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Abstract. We present symplectic structures on the shape space of unparameterized space
curves that generalize the classical Marsden-Weinstein structure. Our method integrates the
Liouville 1-form of the Marsden-Weinstein structure with Riemannian structures that have
been introduced in mathematical shape analysis. We also derive Hamiltonian vector fields
for several classical Hamiltonian functions with respect to these new symplectic structures.
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1. Introduction

Motivation and background: The space of unparametrized space curves as an infinite di-
mensional orbifold is known to have a symplectic structure called the Marsden-Weinstein
structure (MW-structure) [12]. It is thought of as a canonical symplectic structure as it is
formally a Kirillov-Kostant-Souriau form by regarding space curves as linear functionals on
the space of divergence-free vector fields in R3; see eg. [12, Theorem 4.2] and [1, Chapter VI,
Proposition 3.6]. Another incentive for studying the MW symplectic structure can be found
in its appearance in mathematical fluid dynamics: for example, one can interpret vortex
filaments as the MW flow of the kinetic energy of the velocity field induced by vorticity
concentrated on the curve. Via so-called localized induction approximation vortex filaments
reduce to the binormal flow, which is a completely integrable system and is again an MW
flow for the length functional as the Hamiltonian, see eg. [23, Chapter 11] or [11, Chapter 7]
and the references therein.

To the best of the authors’ knowledge, to date no symplectic structures other than the
MW form have been studied on the space of unparametrized space curves. Riemannian
structures on this space, on the other hand, have attracted a significant amount of interest;
primarily due to their relevance to mathematical shape analysis [30, 27, 4]. The arguably
most natural such metric, the reparametrization invariant L2-metric admits a surprising
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degeneracy: the geodesic distance between any pair of curves vanishes on both the space of
parametrized and unparametrized curves [16, 2]. This result renders the L2-metric unsuited
as a basis for mathematical shape analysis and thus started a quest for stronger Riemannian
metrics, which induce a non-degenerate distance function and consequently can be used for
applications in these areas, see eg. [17, 29, 26, 3] and the references therein.

The aforementioned L2-Riemannian metric and the MW symplectic structure are related
via an almost complex structure J , which is induced on shape space Imm(S1,R3)/Diff(S1)
by the cross-product with the unit tangent vector of the curve c, i.e., Jc(h) =

c′

|c′| × h; here

c : S1 → R3 is a space curve and h : S1 → R3 is a tangent vector to c. Furthermore, the MW
symplectic structure Ω̄MW has a Liouville 1-form Θ̄MW i.e., Ω̄MW = −dΘ̄MW, which arises
from the L2-metric G and the almost complex structure J via

Θ̄MW
c (h) := −1

3
Gc(Jc(c), h).

Main contributions: These relations between Riemannian geometry and symplectic geome-
try on the space of space curves are the starting point of the present article: our principal
goal is to construct new symplectic structures on the space of unparametrized curves by com-
bining the above classical construction with more recent advances in Riemannian geometry
of these spaces, i.e., we construct new presymplectic structures by modifying the Liouville
form of the MW form using different Riemannian metrics from mathematical shape analysis.
This construction automatically leads to a closed 2-form (and thus a presymplectic form) on
the space of parametrized curves. Under certain assumptions on the Riemannian metric this
form then descends to a presymplectic structure on the space of unparametrized space curves
and, for several specific examples, we prove that it is indeed non-degenerate and thus weakly
symplectic. Interestingly, in some cases the presymplectic form still has a nontrivial kernel
on the shape space, but becomes symplectic when the quotient by a further 2-dimensional
foliation is taken.

A seemingly more straightforward approach is to directly construct the symplectic struc-
ture by simply alternating the Riemannian metric via the almost complex structure J (Re-
mark 2.11). This approach, however, turns out to be unsuccessful as the resulting skew-
symmetric 2-form is usually not closed and thus not even presymplectic, which was our
incentive to follow this more complicated procedure.

We also derive formulae for Hamiltonian vector fields of several classical Hamiltonian
functions generated by our new symplectic structures and provide numerical illustrations to
qualitatively show a few simple examples among these new Hamiltonian flows. This study is
further motivated by the recent interest in gradient flows on the space of curves with respect
to Riemannian metrics other then the L2 metric, see e.g. [24, 21]. Here we investigate
the symplectic analogon of these constructions. In future work it would be interesting to
investigate the effect of the choice of symplectic structure on the long-time behavior of the
dynamics of these Hamiltonian flows.

Strictly speaking, the MW-structure and the structures we construct are weak -symplectic,
i.e., 2-forms that are closed and weakly non-degenerate (the induced homomorphism from
the tangent bundle to the cotangent bundle is injective but not bijective). In Appendix A,
we provide a short introduction to infinite-dimensional weak symplectic geometry, including
a new assumption that was overlooked in previous research.
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Future directions: In this article, we introduced new (pre)symplectic structures on the shape
space of space curves. Our procedure of modifying the Liouville form of a (pre)symplectic
form and taking the exterior derivative is not limited to such shape spaces. It would be
interesting to apply the same machinery for other infinite-dimensional (weak-)symplectic
manifolds that admit Liouville forms such as the space of complex functions on a domain or
the cotangent bundle of an infinite-dimensional Riemannian manifold.

Structure of the article: In Section 2, we introduce Liouville forms via the modification of
the L2-Riemannian metric, and then compute presymplectic forms by taking the exterior
derivative. In Section 3, we show that, a class of presymplectic structures attained by con-
formal factors on the shape space are indeed weekly symplectic. We also derive Hamiltonian
vector fields with respect to these weak symplectic structures. In Section 4, we describe
more concretely symplectic structures induced by the length function as a special case of
conformal factors and provide several examples of Hamiltonian vector fields. In Section 5,
we discuss the presymplectic structure induced by the curvature-weighted metric, where we
leave the non-degeneracy open for future research. Finally, in Section 6, we numerically
illustrate simple Hamiltonian flows with respect to symplectic structures induced by length
functions.
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MW symplectic structure and S. Ishida thanks Albert Chern for insightful discussions on
space curves and Chris Wojtan for his continuous support. M. Bauer was partially supported
by NSF grant DMS-1953244 and by the Binational Science Foundation (BSF). S. Ishida
was partially supported by ERC Consolidator Grant 101045083 “CoDiNA” funded by the
European Research Council. Some figures were generated by the software Houdini and its
education license was provided by SideFX.

2. Liouville structures and (pre)symplectic structures

The space of parametrized and unparametrized curves. We consider the space of regular
space curves:

Imm(S1,R3) :=
{
c ∈ C∞(S1,R3) : |c′| ≠ 0

}
,

which consists of immersions of S1 into R3. The space Imm(S1,R3) is an open subset of
the vector space C∞(S1,R3) and thus, similar as in finite dimensions, it is a manifold with
tangent space

TcImm(S1,R3) = C∞(S1,R3).

On the manifold of immersions we consider the action of the group of orientation-preserving
diffeomorphisms Diff+(S1) by composition from the right. This leads us to consider the
quotient (shape) space

Bi(S
1,R3) := Imm(S1,R3)/Diff+(S1),

which is an infinite dimensional orbifold with finite cyclic groups at the orbifold singularities,
see [7] and [15, 7.3]. The tangent space to the vertical fiber through c consist exactly of all
fields h that are tangent to it’s foot point c, i.e., h = a.c′ with a ∈ C∞(S1).
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Reparametrization invariant Riemannian metrics on spaces of curves. On the space of
parametrized curves we will consider reparameterization invariant (weak)-Riemannian met-
rics of the form:

GL
c (h, k) =

∫
S1

⟨Lch, k⟩|c′|dθ =

∫
S1

⟨h, Lck⟩|c′|dθ

where L ∈ Γ(End(T Imm(S1,R3)) is an operator field, such that for each c ∈ Imm the
operator

Lc : TcImm(S1,R3) = C∞(S1,R3)→ TcImm(S1,R3) = C∞(S1,R3)

is an elliptic pseudo differential operator that is equivariant under the right action of the
diffeomorphism group Diff+(S1) and also under left action of SO(3), and which is also
selfadjoint with respect to the L2-metric, i.e.,

Lc◦φ(h ◦ φ) = (Lc(h)) ◦ φ and

∫
⟨Lch, k⟩ds =

∫
⟨h, Lck⟩ds .

Remark 2.1 (Sobolev metrics). An important class of such metrics is the class of Sobolev
Hm-metrics, where L = (1 − (−1)mD2m

s ) with Ds = 1
|c′|∂θ being the arclength derivative.

Using the notation ds = |c′|dθ for the arclength measure we obtain for m = 0 the metric

Gid
c (h, k) =

∫
S1

⟨h, k⟩|c′|dθ =

∫
S1

⟨h, k⟩ds

and for m = 1 the metric

Gid−D2
s

c (h, k) =

∫
S1

⟨h, k⟩+ ⟨−D2
sh, k⟩ds =

∫
S1

⟨h, k⟩+ ⟨Dsh,Dsk⟩ds.

All these metrics can be written in terms of arc-length derivative Ds = 1
|c′|dθ and arc-

length integration ds = |c′|dθ only. It has been shown that each such metric induces a
corresponding metric on the shape space Bi(S

1,R3) such that the projection is a Riemannian
submersion [18]. In finite dimension this would follow directly from the invariance of the
metric, but in this infinite dimensional situation one has to show in addition the existence
of the horizontal complement (w.r.t. the Riemannian metric). We will see, however, that
this particular class of metrics will not be suited for the purpose of the present paper, as
the induced symplectic structure will not descend to a symplectic structure on the quotient
space.

The induced Liouville one form. Next we will use the metric GL to define a (Liouville) one-
form on Imm(S1,R3). Therefore we consider for c ∈ Imm(S1,R3) and h ∈ TcImm(S1,R3)
the one-form:

ΘL
c (h) := GL

c (c×Dsc, h) =

∫
⟨c×Dsc, Lch⟩ds =

∫
det(c,Dsc, Lch)ds,

where × denotes the vector cross product on R3. We have the following result concerning
it’s invariance properties:

Lemma 2.2 (Liouville one form). For any inertia operator L, that is equivariant under the
right action of the group of all orientation preserving diffeomorphisms and the left action
of the rotation group SO(3), the induced Liouville one-form ΘL is invariant under the right
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action of Diff+(S1) and the left action of SO(3), i.e., for any c ∈ Imm, h ∈ TcImm, φ ∈
Diff+(S1) and O ∈ SO(3) we have

ΘL
O(c◦φ)(O(h ◦ φ)) = ΘL

c (h).

Proof. We will only show the reparametrization invariance, the invariance under SO(3) is
similar but easier. Using the equivariance of both L and Ds we calculate

ΘL
c◦φ(h◦φ) =

∫
⟨c◦φ× (Dsc)◦φ, (Lch)◦φ⟩|c′| ◦φ|φ′| dθ =

∫
⟨c×Dsc, Lch⟩ds = ΘL

c (h). □

Remark 2.3. If L is equivariant under the left action of not only SO(3) but of the larger
group SL(3) = {M ∈ GL(3,R) | det(M) = 1}, then also ΘL is invariant under SL(3). This
is the case for the Marsden-Weinstein structure L = id (see Remark 2.5), but in general not
for the inertia operators we deal with in this article.

