Homework 2

Algorithms for Elementary Algebraic Geometry

Math 191, Fall Quarter 2007
Solutions.

1. Since $f_{i}=1 \cdot f_{i}+\sum_{j \neq i} 0 \cdot f_{j} \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$, we have that (b) implies (a). Now we show that (a) implies (b). Every element $g \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$ can be written as $g=\sum_{i=1}^{s} h_{i} f_{i}$ for some $h_{1}, \ldots, h_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$; since $f_{1}, \ldots, f_{s} \in I$, and ideals are closed under addition and polynomial multiplication, $g=\sum_{i=1}^{s} h_{i} f_{i} \in I$. Thus $\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq I$.
2. By the previous question we just need to show that each set of generators is in the ideal generated by the other set of generators.
(a) $\left\langle x+x y, y+x y, x^{2}, y^{2}\right\rangle \subseteq\langle x, y\rangle$ since $x+x y, y+x y, x^{2}$, and y^{2} are all visibly in $\langle x, y\rangle$. For the other direction, note that

$$
\begin{aligned}
x & =(x+x y)-(y+x y) x+x^{2} y, \\
y & =(y+x y)-(x+x y) y+y^{2} x .
\end{aligned}
$$

(b) The fact that

$$
2 x^{2}+3 y^{2}-11=2\left(x^{2}-4\right)+3\left(y^{2}-1\right)
$$

and

$$
x^{2}-y^{2}-3=\left(x^{2}-4\right)-\left(y^{2}-1\right)
$$

implies that

$$
\left\langle 2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right\rangle \subseteq\left\langle x^{2}-4, y^{2}-1\right\rangle .
$$

In the same way,

$$
x^{2}-4=\frac{1}{5}\left(2 x^{2}+3 y^{2}-11\right)+\frac{3}{5}\left(x^{2}-y^{2}-3\right)
$$

and

$$
y^{2}-1=\frac{1}{5}\left(2 x^{2}+3 y^{2}-11\right)-\frac{2}{5}\left(x^{2}-y^{2}-3\right)
$$

imply that

$$
\left\langle x^{2}-4, y^{2}-1\right\rangle \subseteq\left\langle 2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right\rangle .
$$

3. (a) Let V be an affine variety in k^{n}, let f be a polynomial and $m>0$ an integer such that $f^{m} \in I(V)$. Then $(f(x))^{m}=f^{m}(x)=0$ for every $x \in V$. The only element a of k with the property that $a^{m}=0$ is $a=0$ (why?), so we conclude that $f(x)=0$ for all $x \in V$. Thus $f \in I(V)$. This means that $I(V)$ is radical.
(b) If $\left\langle x^{2}, y^{2}\right\rangle=I(V)$ for some affine variety $V \subseteq k^{2}$, then $\left\langle x^{2}, y^{2}\right\rangle$ would be a radical ideal by (a). However $x^{2} \in\left\langle x^{2}, y^{2}\right\rangle$, but any polynomial of the form $f(x, y) x^{2}+g(x, y) y^{2}$ where $f, g \in k[x, y]$ has total degree at least two, so $x \notin\left\langle x^{2}, y^{2}\right\rangle$. Thus $\left\langle x^{2}, y^{2}\right\rangle$ is not radical, and so not the ideal of any variety.
4. (a) By the Fundamental Theorem of Algebra, if $f \in \mathbb{C}[x]$ is nonconstant, then f has a zero, so $V(f) \neq \emptyset$. Conversely, if f is a constant, then $V(f)=\emptyset$.
(b) Let $h=\operatorname{GCD}\left(f_{1}, f_{2}, \ldots, f_{s}\right)$. Then $\langle h\rangle=\left\langle f_{1}, f_{2} \cdots, f_{s}\right\rangle$. The variety of an ideal does not depend on the choice of generators, so $V\left(f_{1}, \ldots, f_{s}\right)=V(h)$, and thus by part (a) we have $V\left(f_{1}, \ldots, f_{s}\right)=\emptyset$ if and only if $\operatorname{GCD}\left(f_{1}, \ldots, f_{s}\right)=1$ (up to multiplication by a nonzero constant from \mathbb{C}).
(c) The following algorithm determines, given $f_{1}, \ldots, f_{s} \in \mathbb{C}[x]$, whether $V\left(f_{1}, \ldots, f_{s}\right)=\emptyset$: Given f_{1}, \ldots, f_{s}, compute $\operatorname{GCD}\left(f_{1}, f_{2}, \ldots, f_{s}\right)$ using the Extended Euclidean Algorithm (as explained in class). If the answer is a nonzero constant, output "yes", otherwise output "no."
5. (a) The authors have written one other joint book, entitled "Using Algebraic Geometry," which appeared in two editions. Our library owns both; I placed the second edition on reserve for this class.
(b) There were 99 papers published between 1990 and 1995 with the word "Gröbner" in the title.
