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Abstract: The Square Root Normal Field (SRNF), introduced by Jermyn

et al. in 2012, provides a way of representing immersed surfaces in R3,

and equipping the set of these immersions with a “distance function” (to

be precise, a pseudometric) that is easy to compute. Importantly, this

distance function is invariant under reparametrizations (i.e., under

self-diffeomorphisms of the domain surface) and under rigid motions of

R3. Thus, it induces a distance function on the shape space of

immersions, i.e., the space of immersions modulo reparametrizations and

rigid motions of R3. In this paper, we give examples of the degeneracy of

this distance function, i.e., examples of immersed surfaces (some closed

and some open) that have the same SRNF, but are not the same up to

reparametrization and rigid motions. We also prove that the SRNF does

distinguish the shape of a standard sphere from the shape of any other

immersed surface, and does distinguish between the shapes of any two

embedded strictly convex surfaces.
Based on [Eric Klassen, PWM: Closed surfaces with different shapes that are indistinguishable by the SRNF.
Achivum Mathematicum (Brno) 56 (2020), 107-114.]

and the lecture Non-Injectivity of the SRNF Map and Measures on S2 by Eric Klassen at FSU in Tallahassee in 2020

Also of interest: [E. Hartman, M. Bauer, E. Klassen. Square Root Normal Fields for Lipschitz surfaces and the
Wasserstein Fisher Rao metric. SIAM Journal on Mathematical Analysis 56.2 (2024): 2171-2190.
arXiv:2301.00284]



Shape space

Problems in:

▶ Anthropology (space of hominid skulls)

▶ Computational Anatomy: (space of hearts, of brains, of parts
of the brain, space of walking rythms, space of breathing
lungs)

▶ Evolutionay biology (space of evolutionay trees; spaces of
butterfly wings)

need meaningful distances to do statistical analysis of a point cloud
in the shape space (means, principal component analysis, etc).

Infinite dimensional differential geometry offers a way to do this via
geodesic distance of suitable Riemannian metrics.



Shape space II

M a template or model shape: a compact manifold, for simplicity’s
sake.

Emb(M,Rd)
⊂ //

π
��

Imm(M,Rd)

π
��

B = Emb(M,Rd)
⊂ // Bi := Imm(M,R2)/Diff(M)

Every Diff(M)-invariant metric ”above“ induces a unique metric
”below“ on shape space such that π is a Riemannian submersion.
▶ The simplest Diff-invariant metric on Emb or

Imm, namelyGf (h, h) =
∫
⟨h, h, ⟩ vol(f ∗g0), has vanishing

geodesic distance: not useful.
▶ Higher order Sobolev metrics like

G k
f (h, h) =

∫
⟨(1−∆f ∗g0)kh, h⟩ vol(f ∗g0): good choice, but

geodesics costly to compute. Curvature complicates statistics.
▶ On B(S1,R2) the homogenuous Sobolev Ḣ1 metric allows for

a (local) isometric mapping into flat space or a sphere: SQRT.



Motivation for SRNF

Square root transforms work nicely for plane curves; thus the wish
to carry this over to surfaces. A precise presentation is in
[Bauer, Bruveris, Marsland, M: Constructing reparametrization invariant metrics on spaces of plane curves.
Differential Geometry and its Applications 34 (2014), 139â165. arXiv:1207.5965]

Consider

GL2
q (h, h) =

∫
S1

|h(θ)|2dθ , for q ∈ C∞(S1,Rn), h ∈ TqC
∞(S1,Rn).

This is a flat weak Riemannian metric geodesic distance given by
the L2-norm

distL
2
(q0, q1)

2 =

∫
S1

|q0(θ)− q1(θ)|2dθ .

Consider the pullback metric F ∗GL2 on Imm(S1,R2) :

GF
c (h, h) = (F ∗GL2)c(h, h) = GL2

F (c)(Dc,hF ,Dc,hF ) =

∫
S1

|Dc,hF |2 dθ .



Theorem.

If F : Imm(S1,R2)→ C∞(S1,Rn) satisfies

F (c ◦ φ) =
√
φ′F (c) ◦ φ,

with c ∈ Imm(S1,R2) and φ ∈ Diff(S1) and if F is infinitesimally
injective, i.e., Dc,·F is injective for all c , then GF is a Riemannian
metric on Imm(S1,R2) that is invariant under the
reparameterization group Diff(S1).

Arc length derivative and measure: Dsc = 1
|c ′|∂θ , ds = |c

′|dθ.
Example: Take a smooth function f ∈ C∞(R2m,Rn) and define
the transform F as F (c) =

√
|c ′| f ◦ (c ,Dsc , . . . ,D

m−1
s c) . The

image of F is a submanifold of the flat pre-Hilbert space.



Example: (SRVT), [Srivastava2011]:

R : Imm(S1,R2)/Transl→ C∞(S1,R2)

R(c) = |c ′|1/2v . Image is open subset

R∗GL2 :G
1,1/2
c (h, h) =

∫
S1

⟨Dsh, n⟩2 + 1
4⟨Dsh, v⟩2 ds ,

Example:

Ra,b : Imm([0, 2π],R2)/Transl→ C∞([0, 2π],R3)

Ra,b(c) = |c ′|1/2
(
a

(
v
0

)
+
√

4b2 − a2
(
0
1

))
.