The induced (pre)symplectic form on Imm(S1,R2). Once we have defined the one-form Θ
we can formally consider the induced symplectic form

ΩL
c (h, k) := −dΘL

c (h, k) = −Dc,hΘ
L
c (k) +Dc,kΘ

L
c (h) + ΘL

c ([h, k]),

where d denotes the exterior derivative, Dc,h denotes the directional derivative at c ∈
Imm(S1,R3) in the direction h, and when applied to a function f : Imm(S1,R3) → R, we
have Dc,hf = Lhf(c). The bracket [h, k] is the Lie-bracket in X(Imm(S1,R3)) defined by
[h, k]c = Dc,hk −Dc,kh.

In the following lemma we calculate this 2-form explicitly:

Theorem 2.4 (The (pre)symplectic form ΩL on parametrized curves). Let c ∈ Imm(S1,R3)
and h, k ∈ TcImm(S1,R3). We have

(1)
ΩL

c (h, k) =

∫ (
⟨Dsc, Lch× k + h× Lck⟩ − ⟨c,Dsh× Lck + Lch×Dsk⟩

+ ⟨c×Dsc, (Dc,kLc)h− (Dc,hLc)k⟩
)
ds.

Furthermore, ΩL is invariant under the right action of Diff+(S1) and under the left action
of SO(3).

Remark 2.5 (Marsden-Weinstein symplectic structure). It is known that for the invariant
L2-metric, i.e., L = id, one obtains three times the Marsden-Weinstein (weak)-symplectic
structure with this procedure (See [28, 22] for example), i.e.,

3ΩMW
c (h, k) := Ωid

c (h, k) = 3

∫
S1

⟨Dsc× h, k⟩ds = 3

∫
det(Dsc, h, k)ds.

Its kernel consists exactly of all vector fields along c which are tangent to c, so by reduction
it induces a presymplectic structure on shape space Imm(S1,R3)/Diff+(S1) which is easily
seen to be weakly non-degenerate and thus is a symplectic structure there.

Proof of Theorem 2.4. To prove the formula for ΩL we first collect several variational formu-
las, see eg. [17] for a proof:

ds = |cθ|dθ, Dc,hds =
⟨hθ, cθ⟩
|cθ|

dθ = ⟨Dsh,Dsc⟩ds

Ds =
1

|cθ|
∂θ, Dc,hDs =

−⟨hθ, cθ⟩
|cθ|3

∂θ = −⟨Dsh,Dsc⟩Ds.
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Since Imm(S1,R3) is open in C∞(S1,R3), we can choose globally constant h, k i.e., indepen-
dent of the location c on Imm(S1,R3), namely [h, k] = 0 and compute

Dc,hΘ
L
c (k) =

∫ (
det(h,Dsc, Lck)− ⟨Dsh,Dsc⟩ det(c,Dsc, Lck) + det(c,Dsh, Lck)

+ det(c,Dsc, (Dc,hLc)k) + ⟨Dsh,Dsc⟩ det(c,Dsc, Lck)
)
ds

=

∫ (
det(h,Dsc, Lck) + det(c,Dsh, Lck) + det(c,Dsc, (Dc,hLc)k)

)
ds

Thus we get for ΩL:

ΩL
c (h, k) = −Dc,hΘ

L
c (k) +Dc,kΘ

L
c (h) + 0

=

∫ (
− det(h,Dsc, Lck) + det(k,Dsc, Lch)− det(c,Dsh, Lck) + det(c,Dsk, Lch)

− det
(
c,Dsc, (Dc,hLc)k − (Dc,kLc)h

))
ds

=

∫ (
⟨Dsc, Lch× k + h× Lck⟩ − ⟨c,Dsh× Lck −Dsk × Lch⟩

− ⟨c×Dsc, (Dc,hLc)k − (Dc,kLc)h⟩
)
ds,

which yields the desired formula for ΩL. The invariance properties of ΩL follow directly from
the corresponding invariance properties of ΘL. □

The induced (pre)symplectic structure on Bi(S
1,R3). In the previous part we have cal-

culated a (pre)symplectic form on the space of parametrized curves Imm(S1,R3); we are,
however, rather interested to construct symplectic structures on the shape space of geometric
curves Bi(S

1,R3). The following result contains necessary and sufficient conditions for the
forms ΘL and ΩL to descend to this quotient space:

Theorem 2.6 (The (pre)symplectic structure on unparametrized curves). The form ΩL fac-
tors to a (pre)symplectic form Ω̄L on Bi(S

1,R3) if the inertia operator L maps vertical
tangent vectors to span{c, c′}, i.e., if for all c ∈ Imm(S1,R3) and a ∈ C∞(S1) we have
Lc(a.c

′) = a1c
′ + a2c for some functions ai ∈ C∞(S1).

Proof. The Liouville form ΘL on Imm(S1,R3) factors to a smooth 1-form Θ̄L on shape space
Bi(S

1,R3) with ΘL = π∗Θ̄L if and only if ΘL is invariant under under the reparameterization
group Diff+(S1) and is horizontal in the sense that it vanishes on each vertical tangent vector
h = a.c′ for a in C∞(S1,R).

Since ΘL is invariant under the reparameterization group Diff+(S1) by construction it only
remains to determine a condition on L such that ΘL vanishes on all vertical h, i.e., we want

ΘL
c (ac

′) =

∫
⟨c×Dsc, Lc(ac

′)⟩ds = 0.

From here it is clear that this holds if Lc(a.c
′) = a1c

′ + a2c for some functions ai ∈ C∞(S1).
In that case also its exterior derivative satisfies

ΩL = −dΘL = −dπ∗Θ̄L = −π∗dΘ̄L =: π∗Ω̄L

for the presymplectic form Ω̄L = −dΘ̄L on Bi(S
1,R3). □



SYMPLECTIC STRUCTURES ON THE SPACE OF SPACE CURVES 7

Example 2.7 (Inertia operators with a prescribed horizontal bundle). There are several dif-
ferent examples of operators that satisfy these conditions, including in particular the class
of almost local metrics:

Lc(h) = F (c).h for F ∈ C∞(Imm(S1,R3),R>0), for example

Lc(h) = Φ(ℓc)h, Lc(h) = Φ(

∫
S1

κ2
c

2
ds)h, Lc(h) = (1 + Aκ2

c)h.

Note, that the class of Sobolev metrics, as introduced in Remark 2.1 does not satisfy the
conditions of the above theorem. Thus these metrics do not induce a (pre)symplectic form on
the quotient space. By including a projection operator in their definition one can, however,
modify these higher-order metrics to still respect the vertical bundle:

Lch =
(
prc(1− (−1)kD2k

s ) prc +(1− prc)(1− (−1)kD2k
s )(1− prc)

)
h,

where prc h = ⟨Dsc, h⟩Dsc is the L2-orthogonal projection to the vertical bundle. For more
details see [5], where metrics of this form were studied in detail.

Remark 2.8 (Horizontal ΩL-Hamiltonian vector fields and Ω̄L-Hamiltonian vector fields).
In the following we assume that the inertia operator L ∈ Γ(End(T Imm(S1,R3)) induces a
(weak) symplectic structure on Bi(S

1,R3), i.e., it satisfies the conditions of Theorem 2.6
and is moreover weakly non-degenerate in the sense that Ω̄L : T Imm→ T ∗Imm is injective.
Since T ∗

c π ◦ Ω̄L
π(c) ◦Tcπ = ΩL

c , this is equivalent to the kernel of ΩL
c : TcImm→ T ∗

c Imm being

equal to the tangent space to the Diff+(S1)-orbit c ◦Diff+(S1) for all c. Thus ΩL
c restricted

to the GL-orthogonal complement of Tc(c ◦Diff+(S1)) is injective. See [9, Section 48] for
more details.

Assume that H is a Diff+(S1)-invariant smooth function on Imm(S1,R3). Then H induces
a Hamiltonian function H̄ on the quotient space Bi(S

1,R3) with H̄ ◦ π = H. Since the 2-form
ΩL on Imm(S1,R3) is only presymplectic it does not directly define a Hamiltonian vector
field. However, if each dHc lies in the image of ΩL : T Imm(S1,R3)→ T ∗Imm(S1,R3), then
a unique smooth horizontal Hamiltonian vector field X ∈ X(Imm) is determined by

dH = iXΩ
L = ΩL(X, ) and GL

c (Xc, T c.Y ) = 0, ∀Y ∈ X(S1)

which we will denote by hgradΩL

(H). Obviously we then have

gradΩ̄L

(H̄) ◦ π = Tπ ◦ hgradΩL

(H).

Sometimes the kernel of ΩL will be larger than the tangent spaces to the Diff(S1)-orbits;

then hgradΩL

(H) will be chosen GL-perpendicular to the kernel of ΩL. This will happen in
Theorem 3.2, for example, where L is a function of c such that ΘL

c is also invariant under
scaling. The Hamiltonian H factors to the corresponding space Imm(S1,R3)/ kerΩL (which
denotes the quotient by the foliation generated by kerΩL) if H is additionally invariant under
each vector in kerΩL.

Remark 2.9. For the Marsden-Weinstein structure ΩMW = −dΘ 1
3
id, we have

hgradΩMW

H = −Dsc× gradGid

H

since

Gid(Dsc× ·, ·) = ΩMW(·, ·).
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Remark 2.10 (Momentum mappings). If a Lie group G acts on Imm(S1,R3) and preserves
ΘL, the corresponding momentum mapping J can be expressed in terms of ΘL and the
fundamental vector field mapping ζ : g→ X(Imm(S1,R3)). For Y ∈ g, we have

⟨J(c), Y ⟩ = ΘL(ζY )c =

∫
⟨c×Dsc, Lc(Y ◦ c)⟩ds,

where we denote the duality as ⟨ , ⟩ : g∗ × g→ R. Namely,

dΘL(ζY ) = diζY Θ
L = LζY Θ

L − iζY dΘ
L = 0− iζY Ω

L.

Lemma 2.2 asserts that ΘL is invariant under the right action of Diff+(S1) and the left
action of SO(3).

Thus for X = a.∂θ ∈ X(S1) = C∞(S1)∂θ the reparameterization momentum is given as
follows:

ζa.∂θ(c) = Dc,a.cθ as derivation at c on C∞(Imm,R)
= a.cθ = a.|cθ|Dsc ∈ TcImm = C∞(S1,R3)

Lc ◦φ(h ◦φ) = (Lch) ◦φ =⇒ (Dc,a.cθLc)(h) + Lc(a.hθ) = a.(Lch)θ

⟨JDiff+(S1)(c), a.∂θ⟩ = ΘL
c (ζa.∂θ(c)) = ΘL

c (a.cθ) =

∫
⟨c×Dsc, Lc(a.cθ)⟩ds

=

∫
⟨c×Dsc, a.(Lcc)θ − (Dc,a.cθLc)(c)⟩ds.

For Y ∈ so(3) the angular momentum is

⟨JSO(3)(c), Y ⟩ = ΘL(Y ◦ c) =
∫
⟨c×Dsc, Lc(Y ◦ c)⟩ds

=

∫
⟨c×Dsc, y ◦Lc(c)− (Dc,Y ◦ cLc(c)⟩ds.

For a correct interpretation of the angular momentum recall (from [14, 4.31], e.g.) that the
action of Y ∈ R3 ∼= so(3) ∼= Lskew(R3,R3) on R3 is given by X 7→ 2Y ×X.

If L is also invariant under translations, then the linear momentum, for y ∈ R3, is

⟨JR3

(c), y⟩ = ΘL
c (y) =

∫
⟨c×Dsc, Lc(y)⟩ds .

Note that the above also furnishes conserved quantities on Bi, if Ω̄
L is non-degenerate.

