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Review

For a finite dimensional symplectic manifold (M, ω) we have the
following exact sequence of Lie algebras:

0→ H0(M)→ C∞(M,R) gradω−−−→ X(M, ω)→ H1(M)→ 0.

H∗(M) De Rham cohomology of M with 0 bracket.
C∞(M,R) is equipped with the Poisson bracket { , },
X(M, ω) all vector fields ξ with Lξω = 0 with usual Lie bracket.

Furthermore, gradω f is the Hamiltonian vector field for
f ∈ C∞(M,R) given by i(gradω f )ω = df and γ(ξ) = [iξω].

Consider a symplectic right action r : M × G → M of a connected
Lie group G on M; we use the notation
r(x , g) = rg (x) = rx(g) = x .g . By ζX (x) = Te(rx)X we get a
mapping ζ : g→ X(M, ω) which sends each element X of the Lie
algebra g of G to the fundamental vector field ζX . This is a Lie
algebra homomorphism (for right actions!).



H0(M)
i // C∞(M,R) gradω // X(M, ω)

γ // H1(M)

g

j

dd

ζ

;;

A linear lift j : g→ C∞(M,R) of ζ with gradω ◦ j = ζ exists if and
only if γ ◦ ζ = 0 in H1(M). This lift j may be changed to a Lie
algebra homomorphism if and only if the 2-cocycle
ȷ̄ : g× g→ H0(M), given by
(i ◦ ȷ̄)(X ,Y ) = {j(X ), j(Y )} − j([X ,Y ]), vanishes in the Lie
algebra cohomology H2(g,H0(M)), for if ȷ̄ = δα then j − i ◦ α is
a Lie algebra homomorphism.

If j : g→ C∞(M,R) is a Lie algebra homomorphism, we may
associate the momentum mapping J : M → g′ = L(g,R) to it,
which is given by J(x)(X ) = χ(X )(x) for x ∈ M and X ∈ g. It is
G -equivariant for a suitably chosen (in general affine) action of G
on g′.



Infinite dimensional weak symplectic manifolds

Let M be a manifold, in general is infinite dimensional, Hausdorff,
in the sense of convenient calculus.
A 2-form ω ∈ Ω2(M) is called a weak symplectic structure on M if
the following three conditions holds:

1. ω is closed, dω = 0.

2. The associated vector bundle homomorphism ω̌ : TM → T ∗M
is injective.

3. The gradient of ω with respect to itself exists and is smooth;
this can be expressed most easily in charts, so let M be open
in a convenient vector space E . Then for x ∈ M and
X ,Y ,Z ∈ TxM = E we have
dω(x)(X )(Y ,Z ) = ω(Ωx(Y ,Z ),X ) = ω(Ω̃x(X ,Y ),Z ) for
smooth Ω, Ω̃ : M × E × E → E which are bilinear in E × E .



A 2-form ω ∈ Ω2(M) is called a strong symplectic structure on M
if it is closed (dω = 0) and if its associated vector bundle
homomorphism ω̌ : TM → T ∗M is invertible with smooth inverse.

In this case, the vector bundle TM has reflexive fibers TxM: Let
i : TxM → (TxM)′′ be the canonical mapping onto the bidual.
Skew symmetry of ω is equivalent to the fact that the transposed
(ω̌)t = (ω̌)∗ ◦ i : TxM → (TxM)′ satisfies (ω̌)t = −ω̌. Thus,
i = −((ω̌)−1)∗ ◦ ω̌ is an isomorphism.



Cotangent bundles

Every cotangent bundle T ∗Q, viewed as a manifold, carries a
canonical weak symplectic structure ωQ ∈ Ω2(T ∗Q), which is
defined as follows. Let π∗Q : T ∗Q → Q be the projection. Then the
Liouville form θQ ∈ Ω1(T ∗Q) is given by
θQ(X ) = ⟨πT∗Q(X ),T (π∗Q)(X )⟩ for X ∈ T (T ∗Q), where ⟨ , ⟩
denotes the duality pairing T ∗Q ×Q TQ → R. Then the
symplectic structure on T ∗Q is given by ωQ = −dθQ , which of
course in a local chart looks like
ωE ((v , v

′), (w ,w ′)) = ⟨w ′, v⟩E − ⟨v ′,w⟩E . The associated
mapping ω̌ : T(0,0)(E × E ′) = E × E ′ → E ′ × E ′′ is given by
(v , v ′) 7→ (−v ′, iE (v)), where iE : E → E ′′ is the embedding into
the bidual. So the canonical symplectic structure on T ∗Q is strong
if and only if all model spaces of the manifold Q are reflexive.



