Remarks on Infinite dimensional symplectic and
Poisson geometry

Peter W. Michor

University of Vienna, Austria
www.mat.univie.ac.at/“michor

Unendlich-dimensionale Analysis und Geometrie
University of Paderborn
March 26, 2025
Slides will be available at:
https://www.mat.univie.ac.at/“michor/lectures.html



Based on:

[KM97] Andreas Kriegl, Peter W. Michor: The Convenient Setting
of Global Analysis. Mathematical Surveys and Monographs,
Volume: 53, Amer. Math. Soc., 1997.

See also:
Wikipedia [https://en.wikipedia.org/wiki/Convenient_vector_space]

W. M. Tulczyjew. The graded Lie algebra of multivector fields and
the generalized Lie deriv- ative of forms. Bull. Acad. Polon.
Sci., 22, 9:937-942, 1974.

[BIM24] Martin Bauer, Sadashige Ishida, Peter W. Michor.
Symplectic structures on the space of space curves.
arXiv:2407.19908.



Review

For a finite dimensional symplectic manifold (M, w) we have the
following exact sequence of Lie algebras:

0 — HO(M) — C¥(M,R) £2%% 2(M,w) — HX(M) — 0.
H*(M) De Rham cohomology of M with 0 bracket.

C>®°(M,R) is equipped with the Poisson bracket { , 1},
X(M,w) all vector fields & with L¢w = 0 with usual Lie bracket.

Furthermore, grad® f is the Hamiltonian vector field for
f € C>°(M,R) given by i(grad® f)w = df and y(§) = [icw].

Consider a symplectic right action r : M x G — M of a connected
Lie group G on M; we use the notation

r(x,g) = ré(x) = r«(g) = x.g. By (x(x) = Te(r)X we get a
mapping ¢ : g — X(M,w) which sends each element X of the Lie
algebra g of G to the fundamental vector field (x. This is a Lie
algebra homomorphism (for right actions!).



A linear lift j : g — C*°(M,R) of ¢ with grad® oj = ( exists if and
only if v o ¢ = 0in HY(M). This lift j may be changed to a Lie
algebra homomorphism if and only if the 2-cocycle

7:9x g — H°(M), given by

(i o DX, Y) = {(X),J(Y)} —J([X, Y]), vanishes in the Lie
algebra cohomology H?(g, H°(M)), for if 7= da then j — i o ais
a Lie algebra homomorphism.

If j: g — C>°(M,R) is a Lie algebra homomorphism, we may
associate the momentum mapping J : M — ¢’ = L(g,R) to it,
which is given by J(x)(X) = x(X)(x) for x € M and X € g. It is
G-equivariant for a suitably chosen (in general affine) action of G
ong.



Infinite dimensional weak symplectic manifolds

Let M be a manifold, in general is infinite dimensional, Hausdorff,
in the sense of convenient calculus.

A 2-form w € Q?(M) is called a weak symplectic structure on M if
the following three conditions holds:

1. wis closed, dw = 0.

2. The associated vector bundle homomorphism & : TM — T*M
is injective.

3. The gradient of w with respect to itself exists and is smooth;
this can be expressed most easily in charts, so let M be open
in a convenient vector space E. Then for x € M and
X, Y, Ze TyM = E we have
dw(x)(X)(Y,2Z) = w(Q(Y,Z),X) = w(ﬁX(X, Y), Z) for
smooth Q,Q : M x E x E — E which are bilinear in E x E.



A 2-form w € Q?(M) is called a strong symplectic structure on M
if it is closed (dw = 0) and if its associated vector bundle
homomorphism & : TM — T*M is invertible with smooth inverse.

In this case, the vector bundle TM has reflexive fibers T, M: Let
i: TxM — (T,M)" be the canonical mapping onto the bidual.
Skew symmetry of w is equivalent to the fact that the transposed
(D) = (0)* o i: TxyM — (TxM)' satisfies ()t = —&. Thus,
i=—((@)"1)* o @ is an isomorphism.



