Homework 1

Algorithms for Elementary Algebraic Geometry

Math 191, Fall Quarter 2007

Solutions

1. (20 pts.) We have $0+1=1+0=1$ and $0 \cdot 1=1 \cdot 0=0$, hence addition and multiplication on \mathbb{F}_{2} are commutative. Clearly $a+0=a \cdot 1=a$ for $a=0,1$, hence 0 and 1 are identity elements for + and \cdot. The additive inverse of 0 is 0 and the additive inverse of 1 is 1 (since $1+1=0$); the multiplicative inverse of 1 (the only nonzero element of \mathbb{F}_{2}) is 1 (since $1 \cdot 1=1)$.
2. (10 pts.) We have $\mathbb{F}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\}$. Substituting each element of this set for (x, y) in g shows that $g(x, y)=0$ for every $(x, y) \in$ \mathbb{F}_{2}^{2}. Since the field \mathbb{F}_{2} is finite, and although the polynomial g is not the zero polynomial, this does not contradict what we proved in class, where we showed that for infinite coefficient fields k only the zero polynomial in $k[x, y]$ defines the zero function on k^{2}.
3. (20 pts.) Let $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$, and consider $V=V\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$. Then $\left(a_{1}, \ldots, a_{n}\right) \in V$, and if $\left(b_{1}, \ldots, b_{n}\right) \in V$, then $b_{i}=a_{i}$ for each i, so $\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}, \ldots, a_{n}\right)$, and thus $V=\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$ is an affine variety. In class we proved that the union of two affine varieties in k^{n} is an affine variety in k^{n}. By induction on m, this implies that the union of m affine varieties in k^{n} is an affine variety. Hence in particular, every finite subset of k^{n} is an affine variety.
4. (20 pts.) For a contradiction, suppose that X is an affine variety, so $X=V\left(f_{1}, f_{2}, \ldots, f_{s}\right)$ for some polynomials $f_{1}, f_{2}, \ldots, f_{s} \in \mathbb{R}[x, y]$. Let $f \in\left\langle f_{1}, f_{2}, \ldots, f_{s}\right\rangle$. The polynomial f vanishes on X. Let $g(t)=f(t, t)$. Then $g(t)$ is a polynomial which vanishes away from $t=1$. Using the fact that a nonzero polynomial $g(t)$ defined over an infinite field has only finitely many zeros, we conclude that $g=0$. This implies that $f(1,1)=0$ for any $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$, contradicting $(1,1) \notin X$.
5. (a) (20 pts.) Multiplying the equation $x y-1=0$ on both sides by $x y+1$, we obtain

$$
x^{2} y^{2}-1=0
$$

From the equation $x^{2}+y^{2}=1$, we also have $y^{2}=1-x^{2}$, and thus substituting in for y^{2} we get

$$
x^{2}\left(1-x^{2}\right)-1=0
$$

(b) (10 pts.) We have

$$
x^{2}\left(1-x^{2}\right)-1=(x y-1)(x y+1)-\left(x^{2}+y^{2}-1\right) x^{2} \in\left\langle x^{2}+y^{2}-1, x y-1\right\rangle .
$$

