, in each connected component of
G and we check which solutions of 29.1.(1) are invariant with respect to all
ga- However, one usually interprets the solutions of 29.1.(1) geometrically. In
practice, if we succeed in finding the geometrical constructions of all solutions
of 29.1.(1), it is clear that all of them determine the G-equivariant maps and we
are not obliged to discuss the individual connected components of G.

29.3. From 5.12 we have that for each left G-space S the map of the fundamental
vector fields A — (3, A € g, is a Lie algebra antihomomorphism, i.e. C&’B] =
—[¢3,¢3] for all A, B € g, where on the left-hand side is the Lie bracket in g
and on the right-hand side we have the bracket of vector fields. Hence if some
vectors A,, a = 1,...,¢ < dim G generate g as a Lie algebra, i.e. A, with all
their iterated brackets generate g as a vector space, then the equations

Tfo(i,=Ci.of a=1...4

imply Tf o (5 = ¢4 o f for all A € g. In particular, for the group G”, the
generators of its Lie algebra are described in 13.9 and 13.10.
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29.4. The Levi-Civita connection. We are going to determine all first order
natural operators transforming pseudoriemannian metrics into linear connec-
tions. We denote by RegS?T*M the bundle of all pseudoriemannian metrics
over an m-manifold M, so that the standard fiber of the corresponding natural
bundle over m-manifolds is the subset RegS?R™* C S2R™* of all elements g;;
satisfying det(g;;) # 0. Since the zero of S?R™* does not lie in RegS*R™*, the
homogeneous function theorem is of no use for our problem. (Of course, this
analytical fact is deeply reflected in the geometry of pseudoriemannian mani-
folds.) Hence we shall try to apply the method of differential equations. In the
canonical coordinates g;; = g;i, gi;,r on the standard fiber S = JiRegS?T*R™,
the action of G2, has the following form

(1) Gij = gmaya’

(2) Gije = Qim0 aj; + g (@] + agajy).

Since we deal with a classical problem, we shall use the classical Christoffel’s on
the standard fiber Z = (QP'R™),. In this case we have the following action of
G,

. _ipl ~=masn i~1
(3) Il = 65" ag + ajagy,

see 17.15.

We shall not need all differential equations of our problem, since we shall
proceed in another way in the final step. It is sufficient to deduce the funda-
mental vector fields S%; on S and Z}; on Z corresponding to the one-parameter

= 0!, aly, =t for j # k and a} = 6%, al; = 2t. From (1)-(3) we

%

subgroups a}
deduce easily

, 0 0
4 to=2gi | =—— +
) 7k = 29 (8913‘,k 591@')
and
. 0 0
(5) [ — + -
Eorh T ory

Hence the corresponding part of the differential equations for a G?2,-equivariant
map I': § — Z with components F;-k(glm,g“,w) is

Multiplying by ¢'¢ and replacing ¢ by I, we find
ari, o,
aglm,n 8gln,m

(7)

1i msn msn
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Let (7°) or (77) be the equations derived from (7) by the permutation (I,m,n) —
(m,n,l)or (I,m,n) — (n,l,m), respectively. Then the sum (7)+(7")—(7") yields

8F;k 1 il emgn msn im(sn sl n sl
. 25t = 56O + 6 + g™ (870 + 678))
] m,n

9" (850 + 5,@5;?1)).

The right-hand sides are independent on g;;. Since we meet such a situation
frequently, it is useful to formulate a simple lemma of general character.

29.5. Lemma. Let U be an open subset in R® with coordinates z% and let
f(z% w?) be a smooth function on U xR?, (w?) € R?, satisfying ( W) — gy (2).
Then

(1) Z gr(2)wt + h(2)
where h(z) is a smooth function on U.

Proof Notice that the difference F(z,w) = f(z,w) — Z§:1 gx(z)w? satisfies
=0. O

8w)‘ -

Applying lemma 29.5 to 29.4.(8), we find

, 1 . .
k= §gll(glj,k + Gikg — 9ik1) + Vi (gim)-

For 4%, = 0 we obtain the coordinate expression of the Levi-Civita connection A,
which is natural by its standard geometric interpretation. Hence the difference
I — A is a GL(m)-equivariant map RegS?R™* — R™ @ R™* @ R™*.

29.6. Lemma. The only GL(m)-equivariant map f: RegS*R™* — RT™QR™ ®
R™* is the zero map.

Proof. Let I, be the matrix g; = 1 for i <s, g;; = —1 for j > s and g;; = 0 for
i # j. Since every g € RegS?R™* can be transformed into some Iy, it suffices to
deduce f},(I5) = 0 for all 4, j, k. If j # i # k or j = i = k, the equivariance with
respect to the change of orientation on the i-th axis gives f;k (Iy) = — ;k (Iy). If
j =1 # k, we obtain the same result by changing the orientation on both the
i-th and k-th axes. O

Lemma 29.6 implies I' — A = 0. This proves

29.7. Proposition. The only first order natural operator transforming pseu-
doriemannian metrics into linear connections is the Levi-Civita operator.
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Remarks

The first version of our systematical approach to the problem of finding nat-
ural operators was published in [Kolér, 87b]. In the same paper both geometric
results from section 25 are deduced. The smooth version of the tensor evaluation
theorem is first presented in this book. Proposition 26.12 was proved by [Kolar,
Radziszewski, 88]. The generalized invariant tensor theorem was first used in
[Kolér, 87b]. We remark that the natural equivalence s: TT* — T*T from 26.11
was first studied in [Tulczyjew, 74].