Cotangent bundles

Every cotangent bundle T*Q, viewed as a manifold, carries a
canonical weak symplectic structure wg € Q?(T*Q), which is
defined as follows. Let w5, : T*Q — @ be the projection. Then the
Liouville form 0 € QY(T*Q) is given by

0o(X) = (r1+@(X), T(mg)(X)) for X € T(T*Q), where { , )
denotes the duality pairing T*Q xo TQ — R. Then the
symplectic structure on T*Q is given by wg = —dfg, which of
course in a local chart looks like

we((v, V), (w,w')) = (W, v)g — (V/,w)g. The associated
mapping & : Tgo)(E x E') = E x E' — E’ x E" is given by
(v,v') = (—=V',ig(v)), where ig : E — E” is the embedding into
the bidual. So the canonical symplectic structure on T*Q is strong
if and only if all model spaces of the manifold Q are reflexive.



Towards the Hamiltonian mapping

Let M be a weak symplectic manifold. The first thing to note is
that the Hamiltonian mapping grad” : C*°(M,R) — X(M, w) does
not make sense in general, since & : TM — T*M is not invertible.
Namely, grad® f = (&)~ o df is defined only for those

f € C°(M,R) with df(x) in the image of & for all x € M. A
similar difficulty arises for the definition of the Poisson bracket on
C>*(M,R).

For a weak symplectic manifold (M,w) let T¥M denote the real
linear subspace TYM = &y (TM) C TiM = L(TM,R), and let
us call it the w-smooth cotangent space with respect to w of M at
x. The convenient structure on TYM is the one from T, M. All
T¢ M together form a subbundle of T*M isomorphic to TM via

& TM — TYM C T*M. It is in general not a splitting subbundle.

Note that only for strong symplectic structures the mapping
Wx 1 TxM — T;M is a diffeomorphism onto T M with the
structure induces from T; M.



Definition of C3°(E,R) C C>*(E,R).

For a weak symplectic vector space (E,w) we consider linear
subspace CS°(E,R) C C*(E,R) consisting of all smooth
functions f : E — R such that

> each iterated derivative d*f(x) € L&, (E;R) has the property
that
d*f(x)( L yos...,yk) € E¥
is actually in the smooth dual E¥ C E’ for all
X, Y2,...,yk € E,
» and that the mapping Hk E—E
(X, Y2, - yi) = () 7HAFCC L ya, oo vk)

is smooth. By the symmetry of higher derivatives, this is then
true for all entries of d*f(x), for all x.

This makes sense even if (E,w) is a weak symplectic manifold
which happens to be a convenient vector space since
TYEXTE=EXE=EXEYCTE=EXE.



Lemma. [KM97, 48.6] For f € C>°(E,R) the following assertions
are equivalent:

1. df : E — E’ factors to a smooth mapping E — E“.

2. f has a smooth w-gradient grad“ f € X(E) = C*>(E,E)
which satisfies df (x)y = w(grad® f(x),y).

3. f € C(E,R).

Definition of C°(M,R) C C*°(M,R):

For a weak symplectic manifold (M, w) the space C°(M,R) is the
linear subspace consisting of all smooth functions f : M — R such
that the differential df : M — T*M factors to a smooth mapping
M — T“M. It follows that these are exactly those smooth
functions on M which admit a smooth w-gradient grad” f € X(M).



Theorem [KM97, Thm 48.8] with gap closed in [BIM24, appendix]
Let (M,w) be a weak symplectic manifold. The Hamiltonian
mapping grad” : CS°(M,R) — X(M,w), which is given by

igrade fw = df  or  grad” f := ()" o df
is well defined. Also the Poisson bracket

{ , }:C®(M,R)x CX(MR) = C(M,R)
{f, g} = igrad“’ figrad‘*’ gW = w(grad“ g, grad‘*’ f) =
= dg(grad” f) = (grad” f)(g)

is well defined and gives a Lie algebra structure to the space
CX(M,R), which also fulfills

{f.gh} = {f,gth+g{f, h}.



Theorem, continued.

We equip C°(M,R) with the initial structure with respect to the
the two following mappings:

CX(M,R) -5 C®(M,R),  C(M,R) 2 x(m).

