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Abstract. Time derivatives of pullbacks of push forwards along smooth
curves of diffeomorphism of sections of natural vector bundles are com-
puted in terms of Lie derivatives along adapted non-autonomous vector
fields by extending a key lemma in [3].

1. Introduction

The following is an adaptation of the rather well known method of Lie
derivation along mapping N → M as explained for differential forms in
[5, 31.11] and more generally for purely covariant tensor fields in [4, 12.2–
12.5]. It is used in newer proofs of the Poincaré lemma and the theorem of
Darboux, see e.g. [6] and [8]. Namely, we prove the the following corollary
3.1 of [3, Lemma 6]; the need for this result arose during the preparation of
[1].

Corollary. Let φt be a smooth curve of local diffeomorphisms. Then we get
two time dependent vector fields

Xt0 = Tφ−1
t0

◦ ∂t|t0φt and Yt0 = ∂t|t0φt ◦φ−1
t0

Then for any natural vector bundle functor F and for any section s ∈
Γ(F (M)) we have the first non-vanishing derivative

∂tφ(t)
∗s = φ(t)∗LY (t)s = LX(t) φ(t)

∗s .(1)

∂tφ(t)∗s = ∂t(φ(t)
−1)∗s = −φ(t)∗LX(t)s = −LY (t) φ(t)∗s .(2)

2. Background from [3]

2.1. Curves of local diffeomorphisms. Let φ : R×M ⊃ Uφ → M be a
smooth mapping where Uφ is an open neighborhood of {0} ×M in R×M ,
such that each φt is a diffeomorphism on its domain and φ0 = IdM . We
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say that φt is a curve of local diffeomorphisms though IdM . From lemma

2.2 we see that if ∂j

∂tj
|0φt = 0 for all 1 ≤ j < k, then X := 1

k!
∂k

∂tk
|0φt is a

well defined vector field on M . We say that X is the first non-vanishing
derivative at 0 of the curve φt of local diffeomorphisms. We may paraphrase
this as (∂k

t |0φ∗
t )f = k!LXf .

2.2. Lemma. [3, Lemma 2] Let c : R → M be a smooth curve. If c(0) = x ∈
M , c′(0) = 0, . . . , c(k−1)(0) = 0, then c(k)(0) is a well defined tangent vector

in TxM which is given by the derivation f 7→ (f ◦ c)(k)(0) at x.

2.3. Natural vector bundles. See [2, 6.14]. LetMfm denote the category
of all smooth m-dimensional manifolds and local diffeomorphisms between
them. A vector bundle functor or natural vector bundle is a functor F which
associates a vector bundle (F (M), pM ,M) to each manifold M and a vector
bundle homomorphism

F (M)
F (f) //

pM
��

F (N)

pN
��

M
f // N

to each f : M → N in Mfm, which covers f and is fiber wise a linear
isomorphism. If f is the embedding of an open subset ofN then this diagram
turns out to be a pullback diagram. We also point out that f 7→ F (f) maps
smoothly parameterized families to smoothly parameterized families, see [2,
14.8]. Assuming this property all vector bundle functors were classified by
[7]: They correspond to linear representations of higher jet groups, they are
associated vector bundles to higher order frame bundles, see also [2, 14.8].

Examples of vector bundle functors are tangent and cotangent bundles,
tensor bundles, densities, M 7→ L(TM, TM), and also the trivial bundle
M × R.

2.4. Pullback of sections. Let F be a vector bundle functor on Mfm as
described in 2.3. Let M be an m-manifold and let φt be a curve of local
diffeomorphisms through IdM on M . Then the flow φt, for fixed t, is a
diffeomorphism defined on an open subset Uφt of M . The mapping

F (M)

pM

��

F (Uφt)oo

��

F (φt) // F (M)

pM

��
M Uφt
oo φt // M

is then a vector bundle isomorphism.
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We consider a section s ∈ Γ(F (M)) of the vector bundle (F (M), pM ,M)
and we define for t ∈ R pullback and push forward as

φ∗
t s := F (φ−1

t ) ◦ s ◦φt , (φt)∗s = (φ−1
t )∗s = F (φt) ◦ s ◦φ−1

t .

