Homework 3

Algorithms for Elementary Algebraic Geometry

Math 191, Fall Quarter 2007
Solutions.

1. Here is an an algorithm to solve the ideal membership problem in $k[x]$: Let polynomials f and f_{1}, \ldots, f_{s} in $k[x]$ be given. Compute a greatest common divisor g of f_{1}, \ldots, f_{s} using the Euclidean Algorithm. If g divides f, then output " $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$ "; otherwise output " $f \notin\left\langle f_{1}, \ldots, f_{s}\right\rangle$." (This is justified by $\langle g\rangle=\left\langle f_{1}, \ldots, f_{s}\right\rangle$.) Now we use this procedure and Maple to decide whether in $\mathbb{Q}[x]$ we have

$$
x^{2}-4 \in\left\langle x^{3}+x^{2}-4 x-4, x^{3}-x^{2}-4 x+4, x^{3}-2 x^{2}-x+2\right\rangle .
$$

First we compute
$>\operatorname{gcd}\left(x^{\wedge} 3+x^{\wedge} 2-4 * x-4, x^{\wedge} 3-x^{\wedge} 2-4 * x+4\right)$;

$$
\mathrm{x}^{2}-4
$$

and then

```
> gcd(x^2-4, x^3-2*x^2-x+2);
```

$$
x-2
$$

Hence
$g=\operatorname{GCD}\left(x^{3}+x^{2}-4 x-4, x^{3}-x^{2}-4 x+4, x^{3}-2 x^{2}-x+2\right)=x-2$, and since g divides $f=x^{2}-4=(x+2)(x-2)$, we see that f lies in the ideal in question.
2. Our trusted companion Maple gives us:
$>\operatorname{gcd}\left(x^{\wedge} 3-1, x^{\wedge} 6-1\right)$;

$$
\begin{gathered}
3 \\
\mathrm{x}^{3}-1 \\
\mathrm{x}-1 \\
9 \\
\mathrm{x}^{2}-1
\end{gathered}
$$

$>\operatorname{gcd}\left(x^{\wedge} 19-1, x^{\wedge} 7-1\right)$;
$>\operatorname{gcd}\left(x^{\wedge} 99-1, x^{\wedge} 27-1\right)$;

Hence we are tempted to conjecture that in general,

$$
\operatorname{GCD}\left(x^{m}-1, x^{n}-1\right)=x^{d}-1
$$

where $d>0$ is the greatest common divisor of the integers m and n.
3. Let $f \in \mathbb{C}[x], f \neq 0$.
(a) The proof is by induction on $d=\operatorname{deg}(f)$. If $\operatorname{deg}(f)=0$, then f is a constant, so $f=c$ is a factorization of the desired form. Suppose that $d>0$, and the claim is true for all polynomials of degree less than d. Assume that f has degree d. By the Fundamental Theorem of Algebra, when f is non-constant, f has a zero, say a, in $\mathbb{C}: f(a)=0$. Now the Division Algorithm yields that

$$
f(x)=g(x)(x-a)+r(x)
$$

where $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(x-a)=1$, so r is a constant. Thus $0=f(a)=g(a)(a-a)+r$, which implies that $f=(x-a) g$. Since

$$
d=\operatorname{deg}(f)=\operatorname{deg}(g)+\operatorname{deg}(x-a)=\operatorname{deg}(g)+1>\operatorname{deg}(g)
$$

by inductive hypothesis applied to g, there is a factorization of g in the form

$$
g=c\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{m}\right)^{r_{m}}
$$

where $c \in \mathbb{C}$ is nonzero, and a_{1}, \ldots, a_{m} are pairwise distinct. So

$$
f=c(x-a)\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{m}\right)^{r_{m}} .
$$

If a, a_{1}, \ldots, a_{m} are pairwise distinct, this is a factorization of f in the required form. If $a=a_{i}$ for some i then

$$
f=c\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{i}\right)^{r_{i}+1} \cdots\left(x-a_{m}\right)^{r_{m}}
$$

is the desired factorization.
[Note that there was still another small inaccuracy in how the problem was formulated: instead of r_{1}, \ldots, r_{m} non-negative, they should be required to be positive!]
(b) Clearly if $a \in\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, then $f(a)=0$. If $a \notin\left\{a_{1}, \ldots a_{m}\right\}$ then $f(a)=c\left(a-a_{1}\right)^{r_{1}} \cdots\left(a-a_{m}\right)^{r_{m}}$ is the product of nonzero elements of \mathbb{C}, so is nonzero. Thus $V(f)=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.
(c) Since $f_{\text {red }}\left(a_{i}\right)=0$ for $1 \leq i \leq m$, we have $f_{\text {red }} \in I(V(f))$. For the reverse inclusion, let $g \in I(V(f))$. Then $g\left(a_{i}\right)=0$ for $1 \leq i \leq m$. We claim that g is a multiple of $f_{\text {red }}$. The proof is by induction on the size m of $V(f)$. If $m=1$, then $f_{\text {red }}=x-a_{1}$, and the Division Algorithm implies that that

