5.1.10 Torus

The syntax of the torus object is:
TORUS:
  torus { MAJOR_RADIUS, MINOR_RADIUS [TORUS_MODIFIERS] }

TORUS_MODIFIERS:
  [sturm [BOOL]] & [OBJECT_MODIFIERS]
See also:

This is the particular case of a surface of revolution, where a disk of radius MINOR_RADIUS($ =r$) and center at the $ x$-axes in distance MAJOR_RADIUS($ =R$) from 0 is rotated around the $ y$-axes.

Figure: Tori
Image /home/andreas/tex/Books/computer-graphics/img//obj-torus.png

In parametric form this surface is given by latitude $ \th\in[-\pi,\pi]$ and longitude $ \varphi \in[0,2\pi]$ as

$\displaystyle \langle\th ,\varphi \rangle\mapsto \langle (R+r\cos\th )\cos\varphi ,(R+r\cos\th )\sin\varphi ,r\sin\th\rangle
$

or implicitly by

$\displaystyle (\sqrt{x^2+z^2}-R)^2+y^2=r^2.
$

Andreas Kriegl 2003-07-23