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Abstract: Half Lie groups exist only in infinite dimensions: They are

smooth manifolds and topological groups such that right translations are

smooth. Main examples are Sobolev H r -diffeomorphism groups of

compact manifolds, or C k -diffeomorphism groups, or semidirect products

of a Lie group with kernel an infinite dimensional representation space

(investigated by Marquis and Neeb). Here, we investigate mainly Banach

half Lie groups, the groups of their C k -elements, extensions, and right

invariant strong Riemannian metrics on them: Here surprisingly the full

Hopf Rinov theorem holds which is wrong in general even for Hilbert

manifolds.
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Half Lie groups

A right (left) half-Lie group is a smooth manifold, mainly infinite
dimensional, whose underlying topological space is a topological
group, such that right (left) translations are smooth. We shall
speak of Hilbert, Banach, Fréchet, etc. half-Lie groups to designate
the nature of the modeling vector space. A homomorphism of
half-Lie groups is a smooth group homomorphism.

Lie groups are right half-Lie groups and left half-Lie groups with
jointly smooth multiplication, with smooth inversion if there is no
implicit function theorem available. Every finite-dimensional
half-Lie group is a Lie group by a result of Segal 1948. Every
Banach half-Lie group with uniformly continuous multiplication is
already a Banach Lie group. This can be seen as a solution of
Hilbert’s 5th problem in infinite dimensions, due to Birkhoff 1938
and Enflo 1969, also Benjamini 1998. Marquis and Neeb 2018
have collected a long list of examples of half-Lie groups. We next
present two important special cases.



Diffeomorphism groups

The main motivating examples for the present investigation of
half-Lie groups are diffeomorphism groups with finite regularity.
These appear naturally in shape analysis and mathematical fluid
dynamics. If (M, g) is a finite-dimensional compact Riemannian
manifold or an open Riemannian manifold of bounded geometry,
then the diffeomorphism group DiffHs (M) of Sobolev regularity
s > dim(M)/2 + 1 is a half-Lie group. Likewise, the groups
DiffW s,p(M) for s > dim(M)/p + 1, and DiffC k (M) for 1 ≤ k < ∞
and M compact are half-Lie groups. However, they are not Lie
groups because left multiplication is non-smooth.



Representation theory

Let ρ : G → U(H) be a representation of a Banach Lie group G on
an infinite dimensional Hilbert space H, which is continuous as a
mapping G × H ∋ (g , h) 7→ ρ(g)h ∈ H. Then the right semidirect
product G ⋉ H with operations

(g1, h1).(g2, h2) = (g1g2, ρ(g
−1
2 )h1+h2), (g , h)−1 = (g−1,−ρ(g)h)

is a right half-Lie group. This class of examples has been studied
in detail by Marquis and Neeb [MarquisNeeb18]. In their work, the
roles of left and right translations interchanged compared to ours,
but this makes no difference as one may always pass to the group
of inverses.



Differentiable elements

Let G be a (Banach) right half-Lie group. Then, x ∈ G is called a
C k element if the left translations µx , µ

−1
x : G → G are C k . The

set of all C k elements of G is denoted by G k .

By the inverse function theorem, the C k property of µ−1
x follows

from the C k property of µx , provided that µx has an invertible
derivative at some (and hence any) point. However, we do not
know this. For this reason, we require µ−1

x to be C k . Next, we will
show that the set of C k elements in a Banach half-Lie group G is
again a Banach half-Lie group, provided that G carries a
right-invariant local addition, i.e.:
A smooth map τ : TG ⊇ V → G , defined on an open
neighborhood V of the 0-section in TG , such that τ(0x) = x for
all x ∈ G and (πG , τ) : V → G × G is a diffeomorphism onto its
open range.
τ is called right-invariant if Tµy (V ) = V and τ ◦ Tµy = µy ◦ τ
holds for all y ∈ G .



Theorem (differentiable elements). For any Banach right
half-Lie group G carrying a right-invariant local addition, the
following statements hold:

(a) For any k ∈ N, G k is a Banach half-Lie group.

(b) The tangent space TeG
k is the set of all X ∈ TeG such that

the right-invariant vector field RX : G ∋ x 7→ Teµ
x(X ) ∈ TG

is C k .

(c) The inclusion G k → G is smooth.

(d) For any ℓ ∈ N, G k+ℓ is a subset of (G k)ℓ.