Then the Poisson bracket is bounded bilinear on C5°(M,R).

We have the following long exact sequence of Lie algebras and Lie
algebra homomorphisms:

grad®

0 — H'(M) = C=(M,R) X(M,w) L5 HY(M) = 0,

where H(M) is the space of locally constant functions, and

~ {p e C®(M T“M) : dp = 0}
- {df - f € C(M,R)}

HL(M)

is the first symplectic cohomology space of (M,w), a linear
subspace of the De Rham cohomology space H*(M).



The Diez-Rudolph topology

In [DR24, 5.3: T.Diez, G.Rudolph: Symplectic Reduction in
Infinite Dimensions, arXiv:2409.05829], for a weak symplectic
vector space (E,w), a locally convex topology T on E is called
compatible with w if the dual (E,7) = O(E) = E¥ C E'.

Proposition. [DR24,5.4] For a convenient weak symplectic vector
space the bornological topology on E is compatible with w

» in the Bastiani setting: iff E is a reflexive Banach space and w
is strong.

» here: iff E is reflexive and w is strong.

Note that LP x LP is symplectic, Banach, but i,g, not Hilbert.
Namely: If we take E/ x E — R is given by
(X', x) = w(@™H(xX'), x) as duality reflexivity follows.



How does this notion fit into the convenient framework?

Example: Let E = (2 x ¢? with the weak symplectic structure
(%), (X ¥')) = S CalXn — yaxb) for a sequence 0 < ¢, \, 0
sufficiently fast.

Then any l.c. topology on E compatible with w is NOT convenient:
Namely, let 0 < b, oo with b,c, \( 0. Then for suitable x € 0?
the sequence Xy := (b,,x,,)ﬁzl € £? is a Mackey-Cauchy sequence
for the weak o(E, E“)-topology but its limit X = (bpx,) is i.g. not
in 2.

Smooth Curves into (E, 7). [KM97, Section 1] Since (E, ) is
not Mackey complete in general, we define ¢ : R — (E, 7) to be
smooth if A o ¢: R — R is smooth and each iterated derivative
c(M(t) lies in E (a priori only in the c®>-completion of E). We
denote this space by C*°(R, (E, 7)), and by ¢*°(7) we denote the
final topology on E with respect to C*(R, (E, 7)).



Question. Let (E,w) be a convenient weak symplectic vector
space and let 7 be any l.c. topology compatible with w. Under
which conditions do we have C*(R, (E, 7)) = C*(R, E)?

Proposition. Let (E,w) be a convenient weak symplectic vector
space and let T be any l.c. topology compatible with w. Suppose
that the bornology of E has a basis of o(E,&(E))-closed sets (i.e.,
each bounded set is contained in a o(E,w(E))-closed bounded
set). This is he case if (E,w) is a convenient weak symplectic
vector space which is a dual space E = F' such that
O(E)YCFCE =E".

Then we have C*(R, (E, 7)) = C*(R, E).

This includes the the ¢? x 2 example from above.

In the convenient spirit, under this condition we then have
CX(E,R) = C>=((E,T),R), although (E,7) is NOT a convenient
space.

Proof. This is a special case of the following theorem.



Theorem[KF88, Theorem 4.1.19] Let c:R — E be a curve in a
convenient vector space E. Let F C E' be a subset of bounded
linear functionals such that the bornology of E has a basis of
o(E, F)-closed sets. Then the following are equivalent:

1. ¢ is smooth

2. There exist locally bounded curves c¥ : R — E such that
X o ¢ is smooth R — R with (A o ¢)(K) = X\ o c¥, for each
A € F and each k.

If E = F' is the dual of a convenient vector space F, then for any
point separating subset F C F the bornology of E has a basis of
o(E,F)-closed subsets, by [FK88 4.1.22].

[FK88] Frolicher, A.; Kriegl, A., Linear spaces and differentiation theory,
Pure Appl. Math., J. Wiley, Chichester, 1988.



Weakly symplectic group actions.

