Die folgende Tabelle stellt die Transformation von Polar- auf Kartesische Koordinaten dar.
Die 4 Spalten enthalten folgende Information.
Ein Achsen-paralleles Netz und die Punkte gefärbt nach der Farbe
des entsprechenden Bildpunkts. D.h. jene Farben die hier nicht vorkommen
liegen nicht im Bild der Funktion (Funktion nicht surjektiv).
Auf Punkten mit gleicher Farbe hat die Funktion
gleiche Werte, ist also nicht injektiv.
Anklicken lädt zwei Java-applets welche die Funktion in polar- und in
Kartesischen Koordinaten darstellt und dem User durch Verschieben des weißen
Punktes in der ersten Spalte, den entsprechenden schwarzen Bildpunkt in der dritten
Spalte und den entsprechenden Wert der Determinante der Jacobi-Matrix in der vierten Spalte.
Die Definition der Funktion.
Der Zielbereich der Funktion mit Farben entsprechend dem Farbkreis
und den Bildern der Parameterlinien aus Spalte 1 unter der Funktion.
Niveaulinien der Determinante der Jacobimatrix und die Punkte gefärbt
entsprechend der geographischen
Höhe, d.h. in Punkte an der Grenze zwischen grün und blau ist die Determinante 0, also
kein lokaler Diffeomorphismus. Bei blaune Punkten ist die Determinante negativ.