Towards the Hamiltonian mapping

Let M be a weak symplectic manifold. The first thing to note is
that the Hamiltonian mapping gradω : C∞(M,R)→ X(M, ω) does
not make sense in general, since ω̌ : TM → T ∗M is not invertible.
Namely, gradω f = (ω̌)−1 ◦ df is defined only for those
f ∈ C∞(M,R) with df (x) in the image of ω̌ for all x ∈ M. A
similar difficulty arises for the definition of the Poisson bracket on
C∞(M,R).

For a weak symplectic manifold (M, ω) let Tω
x M denote the real

linear subspace Tω
x M = ω̌x(TxM) ⊂ T ∗

xM = L(TxM,R), and let
us call it the ω-smooth cotangent space with respect to ω of M at
x . The convenient structure on Tω

x M is the one from TxM. All
Tω
x M together form a subbundle of T ∗M isomorphic to TM via

ω̌ : TM → TωM ⊆ T ∗M. It is in general not a splitting subbundle.

Note that only for strong symplectic structures the mapping
ω̌x : TxM → T ∗

xM is a diffeomorphism onto Tω
x M with the

structure induces from T ∗
xM.



Definition of C∞ω (E ,R) ⊂ C∞(E ,R).
For a weak symplectic vector space (E , ω) we consider linear
subspace C∞

ω (E ,R) ⊂ C∞(E ,R) consisting of all smooth
functions f : E → R such that

▶ each iterated derivative dk f (x) ∈ Lksym(E ;R) has the property
that

dk f (x)( , y2, . . . , yk) ∈ Eω

is actually in the smooth dual Eω ⊂ E ′ for all
x , y2, . . . , yk ∈ E ,

▶ and that the mapping
∏k E → E

(x , y2, . . . , yk) 7→ (ω̌)−1(df (x)( , y2, . . . , yk))

is smooth. By the symmetry of higher derivatives, this is then
true for all entries of dk f (x), for all x .

This makes sense even if (E , ω) is a weak symplectic manifold
which happens to be a convenient vector space since
TωE ∼= TE = E × E =: E × Eω ⊂ T ∗E = E × E ′.



Lemma. [KM97, 48.6] For f ∈ C∞(E ,R) the following assertions
are equivalent:

1. df : E → E ′ factors to a smooth mapping E → Eω.

2. f has a smooth ω-gradient gradω f ∈ X(E ) = C∞(E ,E )
which satisfies df (x)y = ω(gradω f (x), y).

3. f ∈ C∞
ω (E ,R).

Definition of C∞
ω (M,R) ⊂ C∞(M,R):

For a weak symplectic manifold (M, ω) the space C∞
ω (M,R) is the

linear subspace consisting of all smooth functions f : M → R such
that the differential df : M → T ∗M factors to a smooth mapping
M → TωM. It follows that these are exactly those smooth
functions on M which admit a smooth ω-gradient gradω f ∈ X(M).



Theorem [KM97, Thm 48.8] with gap closed in [BIM24, appendix]

Let (M, ω) be a weak symplectic manifold. The Hamiltonian
mapping gradω : C∞

ω (M,R)→ X(M, ω), which is given by

igradω f ω = df or gradω f := (ω̌)−1 ◦ df

is well defined. Also the Poisson bracket

{ , } : C∞
ω (M,R)× C∞

ω (M,R)→ C∞
ω (M,R)

{f , g} := igradω f igradω gω = ω(gradω g , gradω f ) =

= dg(gradω f ) = (gradω f )(g)

is well defined and gives a Lie algebra structure to the space
C∞
ω (M,R), which also fulfills

{f , gh} = {f , g}h + g{f , h}.



Theorem, continued.

We equip C∞
ω (M,R) with the initial structure with respect to the

the two following mappings:

C∞
ω (M,R) ⊂−−→ C∞(M,R), C∞

ω (M,R) gradω−−−−−→ X(M).