An infinite dimensional regular Lie group G with Lie algebra g acts
from the right on a weak symplectic manifold (M, w) by

r: M x G — M (notation r(x, g) = r8(x) = r«(g)), so that each
ré€ is a symplectomorphism. Some immediate consequences:

(1) The space C*(M)C of G-invariant smooth functions with
w-gradients is a Lie subalgebra for the Poisson bracket, since for
each g € G and f, h € C®(M)® we have

(r&){f, by = {(r&)"f, (r&)"h} = {f, h}.

(2) For x € M the pullback of w to the orbit x.G is a 2-form,
invariant under the action of G on the orbit. In finite dimensions
the orbit is an initial submanifold. Here this has to be checked
directly in each example. There is a tangent bundle

T(x.G) = T(r)g. If i : x.G — M is the embedding of the orbit
then r& o = o r8, so that i*w = i*(r8)*w = (r8)*i*w holds for
each g € G and thus i*w is invariant.



(3) The infinitesimal action ¢ : g — X(M,w), given by

(x(x) = Te(re)X for X € g and x € M, is a homomorphism of Lie
algebras (for a left action we get an anti homomorphism of Lie
algebras). We have the exact sequence of Lie algebra
homomorphisms

0 —— HO(M) —> C3°(M) 2% %(M, w) "~ HL (M) —>0

<.
g

(4) If HEL(M) = 0 then any symplectic action on (M,w) is a
Hamiltonian action.

(5) If the Lie algebra g is equal to its commutator subalgebra

[g, 9], the linear span of all [X, Y] for X, Y € g (true for all full
diffeomorphism groups), then any infinitesimal symplectic action

¢ :g— X(M,w) is a Hamiltonian action, since then any Z € g can
be written as Z = ) .[X;, Yi] so that (7 = ) [(x;,Cy,] € im(grad®)
since v : X(M,w) — HL(M) is a homom.into the zero Lie bracket.



(6) If j:g— (C(M),{ , }) happens to be not a
homomorphism of Lie algebras then

c(X,Y) = {i(X),j(Y)} —J([X, Y]) lies in H’(M), and indeed
c:gxg— H'(M)is a cocycle for the Lie algebra cohomology:
c([X, Y], Z)+c([Y,Z],X)+c([Z,X],Y)=0. If cis a
coboundary, i.e., ¢(X,Y) = —b([X, Y]), then j +« o b is a Lie
algebra homomorphism. If the cocycle ¢ is non-trivial we can use
the central extension H°(M) x . g with bracket

[(a, X), (b, Y)] = (c(X,Y),[X, Y]) in the diagram

0— HO(M) — 2 (M) —2225 2(M, w) L= HL(M) — >0

7 @ﬁ
pra

Hl(M) Xeg——>0¢

where 7(a, X) = j(X) + a(a). Then 7 is a homomorphism of Lie
algebras.



Momentum mapping

For an infinitesimal symplectic action ¢ : g — X(M,w) we can find
a linear lift j : g — CS°(M,R) iff there exists J € C*(M, g*) :=
{feC®(M,g*): (f( ),X) e C(M) for all X € g} such that

grad“((J, X)) =(x forall X € g.
J e CF(M,g*) is called the momentum mappingfor the
infinitesimal action ¢ : g — X(M,w).
Basic properties of the momentum mapping

(1) For x € M, the transposed mapping of the linear mapping
dJ(x): TxM — g* is

dJ(x)" g — TiM,  dJ(x)" =, 0 ¢

(2) The closure of the image dJ(T, M) of dJ(x): TuM — gx is
the annihilator g, of the isotropy Lie algeba

0x = {X € g:(x(x) =0} in g*, since the annihilator of the image
is the kernel of the transposed mapping,

—_



(3) The kernel of dJ(x) is the symplectic orthogonal

(T(r)g)™ = (Tu(x.G))* C TuM.

(4) If G is connected, x € M is a fixed point for the G-action if
and only if x is a critical point of J, i.e. dJ(x) = 0.

(5) (Emmy Noether's theorem) Let h € C°(M) be a Hamiltonian
function which is invariant under the Hamiltonian G action. Then
dJ(grad®(h)) = 0. Thus the momentum mapping J : M — g* is
constant on each trajectory (if it exists) of the Hamiltonian vector
field grad“(h).