Here a, b ∈ R+ are positive numbers with 4b2 ≥ a2. Image is:
curves in a cone. Pulls back elastic metrics:

R∗GL2
c

a,b(h, h) =

∫ 2π

0
a2⟨Dsh, n⟩2 + b2⟨Dsh, v⟩2 ds .



Movie using soliton solution for the Ḣ1-metric on space of plane curves

G Ḣ1

c (h, k) =

∫
S1

⟨Dsh, n⟩.⟨Dsk, n⟩ ds on Bi (S
1,R2)/Translations

extends to the boundary consisting of Lipschitz curves. This
boundary contains many finite dimensional submanifolds of
polygonal curves (for each fixed number of nodes) which are
geodesically convex. Their geodesics are soliton-solutions of the
original equation in the sense that their momenta are finite sums of
delta distributions which are transported by the geodesic flow.
Such solitons form the the final movie. The translations are put
into the movie by hand. A suitable SQRT is compatible with this
extension.
[Bauer, Bruveris, Harms, M: Soliton solutions for the elastic metric on
spaces of curves. Discrete and Continuous Dynamical Systems 38, 3
(March 2018), 1161-1185. https://doi.org/10.3934/dcds.2018049
arxiv:1702.04344]



Review of the SRNF Map
(From here on, I follow Eric Klassen’s talk)

Let M be an oriented surface (with or without boundary), and
assume it has a Riemannian metric.

Imm(M,R3) = {the set of immersions M → R3}
Given f ∈ Imm(M,R3), define the area-multiplication factor of f
to be a function

a : M → R+.

Precise formula for a(x): let {v ,w} be an orthonormal basis of
TxM. Then

a(x) = |dfx(v)× dfx(w)|.
For f ∈ Imm(M,R3), we define the oriented unit normal function

n : M → S2

n(x) =
dfx(v)× dfx(w)

|dfx(v)× dfx(w)|
,

where {v ,w} is an oriented orthonormal basis of TxM.



The Square Root Normal Field

Define the square root normal field (SRNF) of f 1 to be

qf : M → R3

where
qf (x) =

√
a(x)n(x).

If f ∈ Imm(M,R3), then qf ∈ C∞(M,R3)

1Jermyn, Kurtek, Klassen, and Srivastava, Elastic Matching of Parametrized
Surfaces Using Square Root Normal Fields, European Conference on Computer
Vision, Florence, Italy, Nov. 2012.



Action of Diff+(M)

Diff+(M) = the group of orientation-preserving diffeomorphisms
M → M. Diff+(M) acts on Imm(M,R3) from the right by
composition.

Let Diff+(M) act on C∞(M,R3) from the right by

(q ∗ γ)(x) =
√

b(x)q(γ(x)),

where γ ∈ Diff+(M), and b : M → R+ denotes the area
multiplication factor det(Tγ) of γ.

This action is defined so that qf ◦γ = qf ∗ γ. It is the action of
Diff+(M) on the space of R3-valued half-densities.

Each element of Diff+(M) acts on C∞(M,R3) by a linear
isometry, if you put the L2 metric on C∞(M,R3).



Metric on Shape Space

Because of the isometric action, it makes sense to define a distance
function on the shape space

S(M,R3) := Imm(M,R3)/Diff+(M)

by
d([f ], [g ]) = inf

γ∈Diff+(M)
∥qf − qg◦γ∥2.

(One might also want to mod out by rigid motions and/or
rescaling, but for simplicity I’ll ignore that here.)



Injectivity of SRNF

Question: Does
qf = qg =⇒ [f ] = [g ]?

Note: [f ] denotes the Diff+(M)-orbit of f in Imm(M,R3).

In other words, if two immersed surfaces have the same SRNF,
must they have the same shape?

Answer: NO.
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Examples of non-injectivity: Cylinders.

Let M = S1 × [0, 1], a standard cylinder (with two circles as
boundary). Define two embeddings f and g from M → R3 by

f ((x , y), z) = (x , y , z)

g((x , y), z) = (rx , ry , z/r)

where r > 1. Then qf = qg . But, clearly f (M) and g(M) don’t
have the same shape: one is tall and thin, the other is short and
fat.



Examples of non-injectivity: Paraboloids

Let a and b be non-zero real numbers and let Sa,b denote the
graph of the function z = ax2 + by2 in R3.
Claim:If ab = cd , then we can parametrize Sa,b and Sc,d in such a
way that they have the same SRNF.
Proof: For a given (a, b), parametrize Sa,b by B : R2 → R3, where

B(x , y) =

(
x

a
,
y

b
,
x2

a
+

y2

b

)
.

An easy computation then yields

Bx × By =

(
−2x

ab
,−2y

ab
,
1

ab

)
.

Since Bx × By depends only on ab (not on a and b individually),

and the SRNF can be expressed as
Bx×By√
|Bx×By |

, the theorem

follows.



