Homework 2

Algorithms for Elementary Algebraic Geometry Math 191, Fall Quarter 2007

Due Wednesday, October 17, 2007.

- 1. Let k be a field, let $I = k[x_1, \ldots, x_n]$ be an ideal, and let $f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$. Prove that the following statements are equivalent:
 - (a) $f_1, \ldots, f_s \in I$.
 - (b) $\langle f_1, \ldots, f_s \rangle \subseteq I$.
- 2. Use the previous problem to prove the following equalities of ideals in $\mathbb{Q}[x, y]$.
 - (a) $\langle x + xy, y + xy, x^2, y^2 \rangle = \langle x, y \rangle;$
 - (b) $\langle 2x^2 + 3y^2 11, x^2 y^2 3 \rangle = \langle x^2 4, y^2 1 \rangle.$
- 3. Let k be a field. An ideal I of $k[x_1, \ldots, x_n]$ is said to be **radical** if whenever a power f^m of a polynomial f lies in I, for some positive integer m, then f itself is in I.
 - (a) Prove that if V is an affine variety in k^n , then I(V) is always a radical ideal of $k[x_1, \ldots, x_n]$.
 - (b) Prove that $\langle x^2, y^2 \rangle \neq I(V)$ for every affine variety V in k^2 .
- 4. The consistency problem asks, given $f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$, whether $V(f_1, \ldots, f_s) = \emptyset$. In this exercise we consider this problem for the case $k = \mathbb{C}$ and n = 1:
 - (a) Let $f \in \mathbb{C}[x]$ be a nonzero polynomial. Show that $V(f) = \emptyset$ if and only if f is a nonzero constant.
 - (b) Let $f_1, \ldots, f_s \in \mathbb{C}[x]$. Prove that $V(f_1, \ldots, f_s) = \emptyset$ if and only if $\operatorname{GCD}(f_1, \ldots, f_s) = 1$.
 - (c) Describe (in words) an algorithm to determine, given $f_1, \ldots, f_s \in \mathbb{C}[x]$, whether $V(f_1, \ldots, f_s) = \emptyset$.
- 5. MathSciNet (www.ams.org/mathscinet) indexes the vast majority of mathematics papers and books published each year. Use it to find out:
 - (a) How many other books have the authors of our text-book written? Does the UCLA library have any of them?
 - (b) For how many papers published between 1990 and 1995 does the word "Gröbner" appear in the title? You will need to be logged on to a computer on the UCLA network to use MathSciNet.