Then the Poisson bracket is bounded bilinear on C∞
ω (M,R).

We have the following long exact sequence of Lie algebras and Lie
algebra homomorphisms:

0→ H0(M)→ C∞
ω (M,R) gradω−−−−−→ X(M, ω)

γ−−→ H1
ω(M)→ 0,

where H0(M) is the space of locally constant functions, and

H1
ω(M) =

{φ ∈ C∞(M ← TωM) : dφ = 0}
{df : f ∈ C∞

ω (M,R)}

is the first symplectic cohomology space of (M, ω), a linear
subspace of the De Rham cohomology space H1(M).



The Diez-Rudolph topology

In [DR24, 5.3: T.Diez, G.Rudolph: Symplectic Reduction in
Infinite Dimensions, arXiv:2409.05829], for a weak symplectic
vector space (E , ω), a locally convex topology τ on E is called
compatible with ω if the dual (E , τ)′ = ω̌(E ) = Eω ⊂ E ′.

Proposition. [DR24,5.4] For a convenient weak symplectic vector
space the bornological topology on E is compatible with ω

▶ in the Bastiani setting: iff E is a reflexive Banach space and ω
is strong.

▶ here: iff E is reflexive and ω is strong.

Note that Lp × Lp
′
is symplectic, Banach, but i,g, not Hilbert.

Namely: If we take E ′ × E → R is given by
(x ′, x) 7→ ω(ω̌−1(x ′), x) as duality reflexivity follows.



How does this notion fit into the convenient framework?

Example: Let E = ℓ2 × ℓ2 with the weak symplectic structure
ω((x , y), (x ′, y ′)) =

∑
n cn(xny

′
n − ynx

′
n) for a sequence 0 < cn ↘ 0

sufficiently fast.
Then any l.c. topology on E compatible with ω is NOT convenient:
Namely, let 0 < bn ↗∞ with bncn ↘ 0. Then for suitable x ∈ ℓ2
the sequence Xk := (bnxn)

k
n=1 ∈ ℓ2 is a Mackey-Cauchy sequence

for the weak σ(E ,Eω)-topology but its limit X = (bnxn) is i.g. not
in ℓ2.

Smooth Curves into (E , τ). [KM97, Section 1] Since (E , τ) is
not Mackey complete in general, we define c : R→ (E , τ) to be
smooth if λ ◦ c : R→ R is smooth and each iterated derivative
c(n)(t) lies in E (a priori only in the c∞-completion of E ). We
denote this space by C∞(R, (E , τ)), and by c∞(τ) we denote the
final topology on E with respect to C∞(R, (E , τ)).



Question. Let (E , ω) be a convenient weak symplectic vector
space and let τ be any l.c. topology compatible with ω. Under
which conditions do we have C∞(R, (E , τ)) = C∞(R,E )?

Proposition. Let (E , ω) be a convenient weak symplectic vector
space and let τ be any l.c. topology compatible with ω. Suppose
that the bornology of E has a basis of σ(E , ω̌(E ))-closed sets (i.e.,
each bounded set is contained in a σ(E , ω(E ))-closed bounded
set). This is he case if (E , ω) is a convenient weak symplectic
vector space which is a dual space E = F ′ such that
ω̌(E ) ⊆ F ⊆ E ′ = E ′′.
Then we have C∞(R, (E , τ)) = C∞(R,E ).

This includes the the ℓ2 × ℓ2 example from above.

In the convenient spirit, under this condition we then have
C∞
ω (E ,R) = C∞((E , τ),R), although (E , τ) is NOT a convenient

space.

Proof. This is a special case of the following theorem.



Theorem[KF88, Theorem 4.1.19] Let c : R→ E be a curve in a
convenient vector space E . Let F ⊆ E ′ be a subset of bounded
linear functionals such that the bornology of E has a basis of
σ(E ,F)-closed sets. Then the following are equivalent:

1. c is smooth

2. There exist locally bounded curves ck : R→ E such that
λ ◦ c is smooth R→ R with (λ ◦ c)(k) = λ ◦ ck , for each
λ ∈ F and each k.

If E = F ′ is the dual of a convenient vector space F , then for any
point separating subset F ⊆ F the bornology of E has a basis of
σ(E ,F)-closed subsets, by [FK88 4.1.22].