Remark 2.11 (Defining a symplectic structure via an almost complex structure). On the
shape space Bi(S

1,R3), the mapping of 90 degrees rotation formally given by

J : TBi(S
1,R3)→ TBi(S

1,R3)

[h] 7→ [Dsc× h]

is an almost complex structure, i.e., an isomorphism with J 2 = −1. For simplicity we will
just write the equivalence class [h] by h and drop the pushforward/pullback notation by π
in this remark. It is well-known that the L2-Riemannian metric Ḡid, the Marsden-Weinstein
symplectic structure Ω̄MW, and the almost complex structure J formally define an almost
Kähler structure (also called a compatible triple),

Ω̄MW
c (h, k) = Ḡid

c (Jc(h), k)
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on Bi(S
1,R3) 1.

This observation suggests to define a family of almost symplectic structures Ω̃L via

Ω̃L,J
c (h, k) = ḠL

c (Jc(h), k).

If L is non-degenerate then Ω̃L,J is by construction an almost symplectic structure, i.e., Ω̃L,J

is skew-symmetric and non-degenerate. At a first glance this approach seems promising (and
simpler than our approach above) to define new symplectic structures. To show that the
induced forms are indeed symplectic it suffices to check closedness of Ω̃L,J . However, Ω̃L,J

fails to be closed at least for all Riemannian metric that are conformally equivalent (but not
equal) to the L2-metric. That is, Lc is given by the multiplication with a conformal factor:
Lc = λ(c) id, which we will mainly study in the next section. To see the non-closeness of
Ω̃λ,J , we compute formally (by ignoring the π-factor of λ and ΩMW for simplicity),

dΩ̃λ,J = λdΩMW + dλ ∧ ΩMW = dλ ∧ ΩMW.

The 3-form dλ∧ΩMW is not identically zero unless λ is a constant. This statement is actually
true on any symplectic manifold (M,ω) of dimension greater than 2 including our case where
the orbifold Bi(S

1,R3) is even infinite-dimensional. To see this let us denote XH = gradω H
for a given function H : M → R. Then we have,

dλ ∧ ω = 0 ⇐⇒ 0 = iXH
(dλ ∧ ω) = iXH

dλ ∧ ω − dλ ∧ iXH
ω = (LXH

λ).ω − dλ ∧ dH ∀H.

Since the two terms (LXH
λ).ωid and dλ∧dh have different ranks, they are both zero. Namely,

LXH
λ must be zero. Since at each point x any tangent vector h ∈ TxM is locally realized as

XH(x) by choosing such a Hamiltonian H, λ must be constant.
While the above discussion is limited to Riemannian metrics that are conformally equiva-

lent to the L2-metric, it seems that a similar phenomenon is also true for more complicated
(higher order) metrics. In particular, we were not able to construct any pair of an almost
complex structure J and a non-conformal operator L on Bi(S

1,R3) which satisfy the required
invariance conditions and lead to a closed form Ω̃L,J .

This observation is the main reason why we proceeded to define our symplectic structures
by altering the Liouville form, thereby ensuring closeness of the corresponding two-form. We
may also reach the same approach by solving the non-closeness issue of the other approach
via an almost symplectic structure, e.g. in the conformal case when λ is not a constant
and thus Ω̃λ is not closed, we could add some W ∈ d−1(dλ ∧ Ωid) so that Ω̃ +W is closed.
By doing this, the non-degeneracy property may be lost and thus one needs to check this
property again. Our approach for constructing a symplectic form from the Liouville form
Θλ amounts to choosing W = −dλ ∧ Θid. We emphasize that there is a large degree of
freedom in d−1(dλ∧Ωid) and our choice is not the unique one that makes the resulting form
symplectic.

3. Symplectic structures induced by conformal factors

In this section we consider symplectic structures induced by Riemannian metrics, that are
conformally equivalent to the L2-metric, i.e., we consider the GL metric for Lc = λ(c) where

1This is not a Kähler structure in the classical sense, which additionally requires a complex structure
i.e., the existence of holomorphic coordinates. Indeed the Marsden-Weinstein symplectic structure does not
admit a complex structure [10]; it has been shown that on the space of isometric mappings of a circle into R3

modulo Euclidean transformations there is indeed a Kähler structure closely related to the Marsden-Weinstein
structure, but with a more complicated almost complex structure than J [19], see also the comments in [20].
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λ : Imm(S,R3) → R>0 is invariant under reparametrization. Thus λ factors to a function

λ̄ : Bi(S,R3) → R>0 by π∗λ̄ = λ. Moreover, if gradGid

c λ exists (which we assume) it is
pointwise perpendicular to Dsc.
We first study the scale invariance of the corresponding Liouville 1-form, which will be

of importance for the calculation of the induced (pre)symplectic structure. We say ΘL is
scale-invariant at c ∈ Imm(S1,R3) if LIΘ

L
c = 0 where I ∈ Γ(T Imm(S1,R3)) is the scaling

vector field Ic := c with flow FlIt (c) = et.c. Depending on the context, we use both I and c
for scaling as a tangent vector in this article.

Lemma 3.1 (Scale invariance of Θλ). Let Lc = λ(c) id. Then the following are equivalent:

(a) Θλ is invariant under scalings.
(b) 3λ(c) + LIλ(c) = 3λ(c) +Dc,cλ = 0 for all c ∈ Imm(S1,R3).
(c) λ(c) = Λ(c/ℓ(c)).ℓ(c)−3 for a smooth function Λ : {c ∈ Imm : ℓ(c) = 1} → R>0.

Proof. We have the following equivalences.
(a) ⇐⇒ (b):

LIΘ
λ = LI(λΘ

id) = diI(λΘ
id) + iId(λΘ

id) = 0 + iI(dλ ∧Θid + λdΘid)

= iIdλ ∧Θid + 0 + λiIdΘ
id = (iIdλ)Θ

id − λiIΩ
id = (iIdλ+ 3λ)Θid.

(b) ⇐⇒ (c): Let ℓ(c) = 1.

∂tλ(tc) = dλtc(c) = Dtc,cλ = 1
t
Dtc,tcλ = −3

t
λ(tc)

⇐⇒ ∂t log(λ(tc)) =
−3
t
⇐⇒ log(λ(tc) = log(Λ(c)t−3) ⇐⇒ λ(tc) = Λ(c).t−3. □

Equipped with the above Lemma we are now ready to calculate the induced symplectic
structure Ωλ, where we will distinguish between the scale-invariant and non-invariant case.

Theorem 3.2 (The (pre)symplectic structure Ωλ). Let Lc = λ(c) id be Diff(S1)-invariant.
Then the induced (pre)symplectic structure on Imm(S1,R3) is given by

Ωλ = λΩid +Θid ∧ dλ.(2)

Furthermore we have

(a) If 3λc + LIλc = 3λ(c) + Dc,cλ ̸= 0 on any open subset of Imm, then Ωλ induces a
non-degenerate two-form on Bi(S

1,R3), which is thus symplectic.

(b) Assume in addition, that X := hgradΩid

λ exists and is smooth and that 3λc+LIλc = 0
for all c. Denote by F the involutive 2-dimensional vector sub-bundle spanned by

the vector fields I and hgradΩid

λ. Then Ωλ induces a non-degenerate two-form on

Imm(S1,R3)/(Diff+(S1) × F) ≃ {c̄ ∈ Bi(S
1,R3) : λ̄c̄ = 1}/ span(gradΩ̄id

λ̄), where
it agrees with a multiple of the Marsden-Weinstein symplectic structure. It is also

non-degenerate on {c̄ ∈ Bi(S
1,R3) : ℓ̄c̄ = 1}/ span(gradΩ̄id

λ̄).

In case (b), the vector field X := hgradΩid

λ exists in X(Imm(S1,R3)) if and only if

gradGid

λ exists and is smooth as we have hgradΩid

λ = hgrad3ΩMW

λ = −1
3
Dsc × gradGid

λ.

This is equivalent to the fact that λ̄ ∈ C∞(Bi(S
1,R3),R) by A.4. Moreover, the vec-

tor fields I and hgradΩid

λ(= 1
3
hgradΩMW

λ) are linearly independent at any c because

Ωid
c (hgrad

Ωid

c λ, Ic) = iIdλ(c) = −3λ(c) ̸= 0 by assumption. So the dimension of F is al-
ways 2. We project to the leaf space of the 2-dimensional distribution if it is integrable.
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This is the case, if the flow of gradΩ̄id

λ̄ exists; then the flows of I and gradΩ̄id

λ̄ combine to
a 2-dimensional (ax + b)-group acting on Imm(S1,R3). We assume that this is the case; to
prove existence of the flow one has first to specify λ and then solve a non-linear PDE.

Proof. The formula directly follows from the product rule applied to d(Θλ) = d(λΘid).
Case (a): We now show the non-degeneracy; if a tangent vector h satisfies h ⊥ Dsc

pointwise and Ωλ
c (h, k) = 0 for any k, then h = 0. First, choosing k = a.c with some

non-zero constant a ∈ R× we get from a.c ∈ kerΘid that,

0 = Ωλ
c (h, ac) = λΩid(h, ac) + Θid(h)ia.cdλ− 0 = a[3λ+Dc,cλ]Θ

id(h).

With our assumption 3λ+Dc,cλ ̸= 0 we see h ∈ kerΘid.
Next, we test for h ∈ kerΘid and k = a.c with some function a ∈ C∞(S1) to see

Ωλ
c (h, ac) = λΩid(h, ac) = 3λ

∫
a⟨c×Dsc, h⟩ds.

If this vanishes for any function a, we have ⟨c ×Dsc, h⟩ = 0 everywhere. We now consider
the regions:

(i) The open subset U = {θ ∈ S1 : c(θ)×Dsc(θ) ̸= 0},
(ii) The closed set S1 \ U = {θ ∈ S1 : c(θ)×Dsc(θ) = 0}.

Any h satisfying both h ⊥ Dsc and h ⊥ (c×Dsc) pointwise is of the form h = b.c+ v with a
function b ∈ C∞(S1) supported on U and a vector field v ∈ C∞(S1,R3) supported on S1 \U
and v ⊥ Dsc (and hence v ⊥ c as well). Then we have

Ωλ
c (h, k) = λΩid(h, k) + Θid(h)ikdλ−Θid(k)ihdλ

= λΩid(b.c, k) + 0−Θid(k)ib.cdλ

+ λΩid(v, k) + 0−Θid(k)ivdλ

=

∫
S1

⟨(3λ.b+Dc,b.cλ+Dc,vλ)Dsc× c+ 3λ.Dsc× v, k⟩ds.

We assumed that Ωλ
c (h, k) = 0 for all k, in particular, for ones supported on S1 \ U . Hence

we have v ≡ 0. With this we have

Ωλ
c (h, k) =

∫
U

(3λ.b+Dc,b.cλ)⟨Dsc× c, k⟩ds.

In order that Ωλ
c (h, k) = 0 for any k, we must have 3λ.b+Dc,b.cλ ≡ 0 on U . Since Dc,b.cλ ∈ R

is constant, b is constant. Hence we have b(3λ+Dc,cλ) ≡ 0 and get b ≡ 0 from our assumption
3λ+Dc,cλ ̸= 0. Thus we obtained h = 0.

Case (b): By assumption X := hgradΩid

λ exist; i.e., dλ is in the image of Ωid : T Imm→
T ∗Imm and satisfies dλ = iXΩ

id and ⟨X,Dsc⟩ = 0. Then we see X ∈ kerΩid
c by direct

computation using the assumed condition 3λc +Dc,cλ = 0;

(iXΘ
id)c =

∫
⟨c×Dsc,X⟩ds = 1

3
Ωid

c (Xc, c) =
1
3
iIdλc = −λ(c) by 3.1.