These are local sections of the bundle F (M). If φt is smooth curve of
diffeomorphisms these are global sections. For each x ∈ M the value
(φ∗

t s)(x) ∈ F (M)x := p−1
M (x) is defined, if t is small enough. So in the

vector space F (M)x the expression d
dt |0(φ

∗
t s)(x) makes sense and therefore

the section d
dt |0(φt)

∗s is globally defined and is an element of Γ(F (M)). If

φt = FlXt is the flow of a vector field X on M this section

LXs := d
dt |0(Fl

X
t )∗s

is called the Lie derivative of s along X. It satisfies LXLY −LY LX = L[X,Y ],
see [2, 6.20].

2.5. Lemma. [3, Lemma 6] Let φt be a smooth curve of local diffeomorphisms
through IdM with first non-vanishing derivative k!X = ∂k

t |0φt. Then for any
vector bundle functor F and for any section s ∈ Γ(F (M)) we have the first
non-vanishing derivative

k!LXs = ∂k
t |0φ∗

t s.

3. The result

For the following we consider only first derivatives instead of first vanish-
ing ones.

3.1. Corollary. Let φt be a smooth curve of (local) diffeomorphisms. Con-
sider the two time dependent vector fields

Xt0 = Tφ−1
t0

◦ ∂t|t0φt and Yt0 = ∂t|t0φt ◦φ−1
t0

Then for any vector bundle functor F and for any section s ∈ Γ(F (M)) we
have

∂tφ(t)
∗s = φ(t)∗LY (t)s = LX(t) φ(t)

∗s .(1)

∂tφ(t)∗s = ∂t(φ(t)
−1)∗s = −φ(t)∗LX(t)s = −LY (t) φ(t)∗s .(2)

Proof. Let φ̃t = φ−1
t0

◦φt+t0 , a smooth curve of (local) diffeomorphisms
through IdM . We have

∂t|0φ̃t = ∂t|0φ−1
t0

◦φt+t0 = Tφ−1
t0

◦ ∂t|0φt+t0 = Tφ−1
t0

◦ ∂t|t0φt = Xt0 .

By Lemma 2.5 we we get that

LXt0
s = ∂t|t0φ̃∗

t s = ∂t|t0(φ−1
t0

◦φt)
∗s = ∂t|t0φ∗

t (φ
−1
t0

)∗s

=⇒ LXt0
φ∗
t0s = ∂t|t0φ∗

t (φ
−1
t0

)∗s which is part of (1).
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For the second part of (1) we consider φ̄t = φt+t0 ◦φ−1
t0

, another smooth
curve of local diffeomorphisms through IdM . Here we have, again by Lemma
2.5,

∂t|0φ̄t = ∂t|0φt+t0 ◦φ−1
t0

= ∂t|t0φt ◦φ−1
t0

= Yt0 .

LYt0
s = ∂t|0φ̄∗

t s = ∂t|0(φt+t0 ◦φ−1
t0

)∗s = ∂t|0(φ−1
t0

)∗φ∗
t+t0s

= (φ−1
t0

)∗∂t|0φ∗
t+t0s since (φ−1

t0
)∗ : Γ(F (M)) → Γ(F (M)) is bounded linear

= (φ−1
t0

)∗∂t|t0φ∗
t s which implies the second part of (1).

To show (2) note first that

0 = ∂t(Id) = ∂t(φ
−1
t ◦φt) = (∂tφ

−1
t ) ◦φt + Tφ−1

t ◦ ∂tφt

∂t(φ
−1
t ) = −Tφ−1

t ◦(∂tφt) ◦φt

Tφt ◦ ∂t(φ−1
t ) = −(∂tφt) ◦φ−1

t = −Yt

(∂tφ
−1
t ) ◦φt = −Tφ−1

t ◦(∂tφt) = −Xt

Hence, replacing φt by φ−1
t in (1) replaces Xt by −Yt and Yt by −Xt and

noting that (φt)∗s = (φ−1
t )∗s transforms (1) into (2). □
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