[FK88] Frölicher, A.; Kriegl, A., Linear spaces and differentiation theory,

Pure Appl. Math., J. Wiley, Chichester, 1988.



Weakly symplectic group actions.

An infinite dimensional regular Lie group G with Lie algebra g acts
from the right on a weak symplectic manifold (M, ω) by
r : M × G → M (notation r(x , g) = rg (x) = rx(g)), so that each
rg is a symplectomorphism. Some immediate consequences:

(1) The space C∞
ω (M)G of G -invariant smooth functions with

ω-gradients is a Lie subalgebra for the Poisson bracket, since for
each g ∈ G and f , h ∈ C∞(M)G we have
(rg )∗{f , h} = {(rg )∗f , (rg )∗h} = {f , h}.

(2) For x ∈ M the pullback of ω to the orbit x .G is a 2-form,
invariant under the action of G on the orbit. In finite dimensions
the orbit is an initial submanifold. Here this has to be checked
directly in each example. There is a tangent bundle
Tx(x .G ) = T (rx)g. If i : x .G → M is the embedding of the orbit
then rg ◦ i = i ◦ rg , so that i∗ω = i∗(rg )∗ω = (rg )∗i∗ω holds for
each g ∈ G and thus i∗ω is invariant.



(3) The infinitesimal action ζ : g→ X(M, ω), given by
ζX (x) = Te(rx)X for X ∈ g and x ∈ M, is a homomorphism of Lie
algebras (for a left action we get an anti homomorphism of Lie
algebras). We have the exact sequence of Lie algebra
homomorphisms

0 // H0(M)
α // C∞

ω (M)
gradω // X(M, ω)

γ // H1
ω(M) // 0

g

j

ff
ζ

OO

(4) If H1
ω(M) = 0 then any symplectic action on (M, ω) is a

Hamiltonian action.

(5) If the Lie algebra g is equal to its commutator subalgebra
[g, g], the linear span of all [X ,Y ] for X ,Y ∈ g (true for all full
diffeomorphism groups), then any infinitesimal symplectic action
ζ : g→ X(M, ω) is a Hamiltonian action, since then any Z ∈ g can
be written as Z =

∑
i [Xi ,Yi ] so that ζZ =

∑
[ζXi

, ζYi
] ∈ im(gradω)

since γ : X(M, ω)→ H1
ω(M) is a homom.into the zero Lie bracket.



(6) If j : g→ (C∞
ω (M), { , }) happens to be not a

homomorphism of Lie algebras then
c(X ,Y ) = {j(X ), j(Y )} − j([X ,Y ]) lies in H0(M), and indeed
c : g× g→ H0(M) is a cocycle for the Lie algebra cohomology:
c([X ,Y ],Z ) + c([Y ,Z ],X ) + c([Z ,X ],Y ) = 0. If c is a
coboundary, i.e., c(X ,Y ) = −b([X ,Y ]), then j + α ◦ b is a Lie
algebra homomorphism. If the cocycle c is non-trivial we can use
the central extension H0(M)×c g with bracket
[(a,X ), (b,Y )] = (c(X ,Y ), [X ,Y ]) in the diagram

0 // H0(M)
α // C∞

ω (M)
gradω // X(M, ω)

γ // H1
ω(M) // 0

H1(M)×c g
pr2 //

ȷ̄

OO

g

ζ

OO

where ȷ̄(a,X ) = j(X ) + α(a). Then ȷ̄ is a homomorphism of Lie
algebras.



Momentum mapping

For an infinitesimal symplectic action ζ : g→ X(M, ω) we can find
a linear lift j : g→ C∞

ω (M,R) iff there exists J ∈ C∞
ω (M, g∗) :=

{f ∈ C∞(M, g∗) : ⟨f ( ),X ⟩ ∈ C∞
ω (M) for all X ∈ g} such that

gradω(⟨J,X ⟩) = ζX for all X ∈ g.

J ∈ C∞
ω (M, g∗) is called the momentum mappingfor the

infinitesimal action ζ : g→ X(M, ω).

