Homework 1
 Algorithms for Elementary Algebraic Geometry

Math 191, Fall Quarter 2007
Due Monday, October 8, 2007

1. Let $\mathbb{F}_{2}=\{0,1\}$, and define two operations + and \cdot on \mathbb{F}_{2} by

$$
0+0=1+1=0, \quad 0+1=1+0=1
$$

and

$$
0 \cdot 0=0 \cdot 1=1 \cdot 0=0, \quad 1 \cdot 1=1 .
$$

Verify that $\mathbb{F}_{2}=\{0,1\}$, equipped with these operations, forms a field. (You may skip the verification of the associative and distributive properties.)
2. Let \mathbb{F}_{2} be the field from Problem 1. Consider the polynomial

$$
g(x, y)=x^{2} y+y^{2} x \in \mathbb{F}_{2}[x, y] .
$$

Show that $g(x, y)=0$ for every $(x, y) \in \mathbb{F}_{2}^{2}$. Why does this not contradict what we proved in class?
3. Let k be a field. Prove that every single point $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ is an affine variety. Use this to prove that every finite subset of k^{n} is an affine variety.
4. Show that the set

$$
X=\{(x, x): x \in \mathbb{R}, x \neq 1\} \subseteq \mathbb{R}^{2}
$$

is not an affine variety. (This is Exercise 1.2.8 in the textbook, where you can find some hints.)
5. Consider the equations:

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
x y & =1
\end{aligned}
$$

which describe the intersection of a circle and a hyperbola.
(a) Use algebra to eliminate y from the above equation.
(b) Show that the polynomial you found in part (a) lies in the ideal $\left(x^{2}+y^{2}-1, x y-1\right)$.