Towards the Schouten-Nijenhuis bracket

Let M be a convenient smooth manifold. We shall use the graded
differential algebra of differential forms consisting of smooth
sections of the bundle of bounded skew symmetric multilinear
forms L% . (TM,R) on the the tangent bundle:

skew
QM) = éﬂk(l\/l) = é C®(M « LK, ,(TM,R)).
k=0 k=0

Later we shall use only manifolds M having the following property:
For each covector o € T*M there exists a function f € C*°(M)
with dfr (o) = a. The following classes of manifolds have this
property: Smoothly paracompact manifolds (having smoothly
paracompact modelling spaces). Each manifold M such that
C*°(M,R) separates points on TM: Then

ev: M > x — ev, € C°(M,R) is a smooth injective immersion
and linear functionals in C*°(M,R)" restricted to

Tev.TM C C*(M,R) suffice.



The bornological tensor product

For a convenient vector space E, let EQgE be the c®-completed
bornological tensor product which linearizes bibounded bilinear
mappings. If E is a Banach or Fréchet or (DF) space then each
bibounded bilinear mapping is jointly continuous and thus EQgE
agrees with the completed projective tensor product of
Grothendieck.

Let A\" E be the (Mackey-) closed linear subspace of all alternating
tensors in ®5E It is the universal solution for convenient vector
spaces F of the linearization problem L(A" E,F) = L],.(E; F),
where L7 (E; F) is the space of all bounded n-linear alternating
mappings E X ... x E — F, a direct summand of
L"(E;F):=L(E,...,E;F). The mapping

A" L(E,F) — L(\"E, \" F) is bounded multilinear and thus
smooth.



Summable skew multi vector fields

We apply the smooth mapping

/n\:L(E,F)HL(/n\E,/n\F)

to the chart change mappings for the tangent bundle TM — M to
obtain the smooth vector bundle 7y : A" TM — M of summable
n-multi vectors on M. Note that the space linearly generated by
X1 A - A X, for X; € T,M is dense in the fiber \" T,M. The
space [(/\" TM) of smooth sections of this bundle is the space of
summable multi vector fields on M. We write

F(A® TM) = C°(M,R) and [(A TM) = @, (A" TM) which
is a graded commutative algebra for the usual wedge-product of
multi vector fields for the grading (F'(A\ TM), A ), =T(A" TM).
The wedge product is a bounded bilinear operation on the
convenient space ['(/\ TM), by the universal property of the
bornological tensor product.



Easy Theorem.

Schouten-Nijenhuis bracket for summable multi vector fields. Let
M be a smooth manifold. We consider the space I'(\,,,, TM) of
multivector fields on M. This space carries a graded Lie bracket for
the grading T(AZHY TM), + = —1,0,1,2, ..., called the

Schouten-Nijenhuis bracket, which is given by

XA A Xp, YIA -+ A Y
:Z(_ ’+'I[ i j]/\Xl/\ X /\X ANYLA-- \7 ../\Yq’

[f, U] = —i(df)U,

Tl\/l—)/\k LTM, the

where ©(df) is the insertion operator /\Sum cum

adjoint of df A () : /\sum "M — /\/+1 ™M

sum



Easy Theorem continued

Let UeT(Agm ™M), V e T(ALm TM), W € T(As,, TM), and
f € C*°(M,R). Then we have:
[U, V] = —(-1)= DDy, u).
[U. [V, W] = [[U, V], W] + (=) " DD U, w.
[U,VAW]=[U,V]AW + (=1)EDYV AU, W.
[X,U] = LxU.

Let P € T(\2,, TM). Then the product {f,g} := 1(df A dg, P)
on C*°(M) satisfies the Jacobi identity if and only if [P, P] = 0.