Basic properties of the momentum mapping

(1) For x ∈ M, the transposed mapping of the linear mapping
dJ(x) : TxM → g∗ is

dJ(x)⊤ : g→ T ∗
xM, dJ(x)⊤ = ω̌x ◦ ζ

(2) The closure of the image dJ(TxM) of dJ(x) : TxM → g∗ is
the annihilator g ◦

x of the isotropy Lie algeba
gx := {X ∈ g : ζX (x) = 0} in g∗, since the annihilator of the image
is the kernel of the transposed mapping,

im(dJ(x)) ◦ = ker(dJ(x)⊤) = ker(ω̌x ◦ ζ) = ker(evx ◦ ζ) = gx .



(3) The kernel of dJ(x) is the symplectic orthogonal

(T (rx)g)
⊥,ω = (Tx(x .G ))⊥,ω ⊆ TxM.

(4) If G is connected, x ∈ M is a fixed point for the G -action if
and only if x is a critical point of J, i.e. dJ(x) = 0.

(5) (Emmy Noether’s theorem) Let h ∈ C∞
ω (M) be a Hamiltonian

function which is invariant under the Hamiltonian G action. Then
dJ(gradω(h)) = 0. Thus the momentum mapping J : M → g∗ is
constant on each trajectory (if it exists) of the Hamiltonian vector
field gradω(h).



Towards the Schouten-Nijenhuis bracket

Let M be a convenient smooth manifold. We shall use the graded
differential algebra of differential forms consisting of smooth
sections of the bundle of bounded skew symmetric multilinear
forms L∗skew(TM,R) on the the tangent bundle:

Ω(M) =
∞⊕
k=0

Ωk(M) =
∞⊕
k=0

C∞(M ← Lkskew(TM,R)).

Later we shall use only manifolds M having the following property:
For each covector α ∈ T ∗M there exists a function f ∈ C∞(M)
with dfπ(α) = α. The following classes of manifolds have this
property: Smoothly paracompact manifolds (having smoothly
paracompact modelling spaces). Each manifold M such that
C∞(M,R) separates points on TM: Then
ev : M ∋ x 7→ evx ∈ C∞(M,R)′ is a smooth injective immersion
and linear functionals in C∞(M,R)′′ restricted to
T ev .TM ⊂ C∞(M,R)′ suffice.



The bornological tensor product

For a convenient vector space E , let E ⊗̄βE be the c∞-completed
bornological tensor product which linearizes bibounded bilinear
mappings. If E is a Banach or Fréchet or (DF) space then each
bibounded bilinear mapping is jointly continuous and thus E ⊗̄βE
agrees with the completed projective tensor product of
Grothendieck.

Let
∧n E be the (Mackey-) closed linear subspace of all alternating

tensors in
⊗̄n

βE . It is the universal solution for convenient vector
spaces F of the linearization problem L(

∧n E ,F ) ∼= Lnalt(E ;F ),
where Lnalt(E ;F ) is the space of all bounded n-linear alternating
mappings E × . . .× E → F , a direct summand of
Ln(E ;F ) := L(E , . . . ,E ;F ). The mapping∧n : L(E ,F )→ L(

∧n E ,
∧n F ) is bounded multilinear and thus

smooth.



Summable skew multi vector fields

We apply the smooth mapping

n∧
: L(E ,F )→ L(

n∧
E ,

n∧
F )

to the chart change mappings for the tangent bundle TM → M to
obtain the smooth vector bundle πM :

∧n TM → M of summable
n-multi vectors on M. Note that the space linearly generated by
X1 ∧ · · · ∧ Xn for Xi ∈ TxM is dense in the fiber

∧n TxM. The
space Γ(

∧n TM) of smooth sections of this bundle is the space of
summable multi vector fields on M. We write
Γ(
∧0 TM) = C∞(M,R) and Γ(

∧
TM) =

⊕
n≥0 Γ(

∧n TM) which
is a graded commutative algebra for the usual wedge-product of
multi vector fields for the grading (Γ(

∧
TM), ∧ )n = Γ(

∧n TM).
The wedge product is a bounded bilinear operation on the
convenient space Γ(

∧
TM), by the universal property of the

bornological tensor product.



Easy Theorem.