It’s clear that S1,1 and S 1
2
,2 don’t have the same shape, so this is

another example of non-injectivity.

Figure: z = x2 + y2 Figure: z = 1
2x

2 + 2y2

The examples given so far have been known for quite awhile, but
this phenomenon can occur for closed surfaces as well.



Useful Theorem

Suppose S1 and S2 are oriented surfaces in R3, and suppose there
is an orientation preserving diffeomorphism ϕ : S1 → S2 that
preserves area and normal direction: n(ϕ(x)) = n(x) ∈ R3 for all
x ∈ S1. Let f : M → S1 be a parametrization of S1, so ϕ ◦ f is a
parametrization of S2. Then

qf = qϕ◦f .

Follows immediately from the definition of SRNF.



Figure: The SRNF cannot distinguish between these chess positions



Chessboard Example

Let S1 and S2 be two chessboards, each with all the usual pieces
on it, but occupying different squares. Think of each of these as a
surface that is topologically a sphere (imagine that the board has
some thickness, and that the corners are rounded to make it
smooth). Define a diffeomorphism ϕ : S1 → S2 as follows:

1. ϕ maps each piece on S1 to the corresponding piece on S2 by
a translation.

2. ϕ maps the bottom and sides of the board in S1 to the
bottom and sides of the board in S2 by the identity map.

3. ϕ maps the top of the board in S1 (minus a round hole where
each piece stands) to the top of the board in S2 (also minus a
hole for each piece) by an area-preserving map that takes the
boundary of each piece in S1 to the boundary of the
corresponding piece in S2.



Since ϕ is area-preserving and preserves normal vectors, it follows
from Theorem 1 that S1 and S2 can be parametrized to have
precisely the same SRNF. Therefore, the SRNF cannot distinguish
between any two positions on a chessboard!

To construct this example it was crucial that the board had a “flat
area” around the pieces, so that we were free to move around
points (in an area-preserving manner) without changing the normal
vectors.
Without such a flat place, I don’t know if an example like this can
be constructed, of two non-equivalent smooth immersions f and g
of a closed surface such that qf = qg .

However, I can give an example of two non-equivalent surfaces
with no flat places such that [qf ] = [qg ], where the brackets
denote the L2 closures of the Diff+ orbits of qf and qg . Thus, even
without flat places, the distance between two non-equivalent
surfaces can be 0.



Surface Immersions and Measures on S2

Two Questions:
In the first part of this talk, we gave examples of the non-injectivity
of the SRNF map. We now consider two related questions:

1. Given f , g ∈ Imm(S2,R3), can we give a geometric criterion
for when d([f ], [g ]) = 0?

2. What is the L2-closure of the image of the SRNF map
Imm(S2,R3)→ L2(S2,R3)?

In the second half of the talk, I will conjecture answers to both of
these questions.



Immersions and Measures

If f : M → R3 is an immersion, then

µqf (U) = the area of the portion of f (M) where n(x) ∈ U.

It’s easy to see that if f and g differ only by reparametrization and
translation, then µqf = µqg . But the converse is not true: There
are plenty of examples where µqf = µqg , but f and g have
completely different shapes!

These two embeddings of the sphere, one convex and one
non-convex, induce the same measure on S2. Also, they are not
distinguishable by the SRNF, because [qf ] = [qg ]. Another
(smoother) example would be the chessboard example given earlier
in the talk.



Anwer to Question 1. If q ∈ L2(M,R3), let [q] denote the
L2-closure of the Diff+(M)-orbit of q.
Let q1, q2 ∈ L2(M,R3). Then

[q1] = [q2] ⇐⇒ µq1 = µq2

This means the SRNF can only distinguish two immersions if they
induce different measures on S2. Or: the SRNF only sees on how
much area each normal vector is attained; it ignores the location of
these normal vectors.

Answer to Question 2 Define

Ψ : Imm(S2,R3)→ L2(S2,R3)

by Ψ(f ) = qf . The L2-closure of Ψ(Imm(S2,R3)) is{
q ∈ L2(S2,R3) :

∫
S2

|q|q dA = 0

}
where dA denotes the usual area form on S2.
This is analogous to a familiar fact about SRVFs for curves: An L2

function q : I → Rn is the SRVF of a closed curve if and only if∫ 1
0 |q|q dx = 0.



All conjectures have been proved in:
[E. Hartman, M. Bauer, E. Klassen. Square Root Normal Fields for

Lipschitz surfaces and the Wasserstein Fisher Rao metric. SIAM Journal

on Mathematical Analysis 56.2 (2024): 2171-2190. arXiv:2301.00284]

Core of proof.
Theorem.[Minkowski, Fenchel, Jessen and Alexandrov, circa 1903]
The correspondence

f ←→ µqf

gives a bijection between convex embeddings of S2 in R3 (up to
translation and reparametrization) and measures µ on S2 satisfying∫
S2 x dµ(x) = 0.



Indistinguishable Surfaces

Figure: The SRNF cannot distinguish between these surfaces



Figure: neither between these surfaces



Thank you, audience, for your attention!