Corollary. For any Banach half-Lie group G carrying a
right-invariant local addition, the set G∞ = ∩k∈NG

k of smooth
elements in G is an ILB (in a weak sense) manifold and a Lie
group.



Corollary. Let G be a Banach half-Lie group carrying a
right-invariant local addition. For any k ∈ N, the Lie bracket

[·, ·] : TeG
k+1 × TeG

k+1 → TeG
k

is well defined in the following three equivalent ways:

(a) Any vectors X ,Y ∈ TeG
k+1 extend uniquely to

right-invariant C 1 vector fields RX ,RY ∈ XC1(G k)G
k
, and

[X ,Y ] := dRY (e)(X )− dRX (e)(Y ), where the right-hand
side is interpreted in a chart around e ∈ G k .

(b) The derivation f 7→ RXRY f − RYRX f (e) on smooth
real-valued functions defined near e ∈ G k is the derivative in
the direction of a vector in TeG

k , which is denoted by [X ,Y ].

(c) The vector field RX has a C 1 flow FlRX : R× G k → G k , and
consequently, the derivative
[X ,Y ] := −∂t |0(FlRX

t )∗RY (e) ∈ TeG
k exists.



Regular half-Lie groups

Let G be a Banach right half-Lie group, and let F be a subset of
L1loc(R,TeG ). Then, G is called F-regular if for all X ∈ F , there

exists a unique solution g ∈ W 1,1
loc (R,G ) of the differential equation

∂tg(t) = Teµ
g(t)X (t), g(0) = e.

This solution will be denoted by Evol(X ), and its evaluation at
t = 1 by evol(X ). For F = C∞ we speak of regularity of G .

Any Banach Lie group G , and in particular every finite dimensional
Lie group, is regular. On half-Lie groups G the fields RX is not
smooth, even if X is smooth. However, RX is a time-dependent
C k vector field on G k . This is used in the following:

Corollary Let G be a Banach right half-Lie group carrying a
right-invariant local addition. Then, for any k ∈ N≥1 ∪∞, the half
Lie group G k is regular.



Tools for the proof of the theorem

Let U,V ,W be open in Banach spaces E ,F ,G .

▶ Jet composition • : Jk(V ,W )×V Jk(U,V ) → Jk(U,W )
satisfies ∥τ • σ∥ ≤ (1 + ∥τ∥)(1 + ∥σ∥k) and
∥τ̃ • σ̃ − τ • σ∥ ≤ ∥τ̃ − τ∥(1 + ∥σ̃∥k).

▶ Jet evaluation ⊙ : Jk(U,V )×U TU → Jk−1(TU,TV ), given
by jkx f ⊙ ξ = jk−1

ξ Tf , satisfies
∥σ ⊙ ξ∥ ≤ ∥ξ∥+ (k + 1)∥σ∥+ ∥ξ∥∥σ∥ and
∥σ̃ ⊙ ξ̃ − σ ⊙ ξ∥ ≤ ∥σ̃ − σ∥(k + ∥ξ̃∥) + ∥ξ̃ − ξ∥(1 + ∥σ∥).

▶ Jet inversion (·)−1 : Jk(U,V )inv → Jk(V ,U)inv is continuous.
▶ For any k ∈ N and right-invariant k-times differentiable vector

field X , the k-jet at y ∈ G is uniquely determined by the k-jet
at e ∈ G as follows: jky X = (jk+1

e µy ⊙ X (e)) • jke X • jky µy−1
.

▶ Let X and Y be right-invariant vector C k -fields on G . Then,
for y in a chart at e ∈ G , one has
∥jky X − jky Y ∥ ≤ ∥jke X − jke Y ∥p(∥jke X∥, ∥jke Y ∥, ∥jk+1

e µy∥, ∥jky µy−1∥)
for a polynomial p dep. only on k , in the norm induced from
TeG via the chart.



More tools

▶ The space XC k (G )G of right invariant C k -vector fields is
Banach with respect to the norm
∥X∥ := ∥X (e)∥TeG + · · ·+ ∥dkX (e)∥L(k)(TeG ,...,TeG ;TeG).

▶ Let G carry a right-invariant local addition. Then, for k ∈ N,
the space DiffC k (G )G of right invariant C k -diffeomorphisms
of G is a Banach manifold. For any g ∈ DiffC k (G )G , the
pull-back g∗ : DiffC k (G )G ∋ f 7→ f ◦ g ∈ DiffC k (G )G is
smooth. Moreover, the evaluation map eve : DiffC k (G )G → G
is smooth.