Schouten-Nijenhuis bracket for summable multi vector fields. Let
M be a smooth manifold. We consider the space Γ(

∧
sumTM) of

multivector fields on M. This space carries a graded Lie bracket for
the grading Γ(

∧∗+1
sum TM), ∗ = −1, 0, 1, 2, . . . , called the

Schouten-Nijenhuis bracket, which is given by

[X1∧ · · · ∧ Xp,Y1 ∧ · · · ∧ Yq]

=
∑
i ,j

(−1)i+j [Xi ,Yj ] ∧ X1 ∧ · · · X̂i · · · ∧ Xp ∧ Y1 ∧ · · · Ŷj · · · ∧ Yq,

[f ,U] = −ı̄(df )U,

where ı̄(df ) is the insertion operator
∧k

sumTM →
∧k−1

sumTM, the

adjoint of df ∧ ( ) :
∧l

sumT
∗M →

∧l+1
sumT

∗M.



Easy Theorem continued

Let U ∈ Γ(
∧u

sumTM), V ∈ Γ(
∧v

sumTM), W ∈ Γ(
∧w

sumTM), and
f ∈ C∞(M,R). Then we have:

[U,V ] = −(−1)(u−1)(v−1)[V ,U].

[U, [V ,W ]] = [[U,V ],W ] + (−1)(u−1)(v−1)[V , [U,W ]].

[U,V ∧W ] = [U,V ] ∧W + (−1)(u−1)vV ∧ [U,W ].

[X ,U] = LXU.

Let P ∈ Γ(
∧2

sum TM). Then the product {f , g} := 1
2⟨df ∧ dg ,P⟩

on C∞(M) satisfies the Jacobi identity if and only if [P,P] = 0.



Duality between multivector fields and differential forms

Let M be a smooth manifold modeled on a convenient vector
space E . By the universal property of the bornological tensor
product described in !1.1, the dual space of

∧n E is the space
Lnskew(E ;R). Using and extending the conventions of Greub78, we
start from the duality

⟨ , ⟩ :
∧n

E ∗ ×
∧n

E → R

⟨φ1 ∧ · · · ∧ φn,X1 ∧ · · · ∧ Xn⟩ = det(⟨φi ,Xj⟩i ,j)

we get the complete fiberwise duality

⟨ , ⟩ : Ωn(M)× Γ(
∧n

TM)→ C∞(M) ,

⟨ω,X1 ∧ · · · ∧ Xn⟩ = ω(X1, . . . ,Xn)



We have the following dual pairs of operators: For ω ∈ Ωp(M) the
linear map µ(ω) : Ωk(M)→ Ωk+p(M) given by µ(ω)ψ := ω ∧ ψ is
the fiberwise dual operator to ῑ(ω) : Γ(

∧k+p TM)→ Γ(
∧k TM),

where

ῑ(ω)(X1 ∧ · · · ∧ Xk+p) =

=
1

p!k!

∑
σ∈Sk+p

sign(σ)ω(Xσ(1), . . . ,Xσ(p))Xσ(p+1)∧· · ·∧Xσ(p+k) .

Likewise, for U ∈ Γ(
∧p TM) the fiberwise linear mapping

µ̄(U) : Γ(
∧k TM)→ Γ(

∧k+p TM) given by µ̄(U)V = U ∧V is the
fiberwise dual of the ‘insertion operator’
i(U) : Ωk+p(M)→ Ωk(M).



Lemma.

Let U be in Γ(
∧u TM). Then we have:

▶ i(U) : Ω(M)→ Ω(M) is a homogeneous bounded module
homomorphism of degree −u. It is a graded derivation of Ω(M) if
and only if p = 1. For f ∈ C∞(M) we have i(f )ω = f .ω.

▶ i(U ∧ V ) = i(V ) ◦ i(U), thus the graded commutator vanishes:

[i(U), i(V )] = i(U)i(V )− (−1)uv i(V )i(U) = 0.

▶ i(U)(ω ∧ ψ) = i(ῑ(ω)U)ψ + (−1)uω ∧ i(U)ψ for ω ∈ Ω1(M) and
ψ ∈ Ω(M), that is: [i(U), µ(ω)] = i(ῑ(ω)U)



The Lie differential operator

For U ∈ Γ(
∧u TM) we define the Lie derivation

L(U) : Ωk(M)→ Ωk−u+1(M) by

L(U) := [i(U), d ] = i(U) ◦ d − (−1)pd ◦ i(U)

which is homogeneous of degree 1− u and is called the Lie
differential operator. It is a derivation if and only if U is a vector
field. We have [L(U), d ] = 0 by the graded Jacobi identity of the
graded commutator.