Duality between multivector fields and differential forms

Let M be a smooth manifold modeled on a convenient vector
space E. By the universal property of the bornological tensor
product described in !1.1, the dual space of A" E is the space
Ll .. (E;R). Using and extending the conventions of Greub78, we

skew

start from the duality
(N ExNE-R
(Pr A Npp, XL A - A Xn) = det((@i, Xj)ij)
we get the complete fiberwise duality

(,):Q"(M)x (" TM) = C®(M),
(W, XL A A Xn) = w(X1, .., Xn)



We have the following dual pairs of operators: For w € QP(M) the
linear map p(w) : QK(M) — QK+P(M) given by p(w)y :=w A is
the fiberwise dual operator to 7(w) : (AT TM) — T(A* T™M),
where

Hw) (XL A A Xipp) =

1 .
= W Z S|gn(a)w(Xg(1), e ,Xg(p))Xg(p+1)/\- . ~/\Xg(p+k) .

066k+p

Likewise, for U € T(A\P TM) the fiberwise linear mapping

(V) : T(A* TM) = T(A*TP TM) given by a(U)V = UA V is the
fiberwise dual of the ‘insertion operator’

i(U) : QKFP(M) — QK(M).



Lemma.

Let U be in T(A\" TM). Then we have:

> i(U): QM) — Q(M) is a homogeneous bounded module
homomorphism of degree —u. It is a graded derivation of Q(M) if
and only if p=1. For f € C*°(M) we have i(f)w = f.w.

> i(UAV)=i(V) o i(U), thus the graded commutator vanishes:

[i(V), i(V)] = i(U)i(V) = (=1)"i(V)i(U) = 0.

> i(U)(wAY) =i(t(w)U)y + (=1)“w Ai(U)y forw € QY(M) and
P € Q(M), that is: [i(U), u(w)] = i(z(w)U)



The Lie differential operator

For U € T(\" TM) we define the Lie derivation
L(U) : QK(M) — Qk—u+1(M) by

L(U) = [i(U),d] = i(U) o d — (~1)Pd o i(U)

which is homogeneous of degree 1 — u and is called the Lie
differential operator. It is a derivation if and only if U is a vector
field. We have [L£(U), d] = 0 by the graded Jacobi identity of the
graded commutator.



Theorem

Let UeT(A"TM), V e (A" TM), and f € C*(M). Then we

have:
E(U/\ V) =i(V) o L(U)+ (=1)“L(V) o i(U) (1)
ﬁ(Xl A A X )

—Z -1yt i (Xjp1) L(XG)i (Xj—1) - -+ i(X1) (2)
L(f) = [i(f), d] = [u(f), d] = —p(df) (3)
[£(V),i(V)] = (=)D Di(u, v]) = —i([V, U]) (4)

[£(V), £(V)] = (=1« DN (U, v]) = —£([V, U))
(5)

(dw, —[V, U]) = (di(V)dw, U)

— (=)D (i (V) dw, V) (6)

Formula (6) was the starting point of the treatment of the
Schouten-Nijenhuis bracket in Tulczyjew74.



The general Schouten bracket

For a convenient manifold the general multivector fields of order k

are the smooth sections of the vector bundle L5 _ (T*M,R) — M.
We could call these
= MVA(M) :=> T(LE (T*M,R)).
k=0 k=0

A summable differential form w on M is a smooth section of the
bundle of skew symmetric tensors

Nen T*M C @ET*M = T*M&sT*M&5... &5 T*M — M,
where ®g denotes the c>-completed bornological tensor product
which linearizes bounded bilinear mappings.

Let us denote by QF, (M) the graded algebra of all summable
differential forms. Note that exterior derivative
d : QK(M) — QKT1(M) does not map QX (M) into QKHL(M);

sum( sum
summability of a form is destroyed by the exterior derivative.



The graded algebra Qgym ¢(M)

Therefore we let Qﬁum’d(M) be the graded differential subalgebra
of all summable forms w such that dw is again summable. Note
that the latter condition is a linear partial differential relation.
Here we assume that C*°(M) separates points on TM: For each
a € T*M there exists f € C°°(M) with df;,) = . Consequently,

eve od 1 QK (M) — N T*M is surjective for all x € M

sum,d

The vector bundle L _ (T*M,R) — M is the dual bundle of

/\_fum T*M — M; we will denote the duality by (the dual space is
always on the feft hand side)

() Lfkew(T*MvR) Y /\é(um,BT*M —R
<U7S01/\"'/\30k> = U(Qplv'-w(pk)

as well as its extension to spaces of sections.