▶ Let G carry a right-invariant local addition. Then, for any
k ∈ N, the space DiffC k (G )G is a topological group.

▶ Let G carry a right-invariant local addition. Then, the set
Jke (G ,G )G =

{
jke f : f ∈ DiffC k (G )G

}
is a submanifold of

Jke (G ,G ), and DiffC k (G )G is diffeomorphic to Jke (G ,G )G via
the map jke : DiffC k (G )G ∋ f 7→ jke f ∈ Jke (G ,G )G .



Riemannian metrics

Theorem. Let g be a weak Riemannian metric on a convenient
manifold M. Then the following are equivalent:

(a) g is a strong Riemannian metric on M.

(b) M is a Hilbert manifold and g∨ : TM → T ∗M is surjective.

(c) M is a Hilbert manifold and g∨ : TM → T ∗M is a vector
bundle isomorphism.

Theorem Let G be a Banach half-Lie group with a right-invariant
Riemannian metric. Assume that left-translation by any x ∈ G is
Lipschitz continuous with respect to the geodesic distance d , i.e.,

|µx | := inf {C ∈ R+ : d(xx0, xx1) ≤ Cd(x0, x1),∀x0, x1 ∈ G} < ∞ .

Then the group elements with vanishing geodesic distance to the
identity form a normal subgroup.
If the Riemannian metric is strong then the geodesic distance is
always non-degenerate, i.e., the normal subgroup of elements with
vanishing geodesic distance is the trivial subgroup.



Hopf-Rinow

Theorem. Let G be a connected half Lie group equipped with a
right invariant strong Riemannian metric g , and let
d : G × G → R+ be the induced geodesic distance on G .
Then the following completeness properties hold for (G , g):

(a) the space (G , d) is a complete metric space, i.e., every
d-Cauchy sequences converge in G ;

(b) the exponential map expge : TeG → G is defined on all TeG ;

(c) the exponential map expg : TG → G is defined on all of TG ;

(d) the space (G , g) is geodesically complete, i.e., every geodesic
is maximally definable on all of R.

If also G is L2-regular and for each x ∈ G the sets
Ax :=

{
ξ ∈ L2([0, 1],TeG ) : evol(ξ) = x

}
⊂ L2([0, 1],TeG )

are weakly closed. Then

(e) the space (G , g) is geodesically convex, i.e., any two points in
G can be connected by a geodesic of minimal length.



Extensions

Let N and G be right half Lie groups. A right half Lie group E is
called a smooth extension of G over N if we have a short exact
sequence of smooth group homomorphisms

e → N
i−→ E

p−→ G → e

such that i and p are smooth, and one of the following two
equivalent conditions is satisfied:

1. p admits a local smooth section s near e (equivalently near
any point), and i is initial [KM97, 27.11]

2. i admits a local smooth retraction r near e (equivalently near
any point), and p is final [KM97, 27.15].

Of course, by s(p(x)).i(r(x)) = x ∈ E the two conditions are
equivalent, and then E is locally diffeomorphic to N × G via (r , p)
with local inverse (i ◦ pr1).(s ◦ pr2).



Not every smooth exact sequence of even Lie groups admits local
sections as required above. Let, for example, N be a closed linear
subspace in a convenient vector space E which is not a direct
summand, and let G be E/N. Then the tangent mapping at 0 of a
local smooth splitting would make N a direct summand.

Two smooth extensions are defined to be equivalent if there exists
a diffeomorphic isomorphism φ fitting commutatively into the
diagram

e // N
i // E

p //

φ
��

G // e

e // N
i ′ // E ′ p′ // G // e.

Note that if a smooth homomorphism φ exists, then it is an
isomorphism, and if additionally E is a Banach Lie group, then φ
has a smooth inverse.



Split extensions

A smooth extension is called split if there exists a section
s : G → E of p which is smooth near e and is a homomorphism of
groups. Automatically, s is then globally smooth. Then, one gets a
right action ρ : N × G → N by iρ(n, g) = s(g−1).i(n).s(g)
describing a semidirect product. The action n 7→ ρ(n, g) is smooth
for all g if the extension satifies condition (C) of the following two
conditions on an extension.

(C) For each x ∈ E , conjugation in E induces a smooth
automorphism of the normal subgroup N; i.e., n 7→ x .i(n).x−1

induces a smooth map in Aut(N).

(L) The normal subgroup N is a Lie group.

