Homework 4

Algorithms for Elementary Algebraic Geometry Math 191, Fall Quarter 2007

Due Friday, November 2, 2007.

- 1. For \mathbb{N} with its usual ordering, between any two integers there are only finitely many other integers. Is it true that for every monomial ordering of $k[x_1, \ldots, x_n]$, there are only finitely many monomials between any two given monomials? Is it true for the greex ordering?
- 2. A basis $B = \{x^{\alpha(1)}, \dots, x^{\alpha(s)}\}$ for a monomial ideal I of $k[x_1, \dots, x_n]$ is said to be **minimal** if no proper subset of B generates I. Prove that every monomial ideal has a minimal basis, and that this minimal basis is unique. What is the minimal basis of the monomial ideal

$$I = \langle x^2, x^5, xy^2, x^3y^3, y \rangle$$

of k[x, y]?

3. Let $u = (u_1, \ldots, u_n)$ be a vector in \mathbb{R}^n such that u_1, \ldots, u_n are positive and \mathbb{Q} -linearly independent. (We say that u is an **independent weight vector.**) For $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ set $u \cdot \alpha = u_1\alpha_1 + \cdots + u_n\alpha_n$. For $\alpha, \beta \in \mathbb{N}^n$ define

$$x^{\alpha} <_{u} x^{\beta} \qquad :\iff \qquad \alpha <_{u} \beta.$$

- (a) Show that $<_u$ is a monomial ordering. (Hint: Where does your argument use the linear independence of u_1, \ldots, u_n ?)
- (b) Show that $u = (1, \sqrt{2})$ is an independent weight vector. (So $<_u$ is a monomial ordering of k[x, y].)
- 4. Let $u = (u_1, \ldots, u_n)$ be a vector in \mathbb{R}^n such that $u_1, \ldots, u_n \ge 0$. Suppose $<_{\sigma}$ is a monomial ordering for $k[x_1, \ldots, x_n]$. Then for $\alpha, \beta \in \mathbb{N}^n$ define

$$x^{\alpha} <_{\sigma, u} x^{\beta} \qquad : \Longleftrightarrow \qquad u \cdot \alpha < u \cdot \beta, \text{ or } u \cdot \alpha = u \cdot \beta \text{ and } x^{\alpha} <_{\sigma} x^{\beta}.$$

- (a) Show that $<_{\sigma,u}$ is a monomial ordering.
- (b) Find u such that $<_{lex,u}$ is the greex ordering.