The reduction theorems for symmetric linear connections and pseudorieman-
nian metrics are classical, see e.g. [Schouten, 54]. Some extensions or reformula-
tions of them are presented in [Lubczonok, 72] and [Krupka, 82]. The method of
differential equations is used systematically e.g. in the book [Krupka, Janyska,
90]. The complete version of proposition 29.7 was deduced in [Slovédk, 89].
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CHAPTER VII.
FURTHER APPLICATIONS

In this chapter we discuss some further geometric problems about different
types of natural operators. First we deduce that all natural bilinear operators
transforming a vector field and a differential k-form into a differential k-form
form a 2-parameter family. This further clarifies the well known relation be-
tween Lie derivatives and exterior derivatives of k-forms. From the technical
point of view this problem can be considered as a preparatory exercise to the
problem of finding all bilinear natural operators of the type of the Froélicher-
Nijenhuis bracket. We deduce that in general case all such operators form a
10-parameter family. Then we prove that there is exactly one natural operator
transforming general connections on a fibered manifold Y — M into general con-
nections on its vertical tangent bundle VY — M. Furthermore, starting from
some geometric problems in analytical mechanics, we deduce that all first-order
natural operators transforming second-order differential equations on a manifold
M into general connections on its tangent bundle TM — M form a one param-
eter family. Further we study the natural transformations of the jet functors.
The construction of the bundle of all r-jets between any two manifolds can be
interpreted as a functor J” on the product category M f,, x Mf. We deduce
that for » > 2 the only natural transformations of J” into itself are the identity
and the contraction, while for »r = 1 we have a one-parameter family of homo-
theties. This implies easily that the only natural transformation of the functor
of the r-th jet prolongation of fibered manifolds into itself is the identity. For
the second iterated jet prolongation J!(J'Y) of a fibered manifold Y we look
for an analogy of the canonical involution on the second iterated tangent bundle
TTM. We prove that such an exchange map depends on a linear connection on
the base manifold and we give a simple list of all natural transformations of this
type.

The next section is devoted to some problems from Riemannian geometry.
Here we complete our study of natural connections on Riemannian manifolds,
we prove the Gilkey theorem on natural differential forms and we find all natural
lifts of Riemannian metrics to the tangent bundles. We also deduce that all
natural operators transforming linear symmetric connections into exterior forms
are generated by the Chern forms. Since there are no natural forms of odd
degree, all of them are closed.

In the last section, we present a survey of some results concerning the multi-
linear natural operators which are based heavily on the (linear) representation
theory of Lie algebras. First we treat the naturality over the whole category
M fr,, where the main tools come from the representation theory of infinite di-
mensional algebras of vector fields. At the very end we comment briefly on the
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category of conformal (Riemannian) manifolds, which leads to finite dimensional
representation theory of some parabolic subalgebras of the Lie algebras of the
pseudo orthogonal groups.

30. The Frolicher-Nijenhuis bracket

The main goal of this section is to determine all bilinear natural operators of
the type of the Frolicher-Nijenhuis bracket. But we find it useful to start with a
technically simpler problem, which can serve as an introduction.

30.1. Bilinear natural operators T'® APT™* ~~ APT*. We are going to study
the natural operators transforming a vector field and an exterior p-form into an
exterior p-form. In order to get results of geometric interest, it is reasonable to
restrict ourselves to the bilinear operators. The two simplest examples of such
operators are (X,w) — dixw and (X,w) — ixdw.

Proposition. All bilinear natural operators T @& APT* ~~ APT* form the 2-
parameter family

(1) kidixw + koixdw, ki, ko € R.

Proof. First of all, every such operator has finite order r by the bilinear Pee-
tre theorem. The canonical coordinates on the standard fiber S = JJTR™ x
JGAPT*R™ are X\, b, 4, 5, |a| <, |8] < r, while the canonical coordinates
on the standard fiber Z = APR™* are Ciy..ip- Since we consider the bilinear
operators, even the associated maps f: S — Z are bilinear in Xé and by, ...,
Using the homotheties in GL(m) C G711, we obtain

(2) kP F(X0biyiy ) = FORIMTIXE RPTPD, i s).

This implies that only the products Xibilmip,j and X]’:bilmip can appear in f.
(In particular, every natural bilinear operator T'@® APT* ~~ APT™* is a first order
operator.) Denote by f = fi + f2 the corresponding decomposition of f.

The transformation laws of b;,. 4,, bi;..4,,; can be found in 25.4 and one
deduces easily

(3) X'=d X7, X!=ayaX'+aXfa.

In particular, the transformation laws with respect to the subgroup GL(m) C
G?, are tensorial in all cases. Hence we first have to determine the G'L(m)-
equivariant bilinear maps R™ x APR™* @ R™* — APR™*. Consider the following
diagram

R™ x APR™ @ R™ —J1_, ppRm»
) id x Alt, ® id” HAltp

R™ x ®p+1Rm* ®pRm*
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where Alt denotes the alternator of the indicated degree. The vertical maps are
also GL(m)-equivariant and the GL(m)-equivariant map in the bottom row can
be determined by the invariant tensor theorem. This implies that f; is a linear
combination of the contraction of X? with the derivation entry in bi,...q,,; and
of the contraction of X* with a non-derivation entry in bi,...i,,; followed by the
alternation. To specify fo, consider the diagram

R™ ® R™* ® APR™* f2 APR™*
(5) id@id® AltpH HAltp
R™ x 