Homework 1

Algorithms for Elementary Algebraic Geometry Math 191, Fall Quarter 2007

Solutions

- 1. (20 pts.) We have 0 + 1 = 1 + 0 = 1 and $0 \cdot 1 = 1 \cdot 0 = 0$, hence addition and multiplication on \mathbb{F}_2 are commutative. Clearly $a + 0 = a \cdot 1 = a$ for a = 0, 1, hence 0 and 1 are identity elements for + and \cdot . The additive inverse of 0 is 0 and the additive inverse of 1 is 1 (since 1 + 1 = 0); the multiplicative inverse of 1 (the only nonzero element of \mathbb{F}_2) is 1 (since $1 \cdot 1 = 1$).
- 2. (10 pts.) We have $\mathbb{F}_2^2 = \{(0,0), (0,1), (1,0), (1,1)\}$. Substituting each element of this set for (x, y) in g shows that g(x, y) = 0 for every $(x, y) \in \mathbb{F}_2^2$. Since the field \mathbb{F}_2 is finite, and although the polynomial g is not the zero polynomial, this does not contradict what we proved in class, where we showed that for infinite coefficient fields k only the zero polynomial in k[x, y] defines the zero function on k^2 .
- 3. (20 pts.) Let $(a_1, \ldots, a_n) \in k^n$, and consider $V = V(x_1 a_1, \ldots, x_n a_n)$. Then $(a_1, \ldots, a_n) \in V$, and if $(b_1, \ldots, b_n) \in V$, then $b_i = a_i$ for each i, so $(b_1, \ldots, b_n) = (a_1, \ldots, a_n)$, and thus $V = \{(a_1, \ldots, a_n)\}$ is an affine variety. In class we proved that the union of two affine varieties in k^n is an affine variety in k^n . By induction on m, this implies that the union of m affine varieties in k^n is an affine variety. Hence in particular, every finite subset of k^n is an affine variety.
- 4. (20 pts.) For a contradiction, suppose that X is an affine variety, so $X = V(f_1, f_2, \ldots, f_s)$ for some polynomials $f_1, f_2, \ldots, f_s \in \mathbb{R}[x, y]$. Let $f \in \langle f_1, f_2, \ldots, f_s \rangle$. The polynomial f vanishes on X. Let g(t) = f(t, t). Then g(t) is a polynomial which vanishes away from t = 1. Using the fact that a nonzero polynomial g(t) defined over an infinite field has only finitely many zeros, we conclude that g = 0. This implies that f(1, 1) = 0 for any $f \in \langle f_1, \ldots, f_s \rangle$, contradicting $(1, 1) \notin X$.
- 5. (a) (20 pts.) Multiplying the equation xy 1 = 0 on both sides by xy + 1, we obtain

$$x^2 y^2 - 1 = 0.$$

From the equation $x^2 + y^2 = 1$, we also have $y^2 = 1 - x^2$, and thus substituting in for y^2 we get

$$x^2(1-x^2) - 1 = 0.$$

(b) (10 pts.) We have

$$x^2(1-x^2)-1 = (xy-1)(xy+1) - (x^2+y^2-1)x^2 \in \langle x^2+y^2-1, xy-1\rangle = \langle x^2+y^2-1\rangle = \langle x^2+y^2-1$$