(iXΩ
λ)c = iXc(λ.Ω

id +Θid ∧ dλ)c = λ(c).iXcΩ
id
c +Θid

c (Xc).dλc − iXcdλc.Θ
id
c

= λ(c).dλc − λ(c).dλc − 0 = 0.
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Note also that the scaling field Ic := c with flow FlIt (c) = et.c is in the kernel of Ωλ
c as we

have

iIΩ
λ
c = λiIΩ

id
c +Θid(c)dλ−Dc,cλΘ

id = −3λΘid + 0−Dc,cλΘ
id = 0.

Thus Ī and X̄, the π-related versions of I and X, are in the kernel of Ω̄λ.

(LIλ)(c) = dλc(c) = −3λ(c)
LIΘ

id = iIdΘ
id = −iIΩid = 3Θid

LIΩ
id = −LIdΘ

id = −dLIΘ
id = −d(3Θid) = 3Ωid

−3dλ = LIdλ = LI(iXΩ
id) = (iXLI + i[I,X])Ω

id = 3iXΩ
id + i[I,X]Ω

id

i[I,X]Ω
id = −6dλ = −6iXΩid

Thus i[I,X]+6XΩ
id = 0, [I,X]+6X is in the kernel of Ωid. Their π-related version [Ī , X̄]+6X̄ is

in the kernel of Ω̄id which is weakly non-degenerate on Bi. So [Ī , X̄] = −6X̄ and also [I,X] =
−6X. Thus if the Frobenius integrability theorem applies in this situation (equivalently, if the
local flow of X exists), then the fields I and X span an integrable distribution, and the leaf
space exists, probably as an orbifold, which we will denote by Imm(S1,R3)/(Diff(S1)×F).

Now we shall make use of λ(c̄) = Λ(c̄/ℓc).ℓ
−3
c . The function is defined on the ℓ-unit

sphere {c ∈ Imm : ℓ(c) = 1}. To simplify notation, extend it constantly to Imm so that
Λ(c) = Λ|{ℓ=1}(c/ℓ(c)). Then we have

dλc(h) = ℓ(c)−3
(
dΛc(h)− 3Λ(c) 1

ℓ(c)

∫
⟨Dsh,Dsc⟩ds

)
= dΛ( c

ℓ(c
)
(
− ℓ(c)−2.

∫
⟨Dsh,Dsc⟩ds.c+ ℓ(c)−1h

)
− 3Λ( c

ℓ(c
)ℓ(c)−4.

∫
⟨Dsh,Dsc⟩ds

Ωλ
c (h, k) = λ(c)Ωid

c (h, k) + (Θid
c ∧ dλc)(h, k)

= Λ(c/ℓ(c)).ℓ(c)−3.Ωid
c (h, k) + ℓ(c)−3Θid

c (h).
(
dΛc(k)− 3Λ(c) 1

ℓ(c)

∫
⟨Dsk,Dsc⟩ds

)
− ℓ(c)−3

(
dΛc(h)− 3Λ(c) 1

ℓ(c)

∫
⟨Dsh,Dsc⟩ds

)
.Θid

c (k).

We have diffeomorphisms which are equivariant under scalings

Imm(S1,R3)/Diff+(S1) ∼= Imm(S1,R3)/(Diff+(S1)× R>0)× R>0

∼= {c̄ ∈ Imm(S1,R3)/Diff+(S1) : ℓ(c̄) = 1} × R>0

∼= {c̄ ∈ Imm(S1,R3)/Diff+(S1) : λ(c̄) = 1} × R>0

c̄ ←→
( 1

ℓ(c̄)
c̄, ℓ(c̄)

)
←→

(
Λ(c̄/ℓc)

3c̄, ℓ(c̄)
)

and pre-symplectomorphisms

({c̄ ∈ Bi : ℓ(c̄) = 1}, Ω̄λ) ∋ c̄ 7→ F (c̄) = Λ(c̄)1/3c̄ ∈ ({c̄ ∈ Bi : λ(c̄) = 1}, Ω̄id)

({c̄ ∈ Bi : ℓ(c̄) = 1}, Ω̄λ)
iℓ
↪−→ (Bi, Ω̄

λ)

({c̄ ∈ Bi : λ(c̄) = 1}, Ω̄id)
iλ
↪−→ (Bi, Ω̄

λ) since



SYMPLECTIC STRUCTURES ON THE SPACE OF SPACE CURVES 13

dF (c)(k) = 1
3
Λ(c)−2/3dΛ(c)(k).c+ Λ(c)1/3k

DsF (c) = 1
3
Λ(c)−2/3dΛ(c)(Dsc).c+ Λ(c)1/3Dsc

(F ∗Ωid)c(h, k) = Ωid
F (c(dF (c)(h), dF (c)(k))

= 3

∫ 〈
(1
3
Λ(c)−2/3dΛ(c)(Dsc).c+ Λ(c)1/3Dsc)××(13Λ(c)

−2/3dΛ(c)(h).c+ Λ(c)1/3h),

(1
3
Λ(c)−2/3dΛ(c)(k).c+ Λ(c)1/3k)

〉
ds

= Λ(c)Ωid
c (h, k) + Θid

c (h).dΛ(c)(k)−Θid
c (k).dΛ(c)(h)

Since (Bi, Ω̄
id) is weakly symplectic and {c̄ ∈ Bi : λ̄(c̄) = 1} is a codimension 1 sub-orbifold

diffeomorphic to {c̄ ∈ Bi : ℓ̄(c̄) = 1}, the kernel of (i∗λΩ̄
id
c̄ ) is 1-dimensional, and we have

already found it as X̄ = gradΩ̄id

λ̄ which is tangent to {c̄ ∈ Bi : λ̄(c̄) = 1}. □

Remark 3.3 (Symplectic reduction). Our reduction of the space Bi(S
1,R3) in the second case

of Theorem 3.2 can be seen as an infinite-dimensional instance of the Marsden-Weinstein-
Meyer symplectic reduction. To see this, let us set X̄ := gradΩ̄id

c̄ λ̄ and take the momentum
map J̄ : Bi(S

1,R3)→ R by J̄(c̄) := λ̄(c̄), with the corresponding group action being the time-
t flow of X̄ with c̄ as initial data. We have shown that Ω̄λ is degenerate on the codimension-1
sub-orbifold J̄−1(1) = {c̄ ∈ Bi(S

1,R3) | λ̄(c̄) = 1}, and that it becomes symplectic when

factored onto the codimension-2 sub-orbifold J̄−1(1)/ gradΩ̄id

λ̄.
We also remark that the dual product for the momentum map J̄ is just the multiplication

of scalar values as we have

⟨J̄(c̄), t⟩ = −Θ̄id
c̄ (t.X̄) = t.λ̄(c̄)

for t ∈ R such that the time-t flow map of X̄ exists. Here we used the invariance of Θ̄id
c̄

under the flow of X̄, which is shown by LX̄Θ̄
id
c̄ = diX̄Θ̄

id
c̄ + iX̄Ω̄

id
c̄ = −dλ̄+ dλ̄ = 0 mimicking

computations in the proof of Theorem 3.2. We may get the same result also using Θ̄λ and

gradΩ̄λ

c̄ λ̄ = Tcπ(hgrad
Ωλ

c λ) (cf. Proposition 3.5) instead of Θ̄id and X̄ = gradΩ̄id

c̄ λ̄.

Remark 3.4 (A pseudo-Riemannian metric via ΩL and J = Dsc×·). Using the presymplectic
form ΩL and the almost complex structure J = Dsc× on Bi(S,R3) we may define a pseudo-
Riemannian metric Ḡ such that

J : TBi(S
1,R3)→ TBi(S

1,R3)

[h] 7→ [Dsc× h]

is compatible with Ḡ and Ω̄L. Note that such Ḡ is different from the Riemannian metric GL

we used to define the Liouville form ΘL.
We here compute Ḡ for the conformal factor Lc = λ(c). In the computation, we identify

the tangent space at [c] of Bi(S
1,R3) with the space of tangent vectors h in TcImm(S1,R3),

such that ⟨Dsc, h⟩ = 0.
We then have

Ḡ[c](h, k) := Ωλ
c (h,J k) = λ(c)Ωid

c (h,J k) + Θc(h)LJ kλ(c)−Θc(J k)Lhλ(c).

By design Ḡ[c] is non-degenerate. The symmetry follows from Ωλ
c (J h, k) = −Ωλ

c (h,J k). It
is, however, not clear if Ḡ is positive-definite, i.e., if it is a Riemannian metric. We leave this
question open for future research.



14 MARTIN BAUER, SADASHIGE ISHIDA, AND PETER W. MICHOR

3.1. Hamiltonian vector fields. Now we compute the horizontal Hamiltonian vector field

hgradΩλ

H for a given reparametrization-invariant Hamiltonian H. We express hgradΩλ

H

in terms of gradGid

H since the latter is in general relatively easy to obtain.

Proposition 3.5 (Horizontal Hamiltonian vector fields for Ωλ). Assume that gradGid

λ exists.

(a) Consider a Diff+(S1)-invariant Hamiltonian H : Imm(S1,R3)→ R3. If 3λc+LIλc =
3λc +Dc,cλ ̸= 0 on any open subset of Imm then

hgradΩλ

H = − 1

3λc

{
Dsc× gradGid

H

+
1

3λc +Dc,cλ

[
⟨gradGid

c λ,Dsc× gradGid

H⟩L2
ds(S

1)Dsc× (Dsc× c)

− ⟨c, gradGid

H⟩L2
ds(S

1)Dsc× gradGid

c λ
]}

.

(b) Consider a Hamiltonian H : Imm(S1,R3) → R3 invariant under Diff+(S1) and the

flows of the scaling vector field I and hgradΩMW

λ = −Dsc×gradGid

λ. If 3λc+LIλc =

0 for all c then hgradΩλ

c H is the orthonormal projection of

XH
c = − 1

3λc

Dsc× gradGid

c H =
1

λc

hgradΩid

c H

to the Gid
c -orthogonal complement of the kernel of Ωλ, which is spanned by I, hgradΩMW

λ,
and {a.Dsc | a ∈ C∞(S1)}, namely

hgradΩλ

c H =
1

3λc

(
−Dsc× gradGid

c H + ac.(1− prc)Ic − bc.Dsc× gradGid

λ
)

where the pair (ac, bc) ∈ R2 is given by(
ac
bc

)
=

(
⟨v, v⟩L2 ⟨v, w⟩L2

⟨v, w⟩L2 ⟨w,w⟩L2

)−1(⟨u, v⟩L2

⟨u,w⟩L2

)
.

with

u = −Dsc× gradGid

H = hgradΩMW

H

v = (1− prc)Ic

w = −Dsc× gradGid

λ = hgradΩMW

λ

where the matrix appearing here is invertible because vc and wc are linearly indepen-
dent at every c ∈ Imm(S1,R3).

Note that in the scale-invariant case (Case (b)), the flow of the field Y H projects to the

Hamiltonian flow of H̄ on {c̄ ∈ Bi(S
1,R3) : λ̄c̄ = 1}/ gradΩ̄id

λ̄ with respect to a multiple of
the Marsden-Weinstein symplectic structure.