Theorem

Let U ∈ Γ(
∧u TM), V ∈ Γ(

∧v TM), and f ∈ C∞(M). Then we
have:

L(U ∧ V ) = i(V ) ◦ L(U) + (−1)uL(V ) ◦ i(U) (1)

L(X1 ∧ · · · ∧ Xu) =

=
∑
j

(−1)j−1i(Xu) · · · i(Xj+1)L(Xj)i(Xj−1) · · · i(X1) (2)

L(f ) = [i(f ), d ] = [µ(f ), d ] = −µ(df ) (3)

[L(U), i(V )] = (−1)(u−1)(v−1)i([U,V ]) = −i([V ,U]) (4)

[L(U),L(V )] = (−1)(u−1)(v−1)L([U,V ]) = −L([V ,U])
(5)

⟨dω,−[V ,U]⟩ = ⟨di(V )dω,U⟩
− (−1)(u−1)(v−1)⟨di(U)dω,V ⟩ (6)

Formula (6) was the starting point of the treatment of the
Schouten-Nijenhuis bracket in Tulczyjew74.



The general Schouten bracket

For a convenient manifold the general multivector fields of order k
are the smooth sections of the vector bundle Lkskew(T

∗M,R)→ M.
We could call these

MV(M) =
∞∑
k=0

MVk(M) :=
∞∑
k=0

Γ(Lkskew(T
∗M,R)).

A summable differential form ω on M is a smooth section of the
bundle of skew symmetric tensors∧k

sumT
∗M ⊂ ⊗̄k

βT
∗M = T ∗M⊗̄βT

∗M⊗̄β . . . ⊗̄βT
∗M → M,

where ⊗̄β denotes the c∞-completed bornological tensor product
which linearizes bounded bilinear mappings.

Let us denote by Ωk
sum(M) the graded algebra of all summable

differential forms. Note that exterior derivative
d : Ωk(M)→ Ωk+1(M) does not map Ωk

sum(M) into Ωk+1
sum (M);

summability of a form is destroyed by the exterior derivative.



The graded algebra Ωsum,d(M)

Therefore we let Ωk
sum,d(M) be the graded differential subalgebra

of all summable forms ω such that dω is again summable. Note
that the latter condition is a linear partial differential relation.
Here we assume that C∞(M) separates points on TM: For each
α ∈ T ∗M there exists f ∈ C∞(M) with dfπ(α) = α. Consequently,

evx ◦ d : Ωk
sum,d(M)→

∧k+1 T ∗
xM is surjective for all x ∈ M

The vector bundle Lkskew(T
∗M,R)→ M is the dual bundle of∧k

sumT
∗M → M; we will denote the duality by (the dual space is

always on the feft hand side)

⟨ , ⟩ : Lkskew(T ∗M,R)×M
∧k

sum,βT
∗M → R

⟨U, φ1 ∧ · · · ∧ φk⟩ = U(φ1, . . . , φk)

as well as its extension to spaces of sections.



For ω ∈ Ωk
sum(M) we consider the pointwise linear (i.e., vector

bundle push-forward) mapping

µ(ω) : Ωℓ
sum(M)→ Ωℓ+k

sum(M), µ(ω)φ = ω ∧ φ

and its pointwise dual

ῑ(ω) = µ(ω)∗ : MVℓ+k(M)→ MVℓ(M),

⟨U, µ(ω)φ⟩ = ⟨U, ω ∧ φ⟩ = ⟨ῑ(ω)U, φ⟩

For a decomposable k-form ω = φ1 ∧ · · · ∧ φk we have

⟨ῑ(φ1 ∧ · · · ∧ φk)U, φk+1 ∧ · · · ∧ φk+ℓ⟩ =
= ⟨U, φ1 ∧ · · · ∧ φk ∧ φk+1, . . . , φk+ℓ)

= U(φ1, . . . , φk+ℓ)



Similarly, for U ∈ MVu(M) we consider

µ̄(U) : MVℓ(M)→ MVu+ℓ(M), µ̄(U)V = U ∧ V

which is the dual of i(U) : Ωℓ+u
sum(M)→ Ωℓ

sum(M) which on
decomposable u + ℓ-forms is given by

i(U)(φ1 ∧ · · · ∧ φu+ℓ) =

=
1

u!ℓ!