$$
g=q\left(x-a_{1}\right)+r
$$

where r is a constant; the fact that $g\left(a_{1}\right)=0$ means that $r=0$, so g is a multiple of $x-a_{1}$. Now suppose that the claim is true if $V(f)<m$. The polynomial

$$
f_{1}:=\left(x-a_{1}\right) \cdots\left(x-a_{m-1}\right)
$$

satisfies $V\left(f_{1}\right)=\left\{a_{1}, \ldots, a_{m-1}\right\}$; hence we have $I\left(V\left(f_{1}\right)\right)=\left\langle f_{1}\right\rangle$ since $\left(f_{1}\right)_{\text {red }}=f_{1}$. Since $g\left(a_{i}\right)=0$ for $1 \leq i \leq m-1$, we know that $g=f_{1} h$ where $h \in \mathbb{C}[x]$. Since $g\left(a_{m}\right)=0$ but $f_{1}\left(a_{m}\right)=$ $\left(a_{l}-a_{m}\right) \cdots\left(a_{m}-a_{m-1}\right) \neq 0$, we must have $h\left(a_{m}\right)=0$, and so by the base case $h=\left(x-a_{m}\right) p$ for some $p \in \mathbb{C}[x]$. Thus

$$
g=f_{1} h=\left(x-a_{1}\right) \ldots\left(x-a_{m-1}\right)\left(x-a_{m}\right) p
$$

is a multiple of $f_{\text {red }}$. This shows that $I(V(f)) \subseteq\left\langle f_{\text {red }}\right\rangle$, and so the two ideals are equal.
(d) One first checks by computation that the operation $p \mapsto p^{\prime}$ satisfies the usual properties of the derivative: for all $p, q \in \mathbb{C}[x]$ we have

$$
(p+q)^{\prime}=p^{\prime}+q^{\prime}, \quad(p q)^{\prime}=p^{\prime} q+p q^{\prime} \quad(\text { Product Rule })
$$

This implies that $\left(p^{n}\right)^{\prime}=n p^{n-1} p^{\prime}$ for every positive integer n and $p \in \mathbb{C}[x]$. (I omit some details here.) Now applying the product rule to

$$
f=c\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{m}\right)^{r_{m}}
$$

we obtain

$$
\begin{aligned}
f^{\prime}= & c r_{1}\left(x-a_{1}\right)^{r_{1}-1}\left(x-a_{2}\right)^{r_{2}} \cdots\left(x-a_{m}\right)^{r_{m}}+ \\
& \quad c r_{2}\left(x-a_{1}\right)^{r_{1}}\left(x-a_{2}\right)^{r_{2}-1} \cdots\left(x-a_{m}\right)^{r_{m}}+\cdots+ \\
& c r_{m}\left(x-a_{1}\right)^{r_{1}}\left(x-a_{2}\right)^{r_{2}} \cdots\left(x-a_{m}\right)^{r_{m}-1} \\
= & c\left(x-a_{1}\right)^{r_{1}} \cdots\left(x-a_{m}\right)^{r_{m}}\left(\frac{r_{1}}{x-a_{1}}+\cdots+\frac{r_{m}}{x-a_{m}}\right) \\
= & c\left(x-a_{1}\right)^{r_{1}-1} \cdots\left(x-a_{m}\right)^{r_{m}-1} H(x)
\end{aligned}
$$

where

$$
H=\left(x-a_{1}\right) \cdots\left(x-a_{m}\right)\left(\frac{r_{1}}{x-a_{1}}+\cdots+\frac{r_{m}}{x-a_{m}}\right) .
$$

Then H is a polynomial (why?) such that $H\left(a_{i}\right) \neq 0$ for any i. This implies that

$$
\operatorname{GCD}\left(f, f^{\prime}\right)=\left(x-a_{1}\right)^{r_{1}-1} \cdots\left(x-a_{m}\right)^{r_{m}-1}
$$

(e) This follows from (a) and (d). [Note that strictly speaking, this equation is only true "up to multiplication by c." Perhaps I should have assumed from the beginning that f is monic, since then $c=1$.]
(f) Using Maple, we compute the formal derivative of

$$
f=x^{11}-x^{10}+2 x^{8}-4 x^{7}+3 x^{5}-3 x^{4}+x^{3}+3 x^{2}-x-1
$$

as follows:

```
> f := x^11-x^10+2*x^8-4*x^7+3*x^5-3*x^4+x^3+3*x^2-x-1;
    11 10 }1
    x - x + 2x-4x + 3x-3x + x + 3x-x - 1
> fprime := diff(f, x);
            10
    11x - 10x + 16x-28x + 15x-12x + 3x + 6 x - 1
```

Now we compute $f_{\text {red }}$ using the formula in (e):
> quo(f, gcd(f, fprime), x);

$$
x^{5}+x^{2}-x-1
$$

Hence by (c):

$$
I\left(V\left(x^{11}-x^{10}+2 x^{8}-4 x^{7}+3 x^{5}-3 x^{4}+x^{3}+3 x^{2}-x-1\right)\right)=\left\langle x^{5}+x^{2}-x-1\right\rangle .
$$