Proof. Let us denote for simplicity A := gradGid

λ and XH := hgradΩλ

H. We can isolate out
k from Ωλ

c (XH , k) by

Ωλ(XH , k) = λΩid(XH , k) + Θid(XH)Dc,kλ−Θid(k)Dc,XH
λ
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=

∫
S1

⟨3λ.Dsc×XH −Dc,XH
λ.c×Dsc+Θid(XH)A, k⟩ds.

Using Ωλ
c (XH , k) = dH(k) = Gid(gradGid

H, k), we get

0 = Ωλ(XH , k)− dH(k)

=

∫
S1

⟨3λ.Dsc×XH −Dc,XH
λ.c×Dsc+Θid(XH)A− gradGid

H, k⟩ds.

This must be satisfied for any k, namely we have

3λ.Dsc×XH −Dc,XH
λ.c×Dsc+Θid(XH)A− gradGid

H = 0.(3)

Our goal is to solve this for XH . Applying −Dsc× reads

3λ.XH −Dc,XH
λ.Dsc× (Dsc× c)−Θid(XH)Dsc× A+Dsc× gradGid

H = 0.

Let us set

XH =
−1
3λ

Dsc× gradGid

H +K1Dsc× (Dsc× c) +K2Dsc× Ac(4)

with some coefficients K1, K2 to be determined.
From

Dc,XH
λ =

∫
⟨Ac, XH⟩ds, Θid(XH) =

∫
⟨c×Dsc,XH⟩ds,

we get

0 = 3λK1.Dsc× (Dsc× c) + 3λK2.Dsc× Ac

−
∫
⟨Ac,

−1
3λ

Dsc× gradGid

H +K1Dsc× (Dsc× c)⟩ds.Dsc× (Dsc× c)

−
∫
⟨Ac,

−1
3λ

Dsc× gradGid

H +K2Dsc× Ac⟩ds.Dsc× Ac

=
[
K1

(
3λ−

∫
⟨Ac, Dsc× (Dsc× c)⟩ds

)
+

1

3λ

∫
⟨Ac, Dsc× gradGid

H⟩ds
]
Dsc× (Dsc× c)

+
[
K2

(
3λ+

∫
⟨Dsc× c,Dsc× Ac⟩ds

)
− 1

3λ

∫
⟨Dsc× c,Dsc× gradGid

H⟩ds
]
Dsc× Ac

=

[
K1 (3λ+Dc,cλ) +

1

3λ

∫
⟨Ac, Dsc× gradGid

H⟩ds
]
Dsc× (Dsc× c)(5)

+

[
K2 (3λ+Dc,cλ)−

1

3λ

∫
⟨Dsc× c,Dsc× gradGid

H⟩ds
]
Dsc× Ac.

In the last step we used

−
∫
⟨Dsc× (Dsc× c), Ac⟩ds =

∫
⟨Dsc× c,Dsc× Ac⟩ds = Dc,(1−prc)cλ = Dc,cλ

where the last equality is due to the reparametrization-invariance of λ.
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Case (a): Observe that

K1 = −
1

(3λ+Dc,cλ)3λ

∫
⟨Ac, Dsc× (Dsc× c)⟩ds,

K2 =
1

(3λ+Dc,cλ)3λ

∫
⟨Dsc× c,Dsc× gradGid

H⟩ds

=
1

(3λ+Dc,cλ)3λ

∫
⟨c, gradGid

H⟩ds since gradGid

H⊥Dsc.

satisfy the equality. Substituting K1 and K2 to (4), we obtain the stated formula. Note
that the choice of the pair (K1, K2) is unique since −(1 − prc)Ic = Dsc × (Dsc × c) and

− hgradΩMW

λ = Dsc × Ac are linearly independent at least for some θ, namely in a small
neighborhood. This follows from the linear independence of these two tangent vectors on
TcImm(S1,R3), which is seen by the argument in the comment after Theorem 3.2 (b) with
the reparametrization invariance of Ωid.
Case (b): By assumption 3λ+Dc,cλ = 0 we see from (5) that,

0 =

[∫
⟨Ac, Dsc× gradGid

H⟩ds
]
Dsc× (Dsc× c)−

−
[∫
⟨Dsc× c,Dsc× gradGid

H⟩ds
]
Dsc× Ac.

Using this equality, it is easy to check that

XH :=
−1
3λ

Dsc× gradGid

H

satisfies (3). At this point there are up to two degrees of freedom in vector fields that

satisfy (3). We can make XH the unique horizontal lift of gradΩ̄λ

H̄ by performing the

Gid
c -orthogonal projection with respect to (1− prc)Ic and hgradΩMW

c λ, and hence obtain the
stated expression. The resulting vector field XH is Gid-orthogonal to {a.Dsc | a ∈ C∞(S1)},
hgradΩMW

λ and Ic. □

4. Symplectic structures induced by length weighted metrics

Next we study a special class of symplectic structures induced by conformal factors
introduced in the previous section; namely we consider length-weighted metrics as stud-
ied in [29, 17, 25]. More precisely, we consider operators of the form Lc = Φ(ℓc) where
ℓc =

∫
S1 |c′|dθ denotes the length of the curve c and Φ : R>0 → R>0 is a suitable func-

tion. Using Theorem 3.2 we obtain the following result concerning the induced symplectic
structure ΩΦ(ℓ):

Corollary 4.1 (The (pre)symplectic structure ΩΦ(ℓ)). Let Φ ∈ C1(R>0, R>0). The induced
(pre)symplectic structure of the GΦ(ℓ)-metric is given by:

ΩΦ(ℓ)
c (h, k) = Φ(ℓc)Ω

id(h, k)− Φ′(ℓc)

(∫
S1

⟨Dsh,Dsc⟩ds Θid(k)−
∫
S1

⟨Dsk,Dsc⟩ds Θid(h)

)
= Φ(ℓc)Ω

id(h, k) + Φ′(ℓc)

(∫
S1

⟨h,D2
sc⟩ds Θid(k)−

∫
S1

⟨k,D2
sc⟩ds Θid(h)

)
.

Furthermore, we have:
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(a) If Φ(ℓ) ̸= Cℓ−3 then the presymplectic structure Ω̄Φ(ℓ) on Bi(S
1,R3) is non-degenerate

and thus symplectic.
(b) If Φ(ℓ) = Cℓ−3, then Ωλ induces a non-degenerate two-form on Imm(S1,R3)/(Diff+(S1)×
F) ≃ {c̄ ∈ Bi(S

1,R3) : ℓ = 1}/ span(gradΩ̄id

ℓ̄), where it agrees with a multiple of
the Marsden-Weinstein symplectic structure. Here F is the 2-dimensional vector

subbundle spanned by the scaling vector field I and hgradΩMW

ℓ = Dsc×D2
sc.

The Liouville form ΘCℓ−3
is invariant under the scaling action c 7→ a.c for a ∈ R>0, which

is equivalent to LIΘ
Cℓ−3

= 0. Note also that we have a diffeomorphism which is equivariant
under scalings:

Imm(S1,R3)/Diff+(S1) ∼= Imm(S1,R3)/(Diff+(S1)× R>0)× R>0

∼= {c̄ ∈ Imm(S1,R3)/Diff+(S1) : ℓ(c̄) = 1} × R>0

c̄ ←→
( 1

ℓ(c̄)
c̄, ℓ(c̄)

)
Proof. To calculate the formula for ΩΦ(ℓ) we first need to calculate the variation of the length
ℓc. We have:

Dc,hℓc =

∫
S1

⟨Dsh,Dsc⟩ds, Dc,hΦ(ℓc) = Φ′(ℓc)

∫
S1

⟨Dsh,Dsc⟩ds .

Applying this to (1) using integration by parts, we get

ΩΦ(ℓ)
c (h, k) =

∫
S1

2Φ(ℓc)⟨Dsc, h× k⟩ − Φ(ℓc)⟨c,Dsh× k −Dsk × h⟩ds

−
∫
S1

⟨c×Dsc, (Dc,hΦ(ℓc))k⟩ds+
∫
S1

⟨c×Dsc, (Dc,kΦ(ℓc))h⟩ds

= 3Φ(ℓc)

∫
S1

⟨Dsc, h× k⟩ds− Φ′(ℓc)

∫
S1

⟨Dsh,Dsc⟩ds
∫
S1

⟨c×Dsc, k⟩ds

+ Φ′(ℓc)

∫
S1

⟨Dsk,Dsc⟩ds
∫
S1

⟨c×Dsc, h⟩ds

= Φ(ℓc)Ω
id(h, k)− Φ′(ℓc)

∫
S1

⟨Dsh,Dsc⟩ds Θid(k) + Φ′(ℓc)

∫
S1

⟨Dsk,Dsc⟩ds Θid(h),

which proves the first formula for Ω. We may directly draw the last expression applying (2)
to λ = Φ(ℓ).

Case (a): It follows from Theorem 3.2 (a) that kerΩΦ(ℓ) = {a.Dsc | a ∈ C∞(S1)}, namely
ΩΦ(ℓ) induces a symplectic form Ω̄Φ(ℓ) on Bi(S

1,R3).

Case (b): By direct computation, we have hgradΩid

Cℓp = 3Cpℓp−1Dsc × D2
sc, which is

a constant multiple of the Marsden-Weinstein flow hgradΩMW

ℓ = Dsc × D2
sc, so these two

vector fields span the same distribution. Now the statements follow directly from Theorem 3.2
(b). □

Now we will compute Hamiltonian vector fields. Therefore we note that the conditions of
Remark 2.8 are satisfied, which allows us to obtain the following result:

Corollary 4.2 (Horizontal Hamiltonian Vector Fields for ΩΦ(ℓ)). Consider a Diff+(S1)-invariant
Hamiltonian H : Imm(S1,R3)→ R3.



18 MARTIN BAUER, SADASHIGE ISHIDA, AND PETER W. MICHOR

(a) If Φ(ℓ) ̸= Cℓ−3, then:

(6) hgradΩΦ(ℓ)

(H) =
1

3Φ(ℓc)

{
−Dsc× gradGid

H

+
Φ′(ℓc)

3Φ(ℓc) + Φ′(ℓc)ℓc

[
⟨D2

sc,Dsc× gradGid

H⟩L2
ds(S

1)Dsc× (Dsc× c)

+ ⟨c, gradGid

H⟩L2
ds(S

1)Dsc×D2
sc
]}

.

(b) If Φ(ℓ) = Cℓ−3, and if the Hamiltonian H : Imm(S1,R3) → R3 invariant under

Diff+(S1) and the flows of I and hgradΩMW

ℓ = Dsc × D2
sc, then hgradΩλ

c H is the
orthonormal projection of

XH
c = − ℓ3

3C
Dsc× gradGid

H

to the Gid
c -orthogonal complement of the kernel of Ωλ, which is spanned by I and

hgradΩMW

ℓ, and {a.Dsc | a ∈ C∞(S1)}.

Proof. The stated formula follows from Proposition 3.5 with gradGid

c Φ(ℓc) = −Φ′(ℓc)D
2
sc and

that hgradΩMW

Cℓp is a constant multiple of hgradΩMW

ℓ. □

Remark 4.3. From the above Proposition it follows hgradΩΦ(ℓ)

H agrees with hgradΩid

H up

to a constant scaling if Φ′(ℓc) = 0. If Φ′(ℓc) ̸= 0 and ⟨D2
sc, grad

Ωid

H⟩L2
ds(S

1) ̸= 0 then it is,
however, genuinely different, i.e., it does not seem realizable as a Hamiltonian vector field for
the Marsden-Weinstein form ΩMW. To formally prove that a given vector field XH is never
attained by the Marsden-Weinstein structure one needs to show that LXH

ΩMW ̸= 0. Using
the closeness of ΩMW and Cartan’s formula, this can be reduced to show that diXH

ΩMW ̸= 0.
However the necessary computations for this turn out to become extremely cumbersome and
not very insightful. We refrain from providing them here.

