Homework 3

Algorithms for Elementary Algebraic Geometry

Math 191, Fall Quarter 2007
Due Friday, October 26, 2007.

1. In words, sketch an algorithm which solves the ideal membership problem in $k[x]$, that is, a procedure which, given polynomials f and f_{1}, \ldots, f_{s} in $k[x]$, decides whether $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$. Use this method, with help from a computer algebra system, to decide whether in $\mathbb{Q}[x]$ we have

$$
x^{2}-4 \in\left\langle x^{3}+x^{2}-4 x-4, x^{3}-x^{2}-4 x+4, x^{3}-2 x^{2}-x+2\right\rangle .
$$

2. Use a computer algebra package to compute

$$
\operatorname{GCD}\left(x^{3}-1, x^{6}-1\right), \quad \operatorname{GCD}\left(x^{19}-1, x^{7}-1\right), \quad \operatorname{GCD}\left(x^{99}-1, x^{27}-1\right)
$$

Can you conjecture a formula for $\operatorname{GCD}\left(x^{m}-1, x^{n}-1\right)$ for general m and n ? (You do not need to prove your conjecture.)
3. Let $f \in \mathbb{C}[x]$ be nonzero.
(a) Show that f factors completely. That is, we can write

$$
f=c\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{m}\right)^{r_{m}}
$$

for some nonzero $c \in \mathbb{C}$, pairwise distinct $a_{1}, \ldots, a_{m} \in \mathbb{C}$ and positive integers r_{1}, \ldots, r_{m}.
(b) Show that $V(f)=\left\{a_{1}, \ldots, a_{m}\right\}$.
(c) Let $f_{\text {red }}:=\left(x-a_{1}\right) \cdots\left(x-a_{m}\right)$ (the square-free part of $\left.f\right)$. Show that $I(V(f))=\left\langle f_{\text {red }}\right\rangle$.
(d) The formal derivative of a polynomial

$$
p=p_{0}+p_{1} x+\cdots+p_{d} x^{d} \in \mathbb{C}[x]
$$

is defined to be the polynomial

$$
p^{\prime}=p_{1}+2 p_{2} x+\cdots+d p_{d} x^{d-1}
$$

Prove that

$$
\operatorname{GCD}\left(f, f^{\prime}\right)=\left(x-a_{1}\right)^{r_{1}-1} \cdots\left(x-a_{m}\right)^{r_{m}-1}
$$

(Exercises 13 and 14 in Section I. 5 of the book provide more hints.)
(e) Show that $f_{\text {red }}=\frac{f}{\operatorname{GCD}\left(f, f^{\prime}\right)}$. This means that we can compute $f_{\text {red }}$ without factoring f-purely symbolically!
(f) What is

$$
I\left(V\left(x^{11}-x^{10}+2 x^{8}-4 x^{7}+3 x^{5}-3 x^{4}+x^{3}+3 x^{2}-x-1\right)\right) ?
$$

(You may want to use a computer algebra package.)