For w € QX,.(M) we consider the pointwise linear (i.e., vector

bundle push-forward) mapping

ww) : Q

sum

(M) = QL (M),  pw)p=wAe

and its pointwise dual
Hw) = p(w)" : MVEK(M) = MVE(M),
(U, ww)p) = (U,w A ) = (H{w)U, )
For a decomposable k-form w = 3 A -+ A px we have
(W1 A - Npi)Us prgr A v A i) =

= (U, 01 A ANQk N Qk1s - - Pktt)
= U(‘Plv"'a@k-‘rf)



Similarly, for U € MVY(M) we consider

A(U) : MVE (M) = MV“H(M),  a(U)V =UAV

which is the dual of i(U) : Q&Le(M) — QL,m(M) which on
decomposable u + ¢-forms is given by
i(U)(p1 A A pure) =
1 .
= > sign(@)U(eo(tys - s Po(u)Po(urt) N A Po(kera)
0ESke

Thus i(U) respects the d-stable subalgebra Q¥ (M) so that

sum,d

i(U) = Qg 4(M) = Qg a(M)

sum,d



Lemma

Let U be in MV“(M) and V € MVY(M). Then we have:

1. i(U) : Qsum(M) — Qgum(M) is a homogeneous bounded module
homomorphism of degree —u. It is a graded derivation of Qgym(M)
if and only if p=1. For f € C>°(M) we have i(f)w = f.w.

2. i(UAV)=i(V) o i(U), thus the graded commutator vanishes:

[i(V), i(V)] = i(U)i(V) = (=1)"i(V)i(U) = 0.

i(T(w)U)y + (—1)“w A i(U)Y, ie.,
((T(w)U), forw € QY(M) and v € Qeum(M).

=S
G
= >
==
1
=



The Schouten-Nijenhuis bracket: Tulczyjew's Approach

We turn the above Theorem around and use (6) as definition: For
w € QUTV=2(M) we put

sum,d
(U, V], dw) = —(V, di(U)dw) + (—1)“ D=, di(V)dw)
We can also prove
(U, V], fdw) = —F(V, di(U)dw) + (=) DD, di(V)dw) .

So [U, V] is a multivector field of order u+ v — 1: To see this,
note first that [, ] respects f-dependence of mutlivector field; then
restrict U and V to chart, and compute (1) where

dw = @1 A...pyu1y—1 for constant 1-forms ;. Then

[, ]: MV“(M) x MVY(M) = MV“TV=L(M)

is a smooth (bounded) bilinear operator satisfying
[U, V] = —(=1)= DDV, U]. It also satisfies

i(df)[U, V] = [i(df)U, V] + (—=1)“" LU, 7(df) V]



For w € QP (M) we have

sum,d
i(U, V])w = i(U)di(V)w — (=1)“ DD [(V)di(U)w
— (=)0 Vi (U A V)w — (1) DPi(U A Vdw

Definition of Lie differentials: For U € MV“(M) the Lie
differential operator

L(U) :=[i(U),d] = i(U) o d = (=1)Pd o i(V)
QK (M) = Qk-utlpg)

sum,d sum,d
is well defined. It is a derivation if and only if U is a vector field.
We have [L(U), d] = 0 by the graded Jacobi identity of the graded
commutator. We now generalise the above Theorem to this new
situation:



Theorem

Let U € MVY(M), V € MVY(M), and f € C*°(M). Then we have:

= i(V) o L(U) + (=1)"L(V) 0 i(V) (1)

=D (LY TH(X) - i(Xp) £(X))i (K1) - - i(Xa) (2)

L(f) = [i(f), d] = [u(f), d] = —p(df) (3)
[£(V), i(V)] = ()W D ViU, VD) = =iV, Ul) - (4)
[£(U), £(V)] = (1) DDL([u, V) = —£([V, U]) - (5)



Thank you for listening.



Thank you for listening.



Thank you for listening.



Thank you for listening.