Next we will consider several explicit examples, that will further highlight the statement
of the above remark. We acknowledge that many of the Hamiltonian functions we consider
were studied for the Marsden-Weinstein structure in [8].

Example 4.4 (Length function). We start with the arguably simplest Hamiltonian, namely
we assume that H is a function of the total length ℓ, i.e., H(c) = f ◦ ℓ(c) for some function
f . In this case we calculate:

dHc(k) = d[f ◦ ℓ]c(k) = Dc,kf(ℓc) = f ′(ℓc)

∫
⟨Dsk,Dsc⟩ds = −f ′(ℓc)

∫
⟨D2

sc, k⟩ds,

hence

gradGid

H = −f ′(ℓc)D
2
sc.

Using Corollary 4.2, we thus have

hgradΩΦ(ℓ)

H =
f ′(ℓc)

3Φ(ℓc)

(
1 +

Φ′(ℓc)ℓc
3Φ(ℓc) + Φ′(ℓc)ℓc

)
Dsc×D2

sc.
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If f ′(ℓc) = 0 for the initial length of the curve ℓc, it is a zero vector field. If f ′(ℓc) ̸= 0, then

the length ℓc is conserved along the flow as H = f ◦ ℓ is conserved. Note that hgradΩΦ(ℓ)

H is
a constant multiple of the binormal equation (also known as the vortex filament equation),

hgradΩMW

ℓ = Dsc×D2
sc

using the Marsden-Weinstein symplectic structure.
Thus we have seen that the Hamiltonian vector field of the the symplectic structure ΩΦ(ℓ)

is a constant multiple of the Hamiltonian vector field of the Marsden-Weinstein symplectic
structure. Note, that this constant factor, i.e., the relative speed with respect to the standard
binormal equation, depends on the initial length ℓc.

Example 4.5 (Flux of a divergence-free vector field on R3 though a Seifert surface). Our next
examples of Hamiltonians are the fluxes of vector fields through Seifert surfaces. We consider
for any divergence-free vector field V ∈ Γ(TR3) the closed 2-form ξV := iV (dx ∧ dy ∧ dz).
We can then define the corresponding flux by

EV :=

∫
D2

⟨V ◦ Σ, n⟩ =
∫
Σ(D2)

ξV

where Σ: D2 → R3 is a smooth Seifert surface, i.e., an oriented and connected surface with
Σ |∂D2= c, and n is the unit surface normal.

We remark that EV is independent of the choice of Σ. To see this, first notice that there is
a unique one form αV (up to addition of an exact 1-form) such that dαV = ξV as H1

dR(R3) = 0
and H2

dR(R3) = 0. By Stokes theorem we have,∫
Σ(D2)

ξV =

∫
D2

Σ∗dαV =

∫
Σ(∂D2)

αV =

∫
c(S1)

αV

where Σ∗ denotes the pullback by Σ. For EV , we have the following formulas from [8,
Theorem 4]:

gradGid

EV = Dsc× (V ◦ c),

hgradΩMW

EV = V ◦ c.

We consider EV for two specific choices of V , where we use an analogous notation as in [8]:
the translation V−1 = v by some v ∈ R3 and the rotation V−2(x) = v × x with some unit
v ∈ R3 and we denote the corresponding fluxes by H−1 = EV−1 and H−2 = EV−2 . Next we
compute the horizontal Hamiltonian vector fields. From the computation

⟨D2
sc,Dsc× (Dsc× v)⟩L2(ds) = 0,

⟨c,Dsc× v⟩L2(ds) =

∫
S1

⟨Dsc, v × c⟩ds =
∫
S1

⟨Dsc, 2 curl(v) ◦ c⟩ds = 2H−1(c),

and

⟨D2
sc,Dsc× (Dsc× (v × c))⟩L2(ds) = 0,

⟨c,Dsc× (v × c)⟩L2(ds) =

∫
S1

⟨Dsc, (v × c)× c⟩ds =
∫
S1

⟨Dsc, 3 curl(v × x) ◦ c⟩ds = 3H−2(c),
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we obtain for i ∈ {−1,−2},

hgradΩΦ(ℓ)

Hi =
wi

3Φ(ℓc)
+

CiHi(c)Φ
′(ℓc)

3Φ(ℓc)(3Φ(ℓc) + Φ′(ℓc)ℓc)
Dsc×D2

sc(7)

=
1

3Φ(ℓc)
hgradΩMW

Hi +
CiHi(c)Φ

′(ℓc)

3Φ(ℓc)(3Φ(ℓc) + Φ′(ℓc)ℓc)
hgradΩMW

ℓ

where w−1 = v, w−2 = v × c and C−1 = 2, C−2 = 3 respectively.
Since all of the three quantities ℓ, H−1, and H−2 are constants in motion along the fields

hgradΩid

Hi and hgradΩid

ℓ [8, Corollary 1], the coefficients of both terms in (7) do not change

along hgradΩΦ(ℓ)

Hi. Hence the Hamiltonian fields hgradΩΦ(ℓ)

Hi are weighted sums of the
Marsden-Weinstein Hamiltonian fields of ℓ and H−1 (or H−2 respectively).

Example 4.6 (Squared curvature). We next compute the Hamiltonian vector field for the
squared curvature

H(c) :=
1

2

∫
κ2ds.

We have according to [8],

gradGid

H = Ds

(
D3

sc+
3

2
κ2Dsc

)
, Dsc× gradGid

H = Dsc×D4
sc+

3

2
κ2Dsc×D2

sc.

Then, from

⟨D2
sc,Dsc× gradGid

H⟩L2
ds(S

1) = ⟨D2
sc,Dsc×D4

sc⟩L2
ds(S

1) + 0 = 0,

⟨c, gradGid

H⟩L2
ds(S

1) =

∫
κ2 − 3

2
κ2ds = −H(c),

we have

hgradΩΦ(ℓ)

H =
1

3Φ(ℓc)

{
−Dsc×D4

sc−
3

2
κ2Dsc×D2

sc−
HΦ′(ℓc)

3Φ(ℓc) + Φ′(ℓc)ℓc
Dsc×D2

sc

}
=

1

3Φ(ℓc)

{
hgradΩMW

H − HΦ′(ℓc)

3Φ(ℓc) + Φ′(ℓc)ℓc
hgradΩMW

ℓ

}
.

Since both H and ℓ are again constants in motion along both hgradΩMW

ℓ and hgradΩMW

H

[8], hgradΩΦ(ℓ)

H is also realized as a Hamiltonian vector field of Ωid.

Example 4.7 (Total torsion). We next consider the total torsion

H(c) :=

∫
τds.

Using the results [8, Theorem 2]

gradGid

H = −Dsc×D3
sc,

Dsc× gradGid

H = −Dsc× (Dsc×D3
sc),

we compute

⟨D2
sc,Dsc× gradGid

H⟩L2
ds(S

1) = −
1

2

∫
Dsκ

2ds = 0

⟨c, gradGid

H⟩L2
ds(S

1) = ⟨Dsc,Dsc×D2
sc⟩L2

ds(S
1) + ⟨c,D2

sc×D2
sc⟩L2

ds(S
1) = 0 + 0.
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Then we get

hgradΩΦ(ℓ)

H =
1

3Φ(ℓc)
Dsc× (Dsc×D3

sc) =
1

3Φ(ℓc)
hgradΩMW

H,

which is a scaled version of the Marsden-Weinstein gradient flow.

Example 4.8 (Squared scale). Next we consider the squared scale

E(c) :=
1

2

∫
|c|2ds,

as a Hamiltonian function. This is seen as the total kinetic energy of a moving particle in a
periodic orbit in R3.

We first get by a direct computation that,

gradGid

E = c− ⟨c,Dsc⟩Dsc−
1

2
|c|2D2

sc = (1− prc)c−
1

2
|c|2D2

sc,

Dsc× gradGid

E = Dsc× c− 1

2
|c|2Dsc×D2

sc,

and

⟨D2
sc,Dsc× gradGid

E⟩L2
ds(S

1) = −Θid
c (D

2
sc),

⟨c, gradGid

E⟩L2
ds(S

1) = ∥Dsc× c∥2L2
ds(S

1) −
1

2
⟨c, |c|2D2

sc⟩L2
ds(S

1)

= ∥Dsc× c∥2L2
ds(S

1) + E(c).

Using them with Corollary 4.2 gives us;

hgradΩΦ(ℓ)

E =
1

3Φ(ℓc)

{
−Dsc× c+

1

2
|c|2Dsc×D2

sc

(8)

+
Φ′(ℓc)

3Φ(ℓc) + Φ′(ℓc)ℓc

[
−Θid

c (D
2
sc)Dsc× (Dsc× c)

−
(
∥Dsc× c∥2L2

ds(S
1) −

1

2
⟨c, |c|2D2

sc⟩L2
ds(S

1)

)
Dsc×D2

sc
]}

=
1

3Φ(ℓc)

{
−Dsc× c+

1

2
|c|2Dsc×D2

sc

+
Φ′(ℓc)

3Φ(ℓc) + Φ′(ℓc)ℓc

[
Θid

c (D
2
sc)(1− prc)c

−
(
∥Dsc× c∥2L2

ds(S
1) + E(c)

)
Dsc×D2

sc
]}

.

Example 4.9 (Product of length and total squared curvature). Our last example is the Hamil-
tonian given by

H(c) = ℓcKc

where Kc =
∫
S1 κ

2ds. This somewhat unusual Hamiltonian is the only one among our
examples that satisfies the condition required in Corollary 4.2 (b) the scale-invariant case.
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That is, H is invariant under the both flows of I = c and Y := hgradΩMW

ℓ = Dsc×D2
sc. To

see this, let us compute

LYH = KLY ℓ+ ℓLYK = K · 0 + ℓ · 0 = 0

as ℓ is the Hamiltonian of Y and the last equality follows from a direct computation using
(10). This shows the existence of a Hamiltonian vector field horizontal in the sense of
Corollary 4.2 (b).

Open Problem 4.10. We know from the above examples that some vector fields are realized
as Hamiltonian vector fields of both Ω̄MW and Ω̄Φ(ℓ). We still do not know whether the spaces
of all Hamiltonian vector fields generated by these two symplectic structures coincide, or if
one is contained in the other. More generally, the coverage of Hamiltonian vector fields of
Ω̄L for a given operator L is an independent question, which we have not investigated in this
article.

5. Presymplectic structures induced by curvature weighted Riemannian
metrics

In this section we will consider the special case of symplectic structures, that are induced
by curvature weighted metrics, i.e., we consider the Riemannian metric

G1+κ2

c (h, k) =

∫
S1

(1 + κ2
c)⟨h, k⟩ds,

where κ = κc denotes the curvature of the curve c. Note, that in the notation of the previous
sections, this metric corresponds to the GL metric with L = 1 + κ2. This metric, which is
sometimes also called the Michor-Mumford metric, has been originally introduced in [17] to
overcome the vanishing distance phenomenon of L2-metric, see also [16].