Semidirect products over group representations (see above) satisfy
both conditions (C) and (L).



Theorem (Semi-direct products)

Let ρ : N × G → N be the right action of a Banach right half-Lie
group G on a Banach right half-Lie group N. Assume that ρ is
continuous, and ρ(·, g) : N → N is a smooth automorphism, for all
g ∈ G .

(a) The semidirect product G ⋉ N with group operations

(g , n).(g ′, n′) = (gg ′, ρ(n, g ′)n′), (g , n)−1 = (g−1, ρ(n−1, g−1))

is a Banach right half-Lie group.

(b) The set of C k elements in G ⋉ N is given by
(G ⋉ N)k = G k ⋉ Nk,ρ, where

Nk,ρ =
{
n ∈ Nk : ρ(n, g ′)n′ is C k in (g ′, n′) ∈ G ⋉ N

}
= ({e} × N) ∩ (G ⋉ N)k .

(c) The set Nk,ρ is a Banach manifold.



Non-split extensions

For non split extensions we require both conditions (C) and (L).
So N is assumed to a Lie group; in contrast, E and G are merely
right half Lie groups. Then, a smooth extension is in particular a
principal N-bundle E → G , and existence of a continuous section
implies that the bundle is trivial. So we may choose a (not
continuous) section s : G → E with s(e) = e which is smooth near
e, on an open e-neighborhood U ⊂ G say, which induces mappings

α : G → Aut(N), αx(n) = s(x)−1.n.s(x),

f : G × G → N, f (x , y) = s(xy)−1s(x)s(y),

where Aut(N) is the group of smooth group automorphisms of N;
Note that here we need condition (C). The mapping
α : N × G → N is continuous on U × N, and f is continuous near
U × U. We cannot do better since E is a right half Lie group only.
By the definition of α and by associativity, we have the following
properties:



αx ◦ αy = conjf (y ,x)−1 ◦ αyx ,

f (xy , z)αz(f (x , y)) = f (x , yz)f (y , z),

f (e, e) = f (x , e) = f (e, x) = e,

where conjh(n) = hnh−1 is conjugation by h, an inner
automorphism. Thus, α induces a group anti-homomorphism
ᾱ : G → Aut(N)/ Int(N) where Int(N) is the normal subgroup of
all inner automorphisms in Aut(N). In terms of (α, f ) the group
structure on E is given by

s(x)m.s(y)n = s(x)s(y)s(y)−1ms(y)n = s(xy)f (x , y)αy (m)n,

(s(x)m)−1 = s(x−1)αx−1
(m−1)f (x , x−1)−1

Since E is a right half Lie group this implies first that
(x ,m) 7→ f (x , y)αy (m)n ∈ N is smooth near (e, e); since N is a
Lie group and m 7→ αy (m) is smooth we conclude that
x 7→ f (x , y) is smooth on U.



Reconstruction of the half Lie group structure

The half Lie group structure on E can be recontructed from the
extension data (α, f ) with the local smoothness assumptions near
e from above as follows: Choose e ∈ V ⊂ U open with V−1 = V
and V .V ⊂ U, and let Ṽ := p−1(V ). We then have:
α : U → Aut(N) is smooth, and f : V × V → N is continuous and
x 7→ f (x , y) is smooth and the group multiplication is continuous
on Ṽ × Ṽ → Ũ and right translations are smooth µy : Ṽ → Ũ for
all y ∈ Ṽ . We then use (Ṽ .x , µx−1

: Ṽ .x → Ṽ )x∈E as atlas for E .
The chart changes are µy−1 ◦ µx = µx .y−1

: (Ṽ .x ∩ Ṽ .y).x−1 =
Ṽ ∩ (Ṽ .y .x−1) → Ṽ ∩ (Ṽ .x .y−1), so they are smooth. The
resulting smooth manifold structure on E has the property that
p : E → G and i : N → E are smooth, the group structure maps µ
and ν are continuous with smooth left translations. Moreover E is
Hausdorff: Either p(x) = p(y) and then we can separate them
already in one chart x .Ṽ = p−1(p(x).V ), or we can separate them
with open sets of the form p−1(U1) and p−1(U2).



