Homework 4

Algorithms for Elementary Algebraic Geometry

Math 191, Fall Quarter 2007
Due Friday, November 30, 2007.

1. Compute $S(f, g)$ using the lex ordering:
(a) $f=4 x^{2} z-7 y^{2}, g=x y z^{2}+3 x z^{4}$;
(b) $f=x y+z^{3}, g=z^{2}-3 z$.
2. Find a Gröbner basis, w.r.t. the lex ordering, of $I=\left\langle x-z^{4}, y-z^{5}\right\rangle$.
3. Determine whether $f=x y^{3}-z^{2}+y^{5}-z^{3}$ is in $I=\left\langle-x^{3}+y, x^{2} y-z\right\rangle$.
4. Let I be a principal ideal of $S=k\left[x_{1}, \ldots, x_{n}\right]$, that is, I is generated by a single polynomial $f \in S$. Show that any finite subset of I containing f is a Gröbner basis for I.
5. Let $S=k[a, b, c, d]$. Let $I=\left\langle c^{5}-b^{3} d^{2}, a^{2} d-b c^{2}, a^{2} c^{3}-b^{4} d, a^{4} c-b^{5}\right\rangle$.
(a) Show that the given generating set is a Gröbner basis for I with respect to the reverse lexicographic ordering with $a>b>c>d$.
(b) Compute the Gröbner basis for I with respect to the lexicographic ordering of the variables with $a>b>c>d$.
6. Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ equipped with the lexicographic monomial ordering. Let I be an ideal of S.
(a) Show that if I contains a polynomial which only involves powers of x_{n}, then there must be such a polynomial in the reduced Gröbner basis for I.
(b) Suppose that $V(I)$ is a finite set. First show that $I(V(I))$ must contain a polynomial only involving powers of x_{n}. We will prove later in the course that (since we work over the complex numbers) the ideal $I(V(I))$ is the radical of I. (This is the Hilbert Nullstellensatz.) Assuming this fact, also show that I contains a polynomial containing only powers of x_{n}.
(c) If we know a polynomial in I containing only powers of one variable, we can solve for the roots of this polynomial (symbolically or numerically), and use this to reduce to a simpler problem. Use this idea to solve the system of equations:

$$
\begin{aligned}
x^{2}-3 x y+y^{2} & =0 \\
x^{3}-8 x+3 y & =0 \\
x^{2} y-3 x+y & =0
\end{aligned}
$$

Give your answer symbolically (that is, in terms of radicals).

