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Solutions.

1. Here is an an algorithm to solve the ideal membership problem in k[x]: Let
polynomials f and f1, . . . , fs in k[x] be given. Compute a greatest common
divisor g of f1, . . . , fs using the Euclidean Algorithm. If g divides f , then
output “f ∈ 〈f1, . . . , fs〉”; otherwise output “f /∈ 〈f1, . . . , fs〉.” (This is
justified by 〈g〉 = 〈f1, . . . , fs〉.) Now we use this procedure and Maple to
decide whether in Q[x] we have

x2 − 4 ∈ 〈x3 + x2 − 4x− 4, x3 − x2 − 4x + 4, x3 − 2x2 − x + 2〉.

First we compute

> gcd(x^3+x^2-4*x-4, x^3-x^2-4*x+4);
2
x - 4

and then

> gcd(x^2-4, x^3-2*x^2-x+2);
x - 2

Hence

g = GCD(x3 + x2 − 4x− 4, x3 − x2 − 4x + 4, x3 − 2x2 − x + 2) = x− 2,

and since g divides f = x2 − 4 = (x + 2)(x− 2), we see that f lies in the
ideal in question.

2. Our trusted companion Maple gives us:

> gcd(x^3-1, x^6-1);
3
x - 1

> gcd(x^19-1, x^7-1);
x - 1

> gcd(x^99-1, x^27-1);
9
x - 1

Hence we are tempted to conjecture that in general,

GCD(xm − 1, xn − 1) = xd − 1

where d > 0 is the greatest common divisor of the integers m and n.



3. Let f ∈ C[x], f 6= 0.

(a) The proof is by induction on d = deg(f). If deg(f) = 0, then f is a
constant, so f = c is a factorization of the desired form. Suppose that
d > 0, and the claim is true for all polynomials of degree less than
d. Assume that f has degree d. By the Fundamental Theorem of
Algebra, when f is non-constant, f has a zero, say a, in C: f(a) = 0.
Now the Division Algorithm yields that

f(x) = g(x)(x− a) + r(x),

where r = 0 or deg(r) < deg(x − a) = 1, so r is a constant. Thus
0 = f(a) = g(a)(a− a) + r, which implies that f = (x− a)g. Since

d = deg(f) = deg(g) + deg(x− a) = deg(g) + 1 > deg(g),

by inductive hypothesis applied to g, there is a factorization of g in
the form

g = c(x− a1)r1 · · · (x− am)rm

where c ∈ C is nonzero, and a1, . . . , am are pairwise distinct. So

f = c(x− a)(x− a1)r1 · · · (x− am)rm .

If a, a1, . . . , am are pairwise distinct, this is a factorization of f in the
required form. If a = ai for some i then

f = c(x− a1)r1 · · · (x− ai)ri+1 · · · (x− am)rm

is the desired factorization.

[Note that there was still another small inaccuracy in how the prob-
lem was formulated: instead of r1, . . . , rm non-negative, they should
be required to be positive!]

(b) Clearly if a ∈ {a1, a2, . . . , am}, then f(a) = 0. If a 6∈ {a1, . . . am}
then f(a) = c(a − a1)r1 · · · (a − am)rm is the product of nonzero
elements of C, so is nonzero. Thus V (f) = {a1, a2, . . . , am}.

(c) Since fred(ai) = 0 for 1 ≤ i ≤ m, we have fred ∈ I(V (f)). For the
reverse inclusion, let g ∈ I(V (f)). Then g(ai) = 0 for 1 ≤ i ≤ m.
We claim that g is a multiple of fred. The proof is by induction on
the size m of V (f). If m = 1, then fred = x − a1, and the Division
Algorithm implies that that

g = q(x− a1) + r,

where r is a constant; the fact that g(a1) = 0 means that r = 0,
so g is a multiple of x − a1. Now suppose that the claim is true if
V (f) < m. The polynomial

f1 := (x− a1) · · · (x− am−1)



satisfies V (f1) = {a1, . . . , am−1}; hence we have I(V (f1)) = 〈f1〉
since (f1)red = f1. Since g(ai) = 0 for 1 ≤ i ≤ m − 1, we know
that g = f1h where h ∈ C[x]. Since g(am) = 0 but f1(am) =
(al − am) · · · (am − am−1) 6= 0, we must have h(am) = 0, and so by
the base case h = (x− am)p for some p ∈ C[x]. Thus

g = f1h = (x− a1) . . . (x− am−1)(x− am)p

is a multiple of fred. This shows that I(V (f)) ⊆ 〈fred〉, and so the
two ideals are equal.

(d) One first checks by computation that the operation p 7→ p′ satisfies
the usual properties of the derivative: for all p, q ∈ C[x] we have

(p + q)′ = p′ + q′, (pq)′ = p′q + pq′ (Product Rule).

This implies that (pn)′ = npn−1p′ for every positive integer n and
p ∈ C[x]. (I omit some details here.) Now applying the product rule
to

f = c(x− a1)r1 · · · (x− am)rm

we obtain

f ′ = cr1(x− a1)r1−1(x− a2)r2 · · · (x− am)rm+

cr2(x− a1)r1(x− a2)r2−1 · · · (x− am)rm + · · ·+
crm(x− a1)r1(x− a2)r2 · · · (x− am)rm−1

= c(x− a1)r1 · · · (x− am)rm

(
r1

x− a1
+ · · ·+ rm

x− am

)
= c(x− a1)r1−1 · · · (x− am)rm−1H(x)

where

H = (x− a1) · · · (x− am)
(

r1

x− a1
+ · · ·+ rm

x− am

)
.

Then H is a polynomial (why?) such that H(ai) 6= 0 for any i. This
implies that

GCD(f, f ′) = (x− a1)r1−1 · · · (x− am)rm−1.

(e) This follows from (a) and (d). [Note that strictly speaking, this
equation is only true “up to multiplication by c.” Perhaps I should
have assumed from the beginning that f is monic, since then c = 1.]

(f) Using Maple, we compute the formal derivative of

f = x11 − x10 + 2x8 − 4x7 + 3x5 − 3x4 + x3 + 3x2 − x− 1

as follows:



> f := x^11-x^10+2*x^8-4*x^7+3*x^5-3*x^4+x^3+3*x^2-x-1;
11 10 8 7 5 4 3 2

x - x + 2 x - 4 x + 3 x - 3 x + x + 3 x - x - 1
> fprime := diff(f, x);

10 9 7 6 4 3 2
11 x - 10 x + 16 x - 28 x + 15 x - 12 x + 3 x + 6 x - 1

Now we compute fred using the formula in (e):

> quo(f, gcd(f, fprime), x);
5 2
x + x - x - 1

Hence by (c):

I(V (x11−x10+2x8−4x7+3x5−3x4+x3+3x2−x−1)) = 〈x5+x2−x−1〉.


