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Dedicated to the memory of Joseph A. Wolf

ABSTRACT. Time derivatives of pullbacks of push forwards along smooth
curves of diffeomorphism of sections of natural vector bundles are com-
puted in terms of Lie derivatives along adapted non-autonomous vector
fields by extending a key lemma in [3].

1. INTRODUCTION

The following is an adaptation of the rather well known method of Lie
derivation along mapping N — M as explained for differential forms in
[5, 31.11] and more generally for purely covariant tensor fields in [4, 12.2—
12.5]. It is used in newer proofs of the Poincaré lemma and the theorem of
Darboux, see e.g. [6] and [8]. Namely, we prove the the following corollary
of [3l Lemma 6]; the need for this result arose during the preparation of

[l
Corollary. Let p; be a smooth curve of local diffeomorphisms. Then we get
two time dependent vector fields

Xty =Ty, 0 Ohliospr and Yay = Oilsospr 0 0y

Then for any natural vector bundle functor F and for any section s €
I'(F(M)) we have the first non-vanishing derivative

(1) Orp(t)'s = p(t)" Ly wys = Lx) p(t)"s.
2) Ap(t)es = 0 (p(t) ) s = —p(t)Lx 1S = —Ly 1) (t)s5 .

2. BACKGROUND FROM [3]

2.1. Curves of local diffeomorphisms. Let o : R x M D U, — M be a
smooth mapping where U, is an open neighborhood of {0} x M in R x M,
such that each ¢; is a diffeomorphism on its domain and o = Idy. We
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we see that if %bcpt =0forall 1 <j <k, then X := %%b@t is a
well defined vector field on M. We say that X is the first non-vanishing
derivative at 0 of the curve ¢, of local diffeomorphisms. We may paraphrase
this as (9F|ow})f = k!Lx f.

i that ¢y is a curve of local diffeomorphisms though Idys. From lemma
2

2.2. Lemma. [3, Lemma 2] Let ¢ : R — M be a smooth curve. If ¢(0) =z €
M, d(0)=0,...,c*1(0) =0, then ¢¥)(0) is a well defined tangent vector
in Ty M which is given by the derivation f — (f oc)®)(0) at z.

2.3. Natural vector bundles. See [2, 6.14]. Let M f,, denote the category
of all smooth m-dimensional manifolds and local diffeomorphisms between
them. A wector bundle functor or natural vector bundle is a functor F' which
associates a vector bundle (F(M), par, M) to each manifold M and a vector
bundle homomorphism

Fn 29 py

lpM f ipN

M N

to each f : M — N in Mf,,, which covers f and is fiber wise a linear
isomorphism. If f is the embedding of an open subset of NV then this diagram
turns out to be a pullback diagram. We also point out that f +— F(f) maps
smoothly parameterized families to smoothly parameterized families, see [2],
14.8]. Assuming this property all vector bundle functors were classified by
[7]: They correspond to linear representations of higher jet groups, they are
associated vector bundles to higher order frame bundles, see also |2 14.8].

Examples of vector bundle functors are tangent and cotangent bundles,
tensor bundles, densities, M — L(TM,TM), and also the trivial bundle
M x R.

2.4. Pullback of sections. Let F' be a vector bundle functor on M f,, as
described in Let M be an m-manifold and let ¢; be a curve of local
diffeomorphisms through Ida; on M. Then the flow ¢, for fixed ¢, is a
diffeomorphism defined on an open subset U,, of M. The mapping

F(M) ~— F(U,,) ““L p(M)

lpM l lpM

M U,

is then a vector bundle isomorphism.
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We consider a section s € I'(F(M)) of the vector bundle (F(M),par, M)

and we define for ¢t € R pullback and push forward as
pis=F(p;)osopr, (p)us=(py)s=F(p)osop .
These are local sections of the bundle F(M). If ¢, is smooth curve of
diffeomorphisms these are global sections. For each x € M the value
(prs)(z) € F(M), = py;(2) is defined, if ¢ is small enough. So in the
vector space F'(M), the expression %|0(g0;" s)(z) makes sense and therefore
the section %|0(gpt)*s is globally defined and is an element of I'(F'(M)). If
¢ = FLI¥ is the flow of a vector field X on M this section
Lxs:= %|0(Flf()*s

is called the Lie derivative of s along X. It satisfies Lx Ly — Ly Lx = Lx,y]s
see [2, 6.20].

2.5. Lemma. [3, Lemma 6] Let ¢, be a smooth curve of local diffeomorphisms
through Idy; with first non-vanishing derivative k!X = 0F|ops. Then for any
vector bundle functor F and for any section s € I'(F(M)) we have the first
non-vanishing derivative

K'Lxs = OF|oo]s.

3. THE RESULT
For the following we consider only first derivatives instead of first vanish-
ing ones.

3.1. Corollary. Let ¢, be a smooth curve of (local) diffeomorphisms. Con-
sider the two time dependent vector fields

Xy = T%Z)l © Otltospr and Yy = Otleotpr © wgl

Then for any vector bundle functor F' and for any section s € I'(F(M)) we
have

(1) Orp(t) s = p(t) Ly s = Lxu) ¢(t)"s.
(2) Orp(t)es = Op(p(t) )" s = —p(t)xLx(1)s = —Ly 1) p(t)ss .

Proof. Let ¢y = ¢y, Yo wii4,, a smooth curve of (local) diffeomorphisms
through Idy;. We have

Otlopr = at|0%0t_01 O Ptity = TQO,Z)l 0 Otlowetto = TCP,; 0 Oltopr = Xy, -
By Lemma [2.5| we we get that
Lx,,5 = Oty @is = Ohliy (05, 0 01)*s = Dilee 0} (7,")"s
= Lx, 01,8 = 0t]t0g0,’{(<pt_01)*s which is part of .
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For the second part of (1)) we consider ¢; = @i14, 0 ¥y, ! another smooth
curve of local diffeomorphisms through Idy;. Here we have, again by Lemma

2.5,

OloPr = OtloPirto © Prg = Otlegspro s, = Yey -

Ly, s = Olo@is = Otlo(Prrty 00 ) s = Oelo(0r' ) F 1y s

= ((,0;)1)*615‘0@:4_1508 since (50;01)* :T(F(M)) — T'(F(M)) is bounded linear

= (90;)1)*875\,50 ¢} s which implies the second part of (T).

To show note first that

0= 0:(Id) = di(; o pr) = (Brpy ') 0 ot + Tpy ' 0 Brepy
Oi(pr ) = =T " o(Dupr) o o1

Tprody(p; ') = —(Owpr) o, " = =Y,

(Orpy ) opr = =T o(Bupr) = =Xy

Hence, replacing ¢ by ¢, Lin replaces X; by —Y; and Y; by —X; and

noting that (¢;)«s = (¢; *)*s transforms into (2). O
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