The converse construction

Given a Lie group N and a right half Lie group G , we consider
pairs (α, f ) of mappings such that

α : G → Aut(N) with α̂ : N × G → N continuous near {e} × N

f : G × G → N continuous near (e, e) and

x 7→ f (x , y) smooth near e for each y near e

with the properties

αx ◦ αy = conjf (x ,y)−1 ◦αyx ,

f (e, e) = f (x , e) = f (e, y) = e,

e = f (xy , z)−1f (x , yz)f (y , z)αz(f (x , y)−1)



Theorem. In the above notation, the following assertions hold:

▶ Every such pair (α, f ) defines a smooth right half Lie group
extension E of G over N, given by the set E = G × N, with
the group structure

(x ,m).(y , n) = (xy , f (x , y)αy (m)n),

(x ,m)−1 = (x−1, αx−1
(m−1)f (x , x−1)−1).

The topology and the manifold structure on the extension
then is the one extended by right translations from a suitable
neigborhood of e, as described above. Up to isomorphism,
every extension of G over N can be so obtained.

▶ Two data (α, f ) and (α1, f1) define equivalent extensions if
there exists a mapping b : G → N (smooth near e) such that

αx
1 = conjb(x)−1 ◦αx ,

f1(x , y) = b(xy)−1f (x , y)αy (b(x))b(y).

The induced smooth isomorphism E → E1 between the
extensions defined by (α, f ) and (α1, f1) is given by
(x , n) 7→ (x , b(x)n).



Theorem, continued.

▶ A datum (α, f ) describes a splitting extension (a semidirect
product) if and only if it is equivalent to a datum (α1, f1),
where f1 is constant = e. This is the case if and only if there
exists a map b : G → N (smooth near e) with

f (x , y) = b(xy)−1αy (b(x))f (x , y)b(y). (1)

Note that for such a pair (α1, f1 = e) the map α1 must be a
homomorphism and thus is continuous everywhere.



Smooth extension and C r -elements

Let e → N
i−→ E

p−→ G → e be a smooth extension of right half Lie
groups. In general, the tangent bundle of a half Lie group is not a
group since we cannot differentiate the multiplication µ. But we
get a sequence of vector bundles carrying right actions of the base
half Lie groups

TN
Ti //

πN

��

TE
Tp //

πE

��

TG

πG

��
e // N

i // E
p // G // e

• which is fiberwise exact in the sense that Tzp : TzE → Tp(z)G is
onto with kernel ker(Tzp) = Tµz(Te i(TeN)) and
Tni : TnN → Ti(n)N is injective with im(Tni) = ker(Ti(n)p) for all
z ∈ E and n ∈ N.



• A right invariant local addition τE : TE ⊃ V → E respects i(N)
if we have τE (T (i(N)) ∩ V ) ⊂ i(N). Then τE induces right
invariant local additions τN : TN ⊃ i−1(V ) → N and
τG : TG ⊃ p(V ) → G satisfying p ◦ τE = τG ◦ Tp and
i ◦ τN = τN ◦ Ti . Namely, we get τN by assumption and τG .

For each r ∈ Z>0 we have a functor G 7→ G r from the category of
half Lie groups and smooth homomorphisms to the category of
groups. Thus we get the sequence of the groups of C r -elements

e → N r i−→ E r p−→ G r → e, which in general is not exact. If E
admits a right invariant local addition respecting i(N), then this is
a sequence of half Lie groups and smooth homomorphisms.

• Let x ∈ E r , so µx : E → E is C r . Then
p ◦ µx = µp(x) ◦ p : E → G is C r and since p is final,
µp(x) : G → G is C r . Thus p(x) ∈ G r .

• If n ∈ i−1(E r ) ⊂ N, i.e, i(n) ∈ E r ∩ i(N) then
i ◦ µn = µi(n) ◦ i : N → E is C r and since i is initial, µn : N → N

is C r . Thus i−1(E k) ⊆ N r .



• In the setting of non split extensions (so N is a Lie group and all
conjugations in E are smooth on N) we have

i−1(E r ) = N r ,α = {m ∈ N : α(m, ·) : G → N is C k near e ∈ G}
E r/(i(N) ∩ E r ) ⊆ G r ,f = {x ∈ G r : f (x , ·) : G → N is C r near e ∈ G} .

In general, G r ,f is not a group.

Theorem. In this setting (so N is a Lie group and all conjugations
in E are smooth on N), and if E admits a right invariant local
addition respecting i(N), the following sequence is is again a
smooth extension. An extension datum (α, f ) induces by
restriction a corresponding extension datum.

e // i−1(E r ) = N r ,α i //
� _
��

E r p // E r/N r ,α
� _
��

// e

N G r ,f � � // G r



Thank you for listening.