∑
σ∈Sk+ℓ

sign(σ)U(φσ(1), . . . , φσ(u))φσ(u+1) ∧ · · · ∧ φσ(k+ℓ)

Thus i(U) respects the d-stable subalgebra Ωk
sum,d(M) so that

i(U) : Ωℓ+u
sum,d(M)→ Ωℓ

sum,d(M)



Lemma

Let U be in MVu(M) and V ∈ MVv (M). Then we have:

1. i(U) : Ωsum(M)→ Ωsum(M) is a homogeneous bounded module
homomorphism of degree −u. It is a graded derivation of Ωsum(M)
if and only if p = 1. For f ∈ C∞(M) we have i(f )ω = f .ω.

2. i(U ∧ V ) = i(V ) ◦ i(U), thus the graded commutator vanishes:

[i(U), i(V )] = i(U)i(V )− (−1)uv i(V )i(U) = 0.

3. i(U)(ω ∧ ψ) = i(ῑ(ω)U)ψ + (−1)uω ∧ i(U)ψ, i.e.,
[i(U), µ(ω)] = i(ῑ(ω)U), for ω ∈ Ω1(M) and ψ ∈ Ωsum(M).



The Schouten-Nijenhuis bracket: Tulczyjew’s Approach

We turn the above Theorem around and use (6) as definition: For
ω ∈ Ωu+v−2

sum,d (M) we put

⟨[U,V ], dω⟩ = −⟨V , di(U)dω⟩+ (−1)(u−1)(v−1)⟨U, di(V )dω⟩

We can also prove

⟨[U,V ], fdω⟩ = −f ⟨V , di(U)dω⟩+ (−1)(u−1)(v−1)f ⟨U, di(V )dω⟩ .

So [U,V ] is a multivector field of order u + v − 1: To see this,
note first that [ , ] respects f -dependence of mutlivector field; then
restrict U and V to chart, and compute (1) where
dω = φ1 ∧ . . . φu+v−1 for constant 1-forms φi . Then

[ , ] : MVu(M)×MVv (M)→ MVu+v−1(M)

is a smooth (bounded) bilinear operator satisfying
[U,V ] = −(−1)(u−1)(v−1)[V ,U]. It also satisfies

ῑ(df )[U,V ] = [ῑ(df )U,V ] + (−1)u−1[U, ῑ(df )V ]



For ω ∈ Ωp
sum,d(M) we have

i([U,V ])ω = i(U)di(V )ω − (−1)(u−1)(p−1)i(V )di(U)ω

− (−1)u(v−1)di(U ∧ V )ω − (−1)(u−1)p i(U ∧ V )dω

Definition of Lie differentials: For U ∈ MVu(M) the Lie
differential operator

L(U) := [i(U), d ] = i(U) ◦ d − (−1)pd ◦ i(U)

: Ωk
sum,d(M)→ Ωk−u+1

sum,d (M)

is well defined. It is a derivation if and only if U is a vector field.
We have [L(U), d ] = 0 by the graded Jacobi identity of the graded
commutator. We now generalise the above Theorem to this new
situation:



Theorem

Let U ∈ MVu(M), V ∈ MVv (M), and f ∈ C∞(M). Then we have:

L(U ∧ V ) = i(V ) ◦ L(U) + (−1)uL(V ) ◦ i(U) (1)

L(X1 ∧ · · · ∧ Xu) =

=
∑
j

(−1)j−1i(Xu) · · · i(Xj+1)L(Xj)i(Xj−1) · · · i(X1) (2)

L(f ) = [i(f ), d ] = [µ(f ), d ] = −µ(df ) (3)

[L(U), i(V )] = (−1)(u−1)(v−1)i([U,V ]) = −i([V ,U]) (4)

[L(U),L(V )] = (−1)(u−1)(v−1)L([U,V ]) = −L([V ,U]) (5)



Thank you for listening.



Thank you for listening.



Thank you for listening.



Thank you for listening.