Remark 5.1 (Relations to the Frenet-Serret formulas). Given c ∈ Imm(S1,R3) we consider
the open subset U = {κ > 0} = {D2

sc ̸= 0} ⊂ S1. Note that κ = 0 on the boundary U \ U ,
and is also 0 on the open complement S1 \ U which is a union of at most countably many
open intervals in S1; on each of these intervals c is straight line segment since Dsc is constant
there. So we may assume that the torsion τ is defined and 0 on S1 \ U . On U the moving
frame and the Frenet-Serret fomulas are given by

T = Dsc, N = κ−1D2
sc, B = T ×N = κ−1Dsc×D2

sc

DsT = κ.N = D2
sc,

DsN = −Dsκ.κ
−2.D2

sc+ κ−1D3
sc = −κ.T + τ.B = −κ.Dsc+ τ.κ−1Dsc×D2

sc

DsB = −Dsκ.κ
−2.Dsc×D2

sc = −τ.N = −τ.κ−1D2
sc

This implies the following which are valid on the whole of S1 since both sides vanish on
S1 \ U :

D3
sc = ⟨D3

sc, T ⟩T + ⟨D3
sc,N⟩N + ⟨D3

sc, B⟩B valid on U

= ⟨D3
sc,Dsc⟩Dsc+ κ−2⟨D3

sc,D
2
sc⟩D2

sc+ κ−2⟨D3
sc,Dsc×D2

sc⟩Dsc×D2
sc on S1

= −κ2Dsc+Dsκ.κ
−1.D2

sc+ τ.Dsc×D2
sc valid on U but extends smoothly to S1

=⇒ ⟨D3
sc,Dsc⟩ = −κ2, ⟨D3

sc,D
2
sc⟩ = Dsκ.κ, ⟨D3

sc,Dsc×D2
sc⟩ = τ.κ2 valid on S1

τ = κ−2⟨D3
sc,Dsc×D2

sc⟩ valid on S1 .
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Remark 5.2. Similarly to Remark 2.10 we obtain again conserved quantities and correspond-
ing momentum mappings. Here we want to specifically highlight the momentum map JSO(3):
as an element of R3 ≈ so∗(3), the angular momentum JSO(3) is given by

⟨JSO(3)(c), Y ⟩ =
∫
(1 + κ2)⟨c×Dsc, Y ◦ c⟩ds,

which can be understood as the angular momentum of a thickened curve where the thickness
(or mass) at each point is a function of 1 + κ2. Note, that this is in stark contrast to the
previous section, i.e., the length weighted case, where the angular momentum for ΩΦ(ℓ) is
just the Φ(ℓ)-scaled version of the angular momentum for Ωid = 3ΩMW.

We have the following result concerning the induced presymplectic structure:

Theorem 5.3 (The presymplectic structure Ω1+κ2
). The induced (pre)symplectic structure of

the G1+κ2
-metric is given by:

(9)

Ω1+κ2

c (h, k) =

∫
3(1 + κ2

c)⟨Dsc, h× k⟩+ (Dsκ
2
c)⟨c, h× k⟩+ 4κ2

c⟨Dsh,Dsc⟩⟨c×Dsc, k⟩

− 2⟨D2
sh,D

2
sc⟩⟨c×Dsc, k⟩ − 4κ2

c⟨Dsk,Dsc⟩⟨c×Dsc, h⟩+ 2⟨D2
sk,D

2
sc⟩⟨c×Dsc, h⟩ds,

and the vertical vectors {a.Dsc | a ∈ C∞(S1)} ⊂ TcImm is in the kernel.

Proof of Theorem 5.3. To calculate the formula for Ω1+κ2
we first need the variation of κ2

c =
⟨D2

sc,D
2
sc⟩. Using, that Dc,hDs = −⟨Dsh,Dsc⟩Ds, cf. the proof of Lemma 2.4, we calculate:

Dc,h(D
2
sc) = (Dc,hDs).Dsc+Ds ((Dc,hDs)c) +D2

sh

= −⟨Dsh,Dsc⟩.D2
sc−Ds (⟨Dsh,Dsc⟩Dsc) +D2

sh

= −⟨Dsh,Dsc⟩.D2
sc− (Ds⟨Dsh,Dsc⟩)Dsc− ⟨Dsh,Dsc⟩D2

sc+D2
sh

= −2⟨Dsh,Dsc⟩.D2
sc− (Ds⟨Dsh,Dsc⟩)Dsc+D2

sh

Thus we obtain

(10) Dc,hκ
2 = −4⟨Dsh,Dsc⟩κ2 − 0 + 2⟨D2

sh,D
2
sc⟩ .

Next we note that

Ω1+κ2

c (h, k) = Ωid
c (h, k) + Ωκ2

c (h, k)
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as the operation Lc 7→ ΘL
c is linear in Lc. Using (1), we then calculate

Ωκ2

c (h, k) =

∫
⟨Dsc, κ

2h× k + h× κ2k⟩ − ⟨c,Dsh× κ2k −Dsk × κ2h⟩

− ⟨c×Dsc, (Dc,hκ
2)k − (Dc,kκ

2)h⟩ds,

=

∫
2κ2⟨Dsc, h× k⟩ − κ2

c⟨c,Dsh× k⟩ − ⟨κ2
cc, h×Dsk⟩

−Dc,hκ
2⟨c×Dsc, k⟩+Dc,kκ

2⟨c×Dsc, h⟩ds

=

∫
2κ2⟨Dsc, h× k⟩ − κ2

c⟨c,Dsh× k⟩

+ ⟨Ds(κ
2c), h× k⟩+ κ2⟨c,Dsh× k⟩

−Dc,hκ
2
c⟨c×Dsc, k⟩+Dc,kκ

2⟨c×Dsc, h⟩ds

=

∫
3κ2⟨Dsc, h× k⟩+ (Dsκ

2)⟨c, h× k⟩

−Dc,hκ
2⟨c×Dsc, k⟩+Dc,kκ

2⟨c×Dsc, h⟩ds.
Hence

Ω1+κ2

(h, k) =

∫
3(1 + κ2)⟨Dsc, h× k⟩+ (Dsκ

2
c)⟨c, h× k⟩

−Dc,hκ
2
c⟨c×Dsc, k⟩+Dc,kκ

2
c⟨c×Dsc, h⟩ds.

and (9) follows by using the variation formula (10) for κ2.
That Ω decends to a form on Bi(S

1,R3) follows again from Theorem 2.6; alternatively we
can also see this directly from the above formula: a straightforward calculation shows that
h = a.Dsc is indeed in the kernel of Ω1+κ2

c . □

Open Problem 5.4. It remains open if the presymplectic structure Ω̄1+κ2
on Bi(S

1,R3) is
non-degenerate and thus symplectic. Therefore it remains to show that tangent vectors of
the form aDsc are the whole kernel of Ω1+κ2

c . It seems natural to employ a similar strategy
as in the previous section for length weighted metrics, i.e., for given h we test with all k of
the form k = ac for a ∈ C∞(S1). This leads to reducing the degeneracy of Ω1+κ2

to solving
the equation Pc(a) = f for any given f ∈ C∞(S1), where

Pc(a) := 2⟨D2
sc, c⟩D2

sa− 4⟨Dsc, c⟩κ2.Dsa+ (3 + κ2)a; .

The existence of periodic solutions for the above equation is, however, non-trivial. Note,
that the coefficient functions are in general degenerate, e.g., ⟨D2

sc, c⟩ can vanish somewhere.

Open Problem 5.5. We may consider a more general version. Suppose Lc : h 7→ fc.h where
fc is a positive function for any c and is of form fc(θ) = ρ(c(θ), Dsc(θ), D

2
sc(θ), . . . , D

N
s c(θ))

with some finite N and a function ρ : R3N → R≥0. We expect that Ω̄L is symplectic on
Bi(S

1,R3) if ΘL is not scale-invariant, or on Bi(S
1,R3)/F with a 2-dimensional distribution

F if ΘL is scale-invariant (cf. Theorem 3.2).

6. Numerical illustrations

In this section we numerically illustrate two Hamiltonian flows with respect to the new
symplectic structures introduced in this article. For interested readers, we share video footage
of the simulations shown in Figure 1 and 2; see https://youtu.be/nu09IwRK-tY.

https://youtu.be/nu09IwRK-tY
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Flow of hgradΩ10ℓ−2
c

H−2

Only the binormal part of hgradΩ10ℓ−2
c

H−2

t = 0 t = 15 t = 30 t = 45

Figure 1. Hamiltonian flow of H−2, the flux of a rotational vector field from
Example 4.5 using Φ(ℓc) = 10ℓ−2

c (top), and the flow only with its binormal
component (bottom). The red, green, and blue axes are the x, y, z axes re-
spectively.

For the numerical simulations, we discretized each curve as an ordered sequence of points in
R3. To approximate terms involving spatial derivatives, such as the binormal vector and the
curvature, we follow the methods of discrete differential geometry, see [6]. We then compute
the time integration of each Hamiltonian vector field using the explicit Runge-Kutta method
of fourth-order in time. We want to emphasize that our numerical examples are only for
illustrative purposes and we do not guarantee any correctness of (even short-time) behaviors
of the curve dynamics.

In our experiments, we use length-weighted presymplectic structures ΩΦ(ℓ) (and symplectic
structures Ω̄Φ(ℓ) for unparametrized curves) as derived in Section 4. That is, we use functions
of the form Φ(ℓ) = Cℓp with some C > 0 and p ∈ R. Note that C only works as time-scaling
and does not change the orbit under the Hamiltonian flow. This is because in the expression

of the field hgradΩΦ(ℓ)

H, cf. equation (6), the coefficient C appears only in the factor
1

3Φ(ℓ)
= 1

Cℓp
shared by all the terms and the factor Φ′(ℓ)

3Φ(ℓ)+Φ′(ℓ)ℓ
= p

(3+p)ℓ
does not depend on C.

We choose C to run each simulation with a reasonable discrete timestep, but it essentially
does not affect the dynamics.

We simulate two Hamiltonian flows (Example 4.5 and 4.8) from Section 4. These two
examples involve only up to second-order spatial derivatives. Simulating other Hamiltonian
flows, such as those discussed in Examples 4.6 and 4.7 having third or higher-order deriva-
tives is more challenging as one would have to discretize these higher-order derivatives more
carefully.
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As for the initial curve, we consider the trefoil

c0(θ) = ((2 + cos(2θ)) cos(3θ), (2 + cos(2θ)) sin(3θ), sin(4θ)) , θ ∈ S1 = R/2πZ.(11)

in both of our examples.

Example 6.1 (Flux of a vector field). We first simulate the Hamiltonian flow for the Hamil-
tonian that is defined as the flux of a vector field through a Seifert surface whose boundary is
the curve c, cf. Example 4.5. We chose the vector field of a rigid body rotation V (x) = v×x
with the rotation axis v = 1√

3
(1, 1, 1) ∈ R3. This amounts to the Hamiltonian H−2 in

Example 4.5.

The horizontal Hamiltonian field (7) is a weighted sum of the rotation hgradΩMW

H−2 =

v × c and the binormal field hgradΩMW

ℓ = D2
sc×Dsc with time-constant coefficients. Since

these two flows are Poisson commutative, we can simulate the flow by evolving the curves
under the binormal equation and rotating it at each time, i.e., ct = exp(t1v̂)c

Binormal
t2

where
v̂ ∈ so(3) corresponds v and t1, t2 are time t weighted by the coefficients in (7). Figure 1

illustrates our simulation using Φ(ℓc) = 10ℓ−2
c . The top row is the flow of hgradΩΦ(ℓ)

H−2

and the bottom row is the flow by only the binormal equation part where the curve moves
toward the z-direction while showing a rotational motion around the z-axis.

Example 6.2 (Total squared scale). Our next example is the squared scale functional E
(Example 4.8). Here we test three different choices of Φ(ℓ) = Cℓp. Note again that we vary
C only for computational purposes and this does not change the trajectory. The simulation
results are shown in Figure 2.

We first compute for Φ(ℓ) = 1
20
, which corresponds to (a constant multiple of) the Marsden-

Weinstein flow hgradΩMW

E. The curve moves back and forth in the z-direction, but curve
points tend to get stuck once they come closer to the origin as both the term −Dsc× c and
the term 1

2
|c|2Dsc×Dsc decrease as c goes to zero. As a result these parts form a complex

shape around the origin. The next case is Φ(ℓ) = 1
20
ℓ−1/10. This shows a behavior similar to

the first case, but points do not get stuck near the origin due to the additional term in (8).
While moving back and forth, the curve does not become as entangled as in the previous
case and seems to alternately transform between a trefoil and a trivial knot. The last case
is Φ(ℓ) = 10−5ℓ2. This shows a very different evolution. Unlike the other test cases, the
curve does not globally translate in the z-direction but forms a complex spiral shape while
shrinking slowly. In all three cases, the symmetry of the trefoil, i.e., that rotation of 120
degrees around the z-axis does not change the shape, seems to be preserved in time.

Appendix A. Infinite dimensional weak symplectic manifolds

An infinite dimensional manifold modeled on convenient vector spaces, as described in [9,
Chapter VI] admits a 2-form ω ∈ Ω2(M). We can view it as vector bundle homomorphism
ω̌ : TM → T ∗M . In general, this cannot be an isomorphism, but one can require that it
injective: the candidate for a weak symplectic structure. This was the concept used in [9,
Section 48] and in [13, Section 2]. There was a gap in the proof of [9, Theorem 48.8] which
was repeated in [13]: It was assumed that ω in a local chart is constant. To remedy this one
has to add a further assumption to the definition of an infinte dimensional weak symplectic
manifold; see A.1: The symplectic gradient of ω with respect to itself should exist. For the
convenience of the reader we present here the definition of a weak symplectic manifolds with
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Flow of hgradΦ(ℓ)E with Φ(ℓ) = 1
20

t = 6 t = 10 t = 14 t = 19

Flow of hgradΦ(ℓ) E with Φ(ℓ) = 1
20
ℓ−

1
10

t = 6 t = 10 t = 14 t = 19

Flow of hgradΦ(ℓ) E with Φ(ℓ) = 10−5ℓ2

t = 3 t = 6 t = 10 t = 19

Figure 2. Hamiltonian flow of hgradΩΦ(ℓ)

E with different choices of Φ(ℓ). In
each row the initial curve, which is not shown, corresponds to the trefoil (11).
The right-most images are the front-view of the last configurations of curves
showing high symmetry for the 120-degree rotation around the z-axis.

the further assumption and the basics up to A.1 incuding the proof which contains a gap in
[9, Theorem 48.8].

A.1. Infinite dimensional weak symplectic manifolds. Let M be a manifold, infinite dimen-
sional in general, as described in [9, Chapter VI].

A 2-form ω ∈ Ω2(M) is called a weak symplectic structure on M if the following three
conditions holds:

(1) ω is closed, dω = 0.
(2) The associated vector bundle homomorphism ω̌ : TM → T ∗M is injective.
(3) The gradient of ω with respect to itself exists and is smooth; this can be expressed

most easily in charts, so let M be open in a convenient vector space E. Then for
x ∈ M and X, Y, Z ∈ TxM = E we have dω(x)(X)(Y, Z) = ω(Ωx(Y, Z), X) =
ω(Ω̃x(X, Y ), Z) for smooth Ω, Ω̃ : M × E × E → E which are bilinear in E × E.
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A 2-form ω ∈ Ω2(M) is called a strong symplectic structure on M if it is closed (dω = 0)
and if its associated vector bundle homomorphism ω̌ : TM → T ∗M is invertible with smooth
inverse. In this case, the vector bundle TM has reflexive fibers TxM : Let i : TxM → (TxM)′′

be the canonical mapping onto the bidual. Skew symmetry of ω is equivalent to the fact that
the transposed (ω̌)t = (ω̌)∗ ◦ i : TxM → (TxM)′ satisfies (ω̌)t = −ω̌. Thus, i = −((ω̌)−1)∗ ◦ ω̌
is an isomorphism.

A.2. Cotangent bundles. Every cotangent bundle T ∗Q, viewed as a manifold, carries a
canonical weak symplectic structure ωQ ∈ Ω2(T ∗Q), which is defined as follows. Note that
this work only with convenient calculus. Let π∗

Q : T ∗Q → Q be the projection. Then the

Liouville form θQ ∈ Ω1(T ∗Q) is given by θQ(X) = ⟨πT ∗Q(X), T (π∗
Q)(X)⟩ for X ∈ T (T ∗Q),

where ⟨ , ⟩ denotes the duality pairing T ∗Q×QTQ→ R. Then the symplectic structure on
T ∗Q is given by ωQ = −dθQ, which of course in a local chart looks like ωE((v, v

′), (w,w′)) =
⟨w′, v⟩E − ⟨v′, w⟩E. The associated mapping ω̌ : T(0,0)(E × E ′) = E × E ′ → E ′ × E ′′ is
given by (v, v′) 7→ (−v′, iE(v)), where iE : E → E ′′ is the embedding into the bidual. So
the canonical symplectic structure on T ∗Q is strong if and only if all model spaces of the
manifold Q are reflexive and Hilbert spaces.

A.3. The ω-smooth cotangent space. For a weak symplectic manifold (M,ω) let T ω
x M de-

note the real linear subspace T ω
x M = ω̌x(TxM) ⊂ T ∗

xM = L(TxM,R), and let us call it
the ω-smooth cotangent space with respect to the symplectic structure ω of M at x in view
of the embedding of test functions into distributions. The convenient structure on T ω

x M is
the one from TxM . These vector spaces fit together to form a subbundle of T ∗M which is
isomorphic to the tangent bundle TM via ω̌ : TM → T ωM ⊆ T ∗M . It is in general not a
splitting subbundle.

Note that only for strong symplectic structures the mapping ω̌x : TxM → T ∗
xM is a

diffeomorphism onto T ω
x M with the structure induces from T ∗

xM .

A.4. ω-smooth functions. For a weak symplectic manifold (M,ω) let T ω
x M = T ω

x M =
ω̌x(TxM) ⊂ T ∗

xM = L(TxM,R), called the ω-smooth cotangent space. The convenient struc-
ture on T ω

x M is the one from TxM . These vector spaces fit together to form a subbundle of
T ∗M which is isomorphic to the tangent bundle TM via ω̌ : TM → T ωM ⊆ T ∗M . It is in
general not a splitting subbundle.

For strong ω the mapping ω̌x : TxM → T ∗
xM is a diffeomorphism onto T ω

x M with the
structure induced from T ∗

xM .
For a weak symplectic manifold (M,ω) let

C∞
ω (M,R) ⊂ C∞(M,R)

denote the subalgebra consisting of all smooth functions f : M → R satisfying the following
equivalent (by [9, Lemma 48.6]) conditions: These are exactly those smooth functions on M
which admit a smooth ω-gradient gradω f ∈ X(M).

(1) df : E → E ′ factors to a smooth mapping E → Eω.
(2) f has a smooth ω-gradient gradω f ∈ X(E) = C∞(E,E) which satisfies df(x)y =

ω(gradω f(x), y).

Theorem A.1. Let (M,ω) be a weak symplectic manifold. The Hamiltonian mapping gradω :
C∞

ω (M,R)→ X(M,ω) := {X ∈ X(M) : LXω = 0}, which is given by

igradω fω = df or gradω f := (ω̌)−1 ◦ df
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is well defined. Also the Poisson bracket

{ , } : C∞
ω (M,R)× C∞

ω (M,R)→ C∞
ω (M,R)

{f, g} := igradω f igradω gω = ω(gradω g, gradω f) = dg(gradω f) = (gradω f)(g)

is well defined and gives a Lie algebra structure to the space C∞
ω (M,R), which also fulfills

{f, gh} = {f, g}h+ g{f, h}.
We equip C∞

ω (M,R) with the initial structure with respect to the the two following mappings:

C∞
ω (M,R) ⊂−→ C∞(M,R), C∞

ω (M,R) gradω−−−→ X(M).

Then the Poisson bracket is bounded bilinear on C∞
ω (M,R).

We have the following long exact sequence of Lie algebras and Lie algebra homomorphisms:

0→ H0(M)→ C∞
ω (M,R) gradω−−−→ X(M,ω)

γ−→ H1
ω(M)→ 0,

where H0(M) is the space of locally constant functions, and

H1
ω(M) =

{φ ∈ C∞(M ← T ωM) : dφ = 0}
{df : f ∈ C∞

ω (M,R)}
is the first symplectic cohomology space of (M,ω), a linear subspace of the De Rham coho-
mology space H1(M).

Proof. It is clear from A.4, that the Hamiltonian mapping gradω is well defined and has
values in X(M,ω), since by [9, 34.18.6 ], we have

Lgradω fω = igradω fdω + digradω fω = ddf = 0.

By [9, 34.18.7], the space X(M,ω) is a Lie subalgebra of X(M). The Poisson bracket is well
defined as a mapping { , } : C∞

ω (M,R) × C∞
ω (M,R) → C∞(M,R); it only remains to

check that it has values in the subspace C∞
ω (M,R).

This is a local question, so we may assume that M is an open subset of a convenient vector
space E equipped with a (non-constant) weak symplectic structure. So let f , g ∈ C∞

ω (M,R)
and X, Y, Z ∈ E then {f, g}(x) = dg(x)(gradω f(x)), and thus

d({f, g})(x)y = d(dg( )y)(x). gradω f(x) + dg(x)(d(gradω f)(x)y)

= d
(
ω(gradω g( ), y)

)
(x). gradω f(x) + ω

(
gradω g(x), d(gradω f)(x)y

)
We have gradω f ∈ X(M,ω) and for any X ∈ X(M,ω), Y ∈ X(M), y ∈ E the condition
LXω = 0 implies, using A.1.3,

0 = (LXω)(Y, y) = (dω(X))(Y, y)− ω([X, Y ], y)− ω(Y, [X, y])

= ω(Ω̃(X, Y ), y)− ω([X, Y ], y) + ω(Y, dX(y2)).

Again by A.1.3 we have

d(ω(gradω g, y)(gradω f) =

= dω(gradω f)(gradω g, y) + ω(d(gradω g)(gradω f), y)

= ω(Ω̃(gradω f, gradω g), y) + ω(d(gradω g)(gradω f), y)

Collecting all terms we get

d({f, g})(x)y =
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= d
(
ω(gradω g( ), y)

)
(x). gradω f(x) + ω

(
gradω g(x), d(gradω f)(x)y

)
= ω

(
Ω̃x(grad

ω f(x), gradω g(x)) + d(gradω g)(x)(gradω f(x))

+ [gradω f, gradω f ](x)− Ω̃x(grad
ω f(x), gradω g(x)), y

)
= ω

(
d(gradω g)(x)(gradω f(x)) + [gradω f, gradω f ](x), y

)
So A.4 is satisfied, and thus {f, g} ∈ C∞

ω (M,R).
If X ∈ X(M,ω) then diXω = LXω = 0, so [iXω] ∈ H1(M) is well defined, and by

iXω = ω̌ oX we even have γ(X) := [iXω] ∈ H1
ω(M), so γ is well defined. □
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